
Copyright © 2005 by the Genetics Society of America
DOI: 10.1534/genetics.104.032821

Evolution of Recombination Due to Random Drift

N. H. Barton* and Sarah P. Otto†,1

*School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom and †Department of Zoology,
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4

Manuscript received June 24, 2004
Accepted for publication January 10, 2005

ABSTRACT
In finite populations subject to selection, genetic drift generates negative linkage disequilibrium, on

average, even if selection acts independently (i.e., multiplicatively) upon all loci. Negative disequilibrium
reduces the variance in fitness and hence, by Fisher’s (1930) fundamental theorem, slows the rate of
increase in mean fitness. Modifiers that increase recombination eliminate the negative disequilibria that
impede selection and consequently increase in frequency by “hitchhiking.” Thus, stochastic fluctuations
in linkage disequilibrium in finite populations favor the evolution of increased rates of recombination,
even in the absence of epistatic interactions among loci and even when disequilibrium is initially absent.
The method developed within this article allows us to quantify the strength of selection acting on a
modifier allele that increases recombination in a finite population. The analysis indicates that stochastically
generated linkage disequilibria do select for increased recombination, a result that is confirmed by Monte
Carlo simulations. Selection for a modifier that increases recombination is highest when linkage among
loci is tight, when beneficial alleles rise from low to high frequency, and when the population size is small.

RECOMBINATION breaks down the linkage dis- interactions fluctuate over time, recombination can be
equilibrium generated between genes. In the ab- favored, but only if fluctuations occur over a timescale

sence of mutation and in a constant environment, the of a few generations, such that linkage disequilibria that
linkage disequilibrium present in a population will largely were initially advantageous soon become disadvanta-
be a product of selection favoring specific gene combi- geous (Charlesworth 1976, 1990; Maynard Smith
nations. In this case, one would expect that recombina- 1978; Barton 1995a). When there is directional selec-
tion would be detrimental and that genes that modify tion, increased recombination rates can evolve under a
recombination rates would evolve to reduce recombina- wider range of conditions: essentially, there must be
tion. This intuition is confirmed by the “reduction prin- weak negative epistasis among favorable alleles (May-
ciple”: in models at equilibrium under viability selec- nard Smith 1980, 1988; Charlesworth 1993; Barton
tion, modifier alleles that reduce recombination are 1995a). Weak negative epistasis implies that the fitness
favored in the absence of mutation (Feldman 1972; of a genotype with several advantageous alleles is slightly
Feldman et al. 1980; Altenberg and Feldman 1987). less than would be expected from the product of the
How then is recombination maintained at appreciable fitnesses of each allele measured separately. In this case,
levels in most higher organisms? In this article, we ex- selection generates negative linkage disequilibrium be-
plore one possibility: that recombination is favored be- tween favorable alleles, which reduces the genetic vari-
cause it reduces the linkage disequilibrium generated ance present in the population. Recombination destroys
stochastically in a population by random genetic drift. this disequilibrium, increasing the variance in the popu-

For recombination to have an influence on the pro- lation and improving the response of the population to
cess of evolution, linkage disequilibria must exist within selection. Finally, purifying selection against recurrent
the genome. Although disequilibria can be generated by deleterious mutations also favors the evolution of re-
stochastic as well as deterministic forces (Felsenstein combination (Feldman et al. 1980; Kondrashov 1982,
1988; Kondrashov 1993), most work on the evolution 1984, 1988; Barton 1995a; Otto and Feldman 1997).
of recombination has focused on deterministic models Again, increased recombination is favored if there are
that assume an infinite population size. In a single un- weak negative epistatic interactions among mutations,
structured population of infinite size, the spread of mod- implying that the mutations interact synergistically to
ifier alleles that increase recombination has been ob- cause a further than expected reduction in fitness.
served under three selective regimes. When epistatic While negative epistasis can provide the raw material

(negative linkage disequilibrium) for recombination to
be favored at a modifier locus, it is not clear why epistasis
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dence for negative epistasis among random mutations Morgan, Fisher, and Wright is not epistasis but random
sampling. When a beneficial allele first arises, it occursis limited (Rice 2002). Although negative epistasis has

been observed in some cases (e.g., Mukai 1969 in Dro- on (“samples”) one particular genetic background and,
unless recombination occurs, the fate of the beneficialsophila melanogaster ; de Visser et al. 1996 in Chlamydomo-

nas moewusii ; but see West et al. 1998), positive epistasis allele is tied to the evolutionary fate of that background.
If the population were infinitely large, this samplinghas been observed in other cases (e.g., Seager and

Ayala 1982, Seager et al. 1982 in D. melanogaster ; but problem would disappear because all possible combina-
tions of alleles would be generated instantaneously bysee Charlesworth 1990). Further studies in Escheri-

chia coli (Elena and Lenski 1997) and Aspergillus niger mutation. Simulations of finite populations by Hill and
Robertson (1966) demonstrated that the probability of(de Visser et al. 1997) have found significant evidence

for both positive and negative epistasis but without a fixation of beneficial alleles is limited by linkage among
selected loci, a phenomenon now known as the Hill-preponderance of either form. On theoretical grounds,

negative epistasis has been invoked to account for the Robertson effect (see also Felsenstein 1974). Further-
more, both Hill and Robertson (1966) and Felsen-survival of populations in the face of a high rate of

deleterious mutations. In the absence of epistasis, mean stein (1974) demonstrated that, even when epistasis is
absent, the disequilibria that develop in a finite popula-fitness would be exp(�U), where U is the genome-wide

rate of deleterious mutations. Thus, mean fitness would tion tend to slow the spread of beneficial alleles, espe-
cially when recombination is rare. That is, even whenbe quite low in organisms with a high genomic mutation

rate. The mean fitness of a population can be increased, fitness is multiplicative across loci, drift generates nega-
tive disequilibria among selected loci such that benefi-however, in sexual populations if deleterious mutations

interact synergistically (i.e., exhibit negative epistasis; cial alleles at one locus become associated with deleteri-
ous alleles at other loci. In subsequent simulations,Kimura and Maruyama 1966; Kondrashov 1982, 1988).

Yet synergistic interactions need not be invoked to ex- Felsenstein and Yokoyama (1976) found that modifi-
ers that increase the rate of recombination spread inplain the persistence of populations if the rate of delete-

rious mutation is low (Keightley 1997; Keightley and response to the negative disequilibria created by drift
in the presence of selection.Caballero 1997; Keightley and Eyre-Walker 2000),

if compensatory mutations are common, or if selection The Hill-Robertson effect provides an alternative
source for the negative linkage disequilibria that causeis “soft” such that the mean fitness of a population has

little impact on the number of surviving individuals indirect selection for modifiers that increase recombina-
tion. The way in which random drift generates negative(Turner and Williamson 1968). Another approach

has been to try to predict the form of epistasis, a priori, associations is most easily seen by considering two bene-
ficial mutations that arise at different loci in the samefrom models of the underlying biological processes af-

fecting fitness. For example, using metabolic control generation. Let D measure the gametic linkage disequi-
librium between the two loci in a diploid population oftheory, Szathmary (1993) found that negative epistasis

among mutations predominates when flux through a size N. Initially, the expected linkage disequilibrium is
zero, because the very high chance that the alleles arisemetabolic pathway is under stabilizing selection but that

positive epistasis predominates when maximal flux is on different chromosomes [D � �1/(2N)2 with proba-
bility 1 � 1/(2N)] is counterbalanced by the extremelyfavored. At this stage, both the experimental evidence

and theoretical arguments concerning the nature of small chance of a strong positive association if the muta-
tions arise in coupling [D � (1 � 1/(2N))1/(2N) withinteractions among mutations remain equivocal and

form a weak basis for explaining the predominance of probability 1/(2N)]. Consider what would happen to
the disequilibrium in the absence of recombination as-sex and recombination.

If negative epistasis fails to explain the evolution of suming that the mutations rise deterministically in fre-
quency after their appearance. At first, both the negativesex and recombination, what other process might be

responsible? For insight into this question, it is worth and the positive disequilibria grow exponentially as the
beneficial alleles increase within the population. Even-returning to some of the earliest arguments for the

evolution of sex. Morgan (1913), Fisher (1930), and tually, however, the growth of the positive disequilib-
rium slows down as the coupled beneficial alleles reachMuller (1932) argued that an important advantage of

sex is that beneficial mutations that arise in separate fixation. That is, beneficial alleles that arise in coupling
rise rapidly and fix within the population, leading toindividuals can be brought together within the same

individual. In the absence of sex, only one lineage will the disappearance of the positive disequilibrium. The
negative disequilibrium persists for a much longer pe-leave descendants in the long term, and beneficial muta-

tions in all other asexual lineages will be lost. Thus, the riod of time, until one or the other allele becomes fixed.
Therefore, with multiplicative selection, the variance inprobability of fixation of a new beneficial mutation is

severely limited in the absence of sex by the fate of the disequilibrium present in the first generation ultimately
leads to negative disequilibrium, on average.rest of the genome in which it arises.

The source of disequilibrium implicit in the words of This heuristic argument applies not only when dis-
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equilibrium is generated by the random appearance of must consider the dynamics of disequilibrium generated
mutations on particular genetic backgrounds, but also by random genetic drift over the entire time course as
more generally when disequilibrium is generated by beneficial alleles spread through a population. Because
random genetic drift (Qureshi 1963; Latter 1965; drift tends to generate negative linkage disequilibria,
Hill and Robertson 1966; Felsenstein 1974). As on average (with good alleles residing on bad genetic
shown by Hill and Robertson, negative disequilibrium backgrounds), modifier alleles that increase the rate of
accumulates, on average, whenever genetic drift occurs recombination bring together good alleles from differ-
in the presence of multiplicative selection. Although ent individuals, generating indirect selection for recom-
drift can generate both positive and negative disequilib- bination. We showed through simulation that this in-
ria, which cancel out on average, selection does not direct selection is often stronger than the indirect
act symmetrically upon the disequilibria thus created. selection for recombination generated by epistasis in
Negative associations persist for longer simply because populations of small (2N � 100) to intermediate (2N �
such associations (“good alleles on bad genetic back- 10,000) size (Otto and Barton 2001). More impor-
grounds”) impede selection. Conversely, positive associ- tantly, modifiers that increased the frequency of sex and
ations are relatively transient, as selection fixes the best recombination spread, on average, across a broad range
combinations (good with good) and eliminates the of epistasis, from weak negative epistasis to positive epis-
worst ones (bad with bad). When averaged across repli- tasis, when drift was incorporated.
cates or loci or time, the overall level of disequilibrium While previous analyses have shown that fluctuations
expected between selected loci becomes more negative in linkage disequilibrium can substantially increase the
than expected in an infinite population. As we shall effects of a favorable allele on linked neutral loci (Ste-
see, this process can be significant even in fairly large phan et al. 1992; Barton 1998), we lack an analytical
populations as long as the allele frequencies are initially framework to predict the dynamics of disequilibrium
low and subject to drift. between selected loci in the presence of drift and selec-

Analyzing the Hill-Robertson effect is made difficult tion. This article develops such a framework, allowing
by the fact that it requires a stochastic model tracking us to track fluctuations in linkage disequilibrium during
the frequencies of several chromosomes, each of which the spread of beneficial alleles and to measure the im-
changes over time in a nonlinear fashion. While diffi- pact on a modifier allele of recombination.
cult, incorporating stochasticity into models of the evo- Our analysis makes two crucial simplifications: that
lution of sex and recombination is essential, because the the population size (N) is large enough that only lead-
fate of a modifier allele depends critically on whether or ing terms (O(1/N)) need be included and that no allele
not drift is included (Felsenstein and Yokoyama 1976;

is very rare. Furthermore, because we wish to concen-
Otto and Barton 1997, 2001). Previous analytical re-

trate on stochastic effects, we assume multiplicative fit-sults have used branching processes with multiplicative
nesses throughout. Including epistasis would induceselection to examine the probability that beneficial al-
linkage disequilibria and selection on recombinationleles are lost or fixed from very large populations. Bar-
even in an infinite population. These simplificationston (1995b) calculated the amount by which recombi-
allow us to approximate the full stochastic dynamicsnation increases the probability of fixation of beneficial
with recursion equations giving the mean and variancealleles. We extended this analysis to determine the ex-
for the allele frequencies and disequilibria over time.tent to which increased recombination would be favored
Approximate solutions to these recursions are then ob-at a modifier locus (Otto and Barton 1997). Because
tained under the assumption of weak selection. Thisbeneficial mutations are more likely to fix when associ-
analysis shows that genetic drift creates variance in link-ated with modifier alleles that increase recombination,
age disequilibrium, which in turn generates negativethese modifier alleles get dragged along as the beneficial
linkage disequilibrium, on average. The amount of link-alleles spread through the population. This process of
age disequilibrium is larger when the beneficial allelesgenetic hitchhiking causes the modifier alleles, and
start at low frequency, when selection favoring the alleleshence the recombination rate, to increase within the
is strong, and when linkage is tight. Under these circum-population.
stances, a small amount of linkage disequilibrium gener-These analyses focused only on the linkage disequilib-
ated by random genetic drift while the alleles are rarerium generated by the random occurrence of mutations
is amplified by selection and only slowly destroyed byon specific genetic backgrounds. Even when beneficial
recombination. Finally, we determine the amount ofalleles are sufficiently common that their fixation is
indirect selection for recombination generated by driftassured, however, random fluctuations in genotype fre-
in the presence of selection by examining evolutionaryquencies generate linkage disequilibria among selected
changes at a third locus that modifies recombinationloci. Indeed, in our computer simulations, linkage dis-
rates. By destroying the negative disequilibrium builtequilibria generated among beneficial mutations after
up by drift in the presence of directional selection, athey first arose affected the dynamics of a modifier of

recombination (Otto and Barton 1997). Thus, we modifier allele that increases recombination rates im-
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proves the response of its carriers to selection and rises rium due to selection, recombination, and random ge-
in frequency as a consequence. netic drift are given in appendix a.

The moments of the multinomial distribution can be
used to determine the expected values of the perturba-

TWO-LOCUS MODEL
tions generated by a single round of random sampling,

We begin by examining the linkage disequilibrium as well as their variances and covariances. For instance,
generated in a model with two loci, j and k, separated because random genetic drift does not cause any direc-
by a recombination rate of rj k . We count genotypic fre- tional change in allele frequency, E[�j] � 0, but the
quencies immediately after meiosis and assume that allele frequency will vary around its deterministic trajec-
multiplicative viability selection acts within the popula- tory by an amount that is inversely proportional to the
tion. At locus j, alleles Qj , Pj segregate at frequencies qj population size with Var[�j] � pjqj/(2N). The first and
and pj and are assumed to have relative fitnesses (1 � second moments for the perturbations are given in ap-
sj/2):(1 � sj/2), respectively. Similarly, allele Pk has a pendix a. Higher-order moments are of the order 1/N 2

selective advantage of sk over allele Qk at locus k. This or smaller and are ignored in our analysis.
assumes that either the population is haploid or fitnesses To describe the dynamics over multiple generations,
in a diploid population are multiplicative within as well we must keep track of the cumulative deviations from
as between loci [i.e., QQ :PQ :PP have fitnesses (1 � s/2)2: the deterministic trajectory, which we do using the vec-
(1 � s 2/4):(1 � s/2)2]. This notation is consistent with tor z � (�pj , �pk , �Dj k). The random variable �pj measures
that of Barton and Turelli (1991) and Barton the difference between the actual allele frequency at
(1995a) and simplifies the algebra. any point in time and the allele frequency predicted

In an infinite population, if gametic linkage disequi- in the absence of random genetic drift. Similarly, �Dj k
librium (Dj k � freq(PjPk)freq(QjQk) � freq(PjQk)freq measures the difference between the actual linkage dis-
(QjPk)) is initially absent, it remains zero under multipli- equilibrium and the disequilibrium predicted determin-
cative selection (Maynard Smith 1968). In this case, istically. Throughout, we assume that the perturbations
the allele frequencies at each locus increase logistically. in z remain small and keep only the leading-order terms.
Specifically, the ratio p/q increases by a factor (1 � In the text, we assume that there is no epistasis and
s/2)/(1 � s/2) every generation or by approximately that the initial level of disequilibrium, if present, is of the
exp(st) after t generations. The technique that we de- order N�1. Under these assumptions, the disequilibrium
velop in this article assumes that the trajectory of allele predicted deterministically can be set to zero, so that
frequencies closely follows the deterministic equations �Dj k measures the actual amount of disequilibrium in
for this model but that small perturbations from this the presence of drift. The method can be extended,
trajectory are caused by random drift. We develop re- however, to account for epistasis or for strong initial
cursion equations for the first and second moments of disequilibrium by keeping track of perturbations from
these perturbations to determine the combined effects the deterministic trajectory for Dj k (see appendix a).
of drift and selection over time. Recursions for cumulative effects of drift in the pres-

Fluctuations around the deterministic trajectory: We ence of selection can be written as z* � f(z) and can be
assume a discrete-generation model in which a popula- determined from (A2). Assuming that the perturbations
tion is chosen by random sampling from the propagules are small, z* can be expanded in a Taylor series,
produced by the previous generation. The frequencies
of the chromosomes among the propagules are given

z*a � ��
b

�fa

�zb

zb �
1
2�

b,c

�2fa

�zb�zc

zb zc � . . .� � �a , (1)by the deterministic recursions for either a haploid pop-
ulation (with selection on haploids, followed by random

where the subscripts (a, b, c) are set to j or k whenmating and meiosis, to produce haploid propagules) or
referring to deviations in the allele frequencies anda diploid population (with selection on diploids, fol-
to jk when referring to the disequilibrium. The partiallowed by meiosis and random mating to produce diploid

propagules). From these propagules, either 2N haploid derivatives in (1) measure the sensitivity of each re-
or N diploid juveniles are sampled with replacement, cursion to the perturbations caused by random sam-
implying that the chromosome frequencies follow a pling. They were derived from the recursions (A2) using
multinomial distribution. We census the population im- the computer algebra package Mathematica (Wolfram
mediately after sampling occurs. 1991) and are given in supplementary information (S1;

Random sampling in any particular generation causes http://www.genetics.org/supplemental/). Note that all
genotype frequencies to differ from that expected on partial derivatives are evaluated along the deterministic
the basis of the propagule frequencies. We measure the trajectory (z � 0) and are therefore independent of the
perturbations generated by a single round of sampling perturbations. Taking the expectation of (1) gives
by the random variables �j , �k (for perturbations in the
allele frequencies at loci j, k) and �j k (for perturbations E[z*a ] � ��

b

�fa

�zb

E[zb] �
1
2�

b,c

� 2fa

�zb�zc

E[zb zc] � . . .� � E[�a].
in the linkage disequilibrium). The exact equations for
change in the allele frequencies and linkage disequilib- (2)
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Similarly, second moments are given by the expectation changed. These equations apply even if selection coef-
ficients vary through time, provided that there is noof the product of (1) with itself:
frequency dependence. Frequency-dependent selection

E[z*a z*b ] � �
c,d

�fa�fb

�zc �zd

E[zc zd ] � �
c

�fa

�zc

E[zc �b] � �
c

�fb

�zc

E[zc �a] � E[�a�b] � . . .. could be modeled in a similar fashion, taking into ac-
count that the partial derivatives will contain additional(3)
components depending on the form of selection. With

Contributions to the first- and second-order moments either constant or variable selection coefficients, recur-
arise by drift and are of O(N�1) as long as the allele sions (4) and (5) can be evaluated numerically (Mathe-
frequencies are not too small (appendix a). In contrast, matica package available upon request) to predict the
starting from a population with a specific genotypic means, variances, and covariances of the perturbations
composition, higher moments are initially absent, are over time.
generated by drift only to O(N�2), and are henceforth The recursions for the perturbations can be further
ignored. Note that the recursion equation (3) for analyzed under the assumption that selection is weak
E[z*a z*b ] also describes the change in the covariance, (appendix b). Solution (B3) for the perturbations in-
Cov[z*a , z*b ] � E[z*a z*b ] � E[z*a ]E[z*b ], because E[z*a ]E[z*b ] volving the disequilibrium is derived assuming that link-
is O(N�2) and can be ignored. Similarly, E[(z*a )2] de- age is sufficiently loose relative to selection that the
scribes the change in the variance, Var[z*a ], of the per- terms involving disequilibria reach a steady-state level
turbations around the deterministic trajectory. Finally, over a faster timescale than the changes in allele fre-
the E[zc �a] in (3) are also O(N�2) and are dropped. quencies; this steady-state level is known as the quasi-

Having dropped terms of O(N�2) in (2) and (3) and linkage equilibrium or QLE (Kimura 1965; Nagylaki
using the fact that many of the partial derivatives in 1993; Barton 1995a). Solution (B5) is derived assuming
supplementary information (S1) equal zero, fluctua- that both selection coefficients and recombination rates
tions in the allele frequency pj around the deterministic are small enough that the recursions can be well approx-
trajectory satisfy the following recursions: imated by differential equations, which are then solved.

Development of disequilibria under directional selec-
E[�p*

j ] �
��p*

j

��pj

E[�pj] �
��p*

j

��Dj k

E[�Dj k] �
1
2

� 2�p*
j

��p 2
j

E[�p2
j ] tion: We now consider how the above equations can

be used to infer how disequilibrium develops in finite
populations. Variance in linkage disequilibrium is gen-�

1
2

� 2�p*
j

��D 2
j k

E[�D 2
j k] �

� 2�p*
j

��pj ��Dj k

E[�pj �Dj k]
erated directly by random drift, contributing the
pjqjpkqk/2N term to (5b). As long as the direction of

�
� 2�p*

j

��pk ��Dj k

E[�pk �Dj k] � O(N �2) (4a) selection remains the same, all of the terms in (5c) are
positive (��p*j /��Dj k , ��p*k /��Dj k , ��D*j k/��Dj k � 0), in-
dicating that a positive covariance between the fre-E[�p*2

j ] � ���p*
j

��pj
�

2

E[�p 2
j ] � ���p*

j

��Dj k
�

2

E[�D 2
j k]

quency of each beneficial allele and linkage disequilib-
rium will develop as a result of this variance in linkage

� 2���p*
j

��pj
����p*

j

��Dj k
�E[�pj �Dj k] �

pj qj

2N
� O(N �2). disequilibrium. This covariance arises because allele fre-

quencies increase more rapidly in populations that hap-
(4b)

pen to have positive linkage disequilibrium. The pres-
ence of both variance in disequilibrium and covarianceFluctuations in the allele frequency pk are described by
between allele frequencies and linkage disequilibriumanalogous equations, with subscripts j and k inter-
then causes the expected linkage disequilibrium (5a)changed. Of greater relevance to the evolution of re-
to depart from zero. Because �2�D*j k /��D 2

j k is negativecombination are fluctuations that occur in the disequi-
(appendix a), variance in disequilibrium across repli-librium, �Dj k , around the deterministic equilibrium of
cate populations leads, on average, to negative disequi-Dj k � 0:
librium. Mathematically, this occurs because the mean

E [�D*
j k] � ���D*

j k

��Dj k
�E [�Dj k] fitness, W, given by (A1) is higher with positive disequi-

librium than with negative disequilibrium for any given
� �12

� 2�D *
j k

��D 2
j k

E [�D 2
j k] �

� 2�D*
j k

��pj ��Dj k

E [�pj �Dj k ] �
� 2�D*

j k

��pk ��Dj k

E [�pk �Dj k]� set of allele frequencies. Consequently, the amount of
positive disequilibrium gets divided by a larger quantity
(W 2) in (A2b) and becomes relatively smaller in the� O(N �2) (5a)
next generation. Another, perhaps more intuitive, ex-

E [�D *2
j k ] � ���D*

j k

��Dj k
�

2

E [�D 2
j k] �

pj qj pk qk

2N
� O(N �2) (5b) planation, is that the expected disequilibrium across

replicates becomes negative because selection is more
efficient when good alleles are found on good geneticE [�p*

j �D*
j k ] �

��D*
j k

��Dj k
���p*

j

��Dj k

E [�D 2
j k ] �

��p*
j

��pj

E [�pj �Dj k ]�
backgrounds (i.e., when disequilibrium is positive by
chance), causing positive disequilibrium to decay more

� O(N �2). (5c)
rapidly than negative disequilibrium whenever it occurs.
The positive covariance generated between each alleleE[�p*k �D*j k] is given by (5c), with subscripts j and k inter-
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frequency and the linkage disequilibrium leads the ex-
pected disequilibrium to become even more negative
(�2�D*j k/��pj��Dj k , �2D*j k/��pk��Dj k � 0). This occurs be-
cause those populations that happen to have positive
disequilibrium and, consequently, faster rising allele fre-
quencies (generating the positive covariance) also have
higher mean fitness values in future generations. The
linkage disequilibrium in future generations will then
continue to be divided by a larger quantity (W 2) in
(A2b), compounding the reduction in positive disequi-
librium relative to negative disequilibrium. As a conse-
quence of all of these effects, the expected value of
linkage disequilibrium becomes negative even though Figure 1.—Allele frequency change in a finite population.

The thick curve shows the average frequency over time of theit was initially zero and even though selection acts inde-
allele Pj , with selective advantage sj � 0.1 and initial frequencypendently on the two loci.
pj 0 � 0.01, in a population of size 2N � 10,000, using EquationProvided that allele frequencies are intermediate [i.e., 4a to determine the departure from the deterministic trajec-

p, q are O(1)], the average amount of negative disequi- tory (pj/qj � e s j tpj 0/qj 0). Although drift causes Pj to rise less
librium that develops is always proportional to 1/N : if rapidly on average than expected in an infinitely large popula-

tion, the effect is small, shifting the trajectory to the right bythe population size is doubled, the amount of disequilib-
an amount approximately equal to the thickness of the curve.rium generated by drift and selection is halved. When
We therefore use the deterministic trajectory to approximatelinkage is loose, disequilibrium does not accumulate pj throughout this article, which is a reasonable assumption

appreciably over time. With tight linkage, however, sub- provided that Nsj � 1. The thin curves show the expected
stantial amounts of disequilibrium can accumulate within allele frequency 	2 standard deviations based on (4b) (a weak

selection approximation generates indistinguishable resultsa population, especially when allele frequencies are ini-
and is not shown). Dots show simulation results for the meantially low. This is a consequence of the fact that a small
allele frequency 	2 standard deviations, based on 1,000,000amount of disequilibrium generated by drift between replicates.

rare alleles becomes a large amount of disequilibrium
as the alleles approach a frequency of 1⁄2. If the initial
allele frequency is too small [O(1/N)], as is the case with

the population (e.g., 2Np0 
 10). In this case, however,a single favorable mutation, then higher-order terms in
iterating (4) and (5) overestimates the Hill-Robertsonthe Taylor series approximation (1) become apprecia-
effect (results not shown), because higher-order mo-ble and can no longer be ignored.
ments in the perturbations are ignored and yet play anFigure 1 shows the distribution of allele frequencies
important role whenever allele frequencies are nearover time in a population of size 2N � 10,000 when
zero.alleles Pj and Pk are initially at frequency p0 � 0.01 (sj �

Figure 2 shows how drift affects (a) the variance insk � rjk � 0.1). The thick curve shows the mean trajectory
disequilibrium scaled relative to the allele frequencies,(which is nearly equal to the deterministic trajectory),
E[�D 2

j k]/(pjqjpkqk), (b) the correlation between �pj andwhile the thin curves indicate the range within which
allele frequencies lie 95% of the time as calculated from disequilibrium, E[�pj �Dj k]/√E[�p 2

j ]E[�D 2
j k], and (c) the

average disequilibrium. The average magnitude of the(4). These predictions were compared to simulation
results based on a Monte Carlo simulation that sampled linkage disequilibrium is greater when the initial fre-

quency of the beneficial alleles is lower, because random2N chromosomes each generation using a multinomial
distribution, with parameters equal to the frequency of associations generated in the early stages persist and

are amplified as the beneficial alleles rise in frequencyeach chromosome given by the deterministic recursions.
Simulations (dots) indicate that (4) accurately captures (compare dotted, dashed, and solid curves, which corre-

spond to initial frequencies 0.001, 0.01, and 0.1). In thisthe effects of drift on allele frequencies. Note that drift
causes substantial variation in the trajectory of allele example, where sj � sk � rj k � 0.1, the QLE approxima-

tion (B3) fails to capture the influence of the initialfrequencies even in a population of size 10,000. This
variation arises primarily during the early stages when allele frequency, which is pronounced when selection

is strong relative to recombination [e.g., the QLE predic-only a small number of beneficial alleles are present
(2Np0 � 100) and represents random accelerations or tion (B3a) for the scaled variance is constant at 0.00053].

On the other hand, the weak selection approximationdecelerations in the spread of favorable alleles. On aver-
age, beneficial alleles spread slightly less rapidly than (B5) overestimates the impact of initial fluctuations (com-

pare thin to thick curves), although calculations withexpected in an infinite population, indicating that the
Hill-Robertson effect is present, if small, in populations weaker selection (0.01) show that the approximation

then agrees closely.of size 10,000. The effects of drift become even more
important when there are initially fewer alleles within Figure 3 shows that the expected disequilibrium scales
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Figure 3.—Observed and expected disequilibrium under
directional selection. The disequilibria expected from (5)
(curves) and observed in simulations with 1,000,000 replicates
(dots, with bars indicating 	2 standard errors) are shown for
(a) 2N � 10,000 and (b) 2N � 100,000. Equation 5 accurately
estimates the amount of disequilibrium generated except
when there are only 10 initial copies of each allele (pj 0 � pk 0 �
0.001 and 2N � 10,000). Otherwise, the disequilibrium scales
directly with 1/(2N). With only 10 copies initially, both bene-
ficial alleles did not always fix, and we report only the disequi-
librium observed in those cases in which both beneficial alleles
remain. Remaining parameters and symbols are as in Figure 2.

Figure 2.—Effects of drift and selection on disequilibrium
in a finite population under directional selection. (a) Variance likely to be lost when negative disequilibrium developsin disequilibrium scaled to pj qj pkqk ; (b) correlation between

(thereby destroying the disequilibrium) and more likelyeffects of drift on allele frequency and on disequilibrium
to persist when positive disequilibrium develops. There-(Corr[�pj �Dj k]); (c) average disequilibrium over time. In each

case, the initial allele frequencies are pj 0 � pk 0 � 0.001 (dotted fore, the average disequilibrium among beneficial al-
curves), 0.01 (dashed curves), or 0.1 (solid curves), where leles that have survived loss while rare might very well
the latter curves are shifted to the right by 23.1 and 47.1 become positive, at least during the initial spread of thegenerations, respectively, so that allele frequencies are equiva-

beneficial alleles. There is some evidence for this effectlent for all curves at any point in time. The thick curves give
within the simulations: in the fifth generation, signifi-the exact calculations from (5), while the thin curves show

the weak selection approximation (B5). Results are shown for cantly positive disequilibrium was found when 2N �
sj � sk � 0.1, rj k � 0.1, and 2N � 10,000. 10,000 and initial frequencies were 0.001 but in no other

case. These positive associations will counteract the ac-
cumulation of negative disequilibrium to some extent,
explaining, in part, the smaller amount of disequilib-with 1/(2N) and matches the disequilibrium observed
rium observed for this case (Figure 3, p0 � 0.001).in simulations. The only exception is when the initial

Figure 4 shows the most extreme value of the ex-number of copies is very small (in this example, for
pected linkage disequilibrium observed during the2Np0 � 10). With few initial copies of the beneficial
spread of alleles Pj and Pk as a function of rj k. Resultsalleles, three issues arise that are not accounted for by
from Monte Carlo simulations are well approximatedour analysis. First, the fluctuations around the determin-
by iterating Equations 4 and 5 (compare dots to thickistic trajectory become so large that the Taylor approxi-
dashed curve for p0 � 0.01 and thick solid curve formation to Equation 1 is no longer adequate. Second,
p0 � 0.1). The QLE approximation (B3c; thin curve) iswith few initial copies, beneficial alleles do not necessar-
accurate only for loose linkage (rj k � s j , sk � 0.1) andily fix within the population. Third, those beneficial
fails to capture the dependence of disequilibrium onalleles that do fix are more likely to be positively associ-
initial allele frequencies. With tight linkage, randomated with other beneficial alleles. Therefore, during the

first few generations, rare beneficial alleles are more fluctuations produced when small numbers of the favor-
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recombination between the selected loci (denoted
�rj,k |i). The modifier may also alter its own rates of recom-
bination with other loci (�ri,j |i , etc.) and may show domi-
nance (�rj,k |i,i). However, these effects are negligible for
weak modifiers (Barton 1995a).

The equations for the effects of drift on the modifier
frequency and its associations Di j , Di k , Di j k are given by
(A2c–e). Disequilibria are measured as central moments
of effects (Barton 1995a). For two loci, this definition
coincides with the standard two-locus measure of gametic
disequilibrium. For three loci, Di j k is equal to �g[X](Xi �
pi)(Xj � pj)(Xk � pk), where the sum is taken over all
chromosomes, each at frequency g[X], where X is a
vector indicating whether or not an allele is present at
each locus (i.e., Xi is 0 if allele Pi is absent and 1 if it is

Figure 4.—The most extreme value of the average disequi- present). A modifier allele that increases recombination
librium under directional selection, plotted on a log-log scale. between loci j and k becomes associated with the fittest
During the spread of beneficial alleles, the expected disequi-

genotype, PjPk , if that genotype is underrepresentedlibrium from (5) (thick curves) becomes negative, taking on
within the population (i.e., if Dj k is negative). This associ-the minimum values shown. More extreme disequilibria are

observed when the initial allele frequencies are low [compare ation is represented by the first term in (A2e), which
pj 0 � pk 0 � 0.01 (dashed curves) to pj 0 � pk 0 � 0.1 (solid generates Di j k in proportion to ��rj,k |iDj k . This three-way
curves)] and when recombination is rare, in which case the association then generates positive two-way associations,
expected disequilibrium approaches the minimum value that

Di j and Di k , between a modifier allele that increasesDj k may take (�0.25, corresponding to the bottom axis of the
recombination and the beneficial alleles at loci j and kgraph). The thin curve gives the most extreme value of the

disequilibrium from the QLE approximation (B3c), which is (A2d). All three associations, Di j , Di k , Di j k , cause changes
accurate only when rj k � 0.1. Dots show the most extreme value in the frequency of the modifier allele (A2c). Note that
of the mean disequilibrium observed in 1,000,000 replicate because the modifier is assumed to have a small effect,simulations for rj k � 0.001, 0.01, and 0.1. X’s represent a

these equations are linear in Di j , Di k , Di j k , and all willnumerical evaluation of the weak selection approximation,
change in proportion to �rj,k |i .(B5c). Remaining parameters and symbols are as in Figure 2.

Equations 2 and 3 can be used to find the mean and
variance of the three-locus system, as before. The first

able alleles are present persist to produce large fluctua- step is to find the first and second differentials of
tions when the alleles become common. Consequently, (A2c–e), such as ��p*i /��Dj k . These differentials are cal-
the most extreme disequilibrium observed is very sensi- culated as in supplementary information (S1) and are
tive to starting allele frequencies when linkage is tight. available upon request. The second step is to calculate
When p0 � 0.01 and rj k � 0.01, drift and selection are the expected values and the covariances for the pertur-
substantial enough to drive the expected linkage dis- bations involving the modifier by incorporating these
equilibrium to near its minimum value (�0.25), even differentials into Equations 2 and 3. Following this
though disequilibrium is initially absent and even method and dropping terms of O(N�2), the recursion
though selection acts independently on all loci (sj � describing the cumulative effects of drift and selection
sk � 0.1). at loci j and k on the frequency of a modifier allele at

Including a modifier of recombination: The negative locus i is
disequilibrium generated by drift in the presence of
directional selection reduces the genotypic variability

E[�p*
i ] � E[�pi ] �

sj

φj

E[�Di j ] �
s k

φk

E[�Di k ] �
sj sk

φj φk

E[�Di j k]within a population and slows the response of that popu-
lation to selection. A modifier allele that increases re-

� (φ2
k s 2

j E[�pj �Di j ] � φks 2
j s kE[�pj �Di j k]combination among the selected genes will regenerate

the genetic variation in fitness hidden in linkage disequi- � φ2
j s 2

kE[�pk �Di k ] � φjsjs 2
kE[�pk �Di j k]

librium. In particular, individuals carrying such a mod-
� φks 2

j skE[�Dj k �Di j ] � φjsjs 2
kE[�Dj k �Di k]ifier allele are more likely to produce offspring of the

fittest genotype. This effect can select for increased re- � s 2
j s 2

kE[�Dj k �Di j k ])/(φ2
j φ2

k ), (6)
combination at modifier loci, an effect examined in

where φj � 1 � sj(pj � qj)/2 and φk � 1 � sk(pk � qk)/2.this section. Suppose that a modifier of recombination
The expected change in the modifier is driven both bysegregates at locus i. We assume that the modifier has
expectation terms E[�Di j] and by covariances such asno direct effect on fitness and alters recombination rates
E[�pj �Di j], each of which is proportional to �rj,k |i/(2N).by a small amount �r. If terms of O(�r 2) are neglected,

then the only significant terms involve the change in The recursions for these expectation terms are compli-
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cated but can be calculated symbolically in a straightfor-
ward way from (2) and (3). These recursions may be
iterated numerically or may be approximated by assum-
ing that selection is weak as described in supplementary
information (S2; http://www.genetics.org/supplemen
tal/).

Assuming weak selection and loose linkage, the sys-
tem approaches quasi-linkage equilibrium, and the per
generation change in the frequency of a modifier at
QLE can be found (supplementary information, S2).
This gives a complicated function of the recombination
rates (S2.4), which is proportional to �rj,k|i piqiVjVk/2N,
where Vj � 2s 2

j pjqj and Vk � 2s 2
k pkqk are the additive ge-

netic variances in diploid fitness at the two selected loci. Figure 5.—The influence of the relative position of the
Modifier alleles that increase recombination (�rj,k |i � 0) modifier, � � ri k/rj k , on g(�). According to the QLE approxi-

mation (7), the change in frequency of a modifier is propor-thus increase in frequency even in the absence of epista-
tional to g(�) (solid curve) when recombination rates aresis in finite populations.
small but larger than the selection coefficients. The dashedExpression (S2.4) takes a simple form if there is no curve compares this approximation to the full QLE result [the

genetic interference and if recombination rates are complicated function f(r) in (S2.4) with no interference],
small in absolute terms but large relative to the selection which applies even when recombination rates are high.
coefficients, as required for QLE (i.e., sj , sk � rj k , ri j , ri k ,
ri j k � 1). Assuming, without loss of generality, that locus
k is the right-most locus, we can describe the relative tion coefficients, however, the QLE assumptions break

down, making it impossible to determine the averageposition of the modifier by defining � � ri k/rj k ; � varies
force on the modifier when selected loci are scatteredbetween zero and one when the gene order is jik and
randomly across a genome. Note that as selection andis greater than one when the gene order is ijk. Then,
recombination decrease together toward zero in (7a),keeping only the leading-order term in (S2.4), the per
selection on the modifier approaches a positive limit,generation change in the modifier becomes
inversely proportional to population size (i.e., if s, r, and
�r are all small and of the same order, 
E[�pi] � 1/N).E[�p*i ] � E[�pi] �

�rj,k |i piqiVjVk

8Nr 5
j k

g(�), (7a)
This limit appears puzzling, because the average fre-
quency of the modifier should not change in the ab-where
sence of selection. There is no contradiction here, be-
cause we have assumed throughout that s � 1/N wheng(�) �

8 � 9� � 5�2 � 8�3 � 4�4

2(1 � �)2�2(1 � �)(2 � �)
for 0 � � � 1 (gene order jik)

dropping terms of O(N�2). Thus, our approximations
(7b) leading to (7) require that N increases toward infinity

g(�) �
7 � 5� � 16�2 � 10�3 � 8�4 � 4�5

(�2 � 1)2�3
for 1 � � (gene order ijk). as s decreases toward zero, causing 
E[�pi] to decrease

implicitly as selection weakens.(7c)
In Figures 6–9, we describe changes in the frequency

Figure 5 illustrates g(�) and shows how evolution of of the modifier using the standardized function, �i �
a modifier of recombination depends on the relative 
pi/(�rj,k |i piqi), which we call the selection gradient acting
positions of the loci, �. The function g(�) rises rapidly on the modifier allele. When multiplied by the genetic
near � � 0 and � � 1, where it is approximately g(�) � variance in recombination within the population, Vi �
2/�2 and 2/(1 � �)2, respectively, although the QLE 2�r 2

j,k |i piqi , the selection gradient describes the expected
approximation breaks down if recombination rates be- increase in recombination (� 2
pi�rj,k|i). The selection
come too small relative to selection. For gene order jik, gradient can also be related to the effective selection
g(�) reaches a minimum value of 371⁄3, when the mod- coefficient, se, defined as the function that causes 
pi

ifier is halfway between the selected loci. For gene order to equal sepiqi . For a modifier of effect �rj,k |i , the effective
ijk, g(�) lies between 2/(1 � �)2 and 4/(1 � �)2 and selection coefficient is se � �i �rj,k |i . It is important to
decreases rapidly for relatively distant modifier loci. recall that the modifier does not directly experience

Equation 7a demonstrates that the effect that drift selection. Rather, the selection gradient measures the
and selection have on a modifier of recombination falls indirect selection arising from genetic associations be-
precipitously as recombination becomes more frequent tween the modifier locus and the directly selected loci
within the genome (�r�5

j k ). If selected loci are scattered j and k. To describe the total effect of selection at linked
randomly over a genome, then the effect of a modifier loci on recombination, we use the cumulative selection
on tightly linked loci will dominate its dynamics. As gradient, ��i , which represents the sum of �i from the

initial generation up until a given generation, or therecombination rates become comparable with the selec-



2362 N. H. Barton and S. P. Otto

Figure 7.—The net selection gradient, �i,net , on a modifier
of recombination as a function of the recombination rates
under directional selection, plotted on a log-log scale. Equa-
tions 2 and 3 are used to generate the thick curves for rij �
0.01, 0.1, and 0.5 (from top to bottom). The thin curves give
the net change in modifier frequency using the QLE approxi-
mation (S2.4) for the same range of ri j . Dots show simulation
results based on 1,000,000 replicates for rj k � 0.001, 0.01, and
0.1 and ri j � 0.01 and 0.1 (from top to bottom; standard
errors were too large for ri j � 0.5 to assess the effect). In
the simulations, the modifier changes recombination by an
amount �rj,k |i � rj k /2 and starts at frequency pi 0 � 0.5. TheFigure 6.—The cumulative selection gradient, ��i , on a
gene order is ij k, and there is no interference. Remainingmodifier of recombination as a function of time under direc-
parameters are sj � sk � 0.1, pj 0 � pk 0 � 0.01, and 2N � 10,000,tional selection for (a) 2N � 10,000 and (b) 2N � 100,000.
with gene order ijk and no crossover interference.The selection gradient per generation, �i , is given by the rise

in these curves over a single generation. Equations 2 and 3
are used to generate the curves for pj 0 � pk 0 � 0.001 (dotted
curves), 0.01 (dashed curves), and 0.1 (thick solid curves), on 106 replicates. Consequently, the standard deviations
where the latter two are shifted to the right as in Figure 2. are enormous (multiply the length of the bars by 1000).Simulations (dots) are based on 10,000,000 replicates for a

Thus, while our analysis accurately predicts the meanmodifier that changes recombination by �rj,k |i � 0.05 and that
change in frequency of a modifier, the effect of onestarts at frequency pi 0 � 0.5. With pj 0 � pk 0 � 0.001 and 2N �

10,000, both alleles did not always fix, and we report changes bout of selection on a modifier is highly variable with
in the modifier frequency conditional on fixation. The QLE only two selected loci and one modifier locus. Only
prediction (S2.4) is shown as a thin solid curve and fails to when many loci affect fitness and recombination doesaccount for the sensitivity to initial allele frequencies when

the frequency of a modifier of recombination increaserecombination is not large relative to selection. Remaining
consistently (Otto and Barton 2001; Iles et al. 2003).parameters are sj � sk � 0.1 and ri j � rj k � 0.1, with gene

order ijk and no crossover interference. The net selection gradient, �i,net , acting on a modifier
over the entire time course of substitution at two linked
loci is shown in Figure 7. The net increase of the mod-

net selection gradient, �i,net , which represents the sum of ifier can be large with tight linkage: for example, with
�i over the course of selection at loci j and k until fixation ri j � rj k � 0.01, 
pi � 38 piqi �rj,k |i . For very tight linkage,
of the beneficial alleles. the change in the modifier is underestimated by itera-

As a consequence of the fact that disequilibrium is tion of (2) and (3) because the disequilibria caused by
more likely to develop by drift when allele frequencies drift become substantial and higher-order effects begin
are initially low at selected loci (Figure 3), the selection to contribute [e.g., for rj k � 0.001 and ri j � 0.01, 
pi �
gradient acting on a modifier is larger under these con- 334 piqi �rj,k |i from simulations but only 75 piqi �rj,k |i from
ditions, as shown in Figure 6. Simulation results for the (2) and (3)]. The QLE approximation (S2.4) is fairly
change in frequency of the modifier are in general agree- accurate for loose linkage (ri j , rj k � s j , s k � 0.1) but
ment with iteration of (2) and (3), even though the as- substantially overestimates the change in modifier fre-
sumptions of weak selection and a weak modifier are quency for tight linkage, as shown by the thin lines in
violated in the simulations (where sj � sk � 0.1 and �rj,k |i � Figure 7.
rj k/2). The largest discrepancies are observed when the Fluctuating polymorphisms: The analysis described in
initial number of alleles is low (e.g., when 2N � 10,000 this article can be used whether selection coefficients
and p0 � 0.001), such that the perturbations due to drift are constant or vary over time, as long as the population
become larger than allowed by our analysis. It is worth size is reasonably large and the numbers of each allele
emphasizing that the simulation results presented in are never very small. With directional selection, indirect

selection on a modifier ceases with the fixation of bene-Figure 6 represent the mean 	 standard errors based
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is �3⁄2(�2
j pjqj)(�2

kpkqk) if the allele frequencies do not
change substantially over a cycle. This result indicates
that, when linkage is loose, indirect selection on a mod-
ifier will be stronger when the allele frequencies remain
near 1⁄2, such that the genetic variance in fitness remains
high.

For weak selection and very tight linkage (r � � 1),
we can obtain an approximate solution to the recursion
equations (S2.2) and (S2.3). Assuming that several cy-
cles of fluctuating selection have passed such that the
dynamical system has reached a steady state, the solution
to these recursions may be approximated as described
in supplementary information (S3; http://www.genetics.
org/supplemental/). The change in the modifier per
generation averaged over one cycle is, to leading order
in the recombination rates,

E [�p*i ] � E [�pi]

�
�rj,k | i pi qi

2N

Var[p �j ]Var[p �k](1/ri j � 1/ri k) � Cov[p �j , p �k ]2(2/rj k � 6/rij k)

H j k(2rj k(ri j k � rj k))
,

Figure 8.—The cumulative selection gradient, ��i , on a (8)
modifier of recombination under fluctuating selection. The
strength of selection on loci j and k varies sinusoidally over where Hj k is the harmonic mean value of pjqjpkqk ,
time, with the maximum strength of selection set to �j � �k � Var[p �j ] and Var[p �k] measure the variance in the rate of
0.1 and with both loci in phase. The gene order is ijk, there allele frequency change over the cycle, and Cov[p�j , p�k ]is no interference, and �rj,k |i � rj k /2. Equations 2 and 3 are

measures the covariance in these rates at the two loci:used to generate the expected change in the modifier (solid
curves) starting with pi 0 � pj 0 � pk 0 � 0.5 in a population of
size 2N � 100,000. Dots show simulation results based on Var[p �j ] �

���1
j�0 (sjpjqj)2

�
�

���1
j�0 (p �j )2

�
, (9a)

20,000,000 replicates (	2 standard errors). (a) Period (�) is
120 generations, rj k � 0.1, and ri j � 0.1. (b) Period (�) is 60
generations, rj k � 0.02, and ri j � 0.01.

Cov[p�j , p�k ] �
���1

j�0 sjpjqj · skpkqk

�
�

���1
j�0 p�j p�k

�
. (9b)

Figure 9 compares Equation 8 to the iterated solutionficial alleles. With fluctuating selection, on the other
of (2) and (3) as well as to the QLE solution. Equationhand, polymorphism at the selected loci can be main-
8 is accurate only when selection is approximately thetained over longer periods of time, prolonging selection
same strength as the product of the recombination ratesfor increased recombination. Even in the absence of
and the period (� � r � as in Figure 9b), which reflectsepistatic interactions among loci and even when a popu-
the order assumptions made in supplementary informa-lation is initially in linkage equilibrium, drift in a finite
tion (S3). In other cases, the iterated solution of (2)population subject to fluctuating selection will lead to
and (3) should be used.the accumulation of disequilibrium that reduces genetic

As with the QLE solution (S2.4), Equation 8 indicatesvariability in fitness. We have used Equations 2 and 3
that the change in allele frequency at a locus that mod-to track the change in modifier frequency in a popula-
ifies recombination is proportional to the effect of thetion subject to sinusoidal fluctuations in selection at two
modifier on recombination (�rj,k |i piqi), the inverse of theloci with s j[t] � �jCos(2� · t/�) and sk[t] � � kCos(2� ·
population size (2N), and the square of the selectiont/� � �), where � is the period (assumed to be the
coefficients at each selected locus (through Var[p�j ]same for both loci) and � measures the shift in phase
Var[p�k]). Unlike the QLE solution for loose linkage,of selection at the two loci (Figure 8). Note that when
Equation 8 is not maximized when the allele frequenciesthe direction of selection changes, the selection gradi-
remain near 1⁄2, because the harmonic mean of the alleleent on the modifier weakens (Figure 8a) or becomes
frequencies in the denominator is much smaller whennegative (Figure 8b). Nevertheless, recombination rates
the allele frequencies approach zero or one. Conse-rise over successive cycles.
quently, with tighter linkage, selection on a modifier isThe QLE result (S2.4) continues to apply when selec-
maximized when there are high-amplitude fluctuationstion fluctuates over time, as long as recombination is
in allele frequencies, such that beneficial alleles reachfrequent relative to the strength of selection and to the
low frequencies (where drift is stronger) as well as inter-changes over time in selection (sj[t], sk[t], 1/� � ri j , rj k ,
mediate frequencies (where selection on a modifier isri k , ri j k). Under sinusoidal selection, the product of the

additive genetic variances in fitness at the two loci (VjVk) more effective). Selection on the modifier is also strong-
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strongest whenever the harmonic mean allele frequency
at the two loci, Hj k , is small yet the selected alleles spend
time at intermediate frequency (with high Var[p�j ],
Var[p�k ], and Cov[p�j , p�k ]). We also see a qualitatively
different relationship between the recombination rates
and the change in the modifier frequency in these two
regimes. Equation 8 shows that a modifier of recombina-
tion changes in frequency by an amount proportional
to r�3 for tight linkage, while the QLE analysis (see
Equations 7) predicts a change that is proportional to
r�5. Thus, while both analyses predict that selection
for recombination is strongest under tight linkage, the
selection gradient is overestimated by the QLE analysis
(Figure 9).

DISCUSSION

By breaking down linkage disequilibria that limit the
response of a population to selection, sex and recombi-
nation can hasten the rate of adaptive evolution of a
population. Consequently, genotypes that are best adapted
to a novel environment are more likely to be recombi-

Figure 9.—The selection gradient on a modifier of recom- nant and more likely to carry modifiers that increase
bination multiplied by the population size, 2N�i , at steady the recombination rate. As these adaptive genotypes
state under sinusoidal selection, plotted on a log-log scale.

sweep through a population, modifier alleles that in-The x-axis is the recombination rate between adjacent loci,
crease recombination also rise in frequency. Disequilib-assumed to lie in the order ijk, with r � ri j � rj k . The thick

curve illustrates the predicted change in the modifier from ria do not, however, always limit the response of a popu-
iteration of (2) and (3). The thin solid curve illustrates (8), lation to selection. In fact, the genetic variance for a
which is a low-recombination approximation to the recursion trait and consequently the response to selection are
equations. The long dashed curve illustrates the QLE solution

increased by positive disequilibria among alleles contrib-(S2.4). The dot marks the simulation result reported in Figure
uting to that trait. If positive disequilibria predominate,8a. Parameter values were set to �j � �k � 0.1, pj 0 � pk 0 �

0.5, with (a) period � � 120 across a range of recombination recombination is selected against, because the genetic
rates and (b) a range of periods, �, with r � � � � 0.1. The variance and the rate of adaptation are lower among
per generation change in the modifier (thick curves) is much recombinant individuals. In short, a necessary condition
higher when the period of fluctuating selection is longer; in

for the evolution of increased recombination in a singlethis case, alleles pass through both low and high frequency
unstructured population is that negative disequilibriawithin each period, increasing the fluctuations in disequilib-

rium that drive selection for the modifier. predominate among favored alleles.
Within an unstructured population, negative disequi-

librium is expected to arise under two different scenar-
est when changes in allele frequency at the two loci ios. First, negative disequilibrium develops when there
occur at similar times, maximizing Cov[p�j , p�k]2. is negative epistasis among selected loci, implying that

Our analysis indicates that there are two qualitatively a genotype carrying multiple beneficial alleles has a
different regimes with respect to selection on a modifier lower fitness than the product of the fitnesses of the
of recombination, depending on whether recombina- genotypes carrying only one of the beneficial alleles.
tion rates are high relative to selection [the QLE regime, Second, negative disequilibrium arises by the combined
(S2.4)] or not [the tight linkage regime, (8)]. In the action of random genetic drift and selection, even in
former case, the disequilibrium generated by drift dissi- the absence of epistasis. Sampling error during repro-
pates rapidly, so that disequilibrium can be approxi- duction of a finite population causes some genotypes
mated as the consequence of recent selection (within to become more or less common than expected, gen-
a time frame proportional to 1/r), which is well cap- erating variance in disequilibria. Selection eliminates
tured by the current additive genetic variance in fitness. positive disequilibria more efficiently than it eliminates
When recombination rates are weak relative to selec- negative disequilibria, because negative disequilibrium
tion, however, disequilibrium generated while alleles reduces the genetic variance upon which selection acts.
are at low frequency persists as the alleles rise to higher Consequently, the average disequilibrium over loci or
frequency, and the current additive genetic variance in over replicate populations becomes negative over time.
fitness no longer determines the change in frequency In this article, we have demonstrated that the random

genetic drift caused by sampling in finite populationsof the modifier. Instead, the force on the modifier is
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selects for increased recombination even in populations substantial when the rate of selective sweeps is comparable
to the recombination rate (Barton 2000, Equation 4).that are initially in linkage equilibrium and that are

subject to selection acting independently upon all loci. The QLE approximation for the change in the mod-
ifier (7, or more accurately S2.4) shows that when selec-Our method keeps track of the perturbations in genetic

associations caused by genetic drift and acted upon by tion is weaker than recombination, the advantage of
recombination is proportional to the product of theselection, using recursion equations for the first and

second moments of these perturbations. The main as- additive variance in fitness at the directly selected loci
and decreases steeply with recombination. This impliessumptions of the method are that (a) recombination is

altered by only a small amount by a modifier gene, (b) that when we average over selective sweeps that are
scattered across the genome, the main contribution willthe population is large, and (c) each allele is initially

present in several copies. Although we have simplified come from selection on loci that are most closely linked
to the modifier. We cannot use the QLE results to calcu-the analysis by ignoring epistasis, the method can be

extended to include epistasis by explicitly tracking the late this average, however, because the QLE approxima-
tion breaks down for tight linkage. However, it is possi-deterministic trajectory for the disequilibrium Dj k . Using

recursions for the moments describing the distribution ble to calculate this average assuming weak selection
using integral solutions similar to (A2.4) and (A2.5);of a population around its expected trajectory, the ef-

fects of drift and selection can be easily and efficiently this leads to an expression proportional to the square of
the total variance in fitness (N. H. Barton, unpublishedstudied. Simulations of selection in finite populations

require large amounts of computer time, particularly results).
By comparing Figure 6a and 6b, it can be seen thatsince millions of replicates are needed to obtain accu-

rate measurements of the frequency of a modifier. The a modifier allele that increases recombination rates is
most strongly selected in smaller populations. Althoughsimulations that we performed (see figures) indicate

that Equations 2 and 3 provide accurate estimates of our approach breaks down when the population size
becomes so small that some alleles are present in onlythe average change that occurs at a modifier locus, as

long as alleles are always present in multiple copies. It a few copies (specifically, approximating Equation 1 to
order 1/N becomes inadequate), we have shown throughshould be kept in mind that we used strong selection

(s � 0.1) and a strong modifier (�rj,k |i � rj k/2) in the simulation that randomly generated disequilibria gener-
ate strong selection for increased recombination insimulations to magnify the amount of indirect selection

acting on the modifier locus. The approximations should populations of small to intermediate size (Otto and
Barton 2001). In fact, we found that modifiers of recomb-be more accurate with weaker selection and weaker

modifiers, although it then becomes exceedingly diffi- ination were more influenced by disequilibria generated
by drift than by disequilibria generated by epistasis un-cult to detect an effect on the modifier with only two

selected loci and one modifier locus. Nevertheless, the less the population size was fairly large. Directional selec-
tion experiments, such as the one performed by Korolmethod provides a promising route to predicting the

evolution of recombination when multiple loci of weak and Iliadi (1994) in D. melanogaster (see Otto and
Barton 2001 for further review), have demonstratedeffect underlie the selected trait, using the approxima-

tion that each pair of selected loci independently asserts that recombination rates can increase substantially in
small populations subject to strong selection. Our workan influence on the modifier(s) (see Barton 1995a).

We have calculated the expected change in frequency has shown that the evolution of recombination in such
cases can be explained by stochastically generated dis-of the modifier caused by random linkage disequilibria

with selected loci, presented in the figures using the equilibria that, over time, accumulate to oppose the
action of selection. Furthermore, the stochastic advan-selection gradient, �i � 
pi/(�rj,k |i piqi). For a modifier

of given effect, the effective selection acting on a mod- tage of recombination can even favor the evolution of
sex in the face of a twofold cost of sex as long as modifi-ifier of recombination is se � �i �rj,k |i . Although absolute

values of se are small, they can still be much stronger ers increase the amount of sex by small amounts (Otto
and Lenormand 2002).than the effect of random drift, since 2Nse can be large.

For example, for s � 0.1, ri j � rj k � 0.1, 2N � 10,000, For large populations, our results indicate that selec-
tion on recombination should be inversely proportionalp0 � 0.01, the effective selection is at most se � 0.008

�rj,k |i (on the basis of the simulations reported in Figure to the population size. Thus, while drift in the presence
of selection can account for increased recombination6a), but 2Nse is 80 �rj,k |i . Even stronger selection for

recombination is expected when beneficial alleles start rates in populations of small size, it would appear to
provide a weak basis for explaining the maintenance ofat lower frequency and/or when recombination rates

are lower than the selection coefficients (see Figures 7 sex and recombination in natural populations whose
effective sizes are tens of thousands or more. There areand 9 and Equation 8). This argument is complicated

by the extra stochasticity introduced by the hitchhiking three reasons, however, to believe that drift might drive
the evolution of sex and recombination even in largeprocess itself, which reduces the effective population

size witnessed by the modifier locus; this effect can be populations. First, if population sizes tend to be small
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APPENDIX A: EXACT EQUATIONS FOR TWO AND THREE LOCI

We use the methods of Barton and Turelli (1991) to derive exact recursions for two selected loci (labeled j,
k), and a modifier of small effect at locus i. We census immediately after juveniles have been randomly sampled
from the propagules produced by the previous generation. After the census, haploid populations undergo selection,
random mating, and meiosis to produce the next generation of haploid propagules, where we assume that the
number of potential propagules is so large that these processes can be treated deterministically. The model also
applies to a diploid population, as long as fitness is the product of the fitness contribution of each haplotype. For
diploids, the life cycle involves a census of diploid juveniles, selection, meiosis, syngamy of gametes to produce
diploid propagules, and random sampling of N juveniles. Equations A1.2 of Barton (1995a) differ slightly, because
diploid fitness was assumed instead to be the sum of the fitness contribution of each haplotype. We assume that
the modifier allele Pi increases recombination between loci j and k by a small amount �rj,k |i . For ease of analysis, we
follow Barton (1995a) and set the recombination rate between loci j and k to rj k � 2qi �rj,k |i in PiPi individuals, rj k �
(qi � pi)�rj,k |i in PiQi individuals, and rj k � 2 pi �rj,k |i in QiQi individuals. (Note that the effect of the modifier, measured
by the difference between genotypes, is not frequency dependent.) Let ri j and ri k be the recombination rates between
the modif ier locus and the selected loci, j and k, respectively, and let ri j k be the probability of recombination between
any of the loci i, j, k ; these terms are used only to determine the offspring of heterozygous PiQi individuals and so
their values in other modifier genotypes are immaterial. Disequilibrium terms involving the modifier locus (Di j , Di k ,
Di j k) will be dominated by the indirect effects of changing recombination between the selected loci and will be
proportional to �rj,k |i . In the following, we assume that the modifier is weak and keep only linear-order terms in
�rj,k |i .

Let φj � 1 � sj(pj � qj)/2 and φk � 1 � sk(pk � qk)/2 measure the mean fitness of each locus considered separately.
Accounting also for the disequilibrium within a population, the mean fitness is equal to

W � φj φ k � sj s kDj k . (A1)

The three-locus recursions are

p*j � pj �
sjpjqj φ k � sk(2 � φj)Dj k

W
� � j (A2a)

D*j k �
(1 � rj k)(1 � s 2

j /4)(1 � s 2
k /4)Dj k

W 2
� � j k (A2b)

p*i � pi �
(sj φ kDi j � sk φjDi k � sj skDi j k)

W
� � i (A2c)

D*ij �
(1 � ri j)(1 � s 2

j /4)(φ2
kDi j � s 2

k Di kDj k � sk φkDi j k)

W 2
� � i j (A2d)

D*i j k � �piqi �rj,k |iDj k
(1 � s 2

j /4)(1 � s 2
k /4)

W 2

� (Di j k(φj φk � sj skDj k) � 2Dj k(sj φ kDi j � s k φjDi k))
(1 � s 2

j /4)(1 � s 2
k /4)(1 � ri j k)

W 3
� � i j k , (A2e)

where ri j k � (ri j � ri k � rj k)/2 for any gene order with and without interference. p*k and D*i k can be obtained from
(A2a) and (A2d), respectively, by interchanging subscripts j and k. These equations assume only that �rj,k |i is small
and are valid for strong selection (sj , sk) and strong linkage disequilibrium between the selected loci (Dj k). (A2) can
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be derived from the three-locus recursion equations presented in Feldman (1972). A supplementary Mathematica
package is available that derives (A2) as well as the other main results given in appendixes a and b.

We assume that 2N haploid (or N diploid) juveniles are sampled from the propagules produced by the parental
generation according to a multinomial distribution as in the standard Wright-Fisher model (Ewens 1979). The
moments of the multinomial distribution can therefore be used to determine the expected values of the perturbations
in (A2) and the covariances between them. Although there is no expected change in allele frequencies due to drift,
E[�i] � E[�j] � E[�k] � 0, the expected change in linkage disequilibrium is E[�j k] � �Dj k/(2N). Because disequilibrium
terms involving the modifier locus are proportional to �rj,k |i , the expected amount of drift in these terms will be of
the order �rj,k |i/N, which is assumed to be very small and is ignored. Thus, we need to quantify the effects of drift
only on the following variances and covariances, which are written to order (1/N):

var(�j) �
pjqj

2N
, cov(� j , � k) �

Dj k

2N
, cov(� j , � j k) �

�Dj k(pj � qj)

2N
,

var(� k) �
pkqk

2N
, cov(� k , � j k) �

�Dj k(pk � qk)

2N
,

var(�j k) �
(pjqjpkqk � (pj � qj)(pk � qk)Dj k � D 2

j k)

2N
.

Because E[�a] is either 0 or order 1/N, the E[�a �b] required in Equation 3 are, to order 1/N, equal to the cov(�a ,
�b) given here. Note that the allele frequencies and disequilibrium in these terms are evaluated after the parental
generation produces propagules. When selection is weak, however, the allele frequencies and disequilibrium from
the previous census can be used to obtain leading-order approximations.

These derivations apply for any amount of disequilibrium, allowing the method to be extended to models where
there is a deterministic source of disequilibrium (e.g., epistasis or an initially high level of disequilibrium). In the
text and appendix b, we assume that the disequilibria remain O(1/N) throughout the process. In this case, E[�j k]
and the covariance terms become negligible. In the numerical iterations of (2) and (3), however, no assumptions
are made about the order of the disequilibrium, so that the Mathematica package (available upon request) can be
used regardless of the initial level of disequilibrium.

APPENDIX B: WEAK SELECTION APPROXIMATIONS FOR TWO SELECTED LOCI

When selection is weak (sj and sk of order s, where s � 1), the recursions for the perturbations given by (1) can
be further approximated by

�p*j � �pj(1 � sj(pj � qj)) � sk �Dj k � sj �p 2
j � �j � O(s 2) (B1a)

�D*j k � �Dj k(1 � rj k)(1 � sj(pj � qj) � sk(pk � qk)) � 2(1 � rj k)(sj �pj �Dj k � sk �pk �Dj k � sj sk �D 2
j k) � � j k � O(s 2).

(B1b)

Throughout this appendix, values for allele Pk can be obtained from values given for allele Pj by interchanging
subscripts j and k. In (B1b), we have included the leading-order terms for each of the perturbations with respect
to s even when these are O(s 2). These lower-order terms are critical to the initial development of disequilibria when
�Dj k is zero.

Taking expectations as in (4) and (5), assuming that the perturbations including the disequilibria are O(N�1),
ignoring terms that are O(N�2), and using the results of appendix a for the contributions due to drift gives

E[�p*j ] � (1 � sj(pj � qj))E[�pj] � skE[�Dj k] � sjE[�p 2
j ] (B2a)

E[�p*2
j ] � (1 � 2sj(pj � qj))E[�p 2

j ] � 2skE[�pj �Dj k] �
pjqj

2N
(B2b)

E[�D*2
j k ] � (1 � rj k)2(1 � 2sj(pj � qj) � 2sk(pk � qk))E[�D 2

j k] �
pjqjpkqk

2N
(B2c)

E[�p*j �D*j k] � (1 � rj k)(1 � 2sj(pj � qj) � sk(pk � qk))E[�pj �Dj k] � sk(1 � rj k)E[�D 2
j k] (B2d)

E[�D*j k] � (1 � rj k)(1 � sj(pj � qj) � sk(pk � qk))E[�Dj k]

� 2(1 � rj k)(sjE[�pj �Dj k] � skE[�pk �Dj k] � sj skE[�D 2
j k]). (B2e)

Supplementary information (S2) describes similar weak selection recursions for the three-locus case.
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Equations B2 can be solved explicitly. First, consider loose linkage (rj k � sj , sk). In this case, the disequilibrium
rapidly approaches a QLE distribution, with E[�D 2

j k] and E[�Dj k] changing slowly relative to the action of recombina-
tion. One can therefore set E[�D*j k] to E[�Dj k], etc., in (B2) and solve for the QLE values. For the disequilibrium:

E[�D 2
j k] �

pjqjpkqk

2Nrj k(2 � rj k)
(B3a)

E[�pj �Dj k] �
sk(1 � rj k)

rj k

E[�D 2
j k] �

sk(1 � rj k)pjqjpkqk

2Nr 2
j k(2 � rj k)

(B3b)

E[�Dj k] � �
2(1 � rj k)

rj k

(sjE[�pj �Dj k] � skE[�pk �Dj k] � sj skE[�D 2
j k])

� �
2(1 � rj k)

rj k

sj skE[�D 2
j k]�2(1 � rj k)

rj k

� 1�
� �

2sj skpjqjpkqk(1 � rj k)

2Nr 3
j k

. (B3c)

(B3c) shows that negative disequilibrium is generated on average in a finite population subject to multiplicative
selection. The magnitude of this disequilibrium is quite small with loose linkage but increases rapidly as rj k becomes
small. It also increases with the strength of selection acting on loci j and k and with the amount of genetic variability
at these loci. Note that the covariance between allele frequencies and linkage disequilibrium (B3b) always contributes
more than the variance in linkage disequilibrium to the accumulation of negative linkage disequilibrium by a factor
2(1 � rj k)/rj k .

With tight linkage (1/N � s � rj k � 1), disequilibrium decays slowly over time, and we can no longer assume
quasi-linkage equilibrium. We can, however, move from the discrete recursion equations to continuous-time approxi-
mations, which can be more readily solved. We introduce the method in general and then apply the solution to
(B2).

In the ODE approach, the discrete recursion equations (B2) all have the form

x[t � 1] � (1 � C)(1 � F[t])x[t] � G[t], (B4a)

where C is a constant involving recombination rates, F[t] is a function of time involving terms such as �s(p � q),
and G[t] is a function of time involving the expectations, E[ ]. When selection and recombination are rare, the
change in x[t] over a short time period can be approximated by x[t � 
t] � x[t], where x[t � 
t] is obtained from
(B4a) under the assumption that the amount of selection and recombination in a shorter interval of time, 
t, scales
with 
t as s
t and r
t. Taking the limit of (x[t � 
t] � x[t])/
t as 
t goes to zero yields an ordinary differential
equation:

dx
dt

� (c � f[t])x[t] � g[t], (B4b)

where c, f, and g are used to denote C, F, and G to linear order in s and r, using a Taylor series that ignores any
cross products or higher-order terms. The solution to differential equations of the form (B4b) is

x[t] � e cte �t
t1�0

f [t1]dt1�x[0] � �
t

t 2�0

g[t2]
e ct2e �t2

t3�0
f [t3]dt3

dt2� . (B4c)

The integrals involving f[t] in (B4c) can be solved by noting that, when selection is weak and frequency indepen-
dent, selection can be defined according to the change in allele frequency that it causes: p� � dp/dt � spq. When
f[t] � �s(p � q), for example, applying this definition and integrating yields

�
t

t1�0

�s(p � q)dt1 � �
t

t1�0

q�

q
�

p�

p
dt1 � ln�ptqt

p0q0
� .

Letting v[t] be the product of the appropriate allele frequencies (depending on which terms are included in f[t]),
(B4c) becomes

x[t] � v[t]�e ct x[0]
v[0]

� �
t

t2�0

e c(t�t2)g[t2]

v[t2]
dt2� . (B4d)
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The solution (B4d) applies regardless of how selection varies over time. Barton (2000) used a similar method to
find the net hitchhiking effect of fluctuating selection on linked neutral loci and gave an approximation valid for
tight linkage (r � s ; his Equation 4).

Following this procedure and assuming that terms of order rj ksj are negligible relative to rj k and sj , we obtain the
following weak selection approximations:

E[�D 2
j k] � (pjqjpkqk)2 �e

�2rj ktE0[�D 2
jk]

(pj 0qj 0pk 0qk 0)2
� �

t

t1�0

e�2rj k(t�t1)dt1

2N·pjqjpkqk
� (B5a)

E[�pj �Dj k] � (pjqj)2pkqk�e
�rj ktE0[�pj �Dj k]

(pj 0qj 0)2pk 0qk 0
� �

t

t1�0

skE[�D2
j k]e�rj k(t�t1)dt1

(pjqj)2pkqk
� (B5b)

E[�Dj k] � pjqjpkqk�e
�rj ktE0[�Dj k]

pj 0qj 0pk 0qk 0
� 2�

t

t1�0

(sjE[�pj �Dj k] � skE[�pk �Dj k])e�rj k(t�t1)dt1

pjqjpkqk
� (B5c)

We have focused on the effects of drift on the disequilibrium; analogous equations can be obtained for the effects
on allele frequencies. Note that if allele frequencies increase from some low value faster than linkage disequilibrium
is dissipated by recombination (sj , sk � rj k), the initial distribution (E0[ ]) will make a substantial contribution. Even
when disequilibrium is initially absent, substantial disequilibrium can build up if the beneficial alleles start at low
frequency, because periods with low values of pjqjpkqk contribute disproportionately to the integrals in (B5).
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Supplementary Information 1:  Differentials around the deterministic trajectory

The effects of random genetic drift on the dynamics described in Appendix 1 depend on the

first and second partial derivatives of the recursions in (A1.2) with respect to small perturbations

in the allele frequencies and disequilibria.  For example, if the allele frequency departs from the

expected trajectory by a small amount in one generation (δpj), it will contribute to the

perturbation in the next generation (

€ 

δp j
* ) by an amount approximately equal to 

€ 

∂δp j
*

∂δp j

 δpj, as

described in (1).  The partial derivative can be obtained by replacing pj with pj + δpj and 

€ 

p j
*  with

€ 

p j
*  + 

€ 

δp j
*  in (A1.2a), and taking the derivative with respect to δpj.  Because these differentials

are multiplied in (2) and (3) by perturbations that are O(1/N), we will drop terms that are

functions of the perturbations (δpj, δDjk, etc.) within the differentials, thereby assuming that the

perturbations including the linkage disequilibrium remain small throughout the process.  In other

words, we evaluate the partial derivatives along the deterministic trajectory expected in an

infinite population.  This approximation is made to simplify the presentation and is not made in

the numerical analyses reported in the figures.

For the two-locus model, the first differentials of 

€ 

δp j
*  evaluated along the deterministic

trajectory are:



€ 

∂δp j
*

∂δp j

  =  

€ 

(1− s j
2 /4)

φ j
2

€ 

∂δp j
*

∂δpk
  =  0

€ 

∂δp j
*

∂δDjk

  =  

€ 

sk (1− s j
2 /4)

φ j
2φk

The second differentials of 

€ 

δp j
*  are:

€ 

∂ 2δp j
*

∂δp j
2   =  – 

€ 

2s j (1− s j
2 /4)

φ j
3

€ 

∂ 2δp j
*

∂δp j ∂δpk
  =  0

€ 

∂ 2δp j
*

∂δp j ∂δDjk

  =  – 

€ 

2s jsk (1− s j
2 /4)

φ j
3φk

€ 

∂ 2δp j
*

∂δpk
2   =  0

€ 

∂ 2δp j
*

∂δpk ∂δDjk

  =  – 

€ 

sk
2(1− s j

2 /4)
φ j
2φk

2

€ 

∂ 2δp j
*

∂δDjk
2   =  – 

€ 

2s jsk
2(1− s j

2 /4)
φ j
3φk

2

The first and second differentials of 

€ 

δpk
* may be obtained by interchanging j and k throughout the

above.  The first differentials of 

€ 

δDjk
*  are:

€ 

∂δDjk
*

∂δp j

  =  0

€ 

∂δDjk
*

∂δpk
  =  0

€ 

∂δDjk
*

∂δDjk

  =  

€ 

(1− rjk )(1− s j
2 /4)(1− sk

2 /4)
φ j
2φk

2

The second differentials of 

€ 

δDjk
*  are given by:

€ 

∂ 2δDjk
*

∂δp j
2   =  0

€ 

∂ 2δDjk
*

∂δp j ∂δpk
  =  0

€ 

∂ 2δDjk
*

∂δp j ∂δDjk

  =  – 

€ 

2s j (1− rjk )(1− s j
2 /4)(1− sk

2 /4)
φ j
3φk

2



€ 

∂ 2δDjk
*

∂δpk
2   =  0

€ 

∂ 2δDjk
*

∂δpk ∂δDjk

  =  – 

€ 

2sk (1− rjk )(1− s j
2 /4)(1− sk

2 /4)
φ j
2φk

3

€ 

∂ 2δDjk
*

∂δDjk
2   =  – 

€ 

4s jsk (1− rjk )(1− s j
2 /4)(1− sk

2 /4)
φ j
3φk

3

With the modifier locus, the three-locus model requires additional first and second derivatives

such as 

€ 

∂δpi
*

∂δpi
.  These are calculated as above and are available in the supplementary

Mathematica package.



Supplementary Information 2:  Weak selection approximation with a modifier

In this appendix, we describe the weak selection approximation for the recursions involving

a modifier and then determine the quasi-linkage equilibrium (QLE) value for the change in the

modifier under the assumption that recombination rates are higher than the selection coefficients.

The exact recursions describing the expected perturbations and their covariances for the three-

locus system were derived by substituting the differentials described in (S1) into (2) and (3),

dropping terms of O(N-2).  Assuming that selection is weak, the recursions for the expectations

become:

Ε[

€ 

δpi
*]

€ 

≈ E[δpi] + sj E[δDij] + sk E[δDik] + sj sk E[δDijk]

– (

€ 

s j
2 E[δpj δDij] + 

€ 

s j
2 sk  E[δpj δDijk] + 

€ 

sk
2 E[δpk δDik] + 

€ 

s j sk
2 E[δpk δDijk]

+ 

€ 

s j
2 sk  E[δDjk δDij] + 

€ 

s j sk
2 E[δDjk δDik] + 

€ 

s j
2 sk

2 E[δDjk δDijk]), (S2.1a)

E[

€ 

δCij
* ]

€ 

≈ (1–rij) (1–sj(pj–qj)) E[δDij] + sk (1–rij) E[δDijk]

– (1–rij) (2sj E[δpj δDij] + 2 sj sk E[δpj δDijk] + 

€ 

sk
2 E[δpk δDijk]

+ 2 sj sk E[δDjk δDij] + 

€ 

sk
2 E[δDjk δDik] + 2

€ 

s j sk
2 E[δDjk δDijk]) (S2.1b)

E[

€ 

δDijk
* ]

€ 

≈ – δrj,k|i piqi (1–sj(pj–qj)–sk(pk–qk))E[δDjk] + (1–rijk)(1–sj(pj–qj)–sk(pk–qk))E[δDijk]

+ 2δrj,k|i piqi (sj E[δpj δDjk] + sk E[δpk δDjk] + sj sk E[δ

€ 

Djk
2 ])



– 2(1–rijk) (sj E[δpj δDijk] + sk E[δpk δDijk] + sj E[δDjk δDij]

+ sk E[δDjk δDik] + 2 sj sk E[δDjk δDijk]) (S2.1c)

Throughout this appendix, terms involving locus k can be obtained from terms involving locus j

by interchanging subscripts j and k, e.g. E[δ

€ 

Dik
* ] may thus be obtained from (S2.1b).  Here we

have kept leading-order terms in the selection coefficients for each expectation, even if they

appear to be lower order, because such terms play a role in the initial build up of the

disequilibria.  We continue to ignore terms that are order 

€ 

δrj,k| i
2 , such as E[δpi δDij] and δrj,k|i

E[δpi δDjk], thereby assuming that the modifier’s effect on recombination is weak.

To evaluate the recursions (S2.1), the following covariances are needed, which constitute a

closed system of equations:

E[

€ 

δDjk
* δDijk

* ]

€ 

≈ (1–rjk) (1–2sj(pj–qj)–2sk(pk–qk)) ((1–rijk) E[δDjk δDijk] – δrj,k|i piqi E[δ

€ 

Djk
2 ])

(S2.2a)

E[

€ 

δDjk
* δDij

* ]

€ 

≈ (1–rjk)(1–rij) ((1–2sj(pj–qj)–sk(pk–qk)) E[δDjk δDij] + sk E[δDjk δDijk])

(S2.2b)

E[

€ 

δp j
* δDijk

* ]

€ 

≈ (1–2sj(pj–qj)–sk(pk–qk)) ((1–rijk) E[δpj δDijk] – δrj,k|i piqi E[δpj δDjk])

+ sk (1–rijk) E[δDjk δDijk] – sk δrj,k|i piqi E[δ

€ 

Djk
2 ] (S2.2c)



E[

€ 

δp j
* δDij

* ]

€ 

≈ (1–rij) (1–2sj(pj–qj)) E[δpj δDij]

+ (1–rij) (sk E[δpj δDijk] + sk E[δDjk δDij] + 

€ 

sk
2 E[δDjk δDijk]) (S2.2d)

E[

€ 

δp j
* δDik

* ]

€ 

≈ (1–rik) (1–sj(pj-qj)–sk(pk–qk)) E[δpj δDik]

+ (1–rik) (sj E[δpj δDijk] + sk E[δDjk δDik] + sj sk E[δDjk δDijk]) (S2.2e)

These equations demonstrate that the covariances involving the modifier locus are ultimately

driven by variance in linkage disequilibrium (E[δ

€ 

Djk
2 ]), either directly as in (S2.2a, c) or

indirectly through the covariance terms E[δpj δDjk] and E[δpk δDjk].

Under weak selection, recursions (S2.1) and (S2.2) can be iterated to determine the effects

of drift and selection on the modifier.  When selection is weak relative to the recombination

rates, (S2.1b-c) and (S2.2) rapidly approach quasi-linkage equilibrium (QLE) values, which can

be determined by setting, for example, E[

€ 

δDjk
* δDijk

* ] to E[δDjk δDijk] and solving.  The results

depend on recombination terms such as 

€ 

1− (1− ra )(1− rb ) , which we write as Ra,b to save space.

Using the two-locus QLE results (A2.3), the covariance terms (S2.2) at QLE are:

E[δDjk δDijk]  =  

€ 

−
δrj,k| i piqi (1− rjk )E[δDjk

2 ]
Rijk, jk

=  

€ 

−
δrj,k| i (1− rjk ) piqi p jq j pkqk
2N rjk (2 − rjk )Rijk, jk

(S2.3a)



E[δDjk δDij]  =  

€ 

sk (1− rjk )(1− rij ) E[δDjk δDijk ]
Rij, jk

=  

€ 

−
δrj,k| i sk (1− rjk )

2 (1− rij ) piqi p jq j pkqk
2N rjk (2 − rjk )Rij, jkRijk, jk

(S2.3b)

E[δpj δDijk]  = 

€ 

sk (1− rijk )E[δDjk δDijk ]−δrj ,k| i piqi E[δp j δDjk ]−δrj,k| i sk piqi E[δDjk
2 ]

rijk

=  

€ 

−
δrj,k| i sk 1− (1− rijk )(1− rjk )

2( ) piqi p jq j pkqk
2N rjk

2 rijk (2 − rjk )Rijk, jk

(S2.3c)

E[δpj δDij]  =  

€ 

(1− rij ) skE[δp jδDijk ]+ skE[δDjkδDij ]+ sk
2E[δDjkδDijk ]( )

rij
(S2.3d)

=  

€ 

−
δrj,k| i sk

2 piqi p jq j pkqk (1− rij ) rjk (2 − rjk ) 1− (1− rij )(1− rjk )(1− rijk )( ) + rijrijk (1− rjk )( )
2N rijrijkrjk

2 (2 − rjk )Rij, jkRijk, jk

E[δpj δDik]  =

€ 

(1− rik ) s jE[δp jδDijk ]+ skE[δDjkδDik ]+ s jskE[δDjkδDijk ]( )
rik

(S2.3e)

€ 

−
δrj,k| i s jsk piqi p jq j pkqk (1− rik ) rjk (2 − rjk ) 1− (1− rik )(1− rjk )(1− rijk )( ) + rikrijk (1− rjk )( )

2N rikrijkrjk
2 (2 − rjk )Rik, jkRijk, jk

The QLE value of E[δDijk] can be found by substituting (S2.3) into (S2.1c) and solving for

E[δDijk].  This value can then be used along with (S2.3) to find E[δDij] (and, by interchanging j



and k, E[δDik]) from (S2.1b).  Finally, all of these QLE values may be used in (S2.1a) to solve

for the change in modifier frequency over time, yielding:

€ 

E[δpi
*] = E[δpi]+

δrj ,k| i piqiV jVk f (r)
8N rjk

5 (S2.4)

where Vj = 2

€ 

s j
2 pjqj and Vk = 2

€ 

sk
2 pkqk and where f(r) is a positive, if complicated, function of the

recombination rates:

€ 

f r( ) =
rjk
2

Rij, jkRik, jkRijk, jk rij
2rik
2rijk
2 (2 − rjk )

4 Rij, jkRik, jkRijk, jk Rij,ik − rijk( ) rij rikrjk 2 − rjk( ){

+ 2 rijkrjk
2 Rij,ik Rij, jkRik, jk rij + rik( ) 2 − rjk( ) + rij rik 1− rjk( ) Rij,ik − rijk( ) + 2 − rjk( )X( )

+ rijk
2 2 − rjk( ) 2Rij,ik

2 Rij, jkRik, jk 1− rjk( )rjk + Rij,ikrjk
2 X + 1− rjk( )rijrik 2Rij,ik rijrik 1− rjk

2( ) + rjk
2( ) + Rij,ik

2 rjk + 2X( )( )}

with 

€ 

X = 1− rjk( )rjk 1− rij( )rij 1− rik( )rik .

To better understand equation (S2.4), we assume that the recombination rates are small, all

of the same order, but larger than the selection coefficients as required for QLE (sj, sk << rjk, rij,

rik, rijk << 1) and that there is no genetic interference among loci.  Without loss of generality, we

also assume that locus k is the right-most locus and define α = rik/rjk.  Equation (S2.4) may then

be simplified by taking a Taylor Series approximation.  Keeping only the leading-order terms

with respect to selection and recombination, we arrive at (7).  This approximation allows us to



replace the complicated function f(r) in (S2.4) with the function g(α) given by (7b) for gene

order jik and (7c) for gene order ijk.



Supplementary Information 3:  Steady state solution for the change in a modifier under

fluctuating selection

In this appendix, we consider fluctuating selection with period, τ.  Such selection could

be sinusoidal, it could involve bouts of selection favoring one allele followed by bouts favoring

the other allele (selection following a square wave), or it could involve periods of no selection

interspersed with periods of positive and negative selection.  We assume that selection is weak,

that each cycle is identical, and that alleles return to the same frequency after each cycle.  As in

Appendix 2, we could replace the recursion equations involving a modifier (S2.1 – S2.2) with

differential equations, whose solutions have the form of equation (A2.4b).  We will take a

slightly different tack, however, and analyze the discrete recursion equations directly.

As mentioned earlier, each of the variables has a recursion of the form (A2.4a).

Furthermore, the term (1+f[t]) term involves quantities such as 

€ 

1− st (pt − qt ).   Under the

assumption of weak selection, 

€ 

pt+1 ≈ pt + st ptqt , which can be rearranged to give

€ 

1− st (pt − qt )

€ 

≈
pt+1qt+1
ptqt

.  Thus, we can replace (1+f[t]) in (A2.4a) with the term v[t+1]/v[t], where

again v[t] is the product of the appropriate allele frequencies at time t.  For example, in the

recursion equation for E[

€ 

δC jk
2 ], (A2.2c), we approximate (1 – 2 sj(pj–qj) – 2 sk(pk–qk)) at time t

with v[t+1]/v[t] where v[t] = (pjqjpkqk)
2.  The solution to (A2.4a) is then:

€ 

x[t] = v[t] (1+ c)t x[0]
v[0]

+
(1+ c)t−1− j g[ j]

v[ j +1]j= 0

t−1

∑
 

 
  

 

 
  . (S3.1a)



Using (S3.1a), we can evaluate x[t] after one full cycle x[t+τ].  If the system is at steady state, the

two values should coincide, x[t] = x[t+τ].  We can use this fact to solve (S3.1a) for its steady

state value at point, t, within a cycle:

€ 

x[t] =

v[t] (1+ c)τ− j g[ j]
v[ j +1]j= 0

τ−1

∑

1− (1+ c)τ
. (S3.1b)

To our knowledge, there is no explicit solution to the sum in (S3.1b) or to its continuous-time

analog.  To proceed, we assume that the recombination rates and, hence, c are small (so that c τ

<< 1).  Furthermore, we assume that selection is sufficiently weak that v[t+1] can be

approximated by v[t].  These assumptions allow us to rewrite (S3.1b) as:

€ 

x[t] =

v[t] g[ j]
v[ j]j= 0

τ−1

∑

c τ
, (S3.1c)

which is simply:

€ 

x[t] =

v[t]Mean g[ j]
v[ j]
 

 
 

 

 
 

c
. (S3.1d)

where 

€ 

Mean g[ j]
v[ j]
 

 
 

 

 
  is evaluated over the course of one cycle.



Application of (S3.1d) to the recursions (A2.2), (S2.1), and (S2.2) is straightforward

because 

€ 

Mean g[ j]
v[ j]
 

 
 

 

 
  is often a quantity that can be readily determined from the dynamics of

selection.   For example, to estimate

€ 

Et[δDjk
2 ] , we require the mean of 

€ 

1
2N p jq j pkqk

, which is

given by 2N times the harmonic mean, Hjk, of 

€ 

p jq j pkqk:

€ 

H jk =  τ
1

p jq j pkqkj= 0

τ−1

∑
 . (S3.2)

Plugging this into (S3.1d) gives the approximate solution:

€ 

Et[δC jk
2 ] =

p jq j pkqk( )
2

2N H jk 2rjk( )
 (S3.3a)

In other cases, 

€ 

Mean g[ j]
v[ j]
 

 
 

 

 
  is approximately zero.  For example, to estimate

€ 

Et[δp j δDjk ],

we require the mean of 

€ 

skEt[δDjk
2 ]

(p jq j )
2 pkqk

.  Plugging in (S3.3a) leaves us with 

€ 

sk pkqk times the

constant 

€ 

1/ 2N H jk 2rjk( ) .  Under our assumption that selection is weak, 

€ 

sk pkqk describes the

change in allele frequency per generation.  For the allele frequencies to return to their original

state, the average value of 

€ 

sk pkqk must be approximately zero.



As a final example, because

€ 

Et[δp j δDjk ] and, by symmetry, 

€ 

Et[δpk δDjk ]  are zero,

€ 

Et[δDjk ] can be approximated from the mean value of 

€ 

−2
s jskEt[δDjk

2 ]
p jq j pkqk

= −2
s jsk p jq j pkqk
2N H jk 2rjk( )

.

Defining the covariance in allele frequency changes at the two loci using (9b) then gives us an

approximation for the disequilibrium:

€ 

Et[δDjk ] = −
p jq j pkqk Cov[ ′ p j , ′ p k ]

2N H jkrjk
2  (S3.3b)

Repeated application of this method to all of the recursions yields the approximation (8) for the

change in the modifier allele (see supplementary Mathematica package).

Aside:  If one were to apply this procedure to find the steady state solution to the differential

equations of the form A2.4b, one would also get 

€ 

Et[δp j δDjk ] = 0.  This poses a problem,

however, when solving for the disequilibrium, 

€ 

Et[δDjk ].  Without 

€ 

Et[δp j δDjk ] and

€ 

Et[δpk δDjk ] , there is no driving term in (A2.5c) to generate disequilibrium in the continuous-

time model.  As a result, the predicted change in the modifier is zero.  This problem does not

arise in the discrete-time model, because 

€ 

Et[δDjk
2 ] also contributes to the development of

disequilibrium in (A2.2e).  Thus, the weak selection and weak recombination approximations

made in the continuous-time version of the model fail to capture the phenomenon of interest.  In

general, we have found the behaviour of the continuous-time model with weak fluctuating

selection and weak recombination to be extremely sensitive to the assumptions made.


