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Abstract 

 
Promoter-proximal pausing of RNA polymerase II (Pol II) is a key regulatory step during  

transcription. To understand the evolution and function of pausing, we analyzed 

transcription in 20 organisms across the tree of life. Unicellular eukaryotes have a slow 

acceleration of Pol II near transcription start sites that matured into a longer and more 

focused pause in metazoans. Increased pause residence time coincides with the 

evolution of new subunits in the NELF and 7SK complexes. In mammals, depletion of 

NELF reverts a focal pause to a proto-paused-like state driven in part by DNA sequence. 

Loss of this focal pause compromises transcriptional activation for a set of heat shock 

genes. Overall, we discovered how pausing evolved and increased regulatory complexity 

in metazoans. 

 

Main text 
 

Introduction 

The evolution of complex transcriptional regulatory programs is one of the defining 

characteristics of metazoans which enables the organismal complexity required for 

animal development. “Pausing” is one of the regulatory stages during transcription by 

RNA Polymerase II (Pol II). Pol II transiently “pauses” 20-60 bases downstream of the 

transcription start site (TSS) at all genes in Drosophila and mammals, disrupting the 

continuous flow of transcription (Fig. 1A) (1–4). The rate at which polymerases are 

“released” from a paused state into productive elongation is actively regulated by 

transcription factors (5), and is therefore essential for proper development in most animal 

species (6–8). However, unicellular model organisms, including yeast (9, 10), do not have 

a promoter-proximal pause. To date, no study has characterized the distribution of Pol II 

outside of a few key model organisms, leaving when and how the pause evolved as an 

open question.  

 

NELF subunit evolution increased the residence time of Pol II in a pause state  

We used Precision Run-On and Sequencing (PRO-seq) (11) to study transcription 

in 20 extant organisms that represent two billion years of evolution (Fig. 1B), including 

multiple species near the base of the Metazoa phylogeny and the transition between 

plants and animals. Our atlas of organisms adds new data representing two prokaryotic 

organisms (Escherichia coli and Haloferax mediterranei, representing the bacteria and 

archaea domains, respectively), and single-celled eukaryotes including the  social 

amoeba (Dictyostelium discoideum), two ichthyosporeans (Creolimax fragrantissima, and 

Sphaeroforma arctica), and a filasterean (Capsaspora owczarzaki). We also included a 

number of metazoan organisms representing major taxa, including the cnidarian 

(Nematostella vectensis), the sea urchin (Strongylocentrotus purpuratus), the water flea 
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(Daphnia pulex), the butterfly (Dryas iulia), and the cyclostome (Petromyzon marinus). 

Finally, we have augmented our PRO-seq atlas by integrating published data from a fly 

(Drosophyla melanogaster (11)), a nematode (Caenorhabditis elegans (12)), yeast 

(Saccharomyces cerevisiae and Schizosaccharomyces pombe (9, 10)), model plants 

(Arabidopsis thaliana, Oryza sativa, and Zea mays (13–15)), and mammals (Homo 

sapiens and Mus musculus (7, 16)). These species occupy key positions along the 

phylogenetic tree, allowing us to investigate most major transitions in the animal lineage.  

As expected, most metazoan organisms exhibited a pileup of RNA polymerase 30-

100 base pairs downstream of the TSS indicative of Pol II promoter-proximal pausing 

(Fig. 1C). Conversely, prokaryotic organisms lacked a prominent Pol II peak in our data. 

Plants and unicellular eukaryotes exhibited more diverse pause variation: the plant Z. 

mays showed a focused peak, while the plant O. sativa and the yeast S. pombe displayed 

a more dispersed peak downstream of the TSS. The plant A. thaliana and yeast S. 

cerevisiae showed no evidence of pausing. To reveal more subtle differences in the 

dynamics and gene-by-gene variation at the pause site than observed in meta profiles, 

we computed pausing indexes which quantify the duration Pol II spends in a promoter-

proximal paused state (3, 17). Pausing indexes revealed that the residence time of Pol II 

at the pause site is, on average, 1-2 orders of magnitude higher in metazoans than 

unicellular eukaryotes or plants (fig. S1). Consistent with the meta plots, we also noted 

wide variation in pausing indices in unicellular eukaryotes and plants. Taken together, our 

results suggest that an ancestral slowdown in Pol II transcription near the TSS may have 

arisen in unicellular eukaryotes and became longer in duration and more focused during 

the early evolution of metazoans. 

Pausing is mediated by interactions between Pol II, DRB sensitivity inducing factor  

(DSIF), and the negative elongation factor (NELF) complex (18, 19). Of these proteins, 

the NELF complex can establish pausing both in vitro and in vivo (20). The NELF complex 

consists of multiple subunits, including NELF-A, -B, -C (or its isoform -D), and -E. CryoEM 

studies revealed that NELF-B and -E form a sub-complex, while NELF-C/-D and -A form 

a separate subcomplex. NELF-B and -C/-D interact with one another forming a core 

structure that holds the entire NELF complex together (Fig. 1D) (21–23).  

We hypothesized that the evolution of NELF proteins was associated with the gain 

of pausing in eukaryotes. To test this hypothesis, we used BLASTp to identify potential 

orthologs of the human NELF subunits among a group of 30 organisms representative of 

key eukaryotic taxa (Fig. 1E; fig. S2; fig. S3). We found that NELF-B and -C/-D are widely 

distributed in eukaryotes, suggesting that the core NELF subunits were present in a 

shared common ancestor of all eukaryotes. Both subunits were secondarily lost in yeast, 

S. pombe and S. cerevisiae, as well as in the nematode C. elegans and in land plants. 

NELF-A is present in some unicellular eukaryotes; a strong match to the metazoan protein 

first appeared in a common ancestor of Ichthyosporea and metazoans. We only found 

strong evidence for NELF-E in metazoans, and the most parsimonious model is that 
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NELF-E evolved early in Metazoa or just before the transition to multicellularity. 

Collectively, these findings demonstrate a strong association between the evolution of 

NELF proteins and paused polymerase near TSSs.  

To test whether other factors besides NELF were associated with the evolution of 

paused Pol II, we examined the evolutionary conservation of other proteins linked to 

pausing. Most other proteins implicated in the early steps of transcription elongation, 

including PAF1, DSIF (SPT4, and SPT5), the positive transcription elongation factor (P-

TEFb; CDK9, cyclins [human Cyclin-T1, Cyclin-T2]), and 7SK (MEPCE, LARP7) are 

deeply conserved among eukaryotes (Fig. S2; Fig. S3), with some structural 

conservation extending back to archaea (24). Thus, proteins responsible for the release 

from pause in metazoans (especially P-TEFb and PAF1) were part of the ancestral 

eukaryotic transcription complex, and evolved before the high pausing indices found in 

metazoans. The sole exceptions were the HEXIM proteins (HEXIM1 and HEXIM2), which 

are part of the 7SK complex that works in preventing P-TEFb-mediated pause release 

(25). The most parsimonious model is that HEXIM proteins evolved in a common ancestor 

of Metazoa, perhaps coincident with NELF-E, as an additional checkpoint to increase the 

residence time of paused Pol II or to regulate pausing in metazoans.  

Our finding that NELF and HEXIM protein evolution were uniquely associated with 

polymerase pausing led us to suspect that gains of specific NELF and HEXIM protein 

subunits may have resulted in incremental alteration of the residence time of paused Pol 

II along the animal stem lineage. To determine how the addition of multiple NELF subunits 

affected the strength of pausing, we compared pausing indexes between species with a 

different complement of NELF or HEXIM subunits. Species containing NELF-B and -C/-

D (which we refer to as the “core” NELF complex) have higher pausing indexes than 

species without any NELF subunits (Fig. 1F; Fig S4). The addition of NELF-A increased 

pausing indexes to the same order of magnitude observed in metazoan model organisms 

(files and mammals). Thus, NELF-B and -C/-D are sufficient for pausing, but the addition 

of NELF-A, NELF-E, and HEXIM proteins correlates with higher pausing indexes and 

suggests the derived proteins may act together with the core NELF complex to fine-tune 

the function of paused RNA polymerase (Fig. S4D).  

 

Organisms without NELF show different types of pausing behavior  

In some unicellular organisms, which do not have all four of the NELF subunits 

found in metazoans, we observed that Pol II moved slowly through the first 30-100 bp 

after the TSS. We hypothesized that this “proto-pause” may serve as an ancestral 

substrate pre-dating the highly focused, long-duration Pol II pausing observed in extant 

metazoans. In some cases, we observed examples of extreme phenotypes in which Pol 

II moved slowly despite having a complete absence of the NELF core complex. For 

instance, Z. mays, S. pombe, and O. sativa all display an accumulation of Pol II near the 

TSS, despite having lost both NELF-B and NELF-C/D. This extreme example of a proto-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2023. ; https://doi.org/10.1101/2023.02.19.529146doi: bioRxiv preprint 

https://paperpile.com/c/cZt0p3/TM7o
https://paperpile.com/c/cZt0p3/TM7o
https://paperpile.com/c/cZt0p3/TM7o
https://paperpile.com/c/cZt0p3/sDLk
https://paperpile.com/c/cZt0p3/sDLk
https://paperpile.com/c/cZt0p3/sDLk
https://doi.org/10.1101/2023.02.19.529146
http://creativecommons.org/licenses/by/4.0/


 

pause appears in a similar location as a canonical pause (or just downstream), but does 

not have the same magnitude of pausing index (Fig. 1C). To explore why some extant 

species have a proto-pause, despite not containing any of the NELF subunits, we 

examined the DNA sequence under the quartile of genes with the strongest positioned 

proto-pause in each organism (Fig. 2A). Consistent with previous work (11, 26–30), 

metazoan organisms show a well-defined pause motif, which is also present in three 

organisms that show a proto-pause, including Z. mays, S. pombe, and O. sativa (Fig. 

2B). These observations may suggest that a pause DNA sequence motif contributes to a 

transient slowdown of Pol II at this position in organisms that have lost the core NELF 

subunits, NELF-B and NELF-C/D. 

To determine whether the pause motif was associated with pausing index variation 

across all 20 species, we examined the enrichment of the human pause motif near the 

pause position (Fig. 2C). Despite the pause motif we used being derived from humans 

(28), we nevertheless found that it explained variation in the pausing index across all 

organisms surprisingly well (R2 = 0.306, p = 0.011; Fig. 2D; fig. S5A-F). Conversely, the 

DNA sequence motif of the TATA box and Initiator were not correlated with pausing index 

(fig. S5G-H). Altogether, our data support the idea that a pause sequence motif, featuring 

a C (or possibly G) in the Pol II active site at the pause position, serves as an ancestral 

step limiting the rate of transcription after initiation and can be linked to the formation of 

a proto-pause. This pause-associated DNA sequence alongside other chromatin factors, 

such as the position of the  +1 nucleosome and the rate at which the P-TEFb subunit 

CDK9 phosphorylates the early elongating Pol II complex, may then be sufficient to 

explain much of proto-pause formation in species such as S. pombe (9). 

 

Loss of core NELF-B impacts chromatin localization of NELF-E and alters Pol II 

pausing 

Our analysis of NELF evolution shows that the core NELF subunits, NELF-B and 

-C/D, evolved earlier than the ancillary subunits, NELF-A and -E. To test the functional 

impact of core and ancillary subunits in mammalian cells, we generated FKBP12-

homozygously tagged mouse embryonic stem cell (mESC) lines that rapidly degrade 

either NELF-B (13) or NELF-E after treatment with the small molecule dTAG-13 (Fig. 3A-

B; (7, 31)). The NELF-B dTAG was reported and validated in a recent paper (7), while 

the NELF-E dTAG cell line is novel here. We verified that the FKBP12-tagged NELF-E 

protein was properly localized and that NELF-E was nearly undetectable within 30 min 

after the addition of 500 nM dTAG (fig. S6; fig. S7). We also verified that the rapid 

depletion of both NELF subunits decreased Pol II levels at the pause site following 30-60 

min of dTAG-13 treatment, as measured by PRO-seq (Fig. 3E-F; fig. S8A).  We 

hypothesized that loss of NELF-B would have a greater impact on NELF complex 

assembly on chromatin than loss of NELF-E due to the central role of NELF-B in the 

complex (Fig. 3A; (21)). Consistent with our hypothesis, we observed that loss of NELF-
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B led to a decrease of the entire NELF-B/E sub-complex from chromatin, while a loss of 

NELF-E resulted in only a moderate reduction of 40% in NELF-B protein levels (Fig. 3B-

C left panel; fig. S7 fig. S6A-B). These findings confirm that the functions of NELF-B 

and -E in mESCs mirror the structure and evolutionary history of these NELF subunits. 

 

Pol II recovery after prolonged NELF-B degradation mirrors a proto-paused-like 

state 

Our PRO-seq data in the NELF-B cell line showed that many genes partially 

recovered Pol II at the pause site following 60 min of treatment (fig. S8B-C). To 

investigate the observed Pol II signal recovery, we first clustered genes based on their 

changes in Pol II loading between 30 and 60 min of dTAG treatment (Fig. 3E, clusters 1, 

2, and 3). Cluster 1 showed a localized recovery of PRO-seq signal near the position of 

the canonical pause. Cluster 2 showed no indication of recovery and, relative to the other 

clusters, it was enriched in transcribed enhancer sequences (fig. S9A). And, cluster 3 

exhibited a recovery of Pol II further into the gene body in a similar position as the 

slowdown of Pol II observed in S. pombe and O. sativa, potentially near the location of 

the +1 nucleosome, as reported by a previous study (32).  

We hypothesized that after the depletion of NELF, DNA sequences associated 

with the proto-pause in organisms without NELF-B may be sufficient to re-establish some 

paused Pol II. We looked for enrichment of the DNA proto-pause motif at loci that 

exhibited recovery of the paused state after NELF depletion. We found both higher 

enrichment of the pause motif and better positioning of the +1 nucleosome in clusters 1 

and 3 when compared to cluster 2 (Fig. 3F-G; fig. 9B). Interestingly, the main difference 

between clusters 1 and 3 was that genes in cluster 3 had higher initiation rates, as 

determined by both TT-seq (33) and a computational modeling approach analyzing 

steady-state PRO-seq data (17) (Fig. 3H-I; fig. S9C). Genes in cluster 3 also had much 

higher binding of some components of the pre-initiation complex and more clearly defined 

DNA sequence motifs that specify transcription initiation (34) (fig. S9D-E), potentially 

consistent with higher initiation rates. Based on these results, we propose that clusters 1 

and 3 partially recover Pol II near the pause due to a combination of DNA sequence and 

interactions with well-positioned nucleosomes. We also speculate that genes in cluster 3 

recover in a more downstream position as a result of a higher rate of initiation. Greater 

initiation rates at these genes may lead to an accumulation of Pol II at the start of the 

gene that causes polymerases to be pushed downstream due to interactions between 

newly incoming Pol II. In sum, we found that after NELF depletion, Pol II signal resembles 

the pattern found in proto-paused organisms that have lost the core NELF subunits. 

Furthermore, this proto-paused-like state is associated with the same DNA sequence 

features and the presence of strongly positioned nucleosomes.  

 

Pol II pausing allows transcription factors to regulate pause release  
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We speculate that the evolution of a focal pause was required for the evolution of 

a system that could control gene expression by releasing paused Pol II. In metazoans, 

sequence-specific transcription factors can modulate pause release and thereby tune the 

level of gene expression (5, 6, 35–38). The factors that are responsible for pause release 

(e.g., p-TEFb) are conserved in all eukaryotes (fig. S2; S3), pointing to the critical role of 

release (or an analogous step in early elongation) in eukaryotic organisms (10). After the 

depletion of NELF-B, we observed paused Pol II “creeping” across the first couple of 

kilobases of the gene body (fig. S10), similar to observations made in S. pombe, which 

has no NELF (7, 10). As a result, Pol II which needs to be released from pause by p-TEFb 

is no longer in a fixed location, in proximity to promoter-bound transcription factors. 

We hypothesized that the downstream redistribution of Pol II after NELF-B 

depletion would prevent the targeted regulation of gene expression by transcription 

factors acting to release paused Pol II into productive elongation. To test this hypothesis, 

we turned to the well-studied heat shock system, where the transcription factor heat shock 

factor 1 (HSF1) activates transcription of a core group of a few hundred genes following 

heat stress by the release of paused Pol II (36, 39, 40). We asked whether HSF1 could 

release paused genes as efficiently following the depletion of NELF-B and -E in mESCs 

(Fig. 4A). We first identified genes that were up- and down-regulated using a regular heat 

shock experiment in mESCs. Our analysis confirmed the induction of a core group of heat 

shock-responsive genes (36, 39, 40), despite some differences in basal gene expression 

between NELF-B and NELF-E cell lines (fig. S11; fig. S12A-D). Although many classical 

up-regulated genes were properly up-regulated following the depletion of NELF-B and 

NELF-E, heat shock (HS)-dependent genes on average had a lower induced fold-change 

following NELF-B depletion (fig. S12; fig. S13E). Thus, Pol II redistribution after NELF-B 

depletion does prevent HSF1 from acting efficiently as a transcriptional activator. 

To rule out the possibility that our observed differences in HSF1-dependent gene 

activation were driven by changes in gene expression following dTAG-13 (7), including 

the accumulation of Pol II trickling into the gene body (fig. S10), we focused our analysis 

on the gene body downstream from NELF-induced Pol II trickling regions. We also 

excluded genes with altered gene body density following dTAG-13 treatment in either cell 

line (fig. S13F; see Methods). For the remaining  genes, we noted a clear defect in the 

HS-induction of up-regulated genes, but not in HS-repression at down-regulated genes, 

consistent with a model in which HSF1 failed to adequately release Pol II after NELF 

depletion (Fig. 4B). The up-regulation defect was more prominent following the depletion 

of NELF-B than NELF-E (unpaired Mann-Whitney, p-value = 2.8e-4) (Fig. 4B), potentially 

consistent with a more direct role for NELF-B in the formation of a focal pause. 

Interestingly, many of the most highly HS-induced genes did not show a large defect in 

up-regulation as seen here (e.g. Hspa1b, Hsp1h1; fig. S12) and in a previous study (32). 

The high rate of firing at these genes may be associated with a high concentration of p-

TEFb, resulting in a higher probability of releasing Pol II in the right location before it 
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trickles away from the promoter. In contrast, the more moderately induced and highly 

paused HS genes are firing less frequently and the trickling of paused Pol II to more 

downstream locations may prevent their proper activation (fig. S13). Altogether, these 

findings support our model in which the evolution of pausing facilitated the ability for 

transcription factors to act on pause-release, providing an additional step to more tightly 

control gene expression. 

 

Discussion 

Our work offers mechanistic insights into how new regulatory complexity evolved 

by enabling targeted regulation of a preexisting step in the transcription cycle through the 

evolution of a focal promoter-proximal pause. We propose that the recruitment of P-TEFb 

and PAF1, which cause pause-release in metazoans, actually serve a more general role 

that is necessary at all genes in all eukaryotic organisms, regardless of whether the 

organism has a long-lived focal pause. The evolution of a “focal” pause collapsed the 

substrate for this step in transcription to a single location at each gene and increased the 

pause residence time. The degree to which Pol II slows down at the pause position, which 

progressively increased in metazoans, appears to be affected by the evolution of NELF-

E, NELF-A, and HEXIM proteins. Together these evolutionary innovations collapsed a 

rate-limiting step in all eukaryotes into a single position in metazoans. A centralized 

location for paused Pol II allows transcription factors to catalyze the release of Pol II into 

productive elongation, by providing a focused and promoter-proximal target adjacent to 

transcription factor binding sites, as shown here in the case of HSF1. This innovation 

provided a new rate-limiting step in transcription that could be targeted for gene-specific 

regulation. The evolution of additional regulatory complexity may have helped to enable 

the evolution of complex, multicellular metazoan organisms.   
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Figure legends 
 

Figure 1: The evolution of NELF subunits is associated with pausing. 

(A) Depiction of a PRO-seq track where red represents sense and blue antisense 

transcription. dREG peaks are marked in purple and pause regions are highlighted 

in yellow. 

(B) Schematic depicting the relationships between the 20 species included in this 

study. Divergence times were taken from (41) and (42). 

(C) Meta profiles of PRO-seq data were collected in each species. The dotted line 

marks the position of TSSs. The 25-75% confidence intervals are depicted in 

transparent red. 

(D) Cartoon depicting internal interactions in the NELF complex based on the crystal 

structure in (21). 

(E) Colored blocks denote the presence (red) or absence (blue) of the human 

orthologues of NELF subunits in each species as inferred from reciprocal blast 

searches.  

(F) Box and whiskers plot of pausing indexes in each species. Boxes are clustered by 

the number of NELF subunits in each species. A Mann-Whitney test was used to 

compute p-values. 

 

Figure 2:  Genomic features are associated with pausing. 

(A) Schematic of motif search at the Pol II pause site. 

(B) DNA sequence motif under the active site of paused Pol II in the indication 

organisms with a focal pause or a proto-pause. The size of each base is scaled by 

information content. 

(C) Pause motif sequence as published in Watts et al., Am J Hum Genet., 2019. 

(D) Scatter plot denotes the enrichment of the motif score relative to flanking DNA and 

the mean pausing index in each species. Each dot is colored by the number of 

NELF subunits found in each sample. We fit a linear regression to derive the R2 

and the p-value. 

 

Figure 3:  NELF degradation destabilized RNA Pol II pausing.  

(A) Schematic of NELF-B or NELF-E degradation mESC cell lines. 

(B) Western blots depict NELF-B, NELF-E and Pol II after the degradation of either 

NELF-B (left) or NELF-E (right) using 500nM dTAG-13.  

(C) Quantification of NELF-E western blot signal after NELF-B degradation (left) and 

NELF-B after NELF-E degradation (right).  

(D) Meta profiles of PRO-seq signal at 0min (red) and 30min (orange) after the 

degradation of NELF-B (left) or NELF-E (right). 
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(E) Heat maps of spike-in normalized PRO-seq signal after NELF-B or NELF-E 

degradation (left). Log2 fold changes of normalized PRO-seq signal relative to 

untreated controls are also depicted. 

(F-H)  Pause motif enrichment scores  (F),  Meta profile of MNase-seq signal (G) and 

normalized PRO-seq signal (H) are depicted for three clusters of genes defined in 

panel (E). 

(I) Violin plots of log10 TT-seq signal in the three clusters defined in (E). A two-sided 

Mann-Whitney test was used to compute p-values. (***) defines p-values < 2.2e-

16 

 

Figure 4: Removing paused Pol II prevents activation of genes by HSF1 after HS 

stimulation. 

(A) Time course of dTAG-13 drug treatment followed by heat shock (HS) (left) and 

cartoon depicting mechanisms of HSF1 action on Pol II pausing (right). HSF1 is 

depicted in yellow, while other co-factors that assist in pause release are depicted 

in blue.  

(B) Violin plots of log2 fold changes in PRO-seq signal for HS-upregulated (top) and 

downregulated (bottom) genes. A two-sided Mann-Whitney test was used to 

compute p-values, where n.s. Defines non-significant p-values, and (***) p-values 

< 2.2e-16. 

 

Figure 5: Summary model. 

The summary describes NELF protein complex evolution and assembly (I), 

pausing behaviors in the absence of NELF (II), and the influence of Pol II pausing 

on gene regulation by transcription factors (III). CA depotes Common ancestor. 

 

Figure S1: Clustering species by their pausing index values. 

Density maps of log10 transformed pausing indexes per species. The plots are 

split into four quantiles and colored accordingly. 

 

Figure S2: Evaluation of sequence identity for proteins associated with RNA Pol II 

pausing. 

A phylogenetic tree cluster of all species analyzed in this study is depicted on the 

left. On the right, percentage identities from running BLASTp using the indicated 

human protein are reported.The criteria for being marked “present” is that the 

human protein sequence needs to identify an ortholog in the indicated species, 

and that the ortholog in the indicated species needs to reciprocally identify the 

indicated subunit in human using BLASTp. We required that both the initial and 

reciprocal BLAST searches identified the indicated protein with an E-value less 

than 1e-06. NA indicates that no value was output by BLASTp. We note that more 
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sensitive approaches have identified conservation of Spt4 and Spt5 extending 

back to archaea (24), but this conservation was not evident in the protein sequence 

similarity analyzed here. We also note that several proteins have undergone recent 

duplication/ divergence events which are not reflected in the figure (CyclinT1 and 

Cyclin T2; HEXIM1 and HEXIM2). 

 

Figure S3: E-values for NELF and other transcription-associated proteins. 

A phylogenetic tree cluster of all species analyzed in this study is depicted on the 

left. The table shows E-values output by BLASTp for the indicated human 

transcription-associated protein. The criteria for being marked “present” is that the 

human protein sequence needs to identify an ortholog in the indicated species, 

and that ortholog needs to reciprocally identify the indicated subunit in human 

using BLASTp. We required that both the initial and reciprocal BLAST searches 

identified the indicated protein with an E-value less than 1e-06. The E-value shown 

in the table reflects the first BLAST search (i.e., human protein to the indicated 

species). NA indicates that no value was output by BLASTp. We note that more 

sensitive approaches have identified conservation of Spt4 and Spt5 extending 

back to archaea (24), but this conservation was not evident in the protein sequence 

similarity analyzed here. We also note that several proteins have undergone recent 

duplication/ divergence events which are not reflected in the figure (CyclinT1 and 

Cyclin T2; HEXIM1 and HEXIM2). 

 

Figure S4: Evaluation of PRO-seq library quality. 

(A-C) Box and whiskers plots show pausing index values in each species. Samples 

are clustered by the presence or absence of all NELF subunits (A), NELF-B, and -

C/D (B) or NELF-B, -C/D, and -A (C). A two-sided Mann-Whitney test was used to 

compute p-values between the PI values. 

(D) Box and whiskers plots show pausing index values in each species. Samples are 

clustered by the presence or absence of HEXIM1 and HEXIM2 proteins. A two-

sided Mann-Whitney test was used to compute p-values between the PI values. 

Medians are presented separately for species with and without HEXIM proteins.  

 

Figure S5: Pause motif search. 

 (A)-(B) Enrichment profiles of TATA box, Initiator, MTE, and DPE sequence motifs in 

O.sativa (F) and Z.mays (G). Data are depicted in a 1kb window centered on TSSs 

in each species. 

(C) Enrichment profiles of the pause motif published in Watts et al., Am J Hum Genet 

(2019) plotted in a 1kb window centered on TSSs in each species.  

(D)-(E) Box and whiskers plots depict enrichment of motif scores in each species. 

Samples are clustered by the presence or absence of NELF-B, and -C/D (D) or 
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NELF-B, -C/D, and -A (E). A two-sided Mann-Whitney test was used to compute 

p-values. 

(F) Box and whiskers plot of the pause motif enrichment in (2C) in each species. The 

boxes are clustered by the number of NELF subunits in each species. A paired 

Mann-Whitney was used to compute p-values. 

(G) - (H) Scatter plot of enrichment motif score of TATA box (G) and Initiator (H) 

sequences plotted against the mean pausing index per species. Each dot is 

colored by the number of NELF subunits found in each sample.  

 

Figure S6: nelfe-FKBP12 homozygous cell line generation. 

(A) Schematic of CRISPR design to add the FBBP12 tag at the nelfe locus. 

(B) PCR validation of CRISPR insertion of the FKBP12 tag. 

(C) Microscopy images evaluating the degradation efficiency before (top) and after a 

30min treatment with 500nM dTAG-13 (bottom) in the edited and unedited cell 

lines. Hoechst was used as a nuclear control, while anti-HA antibodies measure 

the added tag, and anti-NELFE measures the NELF-E protein level. Arrows point 

out the presence of Feeder cells.  

(D) Degradation efficiency of NELF-E as measured by western blotting. b-Actin was 

used as a loading control, while anti-HA measures the level of NELFE-HA protein. 

Input denotes the relative amount of total protein loaded. 

 

Figure S7:  nelfb and nelfe-FKBP12 homozygous cell line validation. 

(A) Western blot of whole cells following NELF-B (left) or NELF-E (right) degradation 

with 500nM dTAG-13 for 0 to 24h of treatment. 

(B) Western blot validation of chromatin fraction vs nuclear soluble fractionation. 

(C) Western blot of NELF-B and -E proteins after degradation of either protein for 1h. 

Both nuclear-soluble and chromatin-bound proteins were analyzed. 

(D) Quantification of western blot signal in (C) for NELF-E after degradation of NELF-

B, and vice-versa. 

 

Figure S8:  Effect of NELF-B and NELF-E degradation on Pol II distribution. 

(A) WashU browser shots at the Nanog gene locus before and after NELF-B and -E 

degradation. 

(B) - (C) Heat maps of spike-in normalized PRO-seq signal (B) and log2 fold changes 

of normalized PRO-seq signal relative to untreated controls (C). All heat maps are 

centered on active TSSs in mESCs.  

 

Figure S9: Characterization of transcription recovery clusters after NELF-B 

degradation. 
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(A) Bar plots depict the percentage of transcribed enhancers and gene promoters in 

each cluster defined in Figure 3E. 

(B) Enrichment profiles of the pause motif published in Watts et al., Am J Hum Genet 

(2019) plotted in a 1kb window centered on TSSs found in each of the clusters 

defined in Figure 3E.  

(C) Violin plots depict log10 transformed initiation (right) or pause release (left) rates 

in each cluster. A two-sided Mann-Whitney test was used to compute p-values, 

where n.s. defines non-significant p-values, and (***) p-values < 2.2e-16. 

(D) Plots depict the enrichment of the TATA box, Initiator, MTE, and DPE sequence 

motifs in each cluster in Figure 3E. 

(E) Meta profiles depict the enrichment of TBP, TAF-12, TFIIA, TFIIB, H3K9ac, and 

Med1 per cluster. 

 

Figure S10: Pol II trickles into gene bodies effect after NELF-B degradation.  

Heatmaps of log2 fold changes in PRO-seq signal in NELF-B tagged cell lines at 

all TSSs, Clusters 1, 2, and 3 (in this order from top to bottom rows). The heatmaps 

depict log2 fold change relative for the following comparisons (from left to right 

columns): untreated PRO-seq signal, log2 fold change for 30min/0min, 

60min/0min, and 60min/30min of dTAG-13 treatment.  

 

 

Figure S11: Correlations between heat shock PRO-seq data. 

(A) Principal component analysis (PCA) of non-heat shock (NHS), dTAG-13 treatment 

(dTAG), heat shock (HS), and a pre-treatment of dTAG-13 followed by heat shock 

(HS+dTAG). 

(B) Clustered dendrogram of spearman correlations (rho) between the NELF-B and 

NELF-E HS and NHS conditions before any protein degradation. 

(C) Clustered dendrogram of Pearson correlations (r) between all three independent 

replicates of HS and NHS in both NELF-B and NELF-E cell lines before 

degradation. R1, r2, and r3 represent replicate numbers. 

 

Figure S12: Studying the heat shock response after NELF-B or NELF-E 

degradation.  

WashU browser shots at the heat-triggered genes (Hist1h3b, Hsp1h1, Hist1h3b) 

in the NELF-B (A) and NELF-E (B) edited cell lines. 

 

Figure S13: Assessing the heat shock response in nelfb-fkbp12 and nelfe-fkbp12 

homozygous cell lines. 

(A) & (C) MA plots show the log2 fold change in gene body PRO-seq signal when 

comparing dTAG-13 treatment (dTAG) with non-heat shock (NHS), heat shock 
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(HS) with NHS, and the dTAG-13 pre-treatment followed by HS with NHS in the  

nelfb-fkbp12 (A) and the nelfb-fkbp12 (C) cell lines. 

(B) & (D) Bar plots depict the percentage of upregulated (red), downregulated (blue), 

and unchanged (gray) genes in the nelfb-fkbp12 (B) and the nelfb-fkbp12 (D) cell 

lines. 

(E) Violin plots show the log2 fold change in gene body PRO-seq signal when 

comparing the pre-treatment degradation of either NELF-B (left) or NELF-E (right) 

at genes known to be upregulated (blue) or downregulated (red) after regular heat 

stress. 

(F) Heatmaps of log2 fold changes in PRO-seq signal in NELF-B (left) and NELF-E 

tagged (right) cell lines. The heatmaps rows depict fold changes relative to NHS 

for the following treatments: dTAG-13 treatment alone, HS alone, and dual 

treatment of dTAG-13 and HS. 

(G-H) Bar graphs at the heat-shock dependent genes that show a defect in up-

regulation after NELF depletion. The graphs show the frequency of log2 fold 

changes in PRO-seq data when comparing the dual treatment of dTAG-13 

followed by heat shock with a non-heat shock control. Data is presented for both 

the nelfb-FKBP12 (left) and the nelfe-FKBP12 (right) cell lines. 

 

Figure S14: Evaluation of PRO-seq library quality. 

Profiles show the number of PRO-seq reads per species is reported as a function 

of insert size. A color gradient from orange (depicting highly degraded RNA) to 

white (depicting lowly degraded RNA) marks the quality of each sample. A 

degradation ratio score is also reported at the top of each plot. Degradation ratios 

for C.elegans and A.thaliana were computed manually using the scripts in (43). 
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Methods 
 

Data Availability 

Tables in CSV format can be downloaded from: 

https://github.com/alexachivu/PauseEvolution_prj 

 

Data generated in this study can be found in Gene Expression Omnibus at: GSE223913. 

 

Code Availability 

 

Custom code for analyzing sequencing data can be found on GitHub under: 

https://github.com/alexachivu/PauseEvolution_prj/ 

 

 

Experimental methods 

 
Sample collection:  

 

E. coli: An overnight culture of E. coli MG1655 was subcultured in 50 mL LB and grown at 37°C 

to OD 600 = 0.95. 5 mL aliquots were pelleted by centrifugation at 3000 × g. Pellets were 

permeabilized, washed, and flash-frozen as described in (44). 

 

H. mediterranei: ATCC 33500 was grown for 48 hours at 35 °C in ATCC Medium 1176. 12.5 mL 

culture was centrifuged, and the cell pellet was resuspended in 3 mL cold non-yeast 

permeabilization buffer. To increase permeabilization of archaeal cells, the cell suspension was 

split into 3 × 1 mL aliquots in screw-cap tubes and combined with 400 µL sterile 0.5 mm glass 

beads. Cells were subject to bead-beating for 3 cycles of 2 minutes vortexing, 2 minutes on ice. 

Supernatants were transferred to 1.5 mL tubes, centrifuged to collect cell contents, and washed 
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twice by resuspension in 500 µL storage buffer. Cells were resuspended in a final volume of 50 

µL storage buffer and snap-frozen. The permeabilization and storage buffers were the same as 

reported previously (44), and include: ATCC Medium 1176 recipe (1 L), 156 g NaCl, 13 g MgCl 2 

× 6H 2 O, 20 g MgSO 4 × 7H 2 O, 1 g CaCl 2 × 2H 2 O, 4 g KCl, 0.2 g NaHCO 3, 0.5 g NaBr, 5 

g yeast extract, 1 g glucose. After mixing components, the pH was adjusted to 7.0 and the buffer 

was autoclaved.  

 

Sea Lampreys (Petromyzon marinus) were obtained from Lake Michigan via the Great Lakes 

Fisheries Commission and maintained under University of Kentucky IACUC protocol number 

2011-0848 (University of Kentucky Institutional Animal Care and Use Committee). For tissue 

sampling, animals were euthanized by immersion in buffered tricaine solution (1.0 g/l), dissected, 

and tissues were immediately frozen in liquid nitrogen. We analyzed muscle samples taken from 

the flank of one male and one female. 

 

Sea urchin (S.purpuratus): All of the animal rearing and downstream processing use the same 

protocols as (45). Biological replicates of 20 hour blastula embryos were raised at 15oC in 0.2 um 

filtered sea water. The embryos were then spun down at 500 G and 0oC for 3 minutes and the 

pellets were flash-frozen in liquid nitrogen, stored at -80oC and shipped in dry ice. 

 

D. iulia:  Wing tissues were sampled from Day 3 pupae derived from Costa Rican stock following 

standard protocols (e.g. (46) and (16)). Wing tissues were dissected from pupae in cold PBS, 

after which nuclei were extracted in cold PBS using a dounce homogenizer. Nuclei were spun 

down and resuspended in nuclei storage buffer before flash freezing.  

  

Capsaspora owczarzaki (strain ATCC 30864) was cultured axenically at 23°C in ATCC medium 

1034 (modified PYNFH medium) in tissue culture-treated flat-bottomed polyethylene tissue 

culture flasks. Confluent cells were harvested by centrifugation (5000 x g, 5 minutes), and the 

pellet flash-frozen and stored at -80°C. For the isolation of intact nuclei, cells were harvested as 

before; the pellet was washed twice with phosphate-buffered saline (PBS), resuspended in 1ml 

of 2x Lysis Buffer (for 2x buffer: 10mM Tris-Cl pH 8.0; 300mM sucrose; 10mM NaCl; 2mM 

MgAc2;6mM CaCl2; 0.2% NP-40) and incubated on ice for 18 minutes. The resulting lysate was 

centrifuged (5000 x g, 5 minutes), and the pellet containing nuclei was washed once with 1ml 

Wash Buffer (10mM Tris-Cl pH 8.0; 300mM sucrose; 10mM NaCl; 2mM MgAc2). The nuclei were 

pelleted once more, resuspended in 1ml Storage Buffer (50mM Tris-Cl pH 8.0; 40% glycerol; 5mM 

CaCl2; 2 mM MgAc2), and stored at -80°C. For each buffer, 2 PhosStopTM phosphatase inhibitor 

tablets (Roche), 1mM PMSF, 50 µg Pepstatin A, 56 mg sodium butyrate, and 1 cOmpleteTM 

Protease Inhibitor Cocktail tablet (Roche) per 50ml buffer were added immediately prior to use. 

 

Creolimax fragrantissima and Sphaeroforma arctica were cultured axenically in BD Difco™ 

Marine Broth 2216, in tissue culture-treated flat-bottomed polyethylene tissue culture flasks at 

12°C; confluent cells were harvested by centrifugation, and the pellet flash-frozen and stored at -

80°C. 
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Dictyostelium discoideum AX3 wildtype cells were cultured axenically in HL-5 (Formedium) on 

untreated polystyrene petri dishes at 22°C. Confluent cells were resuspended in fresh media and 

centrifuged at 300xg for 5 min. The pellet was flash frozen and stored at -80°C. 

 

Nematostella vectensis: Adult Nematostella were reared in 1/3 strength artificial seawater at 18°C 

in dark conditions. Spawning was induced using the protocol described in (47). Adult males and 

females were induced to spawn in small glass bowls, and fertilized egg masses were removed 

and cultured in small glass bowls at 25°C. Swimming gastrula/early polyp stage animals were 

harvested for nuclei isolation. 

 

Mouse embryonic stem cell (mESC) cell culture: E14 mESCs  (ATTC) were cultured on 0.1% 

gelatin-coated (Millipore) tissue culture-grade plates in a humidified 37°C incubator with 5% CO2. 

The culture medium consisted of DMEM (Gibco) supplemented with 2 mM L-glutamine (Gibco), 

1× MEM nonessential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), 100 U/mL 

penicillin/100 U/mL streptomycin (Gibco), 0.1 mM 2-mercaptoethanol (Gibco), 15% fetal bovine 

serum (Gibco), and 1000 U/mL recombinant leukemia inhibitory factor (LIF). Genetic editing and 

experiments were performed using cells at passages 10-20. 

 

Generation of NELFB and NELFE mESCs: both cell lines were generated using an identical 

approach to endogenously and homozygously tag the C-terminus of each protein with FKBPF36V 

tag. The NELFB line has been previously described, and the NELFE line was generated for this 

study. The methods below describe the NELFE line generation, for more details of NELB line, 

please refer to (7). 

 

Plasmid Generation: To target the nelf-e genes, two plasmid constructs were generated: 

1) Cas9 vector to target the C terminus of Nelfe gene: PX459 vector (Addgene 62988) was 

digested using BbsI-HF (NEB) and single guide RNA targeting Nelfe was annealed (Ran et al. 

2013).. 

2) Homology-directed repair (HDR) vector containing the insert FKBPF36V tag, 2× HA tag, self-

cleaving P2A sequence, and puromycin resistance, flanked by 1-kb Nelfe HDR sequences: The 

insert was obtained from pCRIS-PITCHv2-dTAG-Puro (Addgene 91796) (Nabet et al. 2018). The 

plasmid backbone (pBluescript), Nelfe HDR sequences, and the insert were amplified using Q5 

polymerase (NEB), and the plasmid was constructed using NEBuilder HiFi DNA assembly (NEB). 

All oligos used are available in the table below. 

 

Name Sequence function 

Nelfe_sgRNA CACCGTGTGTACAGTGACGAT
CTAT 

sgRNA following the 
'CACC' for PX459 
insertion 

Nelfe_sgRNA' AAACATAGATCGTCACTGTACA
CAC 

Complement of sgRNA 
oligo for PX459 insertion 

HDR-template plasmid   
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pieces  

Nelfe_LA_F acggtatcgataaagccatttggaaaaaca
g 

Apmplify left homology 
arm 

Nelfe_LA_R cacctgcactccatcgtcactgtacacaatc  Apmplify left homology 
arm 

Nelfe_RA_F_Puro cccggtgcctgactataggaaaccttgtggat
g 

Apmplify right homology 
arm 

Nelfe_RA_R aactagtggatccaggtcaaagatgcctctg Apmplify right homology 
arm 

Nelfe_dTAGpuro_F gtacagtgacgatggagtgcaggtggaaac
catctc 

Amplify FKBP (F36V) tag 

Nelfe_dTAGpuro_R aggtttcctatagtcaggcaccgggcttgcg Amplify FKBP (F36V) tag 

Nelfe_BB_F catctttgacctggatccactagttctagagc Amplify pBluescript 
backbone 

Nelfe_BB_R ttccaaatggctttatcgataccgtcgacctc Amplify pBluescript 
backbone 

 

Generation of Nelfe-dTAG mESCs: 3 million cells were transfected with 10 µg of PX459-

Nelfe_sgRNA and 10 µg of Nelfe_left-FKBPF36V-2xHA-P2A-PURO-Nelfe_right using the Lonza 

P3 primary cell 4D-Nucleofector X 100-µL cuvettes. The transfected cells were plated on a 10-cm 

dish coated with mouse embryonic fibroblasts (MEFs). 48 hours after transfection, correctly 

targeted cells were selected for in 6 µg/mL Blasticidin for 5 days. Surviving cells were split into 

1000 cells per 10-cm dish and maintained for 9 days under puromycin selection. Surviving clones 

were picked and expanded under a stereomicroscope and genotyped for the insert. 

 

dTAG drug treatment: The dTAG-13 reagent  

(Bio-Techne: https://www.bio-techne.com/p/small-molecules-peptides/dtag-13_6605) was 

reconstituted in DMSO (Sigma) to a final concentration of 5 mM. The dTAG-13 solution was 

diluted in culture medium to 500 nM and added to cells for the indicated time period during 

medium changes. 

 

Immunofluorescence: Cells plated on u-Slide eight-well plates (Ibidi) were washed with PBS+/+ 

and fixed in 4% PFA (Electron Microscopy Sciences) in PBS+/+ for 10 min at room temperature. 

Cells were subsequently washed twice with PBS+/+, followed by wash buffer and 0.1% Triton X-

100 (Sigma) in PBS+/+, and permeabilized in 0.5% Triton X-100 (Sigma) in PBS+/+ for 10 min. 

Then blocked with 3% donkey serum (Sigma) and 1% BSA (Sigma) for 1 h at room temperature. 

Cells were incubated with primary antibodies in blocking buffer overnight at 4°C (antibodies and 

concentrations are listed in Supplemental Table S1). Then, they were washed three times in wash 

buffer and incubated with suitable donkey Alexa Fluor (1:500; Invitrogen) for 1 h at room 
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temperature. Finally, cells were washed three times with wash buffer, with the final wash 

containing 5 μg/mL Hoechst 33342 (Invitrogen), and imaged.  

 

Imaging: Fixed immunostained samples were imaged using a Zeiss LSM880 laser scanning 

confocal microscope. An air plan-apochromat 20×/NA 0.75 objective was used. Images represent 

a 2D plane correlating to the monolayer of cells in culture. No further image processing was 

performed. 

 

Western blotting: Cells were harvested and lysed by adding 350 µL of lysis buffer containing 1× 

cell lysis buffer (Cell Signaling), 1 mM PMSF (Cell Signaling), and cOmplete Ultra protease 

inhibitor (Sigma) to a 90% confluent six-well dish (Falcone) after washing with PBS−/−. 

The harvested cells were incubated on ice for 5 min, scraped and collected then sonicated for 15 

sec to complete lysis and then spun down at 12,000g for 10 min at 4°C. The supernatant was 

collected, and protein concentration was measured using Pierce BCA protein assay kit (Thermo). 

Samples were prepared by mixing 10 to 20 µg of protein with Blue loading buffer (Cell Signaling) 

and 40 mM DTT (Cell Signaling), followed by boiling for 5 min at 95°C for denaturation. Cellular 

compartment fractions were prepared using subcellular protein fractionation kit (Thermo) 

following the manufacturer's instructions. 

The samples were run on a Bio-Rad Protean system and transferred to a nitrocellulose membrane 

(Cell Signaling) using transblot semidry transfer cells (Bio-Rad) following the manufacturer's 

instructions and reagents. The nitrocellulose membrane was briefly washed with ddH2O, stained 

with Ponceau S (Sigma) for 1 min, and washed three times with TBST (0.1% Tween 20 [Fisher] 

in TBS) to check for transfer quality and serve as a loading control. Then it got blocked with 4% 

BSA in TBST for 1 h at room temperature and incubated with primary antibodies diluted in blocking 

buffer overnight at 4°C. The membrane was then washed three times with TBST, incubated with 

secondary antibodies in blocking buffer for 1 h, and washed three times with TBST. Last, the 

nitrocellulose membrane was incubated with ECL reagent SignalFire for 1-2 min and imaged 

using a ChemiDoc (Bio-Rad). 

 

The following antibodies were used in this paper: 

 

Antibody Source Identifier Application Conc. 

anti-Histone H3 Cell Signaling Cat# 4499, RRID: AB_10544537 Western 1:2000 

anti-RNA pol II S2P Abcam 
Cat# ab193468, RRID: 

AB_2905557 
IF 

1:500 

anti-NELFE Abcam 
Cat# ab170104, RRID: 

AB_2827280 
Western 

1:1000 

anti-

COBRA1/NELFB 
Cell Signaling Cat# 14894, RRID: AB_2798637 Western 

1:1000 

anti-HA Abcam 
Cat# ab130275,  RRID: 

AB_11156884 
IF 

1:500 
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anti-HA Cell Signaling Cat# 3724, RRID: AB_1549585 Western 1:1000 

anti-b-actin Cell Signaling Cat# 3700, RRID: AB_2242334 Western 1:2000 

anti-DSIF/Spt5 BD Biosciences Cat# 611106, RRID: AB_398420 Western 1:2000 

 

Heat shock experiments on mESCs: Heat shock was administered as described in recent work 

from the Lis lab (36, 40). We started the heat stress after 30 min of dTAG-13 treatment, which 

corresponds to the maximal depletion of paused Pol II based on PRO-seq data. 

 

We performed the analysis of the HS data in two different ways: 

- On a first analysis, by calling gene expression changes using DEseq (log2foldChange > 

or < 0, and padj < 0.05) between a regular HS and NHS experiment. Then, we plotted log2 

fold changes of (HS+dTAG)/(NH) and (HS+dTAG)/(NHS+dTAG) at these pre-defined HS 

up-regulated or down-regulated genes coordinates. 

- For a second approach, we considered the effect that NELF-B depletion has on Pol II 

trickling into gene bodies. To eliminate any biases from increased PRO-seq signal 

downstream from the TSS due to the dTAG-13 treatment alone, we re-analyzed our data 

after removing the first 3 kb downstream from the TSS and we focused on genes that 

remain unchanged following dTAG-13 treatment, but are either up or down-regulated after 

HS (fig. S13F). We confirmed a slight up-regulation of genes in the vicinity of the TSS 

after dTAG-13 treatment by plotting the correlation between the log2 fold change of dTAG-

13 treatment after NELF-B degradation (fig. S10). We used deeptools to compute log2 

fold change bigwigs and plot heat maps. 

 

Both of these analyses confirmed a defect in up-regulation across many HS-dependent genes. In 

the second analysis, we observed that a significant number of genes that were meant to show 

HS-dependent upregulation failed to reach their full transcription potential in the absence of NELF-

B (Fig. 4C left; fig. S13A). The same effect was also observed, though in far fewer genes in the 

absence of NELF-E (Fig. 4C right; fig. S13B). We noted no defect in down-regulated genes 

using this analysis approach. 

PRO-seq library prep: PRO-seq or ChRO-seq (11, 48) libraries were prepared from snap-frozen 

cell pellets following the protocol described in (44). All PRO-seq libraries were evaluated for data 

quality and sequencing depth using PEPPRO (49). Data and data quality are shown in (fig. S14; 

Table 1).  

 

Computational analyses  
 

*In this paper we refer to PRO-seq, GRO-seq, and ChRO-seq as PRO-seq. 

 

Mapping and processing PRO-seq data: 
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Single and paired-end reads of PRO-seq data were aligned to its reference genome using the 

proseq2.0 pipeline from the Danko lab (https://github.com/Danko-Lab/proseq2.0) using the 

following parameters: -RNA5=R1_5prime --RNA3=R2_5prime --

ADAPT1=GATCGTCGGACTGTAGAACTCTGAACG --

ADAPT2=AGATCGGAAGAGCACACGTCTGAACTC --UMI1=4 --UMI2=4 --ADD_B1=6 --

ADD_B2=0 --thread=8 --map5=FALSE. Library processing included adapter trimming using 

cutadapt, PCR deduplication (where UMIs are present) using printseq-lite.pl, followed by mapping 

to the reference genome using BWA. Mapped BAM files were then trimmed either to the 3’-end 

of the RNA (to map the location of RNA Pol II) or the 5’-end  (to map the beginning of the RNA) 

and the 1bp position was converted to bedGraphs and BigWigs. PRO-seq libraries were also 

RPM normalized to account for differences in sequencing depth. 

 

Data was mapped to the following reference genomes: 

- E.coli:escherichia_coli_mg1655_01312020 

(https://www.ncbi.nlm.nih.gov/nuccore/U00096.2) 

- Haloferax: NZ_CP039139.1 (https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP039139.1) and 

the plasmids included here: https://www.ncbi.nlm.nih.gov/genome/?term=txid523841 

- D.discoideum: dicty_2.7 (https://www.ebi.ac.uk/ena/browser/view/GCA_000004695.1) 

- A.thaliana: Arabidopsis_thaliana.TAIR10.dna.toplevel 

- Z.mays:GCF_902167145.1_Zm-B73-REFERENCE-NAM-5.0 

(https://www.ncbi.nlm.nih.gov/assembly/GCF_902167145.1/) 

- O.sativa:GCF_001433935.1_IRGSP-1.0_genomic.fna 

(https://www.ncbi.nlm.nih.gov/assembly/GCF_001433935.1/) 

- C.owczarzaki: Capsaspora_owczarzaki_atcc_30864.C_owczarzaki_V2.dna.toplevel 

- S.pombe: Schizosaccharomyces_pombe.ASM294v2.dna.toplevel 

- S.cerevisiae: Saccharomyces_cerevisiae.R64-1-1.dna.toplevel 

- S.arctica: Sphaeroforma_arctica_jp610.Spha_arctica_JP610_V1.dna.toplevel.fa.gz 

(https://www.ncbi.nlm.nih.gov/assembly/GCF_001186125.1/) 

- C.fragmatissima: Creolimax_fragrantissima.genome 

(ncbi.nlm.nih.gov/assembly/GCA_002024145.1/) 

- N.vectensis: nemVec1 

- C.elegans: ce6 (https://hgdownload.soe.ucsc.edu/goldenPath/ce6/chromosomes/) 

- D.pulex: dpulex_jgi060905 (http://wfleabase.org/prerelease/dpulex_jgi060905/genome-

assembly/) 

- D.iulia: published assembly in (46) 

- D.melanogaster:dm3 (http://genome.ucsc.edu/cgi-

bin/hgTracks?db=dm3&chromInfoPage=) 

- S.purpuratus: Spur_3.1 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000002235.3/) 

- P.marinus: petMar2 (https://www.ncbi.nlm.nih.gov/assembly/GCA_000148955.1/) 

- M.musculus: mm10 (GRCm38) 

- H.sapiens: hg19 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/) 

 

Reannotation of transcription start sites: 
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We took PRO-seq mapped BAM files and ran it through the RunOnBamToBigWig tool developed 

in the Danko lab (https://github.com/Danko-Lab/RunOnBamToBigWig) to compute 5’prime 

mapped BigWigs (parameter for paired end data: --RNA5=R1_5prime; parameter for single end 

data: --SE_READ=RNA_5prime). Then, we used published gene annotations in each species, 

resized them to a 1kb window centered on the gene annotation start site, and computed the total 

number of 5’-prime mapped PRO-seq reads that fall within this interval using 10bp sliding 

windows. Last, to reannotate gene start sites, we took the start position of the 10bp window with 

the maximum number of 5’-prime PRO-seq reads. We used these annotated TSSs for all further 

analyses. 

 

Computing Pausing indexes:  

Pausing indexes were computed as the ratio between Pol II density in the pause region and gene 

body region. We defined the pause region as the interval between [ TSS-150, TSS+150 ]bp and 

the gene bodies as [ TSS+300, TES-300 ]bp (where TES = transcription end site). Genes shorter 

than 300bp were removed from the analysis. 

 

Heatmaps and meta profiles: 

We use DeepTools to functions (bigwigCompare, compute matrix, plotHeatmap, and plotProfile) 

to compute heatmaps and meta profiles of PRO-seq data. We also used DeepTools to cluster 

and compute correlations between the heat shock PRO-seq libraries as BAM files (bamCompare, 

and multiBamSummary, plotPCA, and plotCorrelation) (50).  

 

Before running bigwigCompare, we generated combined BigWigs of the plus and minus PRO-

seq data for each sample. 

 

bigwigCompare --bigwig1 HS_plus.minus.bw --bigwig2 NHS_plus.minus.bw -o 

HS.NHS_log2FC_plus.minus.bw --outFileFormat bigwig --pseudocount 0.1 --operation 

log2 --skipNAs -p max/2 & 

 

computeMatrix reference-point --referencePoint center -R regions.bed -S  

NHS_plus.minus.bw HS.NHS_log2FC_plus.minus.bw --samplesLabel "NHS" "HS / NHS" 

--sortUsingSamples 1 \ 

-b 1000 -a 50000 \ 

--binSize 1000 \ 

--skipZeros -o Counts_GB.increase_log2FCs_NELF_B.gz -p max/2  

 

    plotHeatmap -m Counts_GB.increase_log2FCs_NELF_B.gz \ 

         -out Heatmap_Counts_GB.increase_log2FCs_NELF_B.pdf \ 

         --colorList "blue,white,red" \ 

         --heatmapHeight 10 \ 

         --heatmapWidth 3 \ 

         --zMin -2 --zMax 2 --missingDataColor 0 \ 

         --averageTypeSummaryPlot "mean"  
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plotProfile -m Counts_GB.increase_log2FCs_NELF_B.gz \ 

-out Metaplot_Counts_GB.increase_log2FCs_NELF_B.pdf 

 

multiBamSummary bins \ 

         --bamfiles ./*bam \ 

         --minMappingQuality 10 \ 

         -p max/2 \ 

         -out allTSS_QC_readCount_corr.npz \ 

          --outRawCounts allTSS_QC_readCount_corrRaw.tab 

 

plotCorrelation \ 

            -in allTSS_Abood.PROseq_readCount_corr.npz \ 

            --corMethod spearman --skipZeros \ 

            --plotTitle "Spearman Correlation at annotated TSSs" \ 

            --whatToPlot heatmap --colorMap seismic --plotNumbers \ 

            -o allTSS_QC.Spearman.heatmap_readCounts.png   \ 

            --outFileCorMatrix allTSS_QC.PROseq_readCount_Spearman.tab 

 

Reciprocal BLASTp to compare transcription proteins across species:  

 

To determine if human orthologs of key transcription machinery proteins (NELF complex; DSIF; 

PAF1; 7SK proteins) were present in other species, we performed a reciprocal BLAST using the 

rBLAST library (version 0.99.2). First, given a human protein, H, a BLASTp was performed against 

the protein database of a different organism (X). Sequences in species X that produced a BLASTp 

E-value lower than 1e-6, were considered candidates for a second BLASTp run. On the second 

BLASTp run, we performed a reciprocal BLAST search using the candidates in species X relative 

to the human proteome. If this reciprocal search yielded any valid hits passing the scoring same 

threshold of E-value < 1e-6, the protein was considered present in species X.  This approach was 

repeated for all protein sequences in fig. S2 and S3. For this analysis, we downloaded human 

protein sequences from UniProt, along with complete proteomes (.pep.all.fa files) of all species 

analyzed in this study from NCBI or Ensembl (only for C. fragrantissima and D. iulia). 

 Then, we used the following script to compare 

(https://github.com/alexachivu/PauseEvolution_prj/blob/main/Protein%20BLAST%20(BLASTp)) 

the human homologs of those proteins to the entire proteome of all species in this study. We 

provide the human protein sequences used in this reciprocal BLAST search here: 

https://github.com/alexachivu/PauseEvolution_prj/blob/main/Human.orthologs_sequences.fa 

 

Defining DNA sequence motif under the pause: 

The position of the pause site in each species was defined as follows. First, we utilized our re-

annotated TSS positions and created a 100bp window starting from the TSS: [ TSS, TSS+100 

]bp. Next, we designated the base with the maximum PRO-seq counts within this 100bp window 

as the pause site. Finally, we created either a 1kb or 20bp window centered around the identified 

pause site for further motif analyses. 
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Computing the enrichment of the metazoan pause motif across all species:  

#1. We used bedtools getfasta to get DNA sequences at in a window centered on the pause site 

or on the TSS (the example below is provided for mouse data) 

bedtools getfasta -s -fi mm10.fa.gz -bed ./M.musculus_Pause.20bp.bed -fo 

M.musculus_Pause.20bp.out 

 

#2. We then run the MotifDicovery pipeline (

https://github.com/alexachivu/PauseEvolution_prj/blob/main/MotifDiscovery) to discover DNA 

sequences associated with the pause site  

R --vanilla --slave --args $(pwd) M.musculus_Pause.20bp.out 

M.musculus_Pause.20bp_SeqLogo.pdf < MotifDicovery.R 

 

#3. For the motif enrichment analysis, we used a different script 

(https://github.com/alexachivu/PauseEvolution_prj/blob/main/MotifEnrichment) to compare the 

DNA sequences in each species with a human pause motif described in (28). 

 

Differential analysis: 

We performed differential analysis to quantify changes after heat shock, dTAG-13, and the dual 

treatment of heat shock and dTAG-13. To accomplish this, we run DEseq2. We used the total 

number of dm3 spike-in reads (divided by the mean of the spike-ins) as scaling factors. 

 

Figure design: 

We used BioRender to draw all of the illustrations and cartoons in this paper, with the exception 

of the schematic representing the relationships between species. The latter was prepared using 

Interactive Tree of Life (iTOL) v.6.7 (51) based on relationships depicted in (52) and edited in 

InkScape and Illustrator. 

 

An inventory of all functions used to process the PRO-seq data is deposited on GitHub at: 

https://github.com/alexachivu/PauseEvolution_prj/tree/main 
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