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Abstract. A model is constructed to study the effects of local mate competition and multiple
mating on the optimum allocation of resources between the male and female reproductive
brood in social hymenopteran colonies from the 'points of view' of the queen (parental
manipulation theory) as well as the workers (kin selection theory). Competition between pairs
of alleles specifying different sex investment ratios is investigated in a game theoretic frame
work. All other things being equal, local mate competition shifts the sex allocation ratio in
favour of females both under queen and worker control. While multiple mating has no effect
on the queen's optimum investment ratio, it leads to a relatively male biased investment ratio
under worker control. Under queen control a true Evolutionarily Stable Strategy (ESS) does
not exist but the 'best' strategy is merely immune from extinction. A true ESS exists under
worker control in colonies with singly mated queens but there is an asymmetry between the
dominant and recessive alleles so that for some values of sex ratio a recessive allele goes to
fixation but a dominant allele with the same properties fails to do so. Under multiple mating,
again, a true ESS does not exist but a frequency dependent. region emerges. The best strategy
here is one that is guaranteed fixation against any competing allele with a lower relative
frequency. Our results emphasize the need to determine levels of local mate competition and
multiple mating before drawing any conclusions regarding the outcome of queen-worker
conflict in social hymenoptera. Multiple mating followed by sperm mixing, both of which are
known to occur in social hymenoptera, lower average genetic relatedness between workers and
their reproductive sisters. This not only shifts the optimum sex ratio from the workers' 'point of
view' in favour of males but also poses problems for the kin selection theory. We show that kin
recognition resulting in the ability to invest in full but not in half sisters reverts the sex ratio
back to that in the case of single mating and thus completely overcomes the hurdles for the
operation of kin selection.

Keywords. Sex ratios; kin selection; local mate competition; polyandry; kin recognition;
social hymenoptera.

1. Introduction

Fisher (1930) showed that in outbreeding populations natural selection would favour

~ equal parental investment in the offspring of each sex. If the population is inbreeding

however, competition for females is predominantly between brothers (local mate

competition) so that natural selection favours a female biased sex ratio (Hamilton

1967). In the extreme case, when there is complete sibmating, a parent 'should' produce.
just enough sons necessary to inseminate all the daughters. These predictions of Fisher

and Hamilton have been repeatedly verified, both theoretically and empirically

(Charnov 1982; Metcalf 1980; Owen 1983; Werren 1980, 1983). Indeed the theory of sex

allocation has in recent years become a cornerstone of evolutionary biology, a status

achieved primarily because of the success with which precise quantitative and

empirically testable predictions have been made (Charnov 1982).
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The theory of sex allocation has assumed importance for yet another reason.

Predictions concerning sex allocation appear to be powerful in choosing between
competing theories purporting to explain the evolution of sociality in insects (for a
recent review see Gadagkar 1985a). A hidden assumption in Fisher's argument of equal

allocation between the two sexes is that a parent is equally related to his or her sons and

daughters. In haplodiploid social insects such as wasps, bees and ants, sterile female
workers often feed and care for their siblings instead of producing their own offspring.

Haplodiploidy, a genetic system where males arise from haploid unfertilized eggs and

females from fertilized, diploid eggs, creates asymmetries in genetic relatedness.
Females are related to their sisters by 3/4 and to their brothers by 1/4. This asymmetry is
in fact an important factor in favour of Hamilton's (1964a, b) theory of the evolution of

social behaviour because it genetically predisposes a hymenopteran worker towards the

evolution of altruistic behaviour. Trivers and Hare (1976) argued, however, that a
worker gains nothing in fitness if she invested equally in brothers and sisters because
her average relatedness to her siblings is 1/2, the same as her average relatedness to her

own offspring. Sterility in workers would be selected if they can capitalise on the

asymmetries in genetic relatedness by investing in their sisters and brothers in the ratio
3: 1. In other words, when workers invest in siblings who are related to them in the ratio

3: 1, natural selection would favour a ratio of allocation paralleling the ratio of

relatedness. The queen who is fertile and who produces the sons and daughters would
on the contrary favour an equal investment in brood of the two sexes in her colony. In

this context there would be a conflict of interests between the queen and the workers in

the optimum ratio of allocation of resources between brood of the two sexes.

The theory of kin selection argues that workers are sterile and act altruistically
towards their sibs because this is the strategy that maximises their inclusive fitness.

Inclusive fitness of an individual may be defined as its total contribution to the gene
pool of the next generation obtained both by the production of offspring and by aiding

genetic relatives. The theory of parental manipulation (Alexander 1974) on the other
hand suggests that workers are sterile because they are manipulated into this state by
their parents. The two theories make mutually opposing predictions regarding the

expected allocation between the two sexes in the reproductive brood in social

hymenopteran colonies. Ifkin selection is responsible for worker sterility and altruism,
then the workers should win in the conflict over the investment ratio and the resultant

sex-investment ratio observed should be 3: 1. If worker sterility and altruism are a
consequence of parental manipulation instead, queens should be successful in

manipulating the workers into investing equally in reproductives of the two sexes and a
1: 1 ratio of investment is expected. Trivers and Hare (1976) weighed male and female

reproductives in a number of monogynous ant colonies and showed that the
observed ratios of investment were significantly closer to 3: 1 than 1: 1 and concluded
that their data are uniquely explained by kin selection theory.

The predictions and conclusions of Trivers and Hare (1976) depend on the

assumption that the social insects under consideration are outbreeding and that the

queens mate only once. Under inbreeding or local mate competition (LMC), the queens
too would prefer a female biased investment ratio (Hatnilton 1967) and the 3: 1 ratio

seen by Trivers and Hare may have nothing to do with workers realising their optimum
investment ratio as opposed to the queens' optimum value (Alexander and Sherman

1977). Similarly, if the queens mate W,ith more than one male then the relatedness
between the workers and the reproductive sisters they rear will no longer be ~/4 but

distributed anywhere between 3/4 (full sisters) and 1/4 (half sisters), Under these
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conditions the predictions used by Trivers and Hare (1976) are no longer valid

(Alexander and Sherman 1977). B(jth LMC and multiple mating by queens are known to

occur in social hymenoptera although their intensities might vary widely (Alexander

and Sherman 1977; Page and Metcalf 1982; Crozier 1980). While multiple mating has

long been recognised to be common in hymenoptera (see Wilson 1971) it has often been

assumed that sperms from different males clump in the spermatheca of the femaies

leading to use of sperm from a single male for extended periods of time (see Orlove

1975, for example; see Crozier and Bruckner 1981, and Starr 1984, for detailed

discussions of other available data). However, in the only case where careful

investigation has gone into this question it is clear that sperms do not clump (Page and

Metcalf 1982).

When multiple mating results in a lowered average genetic relatedness between

workers and reproductives in a colony this not only alters the expected sex-investment

ratio from the workers' 'point of view' but may also be considered as a factor against kin

selection (Hamilton 1964b; Wilson 1971). It may be argued however that 'workers can

circumvent the problem of multiple insemination' by kin recognition leading to

investment in full sisters but not in half-sisters (Page and Metcalf 1982).

In recent years a number of theoretical investigations relating to the evolution of sex

ratios in social hymenoptera have been undertaken. Stimulated in part by the work of

Trivers and Hare (1976)who predicted a 3: 1 investment ratio under worker control and

a 1: 1 ratio under queen control, several authors have confirmed these predictions by

rigorous methods (Oster et al 1977; MacNair 1978; Craig 1980a; Uyenoyama and

Bengtsson 1981; Charnov 1978a). Other factors such as LMC and worker-queen conflict

have also occasionally been considered (Taylor and Bulmer 1980; Oster et al 1977;

Bulmer 1981; Benford 1978). Our intention here is to simultaneously consider the

effects of LMC, polyandry and kin recognition and generate predictions regarding

optimum sex allocation ratios in the frame work of the kin selection and the parental

manipulation theories. In this paper we are only working within the context of the

Trivers and Hare (1976) and Alexander and Sherman (1977) arguments in our efforts to

recalcul;lte what in fact should have been the theoretical predictions of the former

authors, had they taken the points made by the latter into consideration. It should be

mentioned that the importance of female biased sex ratios in the evolution of

eusociality is not universally agreed upon. Craig's (1979, 1980b) models for instance

suggest that female biased sex ratios are not likely to have been very useful for the

origin of eusoci~l behaviour. In the maintenance of already existing eusocial behaviour,

Charnov (1978b) points out that selecti°.n for egg laying by workers is very strong even

if they are rearing a "seemingly advantageous" combination of brothers and sisters.

2. The model

We consider an infinite population of social insect colonies. Each colony is initiated by a

single inseminated female (queen), whose all-female first brood consists entirely of

workers. The subsequent brood consisting of both male and female reproductives is fed

and cared for by the workers. The queen dies after the emergence of reproductives.

From each nest a fraction d of both male and female reproductives disperses to join a

mating aggregate where random mating takes place. On the other hand, sibmating

takes place within the fraction (1 -d) remaining at each nest. After mating the males die

and each inseminated female initiates a new nest. Thus d parametrises local mate
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competition, with d = 1 corresponding to complete outbreeding, and d = 0 complete

inbreeding. We have of course modelled LMC in this fashion for convenience. LMC could

occur even in the absence of sibmating if, for instance, the males from one nest all

attempt to mate with the females of a neighbouring, though unrelated nest.

The sex ratio trait is modelled by a one-locus-two allele system. The allele A being

dominant, individuals with genotype AA and AB produce a fraction r A of males among

their reproductive progeny, while those of genotype BB produce a fraction r B of males.

For simplicity we have assumed that investment ratio is directly translated into sex

ratio.

2.1 Queen control of the investment ratio

Even if the optimum investment ratio is different for the queen and the workers, the

queen could in principle manipulate the workers into feeding her reproductive

offspring in the ratio optimum for her. This is modelled by adjusting the sex ratio of the

reproductive offspring according to the genotype of the queen.

If queens mate only once, there will be six types of inseminated females, AA.A, AA.B,

AB.A, AB.B, BB.A and BB.B (where the first two letters refer to the queen's genotype

and the third to the genotype of the male she has mated with i.e., of the sperm stored in

her spermatheca). Each inseminated female contributes genes to the next generation by

three pathways: (1) through the sons which join the mating aggregate, (2) the daughters

which join the mating aggregate, (3) the sibmated daughters. The quantitative details

about the contributions from each of the six types of inseminated females are described

in table Al (appendix).

Thus knowing the frequencies P AA.A(n), P AA.B(n). ..., PBB.B(n) of each of the

classes in the nth generation, one can obtain the frequencies P AA.A

(n + 1), ...etc. in the next generation. Since all the frequencies add up to unity, the

dynamics is described by a system of five coupled nonlinear difference equations (see

appendix).
To study the competition between two alternative sex ratio strategies r A and rB, we

consider a population purely of type AA.A, into which a small proportion of

inseminated females containing the B gene is introduced. For this situation, the above

system of five nonlinear coupled equations can be approximated by a system of five

linear difference equations. As shown in the appendix, the elements of the' relevant

transformation matrix G' are functions of r A' r Band d alone.

If the dominant eigenvalue of the matrix G' is greater than unity the proportion of B

increases with time and we say that A is invadable by B. Conversely, if the eigenvalue is

less than unity, A is uninvadable by B. Similarly, we can investigate whether a pure

population of B is invadable by A.

Ifpure A is un invadable by B while B is invadable by A then A would be selected for

and would go to fixation. If both pure A and pure Bare un invadable, frequency

dependent selection is implied (whichever establishes itself first wins). Finally if both

pure A and pure B are invadable, co-existence of the two alleles is indicated.

For different values of r A (the proportion of males specified by the dominant allele),

rB (proportion of males specified by the recessive allele) and d, the parameter

characterizing local mate competition, we have investigated the dynamics of the system

to determine which of the above conditions prevail viz. one of the two alleles going to

fixation, the two alleles coexisting, or frequency dependent selection.
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2.2 Worker control of investment ratios

Trivers and Hare (1976) assumed that "the offspring is capable of acting counter to its

parents' best interests" and thus workers should be able to feed the reproductive brood

in the ratio that optimises their inclusive fitness. Once again making the simplifying

assumption that investment ratios are directly translated into sex ratios, this is

modelled simply by adjusting the sex ratio of the reproductive brood in accordance

with the genotype of the workers. For instance queens of the type AB.B will produce

workers of the type AB and BB in equal proportions. Although some investigators have

considered the possibility of workers of one genotype behaviourally dominating over

workers of other genotypes (Charnov 1978; Craig 1980; Pamilo 1982; Bulmer 1983) we

agree with Bulmer (1983) that additivity seems biologically more likely. Thus in a

colony with AB and BB workers in equal numbers, the proportion of males in the

reproductive brood is taken to be (r A + r ~/2. Thus (r A + r ~/4 males each of type A and

Band t[l -(r A + r ~/2] females each of type AB and BB are produced in a colony

initiated by an inseminated female of type AB.B.

2.3 Polyandry

When queens mate with more than one male, they are assumed to mate with males of

different genotypes in the proportion that males of these genotypes are represented in

the population (at the nest site in the case of sibmating or at the mating aggregate in the

case of outbreeding). Equal numbers of sperms of each male are assumed to be stored in

the spermatheca which are then used randomly. Thus in a system of 2 alleles, if every

female mates twice there will be 9 types of inseminated females, AA.A.A, AA.A.B,

AA.B.B, AB.A.A, AB.A.B, AB.B.B, BB.A.A, BB.A.B, and BB.B.B, where the first two

letters refer to the genotype of the female and the last two letters refer to the genotypes

of the 2 males she has mated with. Similarly, one can write down the genotypes of

inseminated females for any specified number of matings. For different numbers of

matings we have investigated the outcome of competition between alternative sex ratio

alleles both under queen and worker control.

2.4 Evolution of kin recognition

In the previous section the workers were assumed to invest in all brothers and sisters

irrespective of their relatedness (i.e., full sisters and half sisters were not distinguished).

Here we investigate the case where workers can distinguish genetic relatedness and will

invest in their full sisters, but not their half sisters. Multiple mating by the queen does

not make any difference in the case of brothers as there can be no half brothers in a

haplodiploid system.
We also model kin recognition by a one-locus-two allele system. Now allele A in

addition to coding for r A proportion of males also confers ability to recognise kin. Bon

the other hand codes for r A proportion of males but does not confer ability to recognise

kin. Instead of assuming that if the ability to recognise kin is dominant, the sex ratio

specified by that allele is necessarily dominant, we have considered all possible

combinations of dominance and recessiveness of kin recognition ability and sex ratio.
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We have considered a two-insemination case for simplicity. This implies nine types of

, inseminated females, AA.A.A, AA.A.B, ...BB.B.B. The contributions to the next

generation from each of these genotypes are calculated in a manner analogous to the

queen control case described in the appendix.

The invadability of A and B by each other for various values of r A' rB and d was

investigated using procedures similar to those described in the earlier sections.

2.5 Optimal sex ratio under kin recognition

Here we assume that the kin recognition gene has gone to fixation and investigate how

the competing genotypes specifying alternative sex ratio strategies would fare against

each other. We again consider a two-insemination case. As mentioned earlier since there

are no half brothers each worker treats all the males in the nest equally. On the other

hand, the investment meant for the female reproductives is used only for its full sisters,

ignoring the half sisters completely.

For example, in a colony founded by a AA.A.B female, the daughters would be of

genotype AA and AB, each type being full sisters amongst themselves but half sisters of

each other. Hence AA females would invest only in AA females and brothers, while AB

females would invest only in AB females and brothers. In a colony founded by a female

of the type AB.A.A on the other hand, there would still be two lines of full sisters but

both would contain equal numbers of females of the genotype AA and AB. In other

words full sisters and half sisters are decided by which father the sperm has come from

and not by the genotype with reference to the alleles A and B in our model; these alleles

are merely sex investment ratio determining alleles. We assume therefore that both AA

and AB females would invest in males on the one hand and equally in AA and AB

females on the other. In contrast, in a colony founded by females of the type AB.A.B

there would again be two lines of full sisters, one consisting of AA and AB females and

the other of BB and AB females. While each type of worker will allocate resources

between brothers and sisters depending on its genotype, resources meant for the sisters

will be subdivided in the following manner. AA workers will invest equally in AA

females and 50 % of the AB females who are their full sisters. BB females will similarly

invest equally in BB females and the remaining 50 % of AB females who are their full

sisters. As for AB females, the first 50 % who are full sisters of AA females will invest

equally in AA females and in that 50 % of AB females who are their full sisters. Similarly

the other 50 % of AB females who are full sisters of BB females will invest equally in BB

females and the remaining 50 % of AB females who are their full sisters. Using this

formulation, we have investigated the outcome of competition between alternate sex

ratio alleles under worker control when kin recognition is present.

3. Results

3.1 Evolutionarily stable strategies

What would be the sex investment strategies favoured by Natural Selection? We should

look for those strategies which would go to fixation against competition from any other

strategy. This can be readily done by a glance at the fate maps which present the results

of competition between pairs of genotypes specifying different sex investment ratios.
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We illustrate this with schematic diagrams in figure 1 where values on the abscissa are

proportions of male offspring specified by the dominant allele A and those on the

ordinate by the recessive allele B. The diagonal is an equifitness line where the two

alleles are indistinguishable with respect to the sex ratios. As described earlier, when the

largest eigenvalue (A) of the transition matrix G (appendix) is greater than 1, the resident

allele can be invaded, whereas if it is less than i it cannot be invaded (in all the cases

investigated the largest eigenvalue was always real). The set of pairs of r A and rB which
correspond to A = 1 thus forms a boundary between regions of stability and instability.

Two such lines, along with the diagonal, divide the coordinate space into three kinds of

regions (figure 1) viz A, where the dominant allele A goes to fixation, B, where the

recessive allele B goes to fixation and C, where the two alleles coexist.

To see which strategy will be favoured by natural selection notice from figure la that

when the dominant allele takes a value f A it would go to fixation irrespective of the value

taken by the other allele. In other words, this value of f A represents an evolutionarily

stable strategy (ESS) (Maynard Smith 1974; for a lucid introduction to the concept of

ESS, see Maynard Smith 1982).

It is possible, however, that no true ESS exists. In figure 1 b for instance, whatever

value one of the alleles takes, there is always a strategy open for the competing allele to

invade. Notice that in figure 1 b if the allele A takes the value f A it may be invaded but

never eliminated altogether, no matter what value is taken by the allele B. We shall

henceforth call this an ESS of the coexistence kind. When the two lines separating the

regions of stability and instability do not intersect the diagonal at the same point there

emerges a fourth kind of region in the co-ordinate space, a region of frequency

dependence denoted by F in figure lc. In this region that allele goes to fixation which

has a higher initial frequency. Now if allele A takes the value fAit is stable against

invasion by any strategy of the competing allele. However f A cannot be called a true ESS

because there are also some strategies that the competing allele can adopt against

invasion by fA (within the region of frequency dependence). We shall henceforth refer to

this as an ESS of the frequency dependence kind. The conditions under which these

different kinds of ESS will obtain are described in detail in Gadgil et at (198O, 1983).
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Figure I. IIIustrative fate maps showing schematically (a) 1rue ESS, (b) ESS of the coexistence

kind, and (c) Essofthe frequency dependence kind. In the coordinate space of the proportion

of males specified by two alleles, A is the area where allele A goes to fixation, B, the area where

allele B goes to fixation, C, where the two alleles coexist, and F, the region of frequency

dependence (shown as dotted region in c). r A is the ESS for allele A and rB the ESS for allele B.
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Figure 3. ESS proportion of males (f) is plotted as a function of the fraction of offspring
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Figure 4. Fate map for competition between dominant and recessive alleles specifying sex

ratios under worker control in colonies with single inseminated queens or double insemination

with kin recognition. The regions denoted by D, Rand C correspond to the dominant allele

going to fixation, the recessive allele going to fixation and stable coexistence of the two alleles

respectively.

3.2b »hen workers control the ratio of investment: Now let us consider the situation

when workers rather than queens decide the optimum ratio of allocation of resources

between the two sexes. Once again in colonies with singly mated queens we have studied

competition, under different levels of local mate competition, between alleles specifying

different sex allocation ratios. A typical fate map (at d = 0'5) (figure 4) shows that the
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pattern is similar to that depicted in figure la where a true ESS exists. Notice however
that the fate map is asymmetrical, with the regions where the dominant allele goes to

fixation being smaller than those where the recessive allele does. For instance (figure 4),
a recessive allele producing 10 % males always eliminates a dominant allele that

produces 50 % males. On the other hand, if the allele specifying 10% males is dominant
and the allele specifying 50 % males is recessive then both alleles coexist at frequencies

of 0.734 and 0.256 for the dominant and recessive alleles respectively (table 1, columns

1-4). In other words, a recessive allele goes to fixation while a dominant allele with the

same properties fails to do so. Notice that this is different from the well known
phenomenon of it being harder to completely eliminate a recessive disadvantageous

allele when compared to a dominant disadvantageous allele.
We do not completely understand this rather surprising result but offer the following }

speculation. Consider how the sex ratio is determined in colonies having more than one
genotype. For example in a system of 2 alleles, each colony being initiated by one singly

inseminated female, there would be six types of colonies (table 2, row 1). From the
genotypes of the queens and that of their mates we can write down the genotypic

Table I. Genotypic and phenotypic equilibrium sex ratios for dominant and recessive

alleles

Proportion of males Equilibrium frequency Proportion of males obser-

specified by genotypes of alleles ved at equilibrium

Dominant Recessive Dominant Recessive Dominant Recessive

allele allele allele allele allele allele

0-5 0-1 0-0 1.0 -0.1

0.1 0-5 0,734 0-266 0-120 0'198

0-7 0.1 0-0 1.0 -0.1

0-1 0-7 0-804 0.196 0-118 0-206

Table 2. Genotypes of queens, reproductive and worker offspring, and sex ratio of reproductive

offspring in different types of nests in a system of one-locus two alleles coding for sex ratio

Genotype of inseminated .

queen AA.At AA.B AB.A AB.B BB.A BB.B

Genotype of male repro-

ductive offspring A A A or B A or B B B

Genotype of female repro-
ductive offspring AA AB AA or AB AB or BB AB BB '0

Genotype of worker off-

spring AA AB AA or AB AB or BB AB BB

Sex ratio of reproductives :,

when A is dominant ',4',4 ',4 (',4+'s)/2,,4 's

Sex ratio of reproductives

when Aisrecessive ',4'S (',4+'s)/2 's 's'S

tThe first two letters refer to the genotype of the queen while the third letter refers to the

genotype of the male she has mated with i.e., the sperm she carries in her spermatheca.
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composition of the reprbductive brood as well as of the workers in each type of colony

(table 2, rows 2-4). Sbtt1e colonies are pure with respect to A or B while others have a

substantial representation of both alleles. Let the allele A be advantageous compared to

B. When A is dominant, the phenotypic sex ratio corresponds to that advantageous

value specified by A, both in the colonies with pure A as well as to some extent in the

mixed colonies (t!1ble 2, row 5). Thus some of this advantage is also conferred on the

allele B as a result of which it is never completely eliminated. On the contrary when A is

recessive the phenotypic seX ratio corresponds to this value only in the pure A colonies

so that none of the advantage is lost to the allele B (table 2, row 6). In such a situation A

is therefore able to eliminate B altogether. This kind of asymmetry between a dominant

and recessive allele seems, therefore, to be because of the fact that the advantageous

dominant allele also biases the sex ratio of the bearers of the other allele in the favoured

direction, whereas a recessive allele does not do so. If this argument were correct one

would predict that when A is dominant and the two alleles coexist, the phenotypic sex

ratio of B at equilibrium should be closer to that specified by A (advantageous) rather

than by B (disadvantageous). This is indeed what is seen when we look at the

phenotypic sex ratios of the two coexisting alleles at equilibrium (table 1, columns 5

and 6).

We saw in the previbus section that local mate competition leads to a female biased

sex ratio under queen control. When workers control the ratio of investment this

optimum sex ratio is even more female biased (figure 3). The quantitative relationship

between ESS sex ratio and levels of LMC (d) is described by

r = d/(3 + d) (2)

In the absence of LMC (d = 1.0) the optimum sex ratio under worker control is 3: 1 in

favour of females as predicted by Trivers and Hare (1976).

3.3 Polyandry

When queens mate with males of more than one genotype their daughters would no

longer be all full sisters of each other. Since some of the daughters of the queen become

reproductives and others workers, the genetic relationship between an average worker

and the average reproductive would not be 3/4 as in the case of single mating but lower.

The optimum sex ratio from the workers point of view would therefore be different as a

consequence of polyandry. The genetic relationship between the queen and her

daughters however, is not altered by multiple mating. The optimum sex ratio from the

queen's 'point of view' is therefore not altered by polyandry.

As expected, our analysis shows that the results remain unaltered under polyandry

when queens control the ratio of investment. On the other hand, there are striking

differences in the results under worker control. Considering the case of 2 matings we

have studied the competition of alleles specifying different sex ratios, once again under

different levels of LMC. The results show that the fate maps (shown for d = 0.5 in

figure 5) are now similar to that shown in figure lc where a region of frequency

dependence emerges. This leads to an ESS of the frequency dependence kind. Besides, the

ESS for the dominant allele is different (although only slightly) from that for the recessive

allele. The kind of asymmetry between the dominant and recessive alleles seen in the

single mating case still persists although considerably reduced. This is probably because
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this question at the theoretical level taking LMC and polyandry explicitly into

consideration. We have calculated the optimum sex allocation ratios from the points of

view of the queen (parental manipulation) and workers (kin selection) at different levels

of LMC and polyandry. All other things being equal LMC makes the sex ratio increasingly

female biased under both situations. Polyandry however has no influence on the sex

ratio under queen control but leads to a relatively male biased sex ratio under worker

control. In investigating competition between alleles specifying different sex investment

ratios we have normally considered the two competing alleles to be a dominant-

recessive pair. Considering them to be codominant, however, does not qualitatively alter

any of our conclusions although the fate maps, as one might expect, become

symmetrical.
A rather unexpected result to emerge from our studies is an asymmetry between the

dominant and recessive alleles such that for a particular pair of sex ratio strategies one of

them would go to fixation if it is recessive but not if it is dominant. In the latter case, it

would coexist with its competitor. We have sought to explain this phenomenon by

showing that an advantageous dominant allele does not go to fixation because it also

biases the sex ratio of its competitor while a recessive allele's effect on the phenotypic sex

ratio is largely confined to itself. We would like to point out that if this explanation were

correct it would have wider implications for the evolution of altruistic behaviour; in

fact, for any trait that makes its bearer behave altruistically towards a con specific

without regard to the degree of genetic relatedness.

Maynard Smith (1974) has introduced the concept of evolutionarily stable

strategy which is defined as a strategy which is \Jnbeatable by any other

(schematically illustrated in figure la, see also figure 4). In our analysis we found two

additional kinds of evolutionarily stable strategies namely that of the coexistence kind

(schematically illustrated in figure 1 b, see also figure 2), which guarantees its bearer at

least coexistence with any possible competitor, and of the frequency dependence kind

(schematically illustrated in figure 1c, see also figure 5), which guarantees its bearer

fixation against any competitor provided it is the first to arrive. In our present analysis,

these two additional kinds of ESS may be taken to be true ESS for all practical purposes.

In figure 2 showing the ESS of the coexistence kind, the frequency of the competitor to

the ESS falls off very sharply as we move away from the ESS itself. Similarly in figure 5

representing ESS of the frequency dependence kind, the region of frequency dependence

is very small, While small in magnitude, these are by no means artefacts and might well

turn out to be phenomena of greater significance in other situations.

Taylor and Bulmer (1980) have modelled a scenario consisting of a number of

patches, each being colonised by one or more inseminated females, and the offspring

mating within the patch before dispersal. Working only within the context of queen
control they derive a relationship between the optimum investment ratio (r) and ~

number of females (n) colonising a patch,

r=[(n-1)(2n-1)]/[n(4n-1)]. (3) ']

Here LMC is a function of n. In a patch colonised by n females, the proportion of

offspring of any female undergoing sibmating would be l/n which is equivalent to 1 -d

in our model. Equating d to (n -l)/n, (3) is equivalent to our expression for the

optimum sex ratio under queen control (1). It must be pointed out that Hamilton (1979)

has also arrived at the same expression while modelling dimorphism in fig wasps and

that Herre (1985) has derived a more general expression delineating the effects of LMC

and inbreeding.
,
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As expected the ability to recognise kin and invest differentially in full sisters as

opposed to half sisters completely counteracts the effects of multiple mating. This result

therefore suggests that multiple mating need not necessarily pose any problems for the

operation of kin selection. On the other hand, the fact that kin recognition is possible

does not automatically provide evidence for kin selection. Even under multiple mating

and kin recognition different sex ratios are expected under queen (parental manipu-

lation) and worker (kin selection) control.

Our results emphasize the need to determine the probable levels of LMC and multipie

mating, and the possibility of workers differentially investing in full sisters as opposed

to half sisters, under field conditions before drawing any conclusions regarding the

outcome of worker-queen conflict in social insect colonies. Consider for instance, a 3 : 1

ratio being taken as evidence of worker control (Trivers and Hare 1976). Notice

from our results in figure 3 that a 3: 1 ratio is predicted under (i) worker control for

complete outbreeding and single mating, (ii) queen control for d = 0.57, (iii) worker

control with doubly mated queens for d = 0.75, (iv) worker control for complete

outbreeding and double mating but with kin recognition. At present, field data on LMC

and polyandry in social hymenoptera are rather scanty. Kin recognition has been

repeatedly demonstrated (Greenberg 1979; Getz and Smith 1983; Breed 1981; Klahn

and Gamboa 1983) but the ability to distinguish between full and half sisters within a

single colony has not been demonstrated so far (Gadagkar 1985b). An empirical study

designed to simultaneously gather quantitative information on sex investment ratios,

LMC, multiple mating and kin recognition is now essential and well within the realm of

possibility due to the increasing application of electrophoretic methods (Metcalf 1980).

We would like to point out however that factors other than LMC, parental manipulation

and kin recognition may also significantly affect the sex ratio. It may therefore be

necessary to take these also into account. Significant among such additional factors

might be worker oviposition (Benford 1978; Owen and Plowright 1982), orphaned

colonies producing male biased sex ratios leading to female biased sex ratios among the

remaining queen-right colonies (Owen et al 1980), multi-locus control of sex ratios

leading to sex ratio polymorphism (Pamilo 1982), fluctuating sex ratios because of

populations being away from equilibrium (Herbers 1979; MacNair 1978), and sex ratio

being responsive to proximate factors (Herre 1985; Werren 1980, 1983).

Appendix

We describe the procedure for obtaining the frequency distribution of the different

types of inseminated females at the (n + l)th generation, given the distribution at the

.nth generation. For the two alleles A and B (with A dominant over B), the proportion of

male offspring is r A and rB respectively. A fraction d of the offspring (of both the sexes)

disperses from the nest to join a mating pool, while sibmating takes place in the fraction

I-d.

For the queen control, single insemination case, let the frequencies of the six possible

types of inseminated females be denoted by P AA.A' P AA.B'. .., P BB.B (where the first two

letters of the subscript stand for the genotype of the female and the third for the

genotype of the male she has mated with).

From table AI, it can be seen that the total number of females produced would be

given by (assuming, without loss of generality, the brood size to be unity),

Nf = (P AA.A+P AA.B+P AB.A+P AB,B)(I-rA)+(PBB.A+PBB.B)rB.
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The number of AA females in the mating pool is given by

M AA = d.P AA.A(1 -r A) + (d/2) (1 -r A)P AB.A

The number of A males in the mating pool is

MA = d.r A(P AA.A+P AA.B+!P AB.A+iP AB.B).

Hence, the number of AA females which will be inseminated by A males is given by

°AA.A = MAA.M../dN.,

since dN. is the total number of males in the pool. It is also seen from table A 1 that the

number of inseminated females of the type AA.A resulting from sibmating is given by

SAA.A = (I-d)(I-r A) (P AA.A +P AB.A/4).

Hence, the frequency of AA.A in the next generation is given by

P AA.A(n + 1) = (S AA.A + 0 AA.A)/N f.

In a similar manner, one can compute the frequencies in the next generation for the

other types of females. Since all the frequencies add up to one, one needs only five such

equations. By suitable algebraic manipulations, in fact, one can write

[P AA.A(n+ I),P AA.B(n+ 1),... 'PBB.A(n+ I)]T

= G.[P AA.A(n),... PBB.A(n)]T, (AI)

where G is a 5 x 5 matrix, whose elements are functions of d, r,4, r Band P AA.A' ...,

PBB.A'
If one considers a pure population of A invaded by a small proportion of B, the

frequencies P AA.B' ..., P BB.A would be very small. Denoting the frequency of P AA.A by

1 -e AA.A' one can rewrite (AI) in the form

[-eAA.A(n+ I),P AA.B(n+ 1),... 'PBB.A(n+ I)]T

=G'[-eAA.A(n)'...'PBB.A(n+I)]T. (A2)

Since the terms involving products and higher powers of e AA.A' P AA.B etc. can be

neglected, the elements of the matrix G' become functions only .of r.., rB and d, i.e., the

nonlinear system (AI) is replaced by a linear system (A2).

The eigenvalues of G' are now computed and if the real part of the largest eigenvalue

is greater than unity, it implies that the allele B can invade a population of pure A, while

.if it is less than unity, the allele B is unable to invade A. Stability analysis for other

situations like worker control, multiple mating and kin recognition can be carried out

in an analogous manner.
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