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Evolution of stabilised creeping landslides

A. M. PUZRIN� and A. SCHMID�

A simple analytical model is proposed to quantify evolu-
tion of a creeping landslide stabilised by a retaining wall,
or by a natural barrier at the bottom of the sliding mass.
Development in time of both the landslide displacements
and the earth pressure acting on the retaining structure
is obtained in the closed form, with the latter given by
the classical Terzaghi expression for the average degree
of consolidation. Depending on the value of the long-term
safety factor, the landslide either eventually slows down,
asymptotically approaching final displacements, or the
soil behind the retaining wall comes to a passive failure,
followed by a post-failure evolution of the landslide. The
model is capable of quantifying both scenarios, with some
of its features successfully validated against the monitor-
ing and geotechnical data from the two case studies: the
Combe Chopin and Ganter landslides in Switzerland. For
the Combe Chopin landslide, which came to a standstill,
the model has demonstrated its ability to predict final
downhill displacements and their development in time.
For the Ganter landslide, which failed and achieved
steady-state velocity, the model correctly predicted the
long-term landslide evolution and the effects of drainage
and erosion on the displacement rates.
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La présente communication propose un simple modèle
analytique permettant de quantifier l’évolution d’une
glissement de terrain progressif stabilisé par un mur de
retenue, ou par la présence d’une barrière naturelle au
bas de la masse glissante. On obtient, sous forme fermée,
le développement en fonction du temps des déplacements
du glissement de terrain et de la pression de la terre
agissant sur la structure de retenue, cette dernière étant
fournie par l’expression classique de Terzaghi pour le
degré de consolidation moyen. En fonction de la valeur
du facteur de sécurité à long terme, soit le glissement de
terrain finit par ralentir, avec approche asymptotique des
déplacements finaux, soit le sol situé derrière le mur de
retenue atteint un point de rupture passive, suivi d’une
évolution post-rupture du glissement de terrain. Le mod-
èle est en mesure de quantifier les deux scénarios, avec
validation de certaines de ses fonctions avec le contrôle et
les données géotechniques des deux études de cas sui-
vantes: les glissements de terrain de Combe Chopin et de
Ganter, en Suisse. En ce qui concerne le glissement de
terrain de Combe Chopin, qui s’est arrêté, le modèle a
permis de démontrer sa capacité de prédire les déplace-
ments finaux vers le bas, et son évolution progressive.
Pour ce qui est du glissement de terrain de Ganter, avec
rupture et développement d’une vitesse stable, le modèle
a permis de prédire correctement l’évolution du glisse-
ment de terrain à long terme, ainsi que les effets du
drainage et de l’érosion sur les vitesses de déplacement.

INTRODUCTION
Creeping landslides are a common feature in mountainous
areas, and cause significant damage to buildings and infra-
structure. The long-term stability of slowly moving land-
slides was a subject of early interest in soil mechanics (e.g.
Terzaghi, 1936, 1950; Skempton, 1964; Skempton & La
Rochelle, 1965; Bjerrum, 1967). In these studies, the analy-
sis focused mainly on progressive failure in overconsolidated
clays, where the failure is delayed in time by the develop-
ment of the negative excess pore water pressure caused by
shearing. As soon as this excess pore water pressure dis-
sipated, the landslides, which did not have any kinematic
constraints, accelerated and failed.

Understanding of the failure mechanisms of creeping
landslides continues to be of critical importance for assess-
ment and mitigation of their hazard (Glastonbury & Fell,
2008; Schulz et al., 2009). In general, when a creeping
landslide is constrained by an obstacle – either natural (a
rock outcrop) or artificial (a retaining wall) – it slows down,
creating an impression of being stabilised (Bernander &
Olofsson, 1981; Wiberg et al., 1990; Puzrin & Sterba,
2006). Sometimes, however, as in the case of the St. Moritz-
Brattas landslide in Switzerland, the stabilisation phase is
succeeded by acceleration, which in this case was caused by

passive failure in the compression zone (Puzrin & Schmid,
2011).

In order to explain the St. Moritz landslide phenomenon,
Puzrin & Schmid (2011) suggested a progressive failure
mechanism based on the propagation of a shear band (where
the shear strength drops to its residual value) into the com-
pression zone along the slip surface of the landslide. This
mechanism cannot, however, be applied to many landslides,
which were stabilised after experiencing significant displace-
ments along the entire slip surface, so that the shear strength
had dropped to its residual value everywhere on the slip
surface, before the landslide met the obstacle. The present
paper is an attempt to suggest a mechanism covering this
broader class of stabilised landslides.

Stabilisation of creeping landslides is normally attempted
by constructing a drainage system in the landslide body. The
efficiency of such a system depends on many factors, and in
particular on how long such a system can remain open (i.e.
not blocked by the fines) and intact (considering large
inhomogeneous deformations in the sliding body). When the
reliability of the drainage system is questionable, in smaller
landslides it is often replaced by or combined with a
retaining wall, protecting the infrastructure. Construction of
the retaining wall creates an obstacle for the landslide,
which initially slows down, in particular in its lower portion.
If, however, the residual shear strength on the sliding surface
is rate dependent, this apparent stabilisation can be accom-
panied by an increase of the earth pressures behind the
retaining wall. If these pressures reach the passive earth
pressure, the soil in the compression zone behind the wall
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may collapse, and the landslide will overflow the retaining
structure. The landslide will then continue moving, even-
tually reaching a constant velocity again.
The purpose of this paper is to quantify this evolution

of stabilised landslides by means of a simple analytical
model, and to validate the model against the monitoring
data from the Combe Chopin and Ganter landslides in
Switzerland.

THE MODEL
Assumptions
The schematic layout of a landslide constrained by a

retaining structure is shown in Fig. 1. The landslide state is
characterised by displacements �(x, t ), velocities _�(x, t) and
effective normal stresses p(x, t ), all parallel to the slope and
averaged over the thickness of the sliding layer – that is,
uniform with depth. Before being stabilised (stabilisation
taking place at t ¼ 0), the landslide is assumed to have
constant effective stress p0 and be moving with constant
velocity v0, both values being uniformly distributed along
the landslide length

p x, tð Þ ¼ p0 ¼ const (1a)

_� x, tð Þ ¼ v0 ¼ const (1b)

both for t , 0.
Provided the landslide has travelled sufficiently far before

its stabilisation, the pressure at the lower and upper bound-
aries of the sliding layer and, as a consequence of assump-
tions (1), along the entire sliding layer, will become close to
the active earth pressure, p0 � pa, and the residual strength
�� will be fully mobilised along the entire sliding surface.
At the moment of landslide stabilisation (t ¼ 0), the land-

slide displacements are taken as a reference (i.e. �(x,
0) ¼ 0), and the retaining wall becomes the boundary of

zero velocity for future landslide evolution (t > 0):
_�(0, t) ¼ 0: The velocities in the sliding layer gradually
begin to decrease, and the pressures to increase, with only
the pressure at the upper boundary of the sliding layer
remaining constant: p(L, t ) ¼ p0:

This increase in pressures is due to the rate dependence
of the residual strength on the sliding layer, which is
assumed to exhibit rigid viscous-plastic behaviour (Fig.
2(a)),

�� ¼ � r þ �
@�

@ t
¼ � r þ � _� (2)

where �� is the residual shear strength of soil on the sliding
surface, �r is the rate-independent component of the residual
shear strength, and � is the viscosity coefficient. Soil behav-
iour in the sliding layer is assumed to be elasto-plastic (Fig.
2(b)), so that

p ¼ p0 þ E� ¼ p0 þ E
@�

@x
(3)

for p , pp, where E is the deformation modulus of the soil,
and pp is the passive earth pressure.

Differential equation
Equilibrium of the sliding layer (Fig. 3) can be expressed

as

h
@ p

@x
¼ �� � �g (4)

where

�g ¼ ªh sinÆ (5)

is the gravitational shear stress.
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Fig. 1. Schematic layout of landslide constrained by retaining
structure
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Fig. 2. Schematic constitutive behaviour of soil: (a) on the sliding surface; (b) in the sliding layer
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From equations (1) and (4) it follows that before the
stabilisation the shear resistance is equal to the gravitational
shear stress

�� x, tð Þ ¼ �g for 0 < x < L, t , 0 (6)

and the velocity of the landslide follows from equations (1)
and (2) as

_� x, tð Þ ¼ v0 ¼
�g � �r

�
for 0 < x < L, t , 0 (7)

After stabilisation, the differential equation for displace-
ments is obtained by substitution of constitutive equations
(2) and (3) into equilibrium equation (4) to give

@�

@ t
¼ C

@2�

@x2
þ v0 (8)

where

C ¼ hE

�
(9a)

v0 ¼
�g � �r

�
(9b)

The boundary conditions are given by the zero displacement
at the bottom and constant stress (and strain) at the top
boundary of the landslide

� 0, tð Þ ¼ 0 (10a)

@�

@x

�

�

�

�

x¼L
¼ 0 (10b)

The initial conditions are given by the zero reference
displacement at the moment of stabilisation

� x, 0ð Þ ¼ 0 for 0 < x < L (11)

which after substitution into the differential equation (8)
takes the form

@�

@ t

�

�

�

�

t¼0
¼ v0 for 0 < x < L (12)

consistent with the second condition (equation (1a)) before
the stabilisation.

Solution
Equation (8) can be recognised as a non-homogeneous

heat equation, which in combination with the boundary
conditions (equations (10)) produces a mixed boundary-value
problem (BVP). It is more convenient, however, to transform
it into the first BVP by fictitiously extending the landslide
length to 2L and imposing the boundary conditions

� 0, tð Þ ¼ 0 (13a)

� 2L, tð Þ ¼ 0 (13b)

Note that in this case the original second boundary condition
(equation 10b) is satisfied automatically, owing to the sym-
metry of the solution with respect to x ¼ L.

The initial condition is being extended to the fictitious
part,

� x, 0ð Þ ¼ 0 for 0 < x < 2L (14)

The solution of the first BVP for the non-homogeneous heat
equation (10) is given by

� x, tð Þ ¼
ð t

0

ð2L

0

v0G x, �, t � Tð Þd� dT (15)

where � and T are integration variables for space and time
respectively, and

G x, �, t� Tð Þ ¼ 2

2L

X

1

n¼1

sin
n�

2L
x

� �

sin
n�

2L
�

� �

e
�Cn2�2

4L2
( t�T )

(16)

is the Green function for the first BVP.
Substitution of equation (16) into equation (15) with sub-

sequent integration produces

� x, tð Þ ¼ v0

CL

X

1

n¼1

2L

n�

� �3

sin
n�

2L
x

� �

1� cos n�ð Þ½ �

3 1� e
�Cn2�2

4L2
t

� �

(17)

It can be observed that all the even terms (for n ¼ 2, 4, 6,
. . .) in the sum in equation (17) vanish. Therefore the
solution of the BVP can be presented as

� x, tð Þ ¼ 2v0

CL

X

1

k¼0

2L

2k þ 1ð Þ�

� �3

sin
2k þ 1ð Þ�

2L
x

� �

3 1� e
�C(2 kþ1)2�2

4L2
t

� �

(18)

It can be easily shown that equation (18) satisfies both the
boundary (equations (10)) and initial (equation (11)) condi-
tions.

For small t, displacements predicted by the solution in
equation (18) can be approximated by the solution for the
infinitely long slide (L ! 0),

� x, tð Þ � v0

ð t

0

erf
x
ffiffiffiffiffiffiffiffiffi

4C�
p d� (19)

where

erf(x) ¼
ffiffiffi

�
p

2

ðx

0

e�x2dx

is the error function.
For large t, displacements predicted by the solution in

equation (18) can be approximated by

� x, tð Þ � v0

C
xL� x2

2
� 16L2

�3
sin

�

2L
x

� �

e
�C�2

4L2
t

" #

(20)

with final displacements given by

� x, 1ð Þ ¼
v0

C
xL� x2

2

� �

¼ �g � �r

hE
xL� x2

2

� �

(21)

LANDSLIDE FAILURE AND POST-FAILURE
EVOLUTION
Pressures acting on retaining wall

For landslide stability analysis, the most important
parameter is the pressure acting on the retaining wall,
given by

p ¼ p0 þ E� 0, tð Þ ¼ p0 þ E
@�

@x

�

�

�

�

x¼0
(22)

Differentiation of equation (18) with respect to x gives
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� 0, tð Þ ¼ @�

@x

�

�

�

�

x¼0

¼ v0L

C
1� 8

�2

X

1

k¼0

1

2k þ 1ð Þ2
e
�C(2 kþ1)2�2

4L2
t

" # (23)

which is identical (!) to the Terzaghi solution for the average
degree of consolidation (Terzaghi, 1943)

U Tvð Þ ¼ 1�
X

1

k¼0

2

M2
e�M2Tv for M ¼ 2k þ 1ð Þ�

2
(24)

where Tv is the time factor, and variables in equations (23)
and (24) are related by way of

Tv ¼
Ct

L2
(25a)

U Tvð Þ ¼ C� 0, tð Þ
v0L

(25b)

This result is hardly surprising, however, because as for
equation (8), Terzaghi’s equation of one-dimensional consoli-
dation is also a heat equation, although with two important
differences: it is homogeneous, and U (Tv) is obtained there
by integrating the solution, rather than by differentiating as
was done in equation (23).
The analogy with the Terzaghi solution indicates that its

well-known approximations are also valid for equation (23),
so that

for U ¼ [C�(0, t)=v0L] < 0:526

Tv ¼
�

4
U 2

) �(0, t) ¼ v0L

C

ffiffiffiffiffiffiffiffiffi

4

�

Ct

L2

r

¼ v0

C

ffiffiffiffiffiffi

4C

�

r

ffiffi

t
p (26)

for U ¼ [C�(0, t)=v0L] . 0:526

Tv ¼
4

�2
�ln

�2

8
� ln 1� Uð Þ

� �

) � 0, tð Þ ¼ v0L

C
1� 8

�2
e
�C�2

4L2
t

� �

(27)

Substitution of equations (9), (26) and (27) into equation
(22) produces approximate equations of the evolution of the
earth pressure acting on the retaining structure.

For t < 0:217(L2�=Eh):

p 0, tð Þ ¼ p0 þ
�g � �r

h
L

ffiffiffiffiffiffiffiffiffi

4hE

��

s

ffiffi

t
p

(28)

For t . 0:217(L2�=Eh):

p 0, tð Þ ¼ p0 þ
�g � �r

h
L 1� 8

�2
e
�hE�2

4�L2
t

� �

(29)

Safety factor and time of failure
The safety factor for the landslide long-term stability is

defined, using equation (29), as

FS ¼ pp

p 0, 1ð Þ ¼
pp

p0 þ
�g � �r

h
L

(30)

If this safety factor is larger than unity, the landslide will
continue to slow down, asymptotically approaching its final
displacements (equation (21)). If, however, FS , 1, the earth
pressure will eventually reach the passive pressure, and the

soil behind the wall will fail. The time of failure tf can be
determined from equations (28) and (29) as follows.

For tf < 0:217(L2�=Eh)

tf ¼
��

4hE

pp � p0

�g � �r

h

L

� �2

(31)

For tf . 0:217(L2�=Eh)

tf ¼
4�L2

hE�2
ln

�2

8

h pp � p0ð Þ
L �g � �rð Þ

� 1

" #( )

(32)

Post-failure evolution
Once the effective passive pressure pp is reached at the

bottom of the landslide, it stays constant, and the pattern
of the landslide displacement changes. It is still governed
by the same differential equation (8), but the boundary
conditions are now given by the constant stress (and
strain), both at the bottom and the top boundaries of the
landslide

� 0, tð Þ ¼ @�

@x

�

�

�

�

x¼0
¼ pp � p0

E
(33a)

� L, tð Þ ¼ @�

@x

�

�

�

�

x¼L
¼ 0 (33b)

representing a non-homogeneous second (Neumann) BVP.
The initial condition for this problem is obtained (for large
tf ) from equation (20), defining landslide displacements at
the time of failure

� x, 0ð Þ ¼ v0

C
xL� x2

2
� 16L2

�3
sin

�

2L
x

� �

e
�C�2

4L2
tf

" #

(34)

In this BVP, both the differential equation (8) and boundary
conditions (equations (33)) are non-homogeneous. The solu-
tion for such a problem can be obtained as a superposition
of two solutions of two simplified BVPs

� x, tð Þ ¼ �p x, tð Þ þ �g x, tð Þ (35)

where �p(x, t) is a particular solution of a homogeneous
differential equation

@�

@ t
¼ C

@2�

@x2
(36)

with non-homogeneous boundary conditions (equations
(33)); �g(x, t) is the general solution of the non-homoge-
neous equation (8), with homogeneous boundary conditions

� 0, tð Þ ¼ @�g
@x

�

�

�

�

x¼0
¼ 0 (37a)

� L, tð Þ ¼ @�g
@x

�

�

�

�

x¼L
¼ 0 (37b)

and initial condition

�g x, 0ð Þ¼ v0

C
xL� x2

2
�16L2

�3
sin

�

2L
x

� �

e
�C�2

4L2
tf

" #

��p x, 0ð Þ

(38)

representing a homogeneous second (Neumann) BVP.
A particular solution satisfying both the differential equa-

tion (36) and non-homogeneous boundary conditions (equa-
tions (33)) is given by

�p x, tð Þ ¼ p0 � pp

2EL
x2 � 2Lxþ 2Ctð Þ (39)

494 PUZRIN AND SCHMID

Géotechnique 2012.62:491-501.



The general solution of the second BVP with non-
homogeneous equation (8), homogeneous boundary
conditions (equations (37)) and initial condition (equation
(38)) is given by

�g x, tð Þ ¼
ð L

0

f �ð ÞG x, �, tð Þd�þ
ð t

0

ð L

0

v0G x, �, t� Tð Þd�dT

(40)

where

f �ð Þ ¼ �g �, 0ð Þ

¼ v0

C
�L� �2

2
� 16L2

�3
sin

��

2L

� �

e
�C�2

4L2
tf

� �

� p0 � pp

2EL
�2 � 2L�

 �

(41)

is the initial condition given by equations (38) and (39), and

G x, �, tð Þ ¼ 1

L
þ 2

L

X

1

n¼1

cos
n�

2L
x

� �

cos
n�

2L
�

� �

e
�Cn2�2

4L2
t

(42)

is the Green function for a homogeneous second BVP.
Substitution of equations (41) and (42) into equation (40),

with subsequent integration and substitution of the result
into equation (35) together with the particular solution in
equation (39), produces a closed-form solution for the land-
slide displacements, which is rather bulky and will not be
shown here, owing to lack of space. It is, however, rather
straightforward to demonstrate that for t !1 the time
derivative of the first integral in equation (40) approaches
zero, while the time derivative of the second integral in
equation (40) approaches v0: Therefore velocities of all the
points along the landslide are asymptotically approaching a
constant value

_� x, 1ð Þ ¼ _�p x, 1ð Þ þ _�g x, 1ð Þ

¼ �C
pp � p0

EL
þ v0

(43)

which after substitution of equations (9) into it can be
expressed by way of soil parameters as

_� x, 1ð Þ ¼
1

�
�g � �r �

h

L
pp � p0ð Þ

� �

(44)

Note that for pp . p0 this velocity will be smaller than the
initial landslide velocity v0 from equation (9), indicating that
although the landslide movements could not have been eli-
minated completely, a certain degree of landslide stabilisa-
tion will be achieved, in spite of the passive failure of soil
behind the retaining structure.

SUMMARY
Evolution of a creeping landslide, moving downhill with a

constant initial velocity and earth pressure, and encountering
a rigid obstacle at its bottom, has been considered. Displace-
ments of such a landslide are given by equation (18), which
can be approximated by equations (19) and (20), immedi-
ately and a long time after the stabilisation has taken place
respectively.

This movement will, however, be accompanied by an
increase of the earth pressure acting on the retaining struc-
ture, given by equations (28) and (29) for early and late
stages of earth pressure evolution respectively. Depending on
the value of the long-term safety factor (equation (30)), the

landslide will either eventually slow down, asymptotically
approaching final displacements (equation (21)), or the soil
behind the retaining wall will experience passive failure at
the moment in time given by equations (31) and (32).

After this passive failure takes place, the landslide dis-
placements can be described using equations (35) and (39)–
(42). The landslide will then asymptotically approach a
constant velocity (equation (44)), which will be lower than
the initial velocity (equation (9)).

In the following, two case studies of landslides in Switzer-
land will be addressed in order to partially validate the
proposed model.

CASE STUDY: COMBE CHOPIN LANDSLIDE,
SWITZERLAND
Description

The A16 highway from Bern to Delémont and Basle is a
major north–south link in Switzerland, and connects the
capital city Bern to France (Fig. 4(a)). The highway crosses
the creeping landslide of Combe Chopin (Fig. 4(b)), which
is bounded by two hills located to the north and south of the
landslide, respectively. This landslide is inclined from east to
west with an inclination of 25–308 (Bapst, 2002) towards
the river Birse, which passes at the bottom of the landslide.
The width of the two-part slide is about 150–200 m, its
length in general is about 140–190 m. The northern part of
the active portion is about 90 m long and 60 m wide (Fig.
5(a)). The soil of the landslide is composed of slope debris,
a mixture of clay and gravel on top of a sliding surface of a
thickness of 0.5–1.0 m, which is also a mixture of clay and

(a)

Com
be

Chopin
landslide

10 km

Combe Chopin

(b)

N
o
rt

h

S
o
u
th

Fig. 4. Combe Chopin landslide: (a) location (Viamichelin, 2007);
(b) view (after Bapst, 2002)
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gravel. Below the sliding surface there is a zone of weath-
ered rock with a thickness of 2–4 m, followed by the solid
rock. The landslide can be divided into a northern zone,
with a landslide thickness of approximately 5–7 m, and a
southern zone, with a landslide thickness of up to 14 m. The
hydrology is dominated by the less permeable layer of clay
and gravel mixture.
The soil properties were defined in the laboratory tests:

the effective peak strength parameters �9peak ¼ 20 � 18 and
c9peak ¼ 40 � 15 kPa (direct shear); the residual angle of
internal friction �9res ¼ 18 � 38 (ring shear); Young’s modulus
in compression E ¼ 30 � 10 MPa (consolidometer); and total
unit weight ª ¼ 20 kN/m3:
Creep deformations in the landslide had been observed

and monitored since 1976, when the highway project started
(Bapst, 2002). During the first stages of excavation in
September 2000, displacements in the northern zone of the
landslide (Fig. 5(a)) accelerated to v0 ¼ 4 � 2 mm/day, with
clearly observed tension cracks at the upper boundary of the
slide (Bisetti, 2002). During the first half of 2001 the
landslide was partially stabilised by installing a drainage
system, which brought the groundwater level below the
sliding surface. In the first half of 2002 an anchored, bored-
pile retaining wall was constructed (Fig. 5(b)), monitored
using a TRIVEC measurement system, described in detail by
Puzrin & Schmid (2007), where also an early attempt was
made to study the landslide mechanism. High anchor forces
acting on the retaining wall resulted in the wall moving
uphill for the 31

2
years after tensioning of the anchors, until

December 2005, so that the zero displacement boundary was
not at the wall, but in the landslide about 12 m above the
wall. In addition to the TRIVEC measurements, downhill
displacements of three points on the landslide (at distances
of 13 m, 40 m and 63 m away from the zero displacement
boundary) have been measured geodetically (Fig. 6).

Analysis
As can be seen in Fig. 6, the first geodetic measurement

was taken 114 days after completion of the wall, and after
1119 days the slide came practically to a halt. The safety
factor for the landslide is given by equation (30). Displace-
ments of the landslide can be approximated by equations
(19) and (20), immediately and a long time after the

construction of the retaining wall respectively. The final
landslide displacements are given by equation (21). Evalua-
tion of these expressions against the measured and monitor-
ing data (summarised in Table 1) is given below.

First, the slide came to a halt and, as indicated by
TRIVEC and anchor load cell measurements, the earth
pressure on the retaining wall has also ceased to grow,
apparently not reaching the passive earth pressure and indi-
cating that the safety factor (equation (30)) is larger than
unity. This conclusion can be verified, using equation (30)
and Table 1, to estimate the passive pressure and compare
its value with that determined independently from the peak
strength estimates of the soil in the sliding layer. From
equation (30) it follows that

pp � p0 >
�g � �r

h
L ¼ 271 kPa (45)

where �g ¼ ªhsinÆ ¼ 55.4 kPa is the gravitational shear
stress, and

�r ¼ ªh cosÆ tan�9res ¼ 34:6 kPa (46)

is the residual shear strength in the absence of the ground-
water table.

Evidence of the tension cracks before the slide stabilisa-
tion allows the initial pressure in the sliding body to be
assumed to be close to the active earth pressure pa: The
effective peak strength parameters consistent with the back-
calculated pressure difference (equation (45)) are

Retaining wall

(a) (b)

Fig. 5. Northern part of Combe Chopin landslide: (a) schematic outline of landslide; (b) photograph of wall (courtesy of
Stump)
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Fig. 6. Downhill displacements of three points in northern part of
Combe Chopin landslide measured after construction of wall
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�9peak > 208 and c9peak > 42 kPa, which broadly overlap with
the measured ranges of �9peak ¼ 20� 18 and c9peak ¼ 40 �
15 kPa, confirming that the safety factor could indeed be
FS . 1.

Second, fitting equation (21) to the final displacement
measured at 1269 days after wall construction (Fig. 7)
produces a value of the parameter

v0L
2

C
¼ 0:70 (47)

where L ¼ 90 m � 12 m ¼ 78 m is the effective length of
the landslide above the zero-displacement boundary. This
parameter, however, can also be calculated independently,
using equations (9) and average values for physical and
geometric parameters of the problem summarised in Table 1,
as

v0

C
L2 ¼ �g � �r

hE
L2 ¼ 0:704 (48)

indicating remarkable agreement between the fitted and
directly calculated values.

Third, the best fit of the evolution of the landslide
displacements in time (Fig. 6), for x of 13 m, 40 m and
63 m, is obtained by using equation (20) after substituting
into it parameters v0L

2=C ¼ 0:7, L ¼ 78 m and adjusting the
initial velocity to

v0 ¼ 1:5 mm=day (49)

This value is slightly below the lower bound of the range of
v0 ¼ 4 � 2 mm/day recorded during the landslide accelera-
tion, correctly reflecting the effects of the drainage system
constructed with the aim of slowing the landslide down.
Velocity (equation (49)), when substituted together with
equation (46) and �g ¼ ªhsinÆ ¼ 55.4 kPa into equation (7),
allows for the assessment of the viscosity � ¼ (�g � �r)/
v0 ¼ 1.20 3 109 kPa s/m, which is of the same order of

magnitude as the viscosities back-calculated by van Asch et
al. (2007) for two landslides in the French Alps.

It has to be verified, however, whether it is justified to use
equation (20) for simulating the landslide displacements in
Fig. 6, because this equation is suitable only for approximat-
ing the later stages of the landslide evolution. Following the
Terzaghi solution analogy, the approximation becomes valid
for

tC=L2 > 0:217 (50)

Substitution of the back-calculated parameters from equa-
tions (47) and (49) into equation (50) provides the following
range of the validity of equation (20): t > 102 days after
completion of the wall. This justifies the application of this
equation to simulating data in Fig. 6, where the first reading
shown was taken t ¼ 114 days after completion of the wall.

CASE STUDY: GANTER LANDSLIDE, SWITZERLAND
Description

The A9 highway via the Simplon Pass is one of the main
connections between Switzerland and Italy through the Swiss
Alps (Fig. 8(a)). Its most spectacular structure is the bridge
over the Ganter river valley, built in 1980 (Fig. 8(b)). On the
left bank of the river, the piers of this bridge are built on a
creeping landslide, with the initial intention that the caissons
cut through the sliding layer so that the pier foundations
could be based in the stable rock. This landslide has an
average inclination of around 248 from south-east to north-
west towards the Ganter river, which passes at the bottom of
the landslide. The river bed deposits are squeezed between
the landslide and the rock outcrop at the opposite river bank,
representing a natural obstacle for the landslide: that is, no
retaining wall is necessary.

The landslide is 1060 m wide and between 300 m and
500 m long. In the cross-section close to the Ganter bridge
foundations, where the majority of the measurements have
been taken, the length of the landslide is 440 m. The soil
profile of the landslide is built of slope debris, which is a
mixture of gravel and stones within a sand and silt matrix,
covering a bed of moraine (Lang & Schaerer, 1973). The
thickness of the sliding granular material is between 20 m
and 22 m at the boundaries of the landslide, and 42 m in its
middle section (Lang & Schaerer, 1973). In the upper part
of the landslide the granular material is based on the altered
mica schist, in the lower part on the altered schist.

A preliminary geodetic field campaign was carried out
between 1966 and 1974 (Schaerer, 1975). Starting from
1975, points 8, 9, 10, 11 and 12 have been measured in the
area of the designed bridge (Figs 9(a) and 9(b)). A drainage
system, combining horizontal drains at the bridge piers with
the surface drainage of the streams and rainwater, was built
in 1979–1982 to slow down the displacement rates, and

Table 1. Summary of physical and geometrical parameters for Combe Chopin landslide

Parameter Value Derivation

Landslide length, L: m 78 Measured (field)
Average depth of sliding surface, h: m 6 Measured (field)
Average depth of phreatic surface, hw: m 6 Measured (field)
Average slope inclination, Æ: degrees 27.5 Measured (field)
Total unit weight of soil, ª: kN/m3 20 Measured (laboratory)
Peak angle of internal friction in sliding layer, �9peak: degrees 20 � 1 Measured (laboratory)
Peak cohesion in sliding layer, c9peak: kPa 40 � 15 Measured (laboratory)
Average residual angle of internal friction on slip surface, �9res: degrees 18 Measured (laboratory)
Average Young’s modulus: MPa 30 Measured (laboratory)
Gravitational shear stress, �g: kPa 55.4 Calculated
Residual shear strength, �r: kPa 34.6 Calculated
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Fig. 7. Final downhill displacements along Combe Chopin land-
slide measured 1269 days after construction of wall
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from 1979 onwards additional points (40, 50 and 60) were
added to the measurements.

As can be seen in Fig. 9(b), in 1975–1979, before
construction of the drainage, all points of the slide moved
down at a similar rate, with an average constant velocity of
_� ¼ 9.6 mm/year. During construction of the drainage, in
1979–1982, the velocity dropped to _� ¼ 6.0 mm/year, and
after the end of the drainage installation it stabilised at an
average of _� ¼ 3.1 mm/year, with practically the same value
for all the points on the slide. This demonstrates the
efficiency of the drainage system, which managed to lower
the groundwater table by 7 m: from 19 m below the ground
surface to 26 m below the ground surface. In the year 1993,
however, as a result of severe flooding in this region, the
bed of the Ganter river was eroded by about 1 m, and the
landslide displacement rates increased to an average of
_� ¼ 4.2 mm/year, remaining relatively constant, in both time
and in space, in the 10 years following the flooding.

In addition to the geodetic measurements, an extensive
geotechnical study was performed, including geoelectrical
and seismic measurements. The soil properties were defined
in laboratory and field test: the effective peak strength
parameter �9peak ¼ 37 � 18, using back-calculation from plate
bearing tests and from grain-size distribution after Dhawan
(Lang & Schaerer, 1974), additionally validated against peak
values from ring shear tests; the residual angle of internal
friction �9res ¼ 23 � 28 from ring shear tests; and the total
unit weight ª ¼ 22 kN/m3:

To separate the foundations of the bridge from the land-
slide, the initial idea was to found the bridge below the slip
surface in the stable rock, with the piers of the bridge
constructed inside vertical caisson shafts. But, because they
have not reached the stable zone, these shafts have been
moving with the sliding layer, gradually approaching the
piers, which were designed to allow for corrections to their
position to avoid contact between the caisson and the pier.
To measure the earth pressure acting on the shaft, Glötzl
pressure cells were installed at several depths at the contact
of the caisson of pier 4 with soil. After completion of the
construction these measurements did not show any pressure
increase in the sliding layer.

Analysis
As can be seen in Fig. 9(b), in 1975–1979, before construc-

tion of the drainage, all points of the slide moved down at a
constant velocity, _� ¼ 9.6 mm/year, in spite of the constraint
at the bottom, indicating that: (a) the earth pressure at the
bottom had reached the passive pressure; and (b) the slide had
reached a steady state described by equation (44). After
construction of the drainage was completed in 1982, the
velocity decreased to _� ¼ 3.1 mm/year, and remained constant
and similar for all the points on the slide, until 1993, when as
a result of about 1 m erosion in the passive zone at the bottom
the landslide uniformly accelerated to _� ¼ 4.2 mm/year. The
earth pressure in the landslide body at pier 4, measured in
1979–1987 using Glötzl pressure cells, remained constant
over the measurement period. The earth pressure at the bottom
of the landslide also stayed fairly constant, as confirmed in
2008–2010 by measurements performed with the help of the
novel inclinodeformometer (Schwager et al., 2010).

From the above observations it follows that the steady
state reached by the landslide due to the passive failure at
the bottom before the bridge construction has not been
disturbed by the drainage system construction and subse-
quent passive zone erosion. In other words, the landslide
continues to move as a rigid body, as described by equation
(44), with fluctuations in its velocity being caused by the
changes in the corresponding parameters. This provides an
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Fig. 8. Ganter landslide: (a) location (Viamichelin, 2011); (b) view
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opportunity for validation of the ability of equation (44) to
predict landslide displacement rates.

Indeed, after calibrating the model for the pre-drainage
phase, when the depth of the phreatic surface was hw ¼ 19 m
and the depth of the passive zone hb ¼ 22 m (Lang &
Schaerer, 1980), its back-calculated parameter � can be used
for predicting the effects of the drainage (with the phreatic
surface dropping deeper to hw ¼ 26 m) and subsequent ero-
sion (with the depth of the passive zone decreasing to
hb ¼ 21 m) on the landslide displacement rates. By compar-
ing these estimated effects with the observed ones, the post-
failure equation (44) can be validated.

First, using equation (44) and physical and geometric
parameters from Table 2, the viscosity coefficient � can be
estimated as

� ¼ 1

_� x, 1ð Þ
�g � �r �

h

L
pp � pað Þ

� �

¼ 1:353 1011 kPa s=m

(51)

where evidence of the tension cracks in the sliding body
allows the initial pressure to be assumed to be close to the
active earth pressure, p0 ¼ pa, so that the difference between
earth pressures before the drainage was built is given by

pp � pa ¼
1

2hb
ªh2b � ªw hb � hwð Þ2
h i

Kp

� 1

2ht
ªh2t � ªw ht � hwð Þ2
h i

Ka

¼ 668 kPa

(52)

where hb ¼ ht ¼ 22 m are the average depths of the sliding
surface at the bottom and top boundaries of the landslide
respectively; and Ka and Kp are the active and passive earth
pressure coefficients respectively (Puzrin & Sterba, 2006,
based on Chu, 1991), given by

Ka

Kp

( )

¼ cosÆ 1þ 2 tan2 �9peak

�

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2 �9peak

 �

tan2 �9peak � tan2 Æ

 �

q

�

¼
0:56

3:34

( )

(53)

The gravitational shear stress and the residual shear strength
before the drainage was built are given by

�g ¼ ªh sinÆ ¼ 376 kPa (54a)

�r ¼ ªh� ªw h� hwð Þ
� 


cosÆ tan�9res

¼ 271 kPa
(54b)

The back-calculated value of the viscosity (equation (51)) is
two orders of magnitude higher than that obtained for the
Combe Chopin landslide. Such variations between different
landslides, as well as between the field- and laboratory-
determined values, are not uncommon (e.g. van Asch et al.,
2007), and may be explained by the rate dependence of the
viscosity, by the development of negative pore pressures on
the sliding surface, and by the three-dimensional flow
effects. The associated gain in strength results in a higher
apparent viscosity. In the case of the Ganter slide, however,
one of the major reasons for this difference is likely to be
the stress dependence of the viscosity (Ter Stepanian, 1963),
with the effective normal stresses acting on the sliding
surface of the Ganter landslide being seven times higher
than those in the Combe Chopin landslide.

After the drainage was built, the depth of the phreatic
surface dropped to hw ¼ 26 m, and the new values of model
parameters are calculated from

pp � pa ¼ 1
2
ªhbKp � 1

2
ªhtKa

¼ 673 kPa
(55)

and equations (54) to give

�g ¼ 376 kPa; �r ¼ 297 kPa (56)

Then the back-calculated parameter (equation (51)) is substi-
tuted together with equations (55) and (56) into equation
(44) to estimate the landslide velocity after the drainage was
built in 1982, but before the flooding and erosion of 1993,
as

_� x, 1ð Þ ¼
1

�
�g � �r �

h

L
pp � pað Þ

� �

¼ 3:3 mm=year

(57)

The observed value of the landslide velocity after drainage
is _� ¼ 3.1 mm/year, indicating remarkable proximity between
the predicted and observed values.

Finally, the effects of the erosion of the passive zone
caused by the flooding of 1993 can be investigated by

Table 2. Summary of physical and geometrical parameters for Ganter landslide

Parameter Value Derivation

Landslide length, L: m 440 Measured (field)
Average depth of sliding surface, h: m 42 Measured (field)
Average depth of sliding surface at bottom and top boundaries of landslide before erosion, hb and ht: m 22 Measured (field)
Average depth of sliding surface at bottom and top boundaries of landslide after erosion, hb and ht: m 21, 22 Measured (field)
Average depth of phreatic surface before drainage construction, hw: m 19 Measured (field)
Average depth of phreatic surface after drainage construction, hw: m 26 Measured (field)
Average slope inclination, Æ: degrees 24 Measured (field)
Total unit weight of soil, ª: kN/m3 22 Measured (laboratory)
Average peak angle of internal friction in sliding layer, �9peak: degrees 37 Measured (field)
Average residual angle of internal friction on slip surface, �9res: degrees 23 Measured (laboratory)
Gravitational shear stress, �g: kPa 376 Calculated
Residual shear strength, �r: kPa 271 Calculated before drainage

construction
297 Calculated after drainage

construction
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substituting hb ¼ 21 m into equation (55), which gives
pp � pa ¼ 638 kPa, and after substitution together with the
parameters from equations (51) and (56) into equation (44)
allows the landslide velocity after the erosion to be esti-
mated as

_� x, 1ð Þ ¼
1

�
�g � �r �

h

L
pp � pað Þ

� �

¼ 4:1 mm=year (58)

The observed value of the landslide velocity after erosion is
_� ¼ 4.2 mm/year, again indicating remarkable proximity
agreement between the predicted and observed values.

CONCLUSIONS
The paper explores a simple analytical model in an

attempt to quantify the evolution of a landslide stabilised by
a retaining wall, or by a natural barrier at the bottom of the
sliding mass. Within the model assumptions, the develop-
ment in time of both the landslide displacements and the
earth pressure acting on the retaining structure can be
obtained in the closed form. Curiously, the solution for
the pressure evolution is identical to the expression for the
average degree of consolidation obtained by Terzaghi for
the classical problem of one-dimensional consolidation. The
model allows for a clear definition of the long-term safety
factor for a stabilised landslide. Depending on the value of
this safety factor, either the landslide will eventually slow
down, asymptotically approaching final displacements given
by the model, or the soil behind the retaining wall will
experience passive failure at a certain moment in time,
which can be predicted by the model. The model also
provides an insight into the post-failure evolution of the
landslide.
Two case studies based on monitoring data from the

Combe Chopin and Ganter landslides in Switzerland were
used to validate the model. For the Combe Chopin landslide,
which has a long-term safety factor lager than unity, the
model demonstrated its ability to predict final downhill
displacements and their development in time. For the Ganter
landslide, which had reached the passive pressure at the
bottom, failed and achieved the steady-state velocity before
displacement measurements commenced, the model correctly
predicted the long-term landslide evolution and the effects
of drainage and erosion on the displacement rates. In both
cases the model allows for back-calculation of apparent
shear viscosities for soil on the sliding surface, avoiding the
high uncertainties associated with determination of the visc-
osity coefficients in laboratory tests.
While being promising in validating certain features of

the model, these two case studies do not test the model’s
ability to predict the time of a landslide failure and the
initial post-failure evolution of such a landslide. Additional
case studies are therefore required, indicating a direction for
future research.
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NOTATION
C constant in the differential equation C ¼ hE/�

c9peak peak cohesion in sliding layer
E deformation modulus

erf(x) error function
FS safety factor
G Green function
h average depth of sliding surface

hb, ht average depths of sliding surface at bottom and top
boundaries of landslide

hw average depth of phreatic surface
Ka, Kp active and passive earth pressure coefficients

k running variable in summation
L landslide length
n running variable in summation

p(x, t ) effective normal stress
pa active earth pressure
pp passive earth pressure
p0 constant effective stress
T integration variable in time
Tv time factor
t time

U average degree of consolidation (Terzaghi, 1943)
v landslide velocity
Æ average slope inclination
ª total unit weight

ªw unit weight of water
�(x, t ) landslide displacement
_�(x, t) landslide velocity

�g(x, t) general solution of non-homogeneous equation
�p(x, t) particular solution of homogeneous differential equation

� average strain in the sliding layer
� viscosity coefficient
� integration variable in space

�� total residual strength on the sliding surface
�g gravitational shear stress
�r rate-independent component of the residual shear strength

�9peak peak angle of internal friction in sliding layer
�9res average residual angle of internal friction on slip surface
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