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Abstract. We study the time evolution of two protoplanets still embedded in a protoplanetary disk. The results of two different

numerical approaches are presented and compared. In the first approach, the motion of the disk material is computed with

viscous hydrodynamical simulations, and the planetary motion is determined by N-body calculations including exactly the

gravitational forces exerted by the disk material. In the second approach, only the N-body integration is performed but with

additional dissipative forces included such as to mimic the effect of the disk torques acting on the disk. This type of modeling

is much faster than the full hydrodynamical simulations, and gives comparative results provided that parameters are adjusted

properly.

Resonant capture of the planets is seen in both approaches, where the order of the resonance depends on the properties of

the disk and the planets. Resonant capture leads to a rise in the eccentricity and to an alignment of the spatial orientation of

orbits. The numerical results are compared with the observed planetary systems in mean motion resonance (GJ 876, HD 82943,

and 55 Cnc). We find that the forcing together of two planets by their parent disk produces resonant configurations similar to

those observed, but that eccentricity damping greater than that obtained in our hydrodynamic simulations is required to match

the GJ 876 observations.
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1. Introduction

Since their first discovery in 1995, the number of de-

tected extrasolar planets orbiting solar-type stars has risen

during recent years to more than 100 (for an up-to-date

list see e.g. http://www.obspm.fr/encycl/encycl.html

by J. Schneider). Among these, there are currently 11 systems

with two or more planets; a summary of their properties has

been given recently by Marcy et al. (2003). With further obser-

vations to come, the fraction of systems with multiple planets

will almost certainly increase, as many of the systems exhibit

long-term trends in their radial velocity, suggesting an addi-

tional outer planet. Among the known multiple-planet extraso-

lar systems there are now three confirmed cases, namely GJ 876

(Marcy et al. 2001), HD 82943 (the Coralie Planet Search

Programme, ESO Press Release 07/01), and 55 Cnc (Marcy

et al. 2002) where the planets orbit their central star in a low-

order mean motion resonance such that the orbital periods have

nearly exactly the ratio 2:1 or 3:1. The parameters of these

planetary systems are displayed in Table 1 below. The possi-

bility of a 2:1 resonance in HD 160691 has also been discussed

recently by Bois et al. (2003), although the orbital periods are
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too long to definitely confirm this. Overall, these numbers im-

ply that at least one-fourth of multiple-planetary systems con-

tain planets in resonance, a fraction which is even higher if sec-

ular resonances, such as those observed in the υ And system,

(Butler et al. 1999) are also considered.

The formation of resonant planetary systems can be un-

derstood by considering the joint evolution of protoplanets to-

gether with the protoplanetary disk from which they formed.

Using local linear analysis, it has been shown that the gravi-

tational interaction of a single protoplanet with its disk leads

to torques resulting in a change of the semi-major axis (mi-

gration) of the planet (Goldreich & Tremaine 1980; Lin &

Papaloizou 1986; Ward 1997; Tanaka et al. 2002). Additionally,

as a result of angular momentum transfer between the viscous

disk and the planet, planetary masses of around one Jupiter

mass can open gaps in the surrounding disk (Lin & Papaloizou

1980, 1993). Fully non-linear hydrodynamical calculations for

Jupiter-sized planets (Kley 1999; Bryden et al. 1999; Lubow

et al. 1999; Nelson et al. 2000; D’Angelo et al. 2002) con-

firmed this expectation and clearly showed that disk-planet

interaction leads to: i) excitation of spiral shock waves in

the disk, whose tightness depends on the sound-speed in the

disk, ii) formation of an annular gap, whose width is deter-

mined by the balance between gap-opening tidal torques and
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gap-closing viscous plus pressure forces, iii) inward migration

on a time scale of 105 yrs for typical disk parameters, in par-

ticular disk masses corresponding to that of the minimum mass

solar nebula, iv) possible mass growth after gap formation up

to about 10 MJup when finally the gravitational torques over-

whelm the diffusive tendencies of the gas, and v) a prograde ro-

tation of the planet. New three-dimensional computations with

high resolution resolve the flow structure in the vicinity of the

planet, and allow for more accurate estimates of the mass ac-

cretion and migration rates (D’Angelo et al. 2003; Bate et al.

2003).

These hydrodynamic simulations with single planets have

been extended to models that contain multiple planets. It has

been shown (Kley 2000; Bryden et al. 2000; Snellgrove et al.

2001; Nelson & Papaloizou 2002) that during the early evolu-

tion, when the planets are still embedded in the disk, different

migration speeds may lead to an approach of neighboring plan-

ets and eventually to resonant capture. More specifically, the

evolution of planetary systems into a 2:1 resonant configura-

tion was seen in the calculations of Kley (2000) prior to the

discovery of any such systems.

In addition to hydrodynamic disk-planet simulations, many

authors have analyzed the evolution of multiple-planet sys-

tems with N-body methods. Each of the known resonant sys-

tems have been considered in detail. Ji et al. (2002) and Lee &

Peale (2002) have modeled the evolution of 2:1 resonant sys-

tem GJ 876, while the 3:1 system 55 Cnc has been analyzed by

Ji et al. (2003b) and Lee & Peale (2003), and the 2:1 system

HD 82943 by Goździewski & Maciejewski (2001) and Ji et al.

(2003a). Based on orbit integrations, these papers confirm that

the planets in these systems are in resonance with each other.

The dynamics and stability of resonant planetary systems in

general has been recently studied by Beaugé et al. (2003).

Here we present new numerical calculations treating the

evolution of two planets still embedded in a protoplanetary

disk. We use both hydrodynamical simulations and simpli-

fied N-body integrations to follow the evolution of the system.

In the first approach, the disk is evolved by solving the full

time-dependent Navier-Stokes equations simultaneously with

the evolution of the planets. Here, the motion of the planets

is determined by the gravitational action of both planets, the

star, and the disk. In the latter approach, we take a simplified

approximation and perform 3-body (star plus two planets) cal-

culations augmented by additional (damping) forces which ap-

proximately account for the gravitational influence of the disk

(e.g. Lee & Peale 2002). Using both approaches, allows a di-

rect comparison of the alternative methods, and does enable us

to determine the damping parameters required for the simpler

(and much faster) second type of approach.

2. The observations

The basic orbital parameters of the three known systems in

mean motion resonance are presented in Table 1. The or-

bital parameters for GJ 876 are taken from the dynamical fit

of Laughlin & Chambers (2001), and for HD 82943 from

Goździewski & Maciejewski (2001). Due to the uncertainty in

the inclinations of the systems, M sin i, rather than the exact

Table 1. The orbital parameters of the three systems known to contain

a mean motion resonance. P denotes the orbital period, M sin i the

mass of the planets, a the semi-major axis, e the eccentricity, ̟ the

angle of periastron, and M∗ the mass of the central star. It should

be noted that the orbital elements for shorter period planets undergo

secular time variations. Thus in principle one should always state the

epoch corresponding to these osculating elements (see e.g. Laughlin

& Chambers 2001).

Name P M sin i a e ̟ M∗

[d] [MJup] [AU] [deg] [M⊙]

GJ 876 (2:1) 0.32

c 30.1 0.56 0.13 0.24 159

b 61.02 1.89 0.21 0.04 163

HD 82943 (2:1) 1.05

b 221.6 0.88 0.73 0.54 138

c 444.6 1.63 1.16 0.41 96

55 Cnc (3:1) 0.95

b 14.65 0.84 0.11 0.02 99

c 44.26 0.21 0.24 0.34 61

d 5360 4.05 5.9 0.16 201

mass of each planet, is listed. By including the mutual per-

turbations of the planets into their fit of GJ 876, Laughlin &

Chambers (2001), however, are able to constraint that system’s

inclination to ∼30◦ − 50◦.

Two of the systems, GJ 876 and HD 82943, are in a nearly

exact 2:1 resonance. We note that in both cases the outer

planet is more massive, in one case by a factor of about two

(HD 82943) and in the other by more than three (GJ 876). The

eccentricity of the inner (less massive) planet is larger than that

of the outer one in both systems. For the system GJ 876 the

alignment of the orbits is such that the two periastrae are point-

ing in nearly the same direction. For the system HD 82943

these data have not been clearly identified, due to the much

longer orbital periods, but they do not seem to be very different

from each other. The third system, 55 Cnc, is actually a triple

system. Here the inner two planets orbit the star very closely

and are in a 3:1 resonance, while the third, most massive planet

orbits at a distance of several AU.

3. The models

Our goal is to investigate the evolution of protoplanets still em-

bedded in their disk. As outlined in the introduction, we employ

two different methods which complement each other. First, a

fully time-dependent hydrodynamical model for the joint evo-

lution of the planets and disk is presented. Because the evolu-

tionary time scale may cover several thousands of orbits, the

fully hydrodynamical computations (of disk and planets) can

require millions of time-steps, which translates into an effec-

tive computational time of up to several weeks.

Since our main interest is the orbital evolution of the

planets and not so much the hydrodynamics of the disk, we

also perform 3-body orbit integrations which do not explicitly
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follow the disk’s evolution. Through a direct comparison with

the hydrodynamical models, it is then possible to infer the ef-

fective damping forces to include within this faster calculation.

3.1. Hydrodynamical model

The first set of coupled hydrodynamical-N-body models pre-

sented in this paper are calculated in the same manner as the

models described previously in Kley (1998, 1999) for single

planets and in Kley (2000) for multiple planets. The reader is

referred to those papers for details on the computational aspects

of the simulations. Other similar models, following explicitly

the motion of single and multiple planets in disks, have been

presented by Nelson et al. (2000), Bryden et al. (2000), and

Snellgrove et al. (2001).

3.1.1. Equations

For reference, we summarize the basic equations for this prob-

lem. We use two-dimensional cylindrical coordinates (r, ϕ),

where r is the radial coordinate and ϕ is the azimuthal angle.

Thus, we consider an infinitesimally thin disk located at z = 0,

with a velocity field u = (ur, uϕ). The origin of the coordinate

system is at the position of the star. In the following we will use

the symbol v = ur for the radial velocity and ω = uϕ/r for the

angular velocity of the flow. As there is no preferred rotational

frame, we work in a non-rotating reference system. Then the

equations of motion are

∂Σ

∂t
+ ∇ · (Σu) = 0, (1)

∂(Σv)

∂t
+ ∇ · (Σvu) = Σ rω2 −

∂p

∂r
− Σ
∂Φ

∂r
+ fr (2)

∂(Σr2ω)

∂t
+ ∇ · (Σr2ωu) = −

∂p

∂ϕ
− Σ
∂Φ

∂ϕ
+ fϕ. (3)

Here Σ denotes the surface density, p the two-dimensional pres-

sure, and fr, fϕ denote the components of the viscous forces,

given explicitly in Kley (1999). The gravitational potential Φ

generated by the protostar with mass M∗ and the two planets

having mass m1 and m2 is given by

Φ = −
GM∗

|r − r∗|
−

Gm1
[

(r − r1)2 + s2
1

]1/2
−

Gm2
[

(r − r2)2 + s2
2

]1/2
(4)

where G is the gravitational constant and r∗, r1, and r2 are the

position vectors for the star and the inner/outer planet, respec-

tively. The quantities s1 and s2 are smoothing lengths that are

set to 1/5 of each planet’s Roche radius. This softening of the

potential removes any local fluctuations that might result as the

planets move through the computational grid.

The motion of the star and the planets is determined firstly

by their mutual gravitational interaction and secondly by the

gravitational forces exerted upon them by the disk. The accel-

eration of the star a∗ is given for example by

a∗ = Gm1

r1 − r∗

|r1 − r∗|3
+Gm2

r2 − r∗

|r2 − r∗|3

+G

∫

Disk

Σ(r, ϕ)
r − r∗

|r − r∗|3
dA (5)

Table 2. Planetary and disk parameters of the hydrodynamic mod-

els. The masses of the planets are given in Jupiter masses (MJup =

10−3 M⊙). Index 1 refers to the inner and index 2 to the outer planet.

For the last model X, we allow for variable planet masses which both

start with 1 MJup and then grow during the computation. For the vis-

cosity, the corresponding value of α is given except for the last case

(model X) in which we use a constant kinematic viscosity (corre-

sponding to α = 0.04 at a radial location of 5.2 AU). The relative

disk scale height H/r is given in the last column. For the disk masses

and computational domains, see Sect. 3.1.

Model m1 m2 Viscosity H/r

[MJup] [MJup] α

A 5 3 10−2 0.10

B 5 3 2 × 10−3 0.10

C 3 5 10−2 0.10

D1, D2 3 5 3 × 10−3 0.10

E 3 5 10−3 0.10

F 3 5 10−2 0.075

G 3 5 10−2 0.05

X 1 (V) 1 (V) ν = const. 0.05

where the integration covers the entire disk surface. The accel-

erations of the planets are found similarly. We work here in an

accelerated coordinate frame where the origin is located in the

center of the (moving) star. Thus, in addition to force due to the

gravitational potential (Eq. (4)), the disk and planets also feel

an acceleration −a∗.

3.1.2. Initial and boundary conditions

The initial hydrodynamic structure of the disk, which extends

radially from rmin to rmax, is axisymmetric with respect to the

location of the star, and the surface density scales as Σ(r) =

Σ0 r−1/2, with superimposed initial gaps (Kley 2000). The ini-

tial velocity is pure Keplerian rotation (vr = 0, vϕ = GM∗/r
1/2).

We assume a fixed temperature law with T (r) ∝ r−1 which fol-

lows from the assumed constant vertical height H/r. The kine-

matic viscosity ν is typically parameterized by an α-description

ν = αcsH, with the sound speed cs = Hvϕ/r, only one

model (X) has a constant kinematic viscosity.

The radial outer boundary is closed, i.e. vr(rmax) = 0. At the

inner radial boundary outflow boundary conditions are applied;

matter may flow out, but none is allowed to enter. This proce-

dure mimics the accretion process onto the star. The density

gradient is set to zero at rmin and rmax, while the angular ve-

locity there is fixed to be Keplerian. In the azimuthal direction,

periodic boundary conditions for all variables are imposed.

3.1.3. Model parameters

We present several models that are listed in Table 2, for the

complete model parameters see below. In all cases, the planets

are allowed to migrate (change their semi-major axes) through

the disk in accordance with the gravitational torques exerted on



738 W. Kley et al.: Evolution of planetary systems in resonance

them. During the evolution, material is removed from the cen-

ters of the planets’ Roche-lobes and is assumed to have been

accreted onto each planet, for the detailed procedure see Kley

(1999). However, in spite of this assumed accretion process,

in most models this mass is not added to the dynamical mass

of the planets. Hence, the disk mass is slowly depleted while

the planets’ masses are held fixed at the initial values. This as-

sumption of constant planet mass throughout the computation

is well justified, as the migration rate depends only weakly on

the mass of the planet (Nelson et al. 2000). Only in the last

model X are the masses of the planets allowed to grow during

the computation, which may test this assumption.

In all the models A-G, the disk extends radially from rmin =

1 to rmax = 30 AU. The disk mass within this radial range is

about 0.04 M⊙, and the planets are always placed initially at 4

and 10 AU, respectively. In the first two models (A & B), the

inner planet is more massive than the outer one, while in mod-

els C through G the inner planet is less massive. A range of

values for the viscosity and disk thickness H/r are considered,

as listed in Table 2. The values of α = 0.01 and H/r = 0.1

may be on the high side for protoplanetary disks but allow for a

sufficiently rapid evolution of the system to identify clearly the

governing physical effects. The influence of these parameters is

studied by comparison between different models. The parame-

ters for models D1 and D2 are identical, but in the second case

the density has been perturbed randomly by 1%.

Model X differs in several respects from the other models.

The kinematic viscosity ν is constant and equivalent to α =

0.004 at 5.2 AU. Here, both embedded planets each have initial

masses of 1 MJup and are placed initially at 1 and 2 AU. This

model is a continuation of the one presented previously in Kley

(2000). The radial extent of the disk for this model was rmin =

1.3 to rmax = 20.8 AU, which contained a disk mass of 0.01 M⊙
initially. The initial setup makes the surface density Σ(r) the

same for all models.

3.2. Damped N-body model

As pointed out, the full hydrodynamical evolution is computa-

tionally very time consuming since tens of thousands of orbits

must be calculated. Hence, we also perform simpler N-body

calculations of planetary systems with two planets orbiting a

single star. We consider only coplanar systems, where the plan-

etary orbits and the equatorial plane of the disk are all aligned.

The orbit of a single planet around a star is an ellipse and is

determined by three orbital elements: the semi-major axis a,

the eccentricity e, and the direction of periastron ̟. The ac-

tual location of the planet within the orbit can be obtained from

the elapsed time since last periastron. In the case of a planetary

system with more than one planet, due to the mutual gravita-

tional perturbations the ellipses are no longer fixed in space.

In the case where the masses of the planets are much smaller

that the stellar mass, at each epoch we can fit an instantaneous

ellipse to the orbit of each planet and obtain the corresponding

osculating elements of the orbit. These are calculated for each

planet individually, considering only one planet at a time.

Fig. 1. Overview of the density distribution of model C after 1500 or-

bital periods of the inner planet. Higher density regions are brighter

and lower ones are darker. The star lies at the center of the white in-

ner region bounded by rmin = 1 AU. The location of the two planets

is indicated by the white dots, and their Roche-lobes are also drawn.

Clearly seen are the irregular spiral wakes generated by the planets.

Regular intertwined spiral arms are seen only outside of the second

planet.

The gravitational influence of the surrounding disk is mod-

eled here through prescribed (damping) forces. We assume that

these forces act on the momentary semi-major axis and ec-

centricity of the planets through explicitly specified relations

for ȧ(t) and ė(t), which vary with time. The changes ȧ and ė

caused by the damping effects of the disk can be translated into

additional forces changing directly the position x and veloc-

ity u of the planets. Our implementation follows Lee & Peale

(2002), where explicit expressions for these damping terms are

given. As a test, we recalculated their model for GJ 876 and

confirmed their results.

Motivated by the basic idea of two planets orbiting inside a

disk’s cavity (see Fig. 1), we damp a and e for the outer planet

only. We adopt a logarithmic time derivative of a of the form

ȧ

a
= −

1

τ(t)
with τ(t) = τ0 + βt, (6)

where τ(t) denotes the damping time, and β a dimensionless

positive “stretching” constant. By making the ansatz Eq. (6)

we tried to make the damping as simple as possible with only

two parameters to fit. In practice we found that the damping

time τ could not be chosen as a fixed constant, such that we

assume a simple linear time dependence. Equation (6) can be

integrated to yield

a(t) = a0 ·

(

1 + β
t

τ0

)−1/β

, (7)

where a0 denotes the starting value of a at the initial

time t0 = 0.



W. Kley et al.: Evolution of planetary systems in resonance 739

The eccentricity damping is set to a fixed multiple of the

semi-major axis damping

ė

e
= K

ȧ

a
, (8)

where K is a constant, typically larger than unity (see also Lee

& Peale 2002).

The time scale τ0, the “stretching” factor β, and K are

adjusted in order to match the results of the full hydrody-

namic calculations. Results of the two methods are compared

in Sect. 4.2 below.

4. Results

The basic evolutionary sequence of two planets evolving si-

multaneously with a hydrodynamic disk has been calculated

and described by Kley (2000) and Bryden et al. (2000). The

model X was considered in Kley (2000), where it was found

that both planets evolve into a 2:1 resonant configuration.

Model X and model A are discussed further in a recent con-

ference paper Kley (2003). Here, these models are listed essen-

tially for completeness, while our main interest in this paper

focuses on models C-G.

To analyze the system dynamics in the presence of a disk,

we monitor the evolution of the orbital elements a, e, and̟ of

both planets throughout the simulations. In the case of a res-

onance, the orbits are coupled dynamically. For coplanar sys-

tems that are in a mean-motion commensurability (p + q):p, it

suffices to use two resonant angles to describe the evolution.

Here we consider the angular difference of the apsidal lines

∆̟ = ̟2 −̟1 (9)

and the combination

Θ1 = (p + q)λ2 − pλ1 − q̟1, (10)

where λi are the mean longitudes of the inner (i = 1) and outer

(i = 2) planets. The two resonant angles ∆̟ and Θ1 have also

been used recently by Beaugé et al. (2003) to study the possible

stable solutions of resonant planetary systems. In Eq. (10), we

have p = 1, q = 1 for a 2:1 resonance, while for a 3:1 reso-

nance p = 1, q = 2.

Before we discuss details of resonant planetary evolution

we briefly summarize the main properties of model C, which

serves as our standard reference model.

4.1. Hydrodynamical models

4.1.1. Overview

At the start of the simulations both planets are placed into an

axisymmetric disk, where the density is initialized with par-

tially opened gaps superimposed on an otherwise smooth ra-

dial density profile. Upon starting the evolution the two main

effects are:

a) Because of the accretion of gas onto the two planets the ra-

dial region in between them is depleted in mass and finally

cleared. This clearing time depends on the mass of the plan-

ets and on the viscosity and temperature of the disk. The

individual gaps of higher mass planets are deeper, which

lengthens the overall clearing timscale. Higher viscosity

and temperature tend to “push” material towards the plan-

ets and shorten the clearing time. Additionally, the distur-

bance by the two planets creates a strongly time dependent

flow with two mutually interacting spiral arms which also

pushes matter towards the planets. The snapshot in Fig. 1

shows clearly this effect, which again reduces the clearing

time. Thus, the high viscosity (α = 0.01) and tempera-

ture (H/R = 0.1) of the standard model (C) still allow for

gap clearing because of the large mass of the planets. After

about 5000 yrs, only 2% of the initial material between the

planets remains. For model X, with lower mass planets, this

phase takes only a few hundred orbital periods (Kley 2000).

Concurrently with the central ring depletion, the region

interior to the inner planet loses material either due to ac-

cretion onto the central star (the inner boundary is open to

outflow) or by accretion onto the planet. As with the inter-

mediate ring, the timescale for clearing this inner region

again depends on the physical parameter of the system.

Thus, after an initial transient phase we typically expect the

configuration of two planets orbiting within an inner cavity

of the disk, as seen in Fig. 1 (see also Kley 2000).

b) After initialization, the planets quickly (within a few orbital

periods) excite non-axisymmetric disturbances, viz. the spi-

ral waves, in the disk. In contrast to the single planet case

these are not stationary in time, because there is no pre-

ferred rotating frame. The gravitational torques exerted on

the two planets by those non-axisymmetric density pertur-

bations induce a migration process for the planets.

Now, the planets’ relative positions within the cavity have a

distinct influence on their subsequent evolution. As a conse-

quence of the clearing process, the inner planet is no longer

surrounded by any disk material and thus cannot grow any fur-

ther in mass. In addition, it cannot migrate anymore, because

there is no torque-exciting material left in its vicinity. All the

material of the outer disk is still available, on the other hand,

to exert negative (Lindblad) torques on the outer planet. Hence,

in the initial phase of the computations we observe an inwardly

migrating outer planet and a stalled inner planet with a con-

stant semi-major axis (see the first 5000 yrs in the top panel

of Fig. 2).

During the inward migration process the eccentricity of the

outer planet remains small. As can be seen from Fig. 3 there

is always a sufficient amount of matter in the immediate vicin-

ity (co-orbital region) of the planet to ensure damping of the

eccentricity. For a 5 Jupiter mass planet at r = 6.63 AU the

Roche-lobe size is 0.78 AU, which is indicated by the radius

of the drawn circle. The arrows denote the position of the inner

and outer 2:1 Lindblad resonances.

The decrease in separation between the planets increases

their gravitational interactions. Once the ratio of the planets’

orbital periods has reached a ratio of two integers, i.e. they are

close to a mean motion resonance, resonant capture of the inner

planet by the outer one may ensue. Whether or not this does
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Fig. 2. The semi-major axis (a), eccentricity (e) and position angle of

the orbital periastron (̟) for the two planets versus time for Model C.

In this example, the planets have fixed masses of 3 and 5 MJup, and

are placed initially at 4 and 10 AU, respectively. The inner planet is

denoted by the black line, the outer by the light gray line. The dotted

reference line (labeled 3:1), indicates the location of the 3:1 resonance

with respect to the inner planet.

actually happen depends on the physical conditions in the disk

(e.g. viscosity) and the orbital parameters of the planets. If the

migration speed is too large, for example, there may not be

enough time to excite the resonance, and the outer planet will

continue migrating inward (e.g. Haghighipour 1999). Also, if

the initial eccentricities are too small, then there may be no

capture, particularly for second-order resonances such as the

3:1 resonance (see e.g. Murray & Dermott 1999). For more

details on capture probability see Sect. 4.3.3 below.

4.1.2. 3:1 resonance: Model C

The typical time evolution of the semi-major axis (a), eccen-

tricity (e) and direction of the periastron (̟) are displayed in

Fig. 2 for the standard model C. The planets were initialized

with zero eccentricities at distances of 4 and 10 AU in a disk

with partially cleared gaps.

In the beginning, after the inner gap has completely cleared,

only the outer planet migrates inward, and the eccentrici-

ties of both planets remain relatively small, (<∼0.02). After

about 5000 yrs the outer planet has reached a semi-major axis
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Fig. 3. The azimuthally averaged surface density (in dimensionless

units) for model C at 40 000 yrs. The location of the semi-major axis of

the planet is indicated by the vertical dashed line at r = 6.63, and the

size of its Roche-radius by the solid circle. The left and right arrows

indicate the locations of the inner and outer 2:1 Lindblad resonances,

respectively.

with an orbital period three times that of the inner planet. The

periodic gravitational forcing leads to the capture of the inner

planet into a 3:1 resonance with the outer one. This is indi-

cated by the dotted reference line (labeled 3:1) in the top panel

of Fig. 2, which marks the location of the 3:1 resonance with

respect to the inner planet.

We summarize the following important features of the evo-

lution after resonant capture:

a) In the course of the subsequent evolution, the outer planet,

which is still driven inward by the outer disk material,

forces the inner planet to also migrate inwards. Both plan-

ets migrate inward simultaneously, always retaining their

resonant configuration. Consequently, the migration speed

of the outer planet slows down, and their radial separation

declines.

b) Upon resonant capture the eccentricities of both planets

grow initially very fast before settling into an oscillatory

quasi-static state which changes slowly on a secular time

scale. This slow increase of the eccentricities on the longer

time scale is caused by the growing gravitational forces be-

tween the planets, due to the decreasing radial distance of

the two planets on their inward migration process.

c) The ellipses/periastrae of the planets rotate at a constant,

retrograde angular speed ˙̟ . Coupled together by the res-

onance, the apsidal precession rate ˙̟ for both planets is

identical, which can be inferred from the parallel lines in

the bottom panel of Fig. 2. The orientation of the orbits is

phase-locked with a constant separation ∆̟ = ̟2 − ̟1.

The rotation period of the ellipses (apsidal lines) is slightly

longer than the oscillation period of the eccentricities.
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Fig. 4. Evolution of ∆̟ and Θ1 in model C. Left: the difference in the direction of the periastrae, ∆̟ = ̟2 −̟1 (in degrees) for both planets

versus time (in thousand years). Right: the resonant angle for the 3:1 resonance Θ1 = 3λ2 − λ1 − 2̟1 (in degrees) as a function of time.

The capture into resonance and the subsequent libration of

the orbits in model C is illustrated further in Fig. 4. As sug-

gested in Fig. 2 (bottom panel) the periastrae begin to align

upon capture in the 3:1 resonance. Initially, during the phase

when the eccentricities are still rising (between 5 and 20 thou-

sand yrs), the difference of the periastrae settles intermediately

to ∆̟ ≈ 180◦ (see Fig. 4, left panel). Then, upon saturation

after about 20 000 yrs, the system re-adjusts and eventually es-

tablishes itself at ∆̟ ≈ 107◦, with a libration amplitude of

about 7◦. The right panel of Fig. 4 shows the time evolution

of the resonant angle Θ1 = 3λ2 − λ1 − 2̟1. Here λ1 and λ2

denote the mean longitudes of the inner and outer planet, re-

spectively. Initially,Θ1 settles to 180◦ as well, and re-adjusts af-

ter 20 000 yrs to −145◦ with a libration amplitude of ±15◦. This

behavior of an initially symmetric alignment of ∆̟ and Θ1

at about 180◦ followed by a later change to ∆̟ ≈ ±110◦

and Θ1 ≈ ±145◦ is characteristic for all our models which

show captures into 3:1 resonance, independent of the physical

parameters (see Table 4).

This behavior can be understood by an analysis of the inter-

action Hamiltonian for resonant systems (Beaugé et al. 2003).

By minimizing the interaction energy, the equilibrium values

for∆̟ andΘ1 can be obtained as a function of the mass and ec-

centricity of the two planets. As shown by Beaugé et al. (2003),

when the eccentricity of the inner planet is small (e1 <∼ .12) the

equilibrium values of both resonant angles are exactly 180◦.

For higher eccentricity though, the equilibrium values of ∆̟

and Θ1 shift to 115◦ and 210◦. In our numerical simulations we

find exactly this behavior. Initially, upon entering the resonant

configuration the eccentricities are small and the two angles

both adjust to 180◦. Later they readjust to new values as the

eccentricities rise above the critical value.

In the subsequent longterm evolution after 20 000 yrs, the

system settles into a quasi-equilibrium situation where the

Fig. 5. Eccentricity ratio e2/e1 of the outer and inner planet, versus pe-

riastron difference ∆̟ for model C. The data points are spaced equally

in time with a distance of approximately δt = 23 yrs. Shown is a sec-

tion of the evolution of model C, from 26 000 to 55 000 yrs, which

covers about 7 libration periods.

eccentricities oscillate with a period of about 3750 yrs. In the

e2/e1 versus ∆̟ diagram (Fig. 5), this phenomenon is demon-

strated by the circular distribution of data points around the

equilibrium values.

4.1.3. 2:1 resonance: Model D

In comparison to the previous model C the only difference in

this model D is the value of the viscosity coefficient. Three
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Fig. 6. The semi-major axis, eccentricity and position angle of the or-

bital periastron versus time for Model D. The only parameter different

from the first model C is the lower viscosity. Here, the outer planet

passes through the 3:1 resonance and captures the inner planet finally

into a 2:1 configuration. The dotted reference line (labeled 2:1) marks

the location of the 2:1 resonance with respect to the inner planet. Upon

resonant capture, the eccentricities grow and the two orbits librate ret-

rograde with a fixed relative orientation of ∆̟ = 0◦.

times less viscosity (α = 3.3 × 10−3) results in a little bit

slower migration speed. For this model the evolution did not

end up in the 3:1, but rather the 2:1, resonance. In Fig. 6, the

evolution of a, e and ̟ is displayed. The eccentricities show

a small “kink” as the outer planet reaches the 3:1 resonance,

but migration continues past the resonant location. Later, at

about 26 000 yrs, capture occurs in the 2:1 resonance, leading

to perfectly aligned orbits. Both resonant angles, ∆̟ and Θ1,

are nearly zero with a very small libration amplitude. The

e2/e1 versus ∆̟ plot (Fig. 8) shows the small variations in

the eccentricities and the small libration amplitude (cf. Fig. 5).

Using the same model parameters, we ran a nearly identical

simulation in which the initial density was disturbed randomly

by 1%. With just this small change in the initial conditions,

capture into 3:1 resonance was successful (see also Table 4

and Sect. 4.3.3).

Table 3. Fit parameters of the N-body computations, obtained through

comparison with the full hydro simulations for models C-G. Listed

are the model name, the initial damping time scale τ0, the slow

down of the damping β (see Eq. (6)), and the eccentricity damping K

(see Eq. (8)).

Model τ0 [yrs] β K

C 17 500 3.2 1.5

D 27 000 2.5 1.5

E 38 000 2.5 1.5

F 19 500 1.5 1.5

G 33 500 1.0 2.5

Table 4. Results of the full hydrodynamical computations for the

longterm evolution. Listed are the model name, the resonance in which

the system is captured, the eccentricity ratio e2/e1, the separation of

the periastrae ∆̟, the resonant angle Θ1, and the speed of the ap-

sidal precession ˙̟ . The models labeled with (V) are still evolving

with time. For model D two cases (caught in different resonances) are

presented.

Model Res. e2/e1 ∆̟ Θ1 ˙̟

[deg] [deg] [rad/yr]

A 3:1 1.0 −110 −140 −0.0015

B 3:1 0.7 −120 −150 −0.0015

C 3:1 0.73 −107 −145 −0.0014

D1 2:1 0.35 0 0 −0.0033

D2 3:1 0.70 +110 147 −0.0015 (V)

E 3:1 0.73 −107 −140 −0.0010

F 5:2 1.1 +180 0 −0.0033

G 3:1 0.65 +110 +150 −0.0022 (V)

X 2:1 0.24 0 0 −0.0021

4.2. Damped N-body calculations

As a test of the damped N-body model described above

(Sect. 3.2), we calculate the evolution of all models C-G using

the 3-body method and compare the results to the full hydrody-

namic evolutions. As outlined above, the prescribed damping

formula (Eq. (6)) is used to directly alter the semi-major axis a

and eccentricity e of the outer planet only.

All the results of the damped N-body models are summa-

rized in Table 3. The values of the damping constant K cannot

be determined too precisely, as there is some dependence of the

magnitude on the initial eccentricities. Those were chosen to be

about 0.01 to 0.02 for all models.

As an example, we display the evolution of model G, in

which H/r = 0.05. To test the damping, we first use Eq. (6)

with a constant damping τ = τ0, i.e. β = 0. This refers to

the lower (dark gray) curve in Fig. 9, where we chose τ0 =

33 500 yrs. As can be seen in the figure, a constant damping,

even when it has the correct initial slope, in the longterm yields

too fast a migration of the outer planet. A time-dependent

damping with β = 1.0 (light gray curve), leads to a much bet-

ter fit with the hydrodynamic results. Additionally, we tested
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Fig. 7. Results for model D. Left: the difference in the direction of the periastrae, ∆̟ = ̟2 −̟1 (in degrees) for the two planets versus time

(in thousand years). Right: the resonant angle for the 2:1 resonance Θ1 = 2λ2 − λ1 −̟1 (in degrees), as a function of time.

Fig. 8. Eccentricity ratio e2/e1 of the outer and inner planet, versus pe-

riastron difference ∆̟ for model D. The data points are spaced equally

in time with a distance of approximately δt = 22 yrs. Shown is a sec-

tion of the evolution of model D, from 43 000 to about 74 000 yrs.

our method on published results for migrating single planets

(Nelson et al. 2000), and find good agreement for suitable τ0
and β. Pure exponential fits for a2(t) with β = 0 generally do

not give satisfactory results.

This decrease in the damping rate as a function of time is a

result of the reduction of mass in the disk, mainly due to the ac-

cretion of matter onto the outer planet. The mass flow across the

gap is small, and the accretion rate onto the inner planet is sub-

stantially lower (see Kley 2000). However, if no gas is allowed

to accrete onto the outer planet, a more substantial amount

of gas may flow occur across the gap, leading to a smaller

Fig. 9. The evolution of the semi-major axis of the outer planet a2,

comparing a hydrodynamic model with two N-body calculations. The

black curve (labeled Hydro) is the result of the full hydro model G.

The lower dark gray curve is the damped N-body model using a con-

stant damping τ = τ0 in Eq. (6). The upper lighter gray curve (on top

of the black one) is for time-dependent damping with a non-zero value

of β = 1.0, resulting in a much better match with the hydro model.

migration rate, or even outward migration (Masset &

Snellgrove 2001; Masset 2002; Masset & Papaloizou 2003),

because the angular momentum lost by the gap crossing mate-

rial will be gained by the planet.

Besides a, we also compared the evolution of the eccen-

tricity e between the two approaches. In Fig. 10 we display
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Fig. 10. The evolution of the eccentricities of the inner planet (upper

curves) and the outer planet (lower curves) for the full hydro model G

(black curves covering the whole time range) and the damped N-body

model (light gray), using a damping constant of K = 2.5.

the eccentricity evolution of the full hydro and the damped

3-body case for model G. Despite some differences which we

attribute to the unknown eccentricity damping mechanism, the

overall agreement is reasonable. For a given semi-major axis

damping rate, the final values obtained for e1 and e2 at larger

times depend on the initial values for the eccentricities and the

amount of eccentricity damping. In this case we used an ini-

tial e(t0) = 0.01 for both planets and an eccentricity damping

factor K = 2.5, i.e. a slightly shorter damping time scale for

eccentricity as for semi-major axis. For all models we find that

the eccentricity damping rate is of the same order as the semi-

major axis damping, i.e. K = O(1). This finding is in contrast

to Lee & Peale (2002) who determined a much shorter eccen-

tricity damping time, based on models for GJ 876.

There are several possible reasons for this difference. Since

the eccentricity damping of a planet is caused by material in

the co-orbital region close to the planet, the treatment of this

region in the models may have some effect on the results. In

particular, the mass accretion onto the planet, the smoothing

of the gravitational potential, and the numerical resolution may

each play a significant role here. However, the simulations by

Lee & Peale (2002) are not based on clear physical model of

the damping, but rather use an ad hoc prescription. Fitting to

the observed case of GJ 876 yields a high value of K. On the

other hand, it will be difficult to model the system HD 82943

with K = 100 because of the high observed eccentricities.

4.3. Dependence on the physical parameters

After describing the major effects of resonant capture and evo-

lution we focus now on the dependence on the physical pa-

rameters. An overview of the results for all models is given

in Table 4.

Fig. 11. The time evolution of the outer planet’s semi-major axis

for three models (C-E) with different viscosities. The corresponding

α values are given in the legend.

4.3.1. Viscosity

As the disk viscosity, parameterized here through the standard

α-parameter, determines the overall evolution of the disk, it is

to be expected that its magnitude influences the longterm evo-

lution of the planetary system as well. Starting from the stan-

dard model C (α = 10−2) we performed additional runs us-

ing different values for the viscosity parameter α; model D has

α = 3.3×10−3 and model E has α = 10−3. The semi-major axis

evolution for these models is shown in Fig. 11. For a single

planet, the migration rate depends on the value of the viscosity

(Nelson et al. 2000). Hence, the initial migration rates (during

the first 10 000 yrs) are reduced for smaller ν. The initial mi-

gration speeds for each model, as seen in Fig. 11, are quantified

as τ0 in Table 3.

Upon capture of the inner planet, the migration rate of the

outer slows down. Contrary to the expectation that smaller vis-

cosities yield slower migration, we find that for these reso-

nantly driven double-planet systems, the speed of migration is

eventually faster for smaller viscosity coefficients. When the

viscosity is lower, the migration slows down less rapidly (this

would correspond to a lower β-value in the N-body method).

This time-dependence of the damping is linked to the assumed

mass accretion onto the planet. The accretion, which is larger

for higher viscosity, lowers the mass of the disk with time

and reduces the effective torques, such that migration drops off

more rapidly for higher viscosity. The ratio of semi-major axis

damping to eccentricity damping (K), however, does not appear

to depend on the value of the viscosity. In all three cases we find

capture into the 3:1 resonance (see Table 4), although this re-

sult is somewhat indeterminate. For the value of α = 3.3×10−3,

we also find a case in 2:1.
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Fig. 12. The evolution of the semi-major axis of the outer planet a2

for two models (C, G) with different vertical disk scale heights, as

indicated in the legend.

4.3.2. Temperature

Similarly to the viscosity, it may be expected that the scale

height (temperature) of the disk will also influence the migra-

tion process of planets. Results for single planets (Kley 1999)

have shown that for larger H/r the gap is less cleared because

the larger pressure gradient “pushes” material into the gap. The

higher density near the gap edges leads to a faster migration

speed. This effect is indeed clearly seen in the early evolution

of the planetary systems C & G, where the decline in the semi-

major axis of the outer planet a2 is faster for higher tempera-

tures (see Fig. 12).

Upon capture however, the evolution behaves similarly to

the case of varying viscosity. Those systems with higher H/r

now have the lowest migration speed. Similarly to the mod-

els with lower viscosity, smaller H/r leads to lower accretion,

higher disk mass, and hence more material pushing on the plan-

ets. As the migration slows down less for lower H/r, the overall

evolution time scale becomes so long that it takes much more

than 105 yrs for the system to reach an equilibrium state. The

intermediate model with H/R = 0.075 is not displayed as is

went into a 5:2 resonance.

4.3.3. Capture probabilities

The main results of the full hydrodynamic calculations, as sum-

marized in Table 4, show that for the same physical setup, cap-

ture in different resonances may occur. As a three body sys-

tem is intrinsically chaotic, this indeterminate behavior may be

expected.

Nevertheless, by running a whole sequence of fast damped

N-body models, we can investigate what conditions determine

the principle final outcome. The standard setup consists of two

planets of 1 MJup each, placed initially at 4 and 12 AU from the

Fig. 13. Results of a sequence of damped N-body simulations. Plotted

is the difference of the periastrae ∆̟ = ̟2 − ̟1 of the two planets

after capture into resonance versus planet mass, where mp = m2 = m1.

The diamonds indicate capture in 2:1 resonance, while the plus signs

are for 3:1 resonance. The other parameters are fixed, as described in

the tex. The horizontal lines indicate values of 0, ±100◦ and ±180◦.

central 1 M⊙ star. The initial eccentricities are 0.02. As in all

previous models, only the orbit of the outer planet is damped,

using in these cases a damping time scale τ0 = 20 000 yrs. We

fix the damping constants to β = 1.0 and K = 1.0. Starting

from this standard case, we vary the damping time scale τ0, the

initial eccentricity e2, and mass of the outer planet m2, while

keeping always identical planet masses, m1 = m2.

In the standard case, the planets are caught in a 2:1 res-

onance. Varying the time scale τ0 from 10 000 to 50 000 yrs,

there is no capture into higher resonances. Upon variation of

eccentricity e2 from 0.0 to 0.5, we find that for e2 < 0.25 cap-

ture occurs always into 2:1, while for larger e2 higher order

resonances (primarily 3:1) are possible, however with no def-

inite outcome. The influence of the planet mass is illustrated

in Fig. 13, where the resonance type (2:1 diamonds, 3:1 plus

signs) is shown as a function of planet mass (with m1 = m2).

For small planets with mp < 1.7MJup, capture occurs robustly

into the 2:1 resonance. Higher resonances are possible only

for mp larger than this value. However, due to the chaotic na-

ture of the problem the exact outcome for a particular mp is

not predictable. This is in agreement with the hydrodynamic

simulations where we also find capture in different resonances

just by perturbing the initial density slightly (compare mod-

els D1, D2).

4.3.4. The resonant angles

In the majority of hydrodynamic models, the planets catch

each other in a 3:1 resonance. As demonstrated above, this is

mainly a consequence of the large masses chosen for the plan-

ets. For all models the resonant angles settle to |∆̟| ≈ 110◦
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and |Θ1| ≈ 145◦, with some scatter of about ±10◦. For the

damped N-body models we checked the values of the resonant

angles as well, finding that all 2:1 resonances settle into the

complete symmetric configuration ∆̟ = Θ1 = 0 (Fig. 13). For

the 3:1 resonances we see anti-symmetric configurations with

anti-aligned periastrae, |∆̟| = 1800 and Θ1 = 0 for masses

around mp = 2MJup, (when the first 3:1 cases begin to occur),

while for all larger masses we find preferentially the previous

non-symmetric configurations. This behavior is again an indi-

cation of a bifurcation in the stability properties of resonant

systems, as claimed by Beaugé et al. (2003). With additional

damped N-body calculations we also find that systems entering

a 5:2 resonance (not shown) exhibit a typical anti-symmetric

behavior |∆̟| = 1800 and Θ1 = 0◦.

5. Summary and conclusion

We have performed full hydrodynamical calculations simulat-

ing the joint evolution of a pair of protoplanets together with

the surrounding protoplanetary disk from which they originally

formed. The focus lies on massive planets in the range of a

few Jupiter masses. For the disk evolution we solve the Navier-

Stokes equations, and the motion of the planets is followed

using a 4th order Runge-Kutta scheme, which includes their

mutual interactions as well as the star and disk’s gravitational

fields. These results were compared to simplified (damped)

N-body computations, where the gravitational influence of the

disk is modeled through analytic damping terms applied to the

semi-major axis and eccentricity.

We find that both methods yield comparable results, if the

damping constants in the simplified models are adjusted prop-

erly. The mass reduction of the disk with time, due for example

to mass accretion onto the planet, or possible mass flow across

the outer planet’s gap can be modeled satisfactorily through a

damping time scale, which depends linearly on time. The ec-

centricity damping was always chosen to be a constant mul-

tiple K of the semi-major axis damping. In this case we find

that K must be of order unity to match the hydrodynamic

models.

However, fitting N-body models to the observed parameters

of GJ 876 requires a high e-damping with typically K = 100

(see also Lee & Peale 2002), relatively independent of the func-

tional behavior of a2(t). Reasons for this discrepancy may lie in

the simplified hydrodynamical model, which uses a fixed equa-

tion of state, a simple treatment of the planetary structure, and

only an approximate model of the torques acting on the planet.

Also, eccentricity damping is dominated by material close to

the planet; the insufficient numerical grid resolution near the

planet may smear out the damping forces. In addition, the ac-

cretion process of matter onto the planet is reducing the mass

in the co-orbital region which lowers the eccentricity damping.

The simplified assumption of a constant value of K needs to

be checked. More detailed hydrodynamical models may help

to resolve this discrepancy in the future. An alternative expla-

nation for the low eccentricities in GJ 876 compared to our

hydrodynamic simulations is that further evolution of the ec-

centricities occurs in the system after planet and gap forma-

tion. The planet eccentricities may be further modified as the

disk dissipates and its resulting eccentricity forcing gradually

declines. On the other hand, the assumption of a constant value

of K in the N-body models in the computations by Lee & Peale

(2002) is also not based on any detailed hydrodynamic model

but rather assumed ab initio. In more general models, this will

have to be relaxed.

The case HD 82943 is also not easy to model as the eccen-

tricities for both planets are very large, which turned out to be

very difficult to capture with N-body models, even with very

low damping. The problem here lies in the stability of the re-

sulting system. All test computations with constant values of K

eventually led to unstable systems. Compared to GJ 876, the

eccentricity damping for HD 82943 must be orders of magni-

tude less, if otherwise similar physical parameters are used. In

order to explain the high eccentricities, the inclusion of an ad-

ditional companion may be necessary.

Despite of the difficulty of the models to obtain the ob-

served eccentricities, there are nevertheless several features of

the observed 2:1 planets which are captured correctly by our

simulations: i) The larger mass of the outer planet, ii) the higher

eccentricity of the inner planet, and iii) the periastrae separation

of ∆̟ = 0◦. These are robust predictions of the hydrodynamic

models.

For 3:1 resonances, anti-symmetric (∆̟ = 180◦) and

non-symmetric final configurations are obtained. In the non-

symmetric case we found over a range of models a value

of |∆̟ ≈ 110◦|, which is supported by stability analysis

(Beaugé et al. 2003). In 55 Cnc, the only observed 3:1 case,

there are other planets present in the system, which makes an

interpretation using just this simple treatment questionable.
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