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ABSTRACT 

A two-locus model is used to analyze the effectiveness of a mixture of 
insecticides in delaying resistance, compared to the use of the insecticides sin- 
gly. The effects of factors such as recombination, effective dominance, initial 
value of allele frequencies and initial value of linkage disequilibrium are con- 
sidered. I t  is shown that the use of mixtures is always more effective in delaying 
the onset of resistance, often by many orders of magnitude. It is shown that 
there exists a threshold value of recombination fraction, above which the ev- 
olution of resistance is extremely slow. Resistance evolves very rapidly for 
values of recombination fraction below the threshold. Finally, the relevance of 
these results on resistance management is discussed. 

N the past two decades there has been extensive study of the properties of I two-locus systems under selection. Most of the work has been concerned 
with symmetric viabilities with multiplicative or additive assumption (KARLIN 
and FELDMAN 1970, 1978; KARLIN 1975; BODMER and FELSENSTEIN 1967; 
FRANKLIN and FELDMAN 1977; FELSENTEIN 1965; KIMURA 1965). These the- 
oretical studies, especially for two alleles at two loci, have shown the increase 
in the complexity of the polymorphic states as one goes from one locus to two 
loci problems. A few applications of two-locus models to problems of familial 
diseases can be found in the literature (MERRY, ROGER and CURNOW 1979; 
SKOLNICK, CARMELLI and TYLER 1977). In this paper the evolution of resist- 
ance in the presence of two insecticides is studied using a specific two-locus 
model. As shown later, the use of two insecticides simultaneously could, under 
suitable conditions, provide an effective method in the management of resist- 
ance. The rest of this section is devoted to a brief review of the present status 
in resistance management. 

In his review on the “Management of resistance in arthropods,” GEORGHIOU 
(1983) has listed three main modes of chemical strategies used or suggested 
for the management of resistance. These are (1) management by moderation, 
(2) management by saturation and (3) management by multiple attack. The 
first two modes involve the use of a single insecticide and the management is 
effected through factors such as control of effective dominance, preservation 
of “refugia” and suppression of detoxication mechanism by synergists. The 
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effects of these various factors on the evolution of resistance have been exten- 
sively discussed in the literature (SUTHERST and COMMINS 1979; GEORGHIOU 

and TAYLOR 1977; MARCH 1953; WOOD and MANI 1981; MANI and WOOD 

1984). For mode 3 Georghiou gives two subdivisions, namely, the use of mix- 
tures of chemicals and the alternation of chemicals either in space or in time. 
Spatial alternation of chemicals was first suggested by MUIR (1977) and has 
been theoretically studied by COMINS (1977) and by CURTIS, COOK and WOOD 

(1978) for some restricted types of migration. CURTIS and RAWLINGS (1980) 

have shown that the effectiveness of such a strategy depends on a high migra- 
tion rate. Recently, CURTIS (1984; see report by WOOD 1981a) has shown that 
mosaic spraying with two compounds sprayed in alternate mosaics would be 
little different from the use of the two compounds sequentially over the whole 
area. The use of the strategy of rotation of chemicals in time has been consid- 
ered both theoretically and experimentally (see GEORGHIOU 1983 for refer- 
ences). This mode of application of chemicals requires that the individuals 
resistant to one chemical have a lower biotic fitness than susceptible individuals 
so that their frequency declines during the period when that chemical is not 
used. The rate of decline depends both on the fitness depression of the resist- 
ance homozygotes and on the dominance relation for the heterozygotes. Also, 
in some instances it has been demonstrated that the fitness of resistant individ- 
uals could improve with continued selection through the process of coadapta- 
tion (ABEDI and BROWN 1960; MCENROE and NAEGELE 1968; GEORGHIOU 
1972; KEIDING 1963, 1967). 

The use of mixtures has been mentioned frequently in the literature (BROWN 

1961, 1976; CROW 1952, 1960; BUSVINE 1957). GEORGHIOU (1983) has pre- 
sented some experimental results on the effect of mixtures in the evolution of 
resistance. In this experimental work, LAGUNES and GEORGHIOU (GEORGHIOU 

1983) have studied the changes in susceptibility to the three insecticides te- 
mephos, propoxur and permethrin in sibling strains of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACulex quinquefasciatus 
when these compounds are applied singly or in various combinations. The 
results indicated that, in the case of temephos and permethrin, resistance was 
delayed when the chemicals were used in mixtures. On the other hand, resist- 
ance to propoxur seemed to develop when it is used as part of a mixture. 
Since these results were on the larval stages of the mosquito and since such 
laboratory experiments do not specifically allow for escape, the results obtained 
cannot easily be translated into the effect in the field. The importance of 
escape in dealing with mixtures has been stressed recently by CURTIS ( 1  984). 

In this paper a detailed analysis of the effect of a mixture of two insecticides 
on the evolution of resistance is investigated. The dependence of the rate of 
evolution of resistance on factors such as recombination, initial value of linkage 
disequilibrium, effective dominance and initial gene frequencies is discussed. 
For sake of clarity, the derivation of the equations and some of the analytic 
results are given in the APPENDIX. 

THE MODEL 

Two insecticides, labeled A and B, act on loci A and B, respectively, and 
produce no cross-resistance. There are two alleles A , ,  A2 and B , ,  B2 at these 
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loci, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA l ,  B1 being susceptible and AS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABZ being resistant to the respective insec- 
ticides. The population is assumed large enough for stochastic effects such as 
genetic drift to be unimportant. Since it was shown in MANI and WOOD (1 984) 
that density-dependent regulation of population size has minimal effect on the 
evolution of resistance, such regulation is not considered here. All matings are 
assumed to be random. 

Any practical application of insecticides in the field would result in a fraction, 
a (defined as escape probability), of the insects escaping the effects of the 
insecticide. The escape probability is strictly an “effective” escape parameter 
which takes into account partial exposures that do not kill the insect but only 
make it less effective in mating and reproduction. Any genotype dependence 
on a arising from such a definition is ignored. Evolution of resistance in the 
presence of escape has been extensively studied in two earlier papers (WOOD 
and MANI 1981; MANI and WOOD 1984) and, thus, in this paper an arbitrary 
value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.1 for escape is assumed. 

The frequencies of the gametes A1B1, A1B2, A2B1 and AZBZ are denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X1, Xz, X3 and X4, respectively. The frequencies of the alleles A l ,  AS,  B1 and 
B2 are given by p l ( n ) ,  p S ( n ) ,  q l ( n )  and qz(n)  in generation n .  The linkage 
disequilibrium factor is given by D = XlX4 - X2X3 and the recombination factor 
by r.  

The dosage of insecticide applied is assumed to be large enough to kill all 
susceptible homozygotes and a fraction (1 - ha) or (1 - hb) of the heterozygotes 
at locus A or B but no resistant homozygotes. Here, ha and hb represent effec- 
tive dominance that can be varied by altering the dosage applied (see WOOD 
and MANI 1981). When ha or hb = 0, the resistance gene in the corresponding 
locus is recessive and, when ha or hb = 1, it is dominant. 

Determination of differential biotic fitness in the field is subject to large 
uncertainities. Thus, very few such measurements have been attempted. CUR- 
TIS, COOK and WOOD (1978) have discussed some of these problems in the 
case of Anopheles culicqacies and A .  stephensi exposed to DDT, dieldrin.and 
malathion. In the case of A. gambie there are some indications in laboratory 
tests that the biotic fitness of the resistant homozygote is slightly lower than 
the susceptible homozygote in the absence of the insecticides DDT and dieldrin 
(EMEKA-EJIOFUR, CURTIS and DAVIDSON 1983). Such a small fitness difference 
would have a minimal effect on the evolution of resistance, in comparison with 
the effect due to the strong selective forces arising from the presence of 
insecticides. Thus, in the present investigation any difference in biotic fitness 
is neglected. Finally, two-locus selection arising from the application of the 
insecticides is assumed to be of the multiplicative form. 

The following two modes of application of the insecticides are considered: 
Type 1 : Both insecticides are applied simultaneously every generation. The 
dosage of each insecticide can be varied independently to change the effective 
dominance for that insecticide. Type 2: Insecticide A is applied for T A  gener- 
ations until the resistance to it is established. In what follows, the resistance to 
an insecticide is assumed to have been established when the frequency of the 
corresponding resistant gene reaches a value of 0.9. The insecticide B is then 
applied until the resistance to it is established. The total number of genera- 



764 G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. MAN1 

tions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= TA + T B ,  defines the time taken for the population to become 
resistant to both of the insecticides. The variation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATA (or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATB) with effective 
dominance, initial gene frequencies and escape has been extensively studied by 
MANI and WOOD (1984). Throughout this paper tl refers to the number of 
generations for resistance to evolve when mixtures are used and t 2  when the 
two insecticides are used sequentially as in type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. 

The explicit equations used in the calculations together with some approxi- 
mate solutions are given in the APPENDIX. The program was set up to answer 
the following questions: ( 1 )  How does the evolution of resistance change with 
effective dominance? (2) What is the effect of initial allele frequencies on the 
evolution of resistance? (3) What difference does it make whether selection 
occurs before or after mating? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) What effect does recombination and initial 
value of linkage disequilibrium have on the evolution of resistance. For type 
2 application, questions (1) to (3) have already been discussed in earlier papers 
(WOOD and MANI 1981; MANI and WOOD 1984). 

RESULTS AND DISCUSSION 

The values of tl for various values of ha and h b  are shown in Figures 1-3. 

Throughout this section it is assumed that the initial gene frequencies satisfy 
pZ(0) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqz(0). In Figures 1-3, the initial gene frequency of the resistant gene 
is taken to be lo-’. These figures also show the effect of recombination on t l .  
Two values of recombination were used, namely, r = 0 (tight linkage) and 
r = 0.5 (loose linkage). As shown in the APPENDIX (A.3), for a given value 
of pZ(0) (= q2(0)), the initial linkage disequilibrium, D(O), has to lie within 
the interval (-p2(0)q2(0), +pl(O)q2(0)).  Figures 1 and 2 are for D ( 0 )  = 0 and 
D ( 0 )  = p1(0)q2(O),  its maximum value, in Figure 3. The broken lines in these 
figures are for the case in which selection acts only after mating (MS), and the 
full curves are for selection acting before mating (SM). Changing the initial 
values of the gene frequencies does not alter the shape of the curves but only 
changes the value of tl .  As the initial values of the frequencies of the resistant 
genes are decreased, the values of t l  are correspondingly increased. From these 
results the following general conclusions can be made: 

1. In almost all cases, as ha increases from 0 to a small value, say 0.02, t l  
decreases by three to six orders of magnitude, depending on the initial allele 
frequencies and the value of the recombination fraction, r. The only exception 
is when D ( 0 )  is large and positive and r is near 0 (Figure 3). For r = 0, as ha 
increases from 0.02 to 1.0, t l  decreases by a factor of 2-10, depending on the 
value of hb. Thus, to obtain a large delay in the evolution of resistance, the 
dosage of at least one of the insecticides should be sufficiently high for the 
resistant allele to become recessive. 

2. When r increases from 0 to its maximum value of 0.5, the evolution of 
resistance is delayed in all situations. For r = 0.5, the initial decrease in t l  with 
increasing ha is much less steep than for r = 0. Thus, in this case, the above 
stringent condition for recessiveness can be relaxed to some extent. 

3. In general, in the tight linkage limit, tl for the case in which selection 
precedes mating is about half of tl when selection acts after mating. This 
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FIGURE 1.-The dependence of the number of generations for resistance to evolve on the 
effective dominance of one of the insecticides, while that of the other insecticide is fixed. Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h. and hb denote the effective dominance of the two insecticides. The initial allele frequency is 
taken to be pz (0 )  = q p ( 0 )  = 0.001; the initial linkage disequilibrium D(0)  = 0 and the recombination 
fraction r = 0. The escape probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 0.1 and the insecticides are applied simultaneously. 
The curves marked A-D are for the following values of hb: A, hb = 1.0; B, hb = 0.4; c, hb = 0.1; 
D, hb = 0.02. The broken line corresponds to mating before selection and the solid line to mating 
after selection. 

difference between selection before and after mating arises from the fact that 
selection before mating (SM) affects genotype distribution of both sexes, before 
mating has occurred. On the other hand, for selection after mating, (MS), one 
need only consider the mated females. The selection on them would have the 
effect of reducing relatively more resistant homozygotes from the next gen- 
eration than in the case of SM. Thus, the onset of resistance is delayed in the 
case of MS compared to SM. The reason for the factor of 2 in the case of 
tight linkage is discussed in the APPENDIX (4. (A.33). This factor could be 
much larger than 2 as r increases toward 0.5. As can be seen in Figure 2, this 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I 

ha 
FIGURE 2.-The dependence of the number of generations for resistance to evolve on the 

effective dominance of the insecticides. All parameters are the same as in Figure 1 ,  except the 

recombination fraction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = 0.5. Curves A-D have the same significance as in Figure 1 .  The broken 

and solid lines are for mating before and after selection, respectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
factor could be as high as 10 for r = 0.5. Thus, in resistance management, it 
is always preferable to apply the insecticide, if possible, at the postmating stage 
of the life history rather than at the larval or premating adult stage. 

The e f f t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof recombination on the evolution of resistance: Figures 4 and 5 show 
the influence of recombination fraction on the evolution of resistance. In these 
figures the initial allele frequencies are varied between 1 O-* and 1 0-4 and the 
effects are studied for various values of D(O), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAha and hb. The remarkable 
feature of these curves is the existence of a threshold value for r ,  above which 
t l  is large and approximately constant and below which it is small and constant. 
The threshold value of r is strongly dependent on the initial allele frequencies, 
effective dominance and the initial value of linkage disequilibrium. The occur- 
rence of a threshold in the value of r is not self-evident from the equations 
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FIGURE 3.-The dependence of the number of generations for resistance to evolve on the 

effective dominance of the insecticides when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD ( 0 )  = 0.999 X lo-’, its maximum value, and when 

r = 0.0 and 0.5. The curves are for selection before mating. The curves marked A-D have the 

same significance as in Figure 1 .  

for the evolution of resistance. A plausible reason for the threshold effect is 
discussed in the APPENDIX. In general, for r sufficiently greater than 0, and 
for D ( 0 )  # 0, the linkage disequilibrium goes rapidly to 0 initially and there- 
after the dynamics are the same as for the case when D ( 0 )  = 0. This is the 
reason for the curves with different values of D ( 0 )  to yield almost the same 
value of tl above the threshold. The threshold in r becomes less well defined 
as the effective dominance increases. Also, in this case the threshold is pushed 
toward a higher value of r. The threshold moves toward lower values of r 
with decreasing values of the initial allele frequencies and of D(0).  

The effect of initial value of linkage disequilibrium on the evolution of resistance: 
Figures 6-8 show the variation of tl with D(0)  for various values of initial 
allele frequencies, recombination fraction and effective dominance. Note that 
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1 I 1 1 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.1 0.2 0.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.4 1 0 01 0:2 0.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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FIGURE 4.-The dependence of the number of generations for resistance to evolve on the 
recombination fraction Y. The curves on the left are for pz(0) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq2(0) = lo-’, ha = hb = 0.1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a = 0.1. The curves marked A and B are for D(0)  = 0.0 and 0.999 X lo-’. The curves on the 
right are for pz(0)  = qz(0) = lo-‘, D(0)  = 0 and a = 0.1. The curves marked A are for h, = 0.4 
and hb = 0.2 and the curves marked B are for h,, = hb = 0.1. The broken lines show the case in 
which mating precedes selection and the solid line when selection precedes mating. 

in Figure 6 the scale of D ( 0 )  below 0 is expanded by a factor of 100. Since a 
new mutant would normally be expressed at first as a heterozygote, in real 
biological situations one would not expect a large positive value for D(0).  If 
the field population had already been exposed to one of the two insecticides 
so that the frequency of the resistant gene is higher than the mutation fre- 
quency, D ( 0 )  can be positive. Thus, in actual situations D(0)  can be slightly 
positive or negative, depending on the type of selective pressure that the 
population has experienced. For r < T T ,  where rT is the threshold value dis- 
cussed in the previous section, t l  is extremely sensitive to the value of D ( 0 )  
and decreases rapidly with increasing value of D(0).  For r > T T ,  tl becomes 
very insensitive to the variation of D(0).  
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r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FIGURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.-The dependence of the number of generations for resistance to evolve on the 

recombination fraction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr .  The initial allele frequencies are p*(O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqS(0) = 0.01. The curves marked 
A, B and C are for D ( 0 )  = 0.009, 0.0 and -0.000095, respectively. The broken lines are for the 
case in which mating precedes selection and the solid line when selection precedes mating. The 
curves on the left are for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAha = hs = 0 and on the right are for ha = h b  = 0.1. 

Comparison of type 1 and type 2 applications: In the case in which the insec- 
ticide A is applied on its own, the alleles at locus B would naturally experience 
no selection, On the other hand, the frequency of the alleles at locus B could 
alter through the “hitch-hiking” effect (MAYNARD SMITH and HAICH 1974). 
The theory of the hitch-hiking effect for the case of type 2 application is 
discussed in the APPENDIX. The effect of hitch-hiking on the frequency of the 
resistant allele at locus B is maximal when the recombination fraction r is close 
to 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD ( 0 )  well removed from 0. When D ( 0 )  < 0, the frequency of the 
resistant allele at locus B would decrease from its initial value and, for D ( 0 )  > 
0, it would increase. It is shown in the APPENDIX that the effect of hitch-hiking 
in altering the frequency of the resistant allele at locus B when the insecticide 
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FIGURE 6.-The dependence of the number of generations for resistance to evolve on the 
initial value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD ( 0 )  of linkage disequilibrium. Here, pz(0)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq2(0) = 0.01, h, = hb = 0 and (Y = 0.1. 
The curves marked A, B and C are for r = 0, 0.1 and 0.4, respectively. The broken and the solid 
lines represent mating before and after selection, respectively. Note the change in the scale for 
D(0)  < 0 by a factor of 100. 

A is applied on its own rapidly disappears as D ( 0 )  moves away from its extreme 
values and as the value of r slightly increases above 0. 

For a completely recessive resistant gene, when r = 0, it is seen from (A.20) 
and (A.41) in the APPENDIX that 

where t 2  and t ,  are the number of generations required for resistance to both 
the insecticides to develop in the case of type 2 and type 1 applications, re- 
spectively. In this equation 7 is a factor that depends on both the value of 
p2(TA) in type 2 application and on D(0).  The parameter 9 decreases from a 
value of approximately 10 to unity as D ( 0 )  is increased from -P2(0)qz(O) to 0. 
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FIGURE 7.-The dependence of the number of generations for resistance to evolve on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD(O), 
for p ~ ( 0 )  = qz(0) = 0.01 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh. = ha = 0.1. The curves marked A, B, C and D are for r = 0.0, 

0.1, 0.2 and 0.4, respectively. The broken and solid line curves represent mating before and after 

selection, respectively. The scale for D ( 0 )  < 0 is expanded by a factor of 100. 

As D ( 0 )  is increased from 0 to its maximum value, 7 goes to 0. The value of 
7 is strongly dependent on the value of p 2 (  T A )  and the value of 10 is for p 2 (  T A )  

= 0.9. T o  a first approximation, for D ( 0 )  L 0 ,  7 is independent of p 2 ( T A ) .  

Thus, when both of the resistant genes are recessive, as D ( 0 )  varies from 0 to 
its maximum value, t 2 / t l  increases from $140)  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqZ(0) to unity. When both of 
the resistant alleles are at the frequency of, say, and when D ( 0 )  = 0, 
resistance can be delayed by more than five orders of magnitude by the use 
of mixtures. Even when the insecticide A has been applied on its own for some 
period so that the allele resistant to it has increased its frequency to approxi- 
mately 1%, the use of mixtures would delay the evolution of resistance by a 
factor of 100 compared to the switching over from insecticide A to insecticide 
B. 
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If one of the insecticides is effectively recessive and the other dominant, 
(say, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAha = 0 and h b  = l), then from (A.28), (A.43), (A.44) and (A.46) in the 
APPENDIX we get 

t 2 / t l  = -l/ln zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq2(0) :D(O) = 0 

= 1  :D(O) = max. value. 

Thus, even in this situation, the use of mixtures delays the evolution of resist- 
ance by a factor of 10 compared to the sequential application of insecticides. 

A few examples of the ratio t 2 / t l  is shown in Table 1. The values quoted in 
this table were obtained by solving the exact equations numerically. In almost 
all situations, type 1 application is far more effective than type 2 application 
and in no case is it worse. The effectiveness increases by orders of magnitude 
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TABLE 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof t2/tl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor various values of ha, hb, pS(0) and r 

0.0 

0.0 

0.0 

0.0 

0.2 

0.2 
0.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.0 
0.2 
0.2 

0.0 

0.2 
0.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.o 
0.2 
0.2 
0.0 

1 .o 
0.2 

0.2 

0.001 
0.001 
0.001 
0.001 
0.001 

0.001 
0.0001 
0.0001 

0.0001 

0.0001 

0.0 

0.0 

0.0 

0.0 

0.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.5 
0.0 

0.0 

0.0 

0.5 

0.002 

0.045 

0.114 

0.186 

0.333 

0.002 

0.0002 
0.118 

0.407 

0.002 
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D(0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 and p ~ ( 0 )  = qz(0). 

as the resistant alleles become recessive. Also, the effectiveness of type 1 mode 
improves by a few orders of magnitude as the value of r increases. There is 
very little to choose between the two if the values of both ha and h b  increase 
beyond 0.5. 

CONCLUSIONS 

One of the earliest experimental works on the use of mixtures was carried 
out by MACDONALD (1959) who studied the evolution of resistance to insecti- 
cides by A. gambiae and A .  sundaicus. His general conclusion was that the use 
of mixtures could prove unusually effective in the control of mosquitoes. The 
preliminary experiments by GEORGHIOU (1 983) arrive at similar conclusions. 

The main conclusion of this paper is that it is always desirable to use mix- 
tures rather than insecticides sequentially. In the absence of any information 
regarding the initial allele frequencies, recombination fraction and initial link- 
age disequilibrium, the dosage of the mixture should be high enough to make 
both the resistant alleles as recessive as possible within the constraints of cost. 
This constraint can be relaxed if the two loci are relatively loosely linked. This 
is the second main conclusion of the present work, namely, that the evolution 
of resistance is delayed by orders of magnitude, provided there exists loose 
linkage between the two loci. A threshold effect for the recombination fraction 
has been shown to exist and resistance becomes considerably delayed for r 
above this value. Experimental evidence of linkage is rather sparse. In general 
one would expect the R genes to be randomly scattered over the chromosomes 
and, hence, the recombination to be large. On the other hand, in A. arabien- 
sis there is indication that malathion and dieldrin resistance are closely linked 
( r  < 0.05), whereas for DDT and dieldrin, r has been reported to be approx- 
imately 0.25, a value well above the predicted threshold (C. CURTIS, personal 
communication). This only underlines the need for detailed experiments both 
in the field and in the laboratory to establish the amount of recombination 
between the R genes and to estimate the frequency of occurrence of these 
genes in the field populations. 
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No model can hope to even approximately mimic field conditions. For ex- 

ample, nonuniform spraying (very common in practical situations), and back- 
ground effects from agricultural spraying can drastically affect the effective 
dominance in programs for controlling vectors. The various parameters such 
as escape and effective dominance used in the present model are average values 
over space and time. In practical situations these values could fluctuate very 
rapidly over space and time, thus accelerating the evolution of resistance at 
some spatial region which could then spread rapidly through the whole pop- 
ulation. Furthermore, in these calculations many factors such as migration, 
finite population size, stochastic effects and nonrandom mating have been 
disregarded. Thus, the present results could only provide a guide for further 
experiments in the laboratory and in the field and the final decision regarding 
resistance management strategy could arise only out of such experimental data. 

Aside from the question of initial frequencies of the alleles, recombination, 
effective dominance, escape and linkage disequilibrium, the other major prob- 
lem is the choice of the two insecticides. Such a choice of compounds for a 
mixture has to satisfy various constraints, some of which will be referred to 
later. In the first place, the two compounds must be insecticides for which 
there is a minimum possibility of cross-resistance. It would be inadvisable, for 
example, to mix a carbomate with an organophosphate (OP) because of the 
evolution of a mutant, producing the enzyme acetyl cholinesterase, insensitive 
to carbomates which would almost certainly confer resistance also to OPs 
(Wood 1981b). However, it would probably be safer to combine a carbomate 
with a pyrethroid because a common mechanism of resistance is less likely. 

The widest selection of potential insecticides for mixtures is to be found 
among insecticides used against the immature stages because these include not 
only members of the conventional insecticide groups but also the growing 
variety of insect growth regulators. On the other hand the genetic arguments 
discussed earlier indicate that mixtures that select at the postmated adult are 
more favorable in delaying resistance. 

It is known that some compounds in a mixture of insecticides could enhance 
the action of each other, whereas other classes of compounds in mixtures could 
reduce the action of each other. For example, GERA and GUPTA (1978), work- 
ing with house flies, noted such enhancement when malathion was mixed with 
HCH, carbaryl and tetrachlorvinphos; on the other hand they found antago- 
nism between malathion and DDT or malathion and dieldrin. 

From a practical point of view, the constraints mentioned could restrict 
drastically the choice of compounds for mixtures. The widespread occurrence 
of resistance to most insecticides indicates the need for rethinking the concept 
of resistance management. There exists no simple answer to it. In this paper 
it has been shown that the use of mixtures could delay the onset of resistance 
by a very substantial factor. What is needed is detailed experimental investi- 
gation both in the laboratory and in the field, especially regarding many of 
the factors discussed. 

My thanks to CHRIS CURTIS for bringing this problem to my attention and for various discussions 

and to ROGER WOOD and L. M. COOK for a critical reading of the paper and for many of the 

ideas discussed in the conclusion. 
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APPENDIX 

The equations relating to the use of type 1 and type 2 modes of application of insecticides are 
derived in this appendix. Approximate solutions for some limiting cases are given in the hope that 
these will be useful in deciding various resistance management strategies. 

The two insecticides A and B affect loci A and B, respectively. There are two alleles A I ,  As and 
B 1 ,  BP at these loci, A1 and B I  being susceptible and A2 and B2 being resistant to the insecticides 
A and B, respectively. The four gametes are denoted by G I ( A I B I ) ,  Gz(AlBn), Gs(AzB1) and Gl(A2B2) 
and their frequencies before selection in generation n by Xi(n) ( i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 ,  . . . , 4 ) .  Evidently, 

Xi(n)  = 1 
i - I  

Taking the allele frequencies of A I ,  An, BI  and Bz to be PI,  p n ,  41  and qn, we get 

PI = XI + X z ;  QI = X I  + Xs; PI + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApn = 91 + 4s = 1 

X I  = P I ~ I  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD; XZ = + D; X S  = P S ~ I  + D ;  X 4  = p292 + D (A.2) 

D = linkage disequilibrium = X I X ~  - X2Xs 

The initial allele frequencies are denoted by pi(0), qi(0) ( i  = 1, 2) and the initial linkage disequi- 
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librium by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD(0).  For pl(0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= q I ( O ) ,  with p l ( 0 )  >> pz (0 )  and qI(0) >> qz(O),  it is evident from (A.2) 

that, for the condition Xi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0, 

-Pz(O)qz(O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 D(0)  5 P l ( o ) q z ( o )  (A.3) 

In what follows, r denotes the recombination fraction and Pij(n) the frequency of the genotype 
GiG, in  generation n. 

Let R!:) denote the probability that the genotype CiG,, under segregation, produces the gamete 
GI. For one-locus Mendelian segregation 

R(. ,"' - - %(6S + 6,) 
where 6 ,  is the Kronecker delta defined by 

6 , = 0  if i # j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= 1  if i = j  

For two loci with recombination r ,  

Let W,J(n) be the selection acting on the genotype C,GJ in generation la. W,J(n) is composed of 
two factors, one being selective differences in the absence of insecticides (A,J)  and the other arising 
from selection due to insecticides ( w , ~ ) .  

w*j(n) = k j ~ j ( n )  (A.7) 

The fitness of the two-locus system is assumed to obey the multiplicative model. For reasons 
discussed in the text, we shall in what follows assume that = 1 for all i and 3.  Thus, (A.7) 

becomes 

w*J(n) = w*J(n) (-4.8) 

Two modes of insecticide application are considered: 
1. Both insecticides are applied simultaneously every generation. In this case the fitness matrix 

I wv(n)  I is denoted by I w$') 1 .  
2. Insecticide A is applied for a period TA followed by insecticide B for a period TB and the process 
repeated. Then 

wij(n) = w p  1 c t, 5 TA 

= w f )  otherwise 

where t, is given by 

n = t,mod (T);  T = TA + TB (A.lO) 

Type 1 application implies TA = TB = 0 and type 2 implies TA, TB > 0.  
For the case in which the heterozygotes have effective dominance h. and hb for the two loci A 

and B, respectively, and when all of the susceptible homozygotes are killed and when all of the 
resistant homozygotes survive, the matrices I w$) I, k = 0 ,  1 ,  2 are given by 

(A. 1 1 )  
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In the expressions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is the escape probability and E is a matrix with all its elements unity. 

acting after mating. 

Selection before mating 

Two modes of selection will be discussed, namely, selection acting before mating and selection 

When selection precedes mating, it is easy to verify that 

X,(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) = W h m ( n ) P h ( n ) R g / A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h 

(A. 14) 

The main interest in the present investigation is to determine the number of generations it would 
take for the frequency of the resistant gene to approach a large value, say 0.5-0.9. The change 
in the frequency of the resistant gene is extremely slow until its frequency reaches a few percent. 
Thereafter, it rapidly increases to a value of 0.9. This is especially true when the escape parameter 
a is large (greater than a few percent) and when the resistant gene is effectively recessive. Under 
these conditions, since mating is assumed to be random, the genotype frequencies can be approx- 
imated by 

P h  = X h X m  (A. 15) 

Extensive calculations indicate that such an approximation would yield at most an error of five to 
ten generations in the calculation of the time taken for resistance to evolve. When the resistant 
gene is dominant, this could produce an error of 25%, since for this case resistance evolves very 
rapidly even in the presence of large escape. Thus, from (A.14) and (A.15) we obtain the following 
approximate equations for the evolution of the gamete frequencies: 

X;(n + 1) = E W h ( n ) X ~ ( n ) X , ( n ) R ~ ~ / A  
hm 

(A.16) 

Equation (A. 14) cannot be solved analytically to obtain the number of generations required for 
resistance to evolve. All of the results presented in this paper were obtained through computer 
simulation. Even the approximate equation (A. 16) is not amenable to analytic treatment except 
for a few special cases. In what follows the approximate analytic solutions for some specific cases 
are discussed. In most situations these approximate solutions yield values that are within 10% of 
the exact solutions. These results are presented here in the hope that they will be of help to field 
workers engaged in the management of resistance. 

The resistant genes are completely recessive (ha = hb = 0) and the recombination factor, r = 0 (tight 
linkage): When the insecticide dosage is such that the resistant genes to both the insecticides are 
completely recessive and r = 0, (A.16) simplifies to 

(A.17) 

As discussed earlier, initially resistance evolves very slowly until the frequency of the resistant 
gene reaches a value of approximately a few percent; thereafter the resistance gene goes to near 
fixation very rapidly, in general, taking a few generations only to change its frequency from a few 
percent to, say 90%. This is especially true for recessive genes. In this situation the difference 
equation can be approximated to a differential equation to a good degree of accuracy. Defining 
@ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/ ( l  - a), we get 

dX,/dt  = -X ,X j / (@ + X S )  ( i  = 1, 2 ,  3) 

dX,/dt = XS( 1 - X4) / (@ + X j )  (A. 18) 
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The equation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 4 ( t )  yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA779 

(A.19) 

where In represents natural logarithm. This approximate solution would yield an error of less than 
10% provided zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa > 10 X4(0). In this case the logarithmic term in (A.19) can be neglected. Also, 
for X 4 ( t )  greater than a few percent, &(o) << X4(t). Thus, the time taken for resistance to evolve 
is approximately given by 

(A.20) t = P/X4(0) = P / ~ P P ( O ) Q Z ( O )  + D(0)l 

(A.21) 

I t  has already been demonstrated that for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ~ ( 0 )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq2(0), 

- p m  = W O )  5 pl (O)p2(0)  

Equation (A.21) shows that as D ( 0 )  + -p%(O), t + m. In the limit for D(O), note that &(0) = 0 
and, since r = 0, the resistant gene will not go to fixation and the population would eventually 
go extinct. When D ( 0 )  = p 1 ( O ) p ~ ( O ) ,  its maximum value, (A.21) yields 

(A.22) 

Thus, as D ( 0 )  increases from 0 to its maximum value, the evolution of resistance becomes more 
rapid, with t decreasing from @ / p I ( O )  to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3/ fz(O).  Note that for a = 0, (A.19) yields t to be 
approximately given by -In(l - X 4 ( t ) )  compared to the exact value of one generation for fixation 
to occur. 

The resistant genes are completely recessive (ha = hb = 0) and r > 0: When r > 0, it is difficult to 
obtain even approximate analytic solutions. The equivalent differential equation for this case is 
given by 

dX,/dt = r,rD - X , X s / P  ( i  = 1 ,  2, 3) (A.23) 

where e,  = + 1  for i = 2, 3 and -1 for i = 1, 4.  Since resistance evolves very rapidly, once the 
frequency of the resistant gene attains a value of approximately lo%, in (A.23) X ?  is neglected in 
comparison with a, which in the present work is taken to be 0.1. Under the same approximation, 
we also have 

dX4ldt = -rD + XS(1 - X 4 ) / P  

dD/dt = -rD + Xs(X1  - ( r  + 2)D)/o 
(A.24) 

Consider first the case in which D ( 0 )  = 0. In the early generations, the rate of increase of X4 is 
governed by the term X s ( 1  - X 4 ) / P  as in (A.18).  As X 4  increases, D ( t )  becomes more positive and 
the rate of increase of X 4  is decelerated because of the term -rD. Thus, resistance evolves more 
slowly. Also, the rate of evolution of resistance decreases with increasing value of r due to the 
-rD term in the equation. If D ( 0 )  # 0, then for sufficiently large values of r ,  initially the absolute 
value of D(t)  would decrease to 0 very rapidly within a few generations, the decrease being 
exponential, given by exp(-rt). Thus, for sufficiently large value of r,  D(t )  would go to 0 in a 
time within which X 4 ( t )  has not changed appreciably from its initial value and, thus, resistance 
would evolve as in the case of D ( 0 )  = 0. This rapid decrease in the initial value of D ( t )  for large 
enough value of r implies that there exists a sharp threshold in the value of r above which the 
rate of evolution of resistance is almost independent of the value of r for all values of D(0) .  This 
is shown in Figures 4 and 5 .  Also, this implies that for large values of r, the evolution of resistance 
is insensitive to the initial choice of D as seen in Figures 6 and 7. Finally, for r > 0, resistance 
would always evolve at a rate slower than that given by (A.19). 

The resistant gene at locus A is recessive (ha = 0) and at locus B is dominant (hb = 1) and r = 0: 
Within the approximation discussed, the differential equations for this case are given by: 

(A.25) 
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TABLE 2 

Comparison of exact and approximate solutions for  the evolution of resistance 

(A.21) 
(A.21) 
(A.21) 
(A.21) 
(A.28) 
(A.29) 
(A.28) 
(A.29) 
(A.28) 
(A.29) 

0.0 
0.8 X lo-' 
0.8 x 10-~  
0.8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 1 0 - ~  
0.0 
0.99 x 10-2 
0.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.0 
0.999 x 10-3 

0.9999 x 10-4 

1 o-2 
1 o-2 
10-3 
10-4 
10-2 
1 o-2 
10-5 
10-3 
10-4 
10-4 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
1 
1 
1 
1 
1 
1 

1122 
19 

147 
1400 

53 
17 

716 
123 

9609 
1122 

1111 
14 

139 
1389 

51 
11 

768 
111 

10234 
1111 

These equations are valid for D ( 0 )  # p 2 ( 0 ) q l ( O ) .  The approximation becomes progressively inac- 
curate as D(0)  moves toward its maximum value of pZ(O)qI(O). When D(0)  = p z ( O ) q l ( O ) ,  the equiv- 
alent approximate equations are 

X,(t)  = 0 

dX4/dt = X:( 1 - X,)/j3 
(A.26) 

The equation for X4 is the same as in the first case (see (A. 18)) when X: is neglected in comparison 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. Thus, as D ( 0 )  increases to its maximum value, the evolution of resistance becomes inde- 
pendent of the values of the effective dominance at one locus, provided the resistant allele at the 
other locus is completely recessive. If, instead of being completely recessive, the heterozygotes 
have a small value of dominance, this independence with respect to the effective dominance at 
the other locus would be destroyed. This can be seen in Figure 3 for hb = 0.02 and r = 0. For 
D(0)  = 0, (A.25) yields the solution 

Since X4(t)  >> &(o), this equation simplifies to 

t = -(B/ps(o))MpZ(o)) 

t = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB/PZ(O) 

Similarly, for D ( 0 )  = pz (O)q l (O) ,  (A.26) yields 

(A.27) 

(A.28) 

(A.29) 

The approximate solutions discussed are compared with exact calculations in Table 2. In this 
table the relevant approximate equations used are also given. It is seen from the table that the 
approximate solutions yield reasonable values over a wide range of parameters. 

Mating before selection 

In the case in which mating precedes selection 

For the approximation Pi, = XjX,, (A.30) reduces to 

x i ( n )  W 4 n ) X r ( n )  + x i (n )A(n)  

2A(n)  
Xi(n + 1) = (A.31) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n) is given by (A.16). In the limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= hb = 0 and r = 0, the approximate differential 
equations for the evolution of resistance are given by 

dXi(t)/dt = -Xi(t)Xq(t)/2(@ + Xq(t)) 

dX,(t)/dt = xZ(t)(l - X4(t))/2(8 + x:( t ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i  = 1, 2, 3) (A.32) 

Comparing (A.32) with (A.18) we get 

tMS = 2t.W (A.33) 

where MS and SM refer to selection after and selection before mating, respectively. For selection 
before mating, resistance evolves at least twice as fast as when mating precedes selection. This 
factor of 2 can be exceeded, depending on the value of r and D(0).  The same factor of 2 occurs 
also for type 2 application when the resistant allele is recessive. In general, the effectiveness of 
type application over type 2 application is not dependent on whether selection acts before or after 
mating. 

Sequential application of two insecticides 

We shall be concerned with the case in which the insecticide A is applied first on its own for 
TA generations until the frequency of the resistant gene, At,  at locus A attains the value p z ( T ~ ) .  
Due to hitch-hiking effect, the frequency of the resistant gene BZ at locus B would change 
from its initial value 9S(0) to the value 92( TA). The maximum deviation from 9S(0) would occur for 
r = 0 and when D ( 0 )  is at its maximum or minimum value. After TA generations, the insecticide 
B is applied on its own for TB generations until the frequency of the resistant gene B2 attains the 
value qZ(T.4 + TB). In practice, ~ s ( T A )  and 9 2 ( T ~  + TB) wuld be 0.1-0.9, depending on the particular 
strategy employed in the management of resistance'. The number of generations for the allele A2 

to reach a given frequency of f Z ( T A )  is independent of the initial linkage disequilibrium, D(O), and 
of the recombination fraction, r .  On the other hand, due to hitch-hiking, 9 2 ( T ~ )  and the time TB 
required for BS to reach the given frequency 92(TA + TB) are dependent on both D(0)  and r. In 
this section this dependence is investigated. We need only consider the situation in which the 
insecticide A is applied first and, hence, the fitness matrix lw$)1 in (A.11). Only the case of 
selection before mating is discussed since the case of mating before selection is similar, apart from 
a factor, as shown in the preceding section. For r = 0, from (A.16) we get 

Xi(n + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) = Xi(n)(a + (1 - c~)h.pz(n)l/A; i = 1, 2 

Xi(n + 1) = Xi(n){a + (1 - &(I - pz(n)) + (1 - a)pz(n)]/a; i = 3, 4 (A.34) 

A = a + (1 - a)12h.(l - f i ~ ( n ) )  + pI(n))  

where p 2  = X S  + X ,  and 92 = X Z  + X,. 

hence, the equations reduce to 
r = 0; D(0) = -pz(O)qz(O): For this case, from (A.34) it is evident that X 4 ( 0 )  = 0 for all n and, 

(A.35) 

(A.36) 

(A.37) 

(A.38) 
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TABLE 3 

Hitch-hiking effect for  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApz(0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= qZ(0) = lo-’ 

116 28 0.955 0.00 -1.0 x 0.45 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 1 0 - ~  

0.05 -1.0 x 0.996 X IO-’ 
0.00 -0.75 X 0.28 X IO-’ 
0.05 -0.75 X 0.997 X IO-’ 

120 2230 0.9995 0.00 -1.0 x 0.5 X 

0.05 -1.0 x 0.996 X IO-’ 

0.05 -0.75 X 0.997 X IO-’ 
0.00 -0.75 X 0.25 x io-’ 

This equation shows the dependence of qZ(t) on p,(t) due to hitch-hiking. As the allele zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA2 ap- 
proaches fixation, the allele B2 goes to extinction. Note that for the case in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD(0)  = 
-p,(O)q2(0) and r = 0, the frequency q Z ( t )  does not depend on the dominance relation of the 
heterozygotes at locus A. As the value of r is slightly increased above 0, q*(t) rapidly approaches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q*(O). Similarly, as D ( 0 )  moves toward 0, q Z ( t )  moves toward qz(0). The effect of increasing r ,  D(0)  
and p 2 ( t )  on the value of q2( t )  is shown in Table 3. The number of generations required for the 
frequency of the allele AS to increase from p ~ ( 0 )  to pz(t), when AS is recessive and when it is 
dominant, is also given in Table 3 under the columns headed t ,  and t d ,  respectively. 

The value of t ,  and t d  can be estimated by solving equation (A.36) for p,(t) and we get 

(A.39) 

(A.40) 

For recessive gene, t ,  is dominated by the first term in (A.39) and the approach to fixation is very 
rapid. For dominant gene, for p z ( t )  < 0.5, the second term in (A.40) dominates and, when p S ( t )  
increases above 0.5, t d  is determined by the first term. Thus, when the resistant gene is dominant, 
its frequency initially rises very rapidly (within five to ten generations) to a value of approximately 
0.5-0.9 and thereafter it increases very slowly at a rate determined by the factor 1/(1 - pS(t)). 

This difference in the behavior between the recessive and the dominant gene can be seen in Table 
3. 

In practical resistance management, insecticide B would replace insecticide A once p S ( t )  has 
attained a value between 0.5 and 0.9. Taking p z ( t )  = 0.9, from (A.39) and (A.40) we get the 
following approximate relations for the number of generations t 2  required for both the resistant 
genes in the population to reach a frequency 2 0.9 when r = 0 and D ( 0 )  = -p2(0)q2(O):  

D(0) = 0: The gametic equations can be written as 

(A.41) 

(A.42) 

where 
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and A is given by (A.16). In (A.42), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -1 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1, 4 and = +1 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 2, 3. For the fitness 
matrix I w $ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 given in (A. 11) 

W I .  = ~ p .  = h.(l - C X ) ~ : !  + CY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 W, 

W S .  = ~ q .  = (1 - a){h.(l - p p )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 2 )  + 01 W, 

Hence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D ( n  + 1) = D(n)lWr(n)Ws(n) - W,(n)Pn(n) - W,(n)(l - pn(n))l 

Thus, if D ( 0 )  = 0, then D ( n )  = 0 for all n. Equation (A.42) thus reduces to 

pz(n + 1) = olpn(n) + (1 - a){ha(l - p z ( n ) )  + pz(n)Ipz(n)/A 

qz(n + 1) = qz(n) 

Thus, when D(0)  = 0, qz(n) = qz(0) for all n and for all r. In this case the number of generations 
required for both the resistant genes to get established in the population is given by: 

t z  = P/Pn(O) + P/qz (O)  :ha = 0; ha = 0 
:ha = 1; hb = 0 
:ha = 0; ha = 1 

(A.43) = P/qz(O) 
= P/P2(0) 
= 22(P + 1) - P In{p2(0)q2(0)) :ha = 1; ha = 1 

D(0) = Maximum value; r = 0: Two cases need to be considered when D(0)  has maximum 

(1) qZ(0) > p2(0). In this case, D(0)  = pZ(O)q1(0) and it can easily be demonstrated that 
possible value: 

dqz(t)ldPz(t) = (1 - qz(t))/(l - PZ(tN 

1 - 42(t)  = (1 - PZ(t))(l - q2(0))/(1 - P 2 ( 0 ) )  

Thus, 

For p2(0), qZ(0) << 1 or for p ~ ( 0 )  = q2(0) we have p z ( t )  = q 2 ( t ) ,  this relation being exact for the 
second condition. In this case, taking p ~ ( t )  = 0.9, we get the following approximate expressions 
for t2, the number of generations for resistance to both the insecticides to get established in the 
population. These relations are independent of the value of hb. 

(A.44) t2 = B/P2(0 )  :ha = 0 

11(8 + 1) - P In pz(0) :ha = 1 

(2) p2(0) > q2(0). In this case D(0)  = p1(O)qz(O) and 

dqz/dpz = q z / p z  

(A.45) 

and for pZ(t)  = 0.9 we have the following approximate relations for t z .  Note that in this case, tz is 
dependent on the dominance relation for insecticide B. 

t2 = P / p m  + 0.9Ppz(O)/q2(0) :ha = 0; ha = 0 

= 11(P + 1) - P In p2(0) + 0.9Pp2(0)/q2(O) :ha = 1; hb = 0 (A.46) 
= P/pz(o) + 11(P + 1) - P In {qz(o)/pz(o)l 

= 22(8 + 1) - 0 In qz(0) 

:ha = 0; ha = 1 

:ha = 1; ha = 1 

As the value of r increases, qz(T.4) decreases toward q2(0) at a rate much slower than in the case 
in which D ( 0 )  = -pZ(O)q2(0) .  Also, in this case the value of q2(TA) is strongly dependent on the 
dominance relation of A2 for r > 0. 


