
Forschungsschwerpunkt S92

Industrial Geometry

http://www.ig.jku.at

Computer Aided Geometric Design

INDUSTRIAL

GEOMETRY

Computer Vision

FSP Report No. 1

Evolution of T-spline Level Sets

with Distance Field Constraints

for Geometry Reconstruction
and Image Segmentation

H. Yang, M. Fuchs, B. Jüttler, O. Scherzer

December 2005

Evolution of T-spline Level Sets with Distance Field Constraints

for Geometry Reconstruction and Image Segmentation

Huaiping Yang†, Matthias Fuchs‡, Bert Jüttler† and Otmar Scherzer‡

†Johannes Kepler University Linz, ‡University of Innsbruck

{yang.huaiping,bert.juettler}@jku.at, {matz.fuchs,otmar.scherzer}@uibk.ac.at

Abstract

We study the evolution of T-spline level sets (i.e, im-

plicitly defined T-spline curves and surfaces). The use of

T-splines leads to a sparse representation of the geometry

and allows for an adaptation to the given data, which can

be unorganized points or images. The evolution process is

governed by a combination of prescribed, data-driven nor-

mal velocities, and additional distance field constraints. By

incorporating the distance field constraints we are able to

avoid additional branches and singularities of the T-spline

level sets without having to use re-initialization steps. Ex-

perimental examples are presented to demonstrate the ef-

fectiveness of our approach.

Keywords: T-spline, level sets, unorganized points, image

segmentation

1. Introduction

Implicitly defined curves and surfaces, i.e., curves and

surfaces which are described as the zero set of a scalar field,

have found numerous applications in Shape Modeling and

Geometric Computing. They have been used for geometric

modeling [6], for object reconstruction from unorganized

points [5, 13, 22] and for improving the robustness of algo-

rithms for computing surface-surface intersections [10]. De-

pending on the area of the application, different representa-

tions of the underlying scalar fields have emerged. These in-

clude functions obtained by hierarchically combining sim-

pler ones [6], representations based on radial basis func-

tions [5], spline functions [10,13], to grid–based discretiza-

tions [22].

For various problems in image processing, many ap-

proaches are based on the evolution processes generating

time–dependent families of curves (and similarly for sur-

faces) by an implicit velocity field in the direction of its

normals. For instance, a family of (closed) parameterized

curves xτ (u) may evolve according to

∂xτ (u)

∂τ
· ~nτ (u) = v(xτ (u), τ), (1.1)

where the parameter τ represents the time, v(x, τ) is some

(possibly time-dependent) speed function and ~nτ the outer

unit normal of the curve xτ .

One example of an evolution of this type is used for seg-

mentation. Kass et al. [14] proposed ‘snakes’, or active con-

tours, for boundary detection. They compute the boundary

curve of a given 2D object by minimizing an energy func-

tional in a space of admissible curves. Caselles et al. [8]

proved that this problem can be transformed to the problem

of computing a geodesic curve in a Riemannian space with a

metric determined by the image data. Solving this problem

using the steepest-descent method leads to an curve evolu-

tion equation of the type (1.1).

For implicitly defined curves and surfaces, one may for-

mulate evolution processes as in Eq. (1.1) using the level

set approach of Osher and Sethian [16]. Assume that an

image is given by a map I : D → R, where D is a two–

dimensional domain. Then we can represent any curve x

in I as the zero level-set of a so–called level-set function

f : D → R. The evolution (1.1) can be reformulated as

∂f(x, y)

∂τ
= −v(x, y; τ)|∇f(x, y)| . (1.2)

As a major advantage in certain applications, where the

topology is not known a priori, the level-set representation

is parameter–free and it intrinsically adapts to topological

changes during the evolution. Consequently, one can detect

complex topological structures, such as objects consisting

of multiple components, without using prior knowledge.

The problem of geometry reconstruction from point data

clouds involves similar equations. Zhao et al. [22] present

a convection model to compute an implicit surface S that

minimizes a global distance function to the input data set.

Chaine et al. [2, 9] translates the convection scheme into

Computational Geometry terms.

While typical implementations of level set evolutions

rely on grid-based discretizations of the domain, this pa-

Huaiping Yang et al.: Evolution of T-spline Level Sets 2

per proposes to represent the function f by a bivariate or

trivariate T-spline function (see [17]). On the one hand, due

to the use of a piecewise rational scalar field, the result-

ing zero level sets are algebraic spline curves and surfaces,

which can be pieced together with any desired level of dif-

ferentiability. On the other hand, the use of T-splines leads

to a sparse representation of the geometry, which can, how-

ever, be refined locally, adapting the numbers of degrees of

freedom to the particular data.

The remainder of the paper is organized as follows. The

next section provides some background information about

T-splines and defines implicit T-spline curves and surfaces.

Section 3 formulates the evolution process for these geom-

etry representation. In particular, it is shown how to incor-

porate a distance field constraint, which makes it possible

to avoid (possibly time–consuming) renormalization steps.

The fourth section applies evolution of T-spline curves and

surfaces to the problem of geometry reconstruction, both

from unorganized point data and images. After presenting

some experimental results in Section 5, we conclude this

paper and discuss future work.

2. T-spline Level Sets

Sederberg et al. [17] generalized non-uniform B-spline

surfaces to so–called T-splines. After recalling the defini-

tion, we introduce implicitly defined T–spline curves and

surfaces.

2.1. T-splines

As the most characteristic feature of T-splines, the con-

trol grids permit T-junctions. See Figure 1, which shows the

pre-image of a T-mesh in (x, y) parameter space. The con-

trol grid of a T-spline is called a T-mesh. The pre-image of

each edge in a T-mesh is a line segment of constant x or y,

which is called an x–edge or a y–edge. If a T-mesh is sim-

ply a rectangular grid without T-junctions, the T-spline re-

duces to a B-spline.

In this paper we restrict our discussion to the cubic case.

If no multiple knots are present, then cubic T-splines are C2.

The equation for a cubic T-spline function is

f(x, y) =

∑n
i=1 ciBi(x, y)∑n

i=1 Bi(x, y)
, (x, y) ∈ D (2.1)

where the ci are control points (in our case: coefficients)

and n is the number of control points. The basis functions

Bi(x, y) are

Bi(x, y) = N3
i0(x)N3

i0(y) (2.2)

where N3
i0(x) and N3

i0(y) are the cubic B-splines associ-

ated with certain knot vectors

[si0, si1, si2, si3, si4] and [ti0, ti1, ti2, ti3, ti4],

t5

ssss 4321

c3

c
2

c
1

t

Δt

Δt

Δt
ΔsΔs

Δs

Δs

Δs

Δs

Δs

Δt

Δt Δt

Δt

Δt

Δs

Δs

Δs

Δt

Δt

t

t

t

s

4

4

0

1

41

0

2

2

7

6

6

7
9

8

5

3

8

5

2

3

3

2

1

5

control x–knots
point y-knots

c1 [s1, s2, s3, s4, s5 − ∆s8]
[t1 − ∆t0, t1, t2, t3, t3 + ∆t9]

c2 [s3, s3 + ∆s6, s5 − ∆s8, s5, s5 + ∆s5]
[t1, t2, t3, t4, t5]

c3 [s1 − ∆s0, s1 − ∆s0, s1, s2, s2 + ∆s7]
[t1, t5 − ∆t4 + ∆t9 − ∆t7, t5, t5 + ∆t5, t5 + ∆t5]

We use multiple knots at the boundaries, i.e., ∆s0 =
∆s5 = ∆t0 = ∆t5 = 0.

Figure 1. Pre-image of a T-mesh

respectively. The knot vectors si and ti of an individual con-

trol point ci associated with (si, ti) = (si2, ti2) are de-

cided by the T-mesh in the following way. Consider a ray

R(∆s) = (si2 + ∆s, ti2), ∆s > 0 in the (x, y) parame-

ter space. The knots si3 and si4 are the x coordinates of the

first two x–edges intersected by the ray (not including the

initial edge of s = si2), see Figure 1. The other knots are

found in a similar manner. In order to control the bound-

ary of the domain more conveniently, one usually uses mul-

tiple knots at the boundaries.

Once these knot vectors are determined for each basis

function, the T-spline is defined by Equation (2.1). The

support of a basis function is Di = (si0, si4) × ti0, ti4).
The set D is the domain of the T-spline function, D ⊂
{D1 ∪ D2 ∪ ... ∪ Dn}.

2.2. Implicit T-spline Curves and Surfaces

Let f(x, y) be a bivariate T-spline function defined over

some domain D,

f(x, y) =

∑n

i=1 ciBi(x, y)∑n
i=1 Bi(x, y)

, (x, y) ∈ D ⊂ R
2 (2.3)

with the real coefficients (control points) ci, i = 1, 2, ..., n,

where n is the number of control points. The basis func-

tions Bi(x, y) are given in Equation (2.2). The zero set of

Huaiping Yang et al.: Evolution of T-spline Level Sets 3

the function f is defined by

C(f) = { (x, y) ∈ D ⊂ R
2 | f(x, y) = 0 }, (2.4)

and it is called an implicit T-spline curve.

The definition of implicit T-spline curves in 2D can be

easily generalized to implicit T-spline surfaces in 3D:

S(f) = { (x, y, z) ∈ D ⊂ R
3 | f(x, y, z) = 0 }, (2.5)

where f(x, y, z) is a trivariate T-spline function,

f(x, y, z) =

∑n

i=1 ciBi(x, y, z)∑n

i=1 Bi(x, y, z)
, (x, y, z) ∈ D ⊂ R

3.

(2.6)

The definition of the basis functions in the 3D case natu-

rally generalizes the definition in the plane,

Bi(x, y, z) = N3
i0(x)N3

i0(y)N3
i0(z), (2.7)

where N3
i0(x), N3

i0(y) and N3
i0(z) are the cubic B-spline ba-

sis functions associated with the knot vectors

ξi = [ξi0, ξi1, ξi2, ξi3, ξi4]

for ξ = x, y, z, respectively. The influence domain of an in-

dividual real coefficient ci is Di = (xi0, xi4)× (yi0, yi4)×
(zi0, zi4). The knot vectors of ci are decided by the 3D T-

mesh (or T-lattice) in a similar way as that described for 2D

parameter space in Section 2.1.

Both implicit T-spline curves and surfaces are called T-

spline level sets in our paper. In order to simplify the nota-

tion, we use x to uniformly represent the point

x = (x, y) resp. x = (x, y, z), (2.8)

and gather the control coefficients (in a suitable ordering)

in a column vector c. The T-spline basis functions form an-

other column vector b,

b = [b1, b2, ..., bn]⊤,

and

bi =
Bi(x)∑n

i=1 Bi(x)
, i = 1, 2, ..., n.

The T-spline level set Γ(f) is defined as the zero set of the

function

f(x) = b(x)⊤c (2.9)

For a fixed set of basis functions b, the T-spline level set is

determined by the control coefficients c.

Since a T-spline function is piecewise rational, the T-

spline level sets are piecewise algebraic curves and surfaces.

Moreover, if no singular points are present, they inherit the

order of differentiability of the basis functions, i.e., they are

C2 in the cubic case.

3. T-spline Level Set Evolution

We describe the evolution process of the T-spline level

set, which is driven by normal velocities, combined with an

additional signed distance field constraint

3.1. Evolution with Normal Velocity

Consider a T-spline level set Γ(f) defined as the zero set

of a time-dependent function f(x, τ), where

f(x, τ) = b(x)⊤c(τ), (3.1)

with some time parameter τ . It will be subject to the evolu-

tion process

∂x

∂τ
= v(x, τ)~n, x ∈ Γ(f), (3.2)

where v is a scalar-valued velocity function (or speed func-

tion) along the normal direction ~n of Γ,

~n =
∇f

|∇f |
. (3.3)

During the evolution, the definition of the level sets,

f(x, τ) ≡ 0, x ∈ Γ(f), (3.4)

implies
∂f

∂τ
+ ∇f ·

∂x

∂τ
= 0, x ∈ Γ(f). (3.5)

Combining (3.2), (3.3) and (3.5), we get the evolution equa-

tion of T-spline level sets under the normal velocity v,

∂f

∂τ
= −v(x, τ)|∇f |, x ∈ Γ(f). (3.6)

In our case, however, f is a linear combination of the time-

dependent coefficients c, see (3.1). In order to translate (3.6)

into an evolution equation for the coefficients, we use a

least–squares approach. More precisely, we choose the time

derivative of the T-spline f by solving

E0 =

∫

x∈Γ(f)

(
∂f(x, τ)

∂τ
+ v(x, τ) |∇f(x, τ)|)2ds → Min,

where s represents the arc length or surface area of the T-

spline level set. For the actual computation, a discretized

version is more appropriate, i.e., we replace E0 with

E =

N0∑

j=1

(
∂f(xj , τ)

∂τ
+ v(xj , τ) |∇f(xj , τ)|)2, (3.7)

where xj , j = 1, . . . , N0 (N0 >> n) is a sequence of sam-

pling points, which are uniformly distributed along the T-

spline level set. Finally, the substitution (cf. Eq. (3.1))

∂f(x, τ)

∂τ
= b(x)⊤ċ(τ), (3.8)

Huaiping Yang et al.: Evolution of T-spline Level Sets 4

where the dot ċ indicates differentiation with respect to τ ,

leads to the evolution term E of the T-spline level set,

E =

N0∑

j=1

(b(x)⊤ċ(τ) + v(xj , τ) |∇f(xj , τ)|)2. (3.9)

The evolution term E is a non–negative definite quadratic

function of the derivatives ċ,

E = ċ
⊤ QE(c) ċ + lE(c)⊤ ċ + kE(c). (3.10)

The coefficients of this function, which are collected in the

symmetric non–negative definite matrix QE , the vector lE
and the scalar kE , depend on the coefficients c and can be

found from (3.9). It should be noted that the matrix QE(c) is

likely to be singular. In particular, this is the case if the sup-

port of at least one T-spline basis function and the T-spline

level set are disjoint.

3.2. Reinitialization

For most existing level set evolutions, the initial func-

tion f is chosen as an approximation to the signed distance

function of its zero level set. However, during the evolu-

tion, f will drift away from this signed distance property.

Although the definition of f off its zero level set can be ar-

bitrary in the continuous formulation, flat and/or steep re-

gions that develop in the level set function can dramatically

decrease the accuracy of the computed solution [1].

This motivates the use of level set reinitialization which

restores the signed distance property. It can be done either

by applying a Fast Marching technique [18] or by consider-

ing the steady state solution to the PDE

∂f

∂τ
+ sign(f0)(|∇f | − 1) = 0, (3.11)

where f0 is the current level set function to be reinitial-

ized [19].

However, the re-initialization procedure is usually rela-

tively expensive (especially in the 3D case) and has to be

applied frequently. Moreover, in some cases – when a large

time step is used – the level set function may greatly devi-

ate from a signed distance function after only one or several

iteration steps, which will cause difficulties.

In our case, where the level set is a (piecewise) algebraic

curve or surface, there is an additional difficulty. It is well

known that the implicit form of a rational parametric curve

(or surface) segment may have singularities, even in cases

where the parametric representation is regular. For instance,

the cubic Bézier curve in Fig. 2 is regular, while its implicit

form has a double point in the region of interest. Conse-

quently, if the target shape is such a (regular) cubic curve,

its level set representation will have singularities, unless the

original evolution equation – which pulls the level set to-

wards the target shape – is modified. Such a modification is

described below.

Figure 2. Planar cubic with double point.

3.3. Distance Field Constraint

We will avoid the use of re-initialization by introduc-

ing an additional distance field constraint. Recently, simi-

lar techniques have been proposed in the literature [15, 20].

Since an ideal signed distance function φ satisfies

|∇φ| = 1 everywhere in the domain, we propose the fol-

lowing constraint term

S0 =

∫

D

(
∂|∇f(x, τ)|

∂τ
+ |∇f(x, τ)| − 1)2dx → Min

as a penalty function which penalizes the deviation of f
from a signed distance function. If – for some value of the

time parameter τ – the gradient length at some point is less

(resp. greater) than 1, then the time derivative of this length

will be forced to be positive (resp. negative), in order to re-

store the unit gradient property.

Once again, the actual computation is based on a dis-

cretized version. We uniformly sample N1 points yj , j =
1, . . . , N1 (N1 >> n) in the domain of level set function

and use them to derive a discretized version of S0,

S =
A(D)

N

N∑

j=1

(
∂|∇f(yj , τ)|

∂τ
+|∇f(yj , τ)|−1)2, (3.12)

where A(D) is the area/volume of the domain D.

As an obvious generalization, one may modify S0 by

including an additional positive weight function under the

integral. In (3.12), this can be taken into account by sam-

pling the points yj according to the density specified by the

weight function.

In our case, the level set function f has the form (3.1),

hence the time derivative of the gradient length

∂|∇f(yj , τ)|

∂τ
=

2∇f(yj , τ)

|∇f(yj , τ)|
(∇b(yj)

⊤ċ(τ)) (3.13)

Huaiping Yang et al.: Evolution of T-spline Level Sets 5

depends linearly on ċ(τ).
By combining (3.12) and (3.13), we may represent the

signed distance field constraint term as a non–negative def-

inite quadratic function of the derivatives ċ,

S = ċ
⊤ QS(c) ċ + lS(c)⊤ ċ + kS(c). (3.14)

The coefficients of this function, which are collected in the

symmetric non–negative definite matrix QS , the vector lS
and the scalar kS , depend on the coefficients c and can be

found from (3.12) and (3.13). According to our numerical

experiments, the matrix QS(c) is generally positive definite,

i.e., non–singular, except for very rare special cases (such as

a T-spline f which represents the signed distance function

with respect to a straight line).

3.4. Solving the Evolution Equation

For each evolution step of T-spline level sets, the time

derivatives ċ(τ) are computed by minimizing the weighted

linear combination

F (ċ) = E(ċ) + ω1 S(ċ) → min, (3.15)

see (3.9) and (3.12), with a certain positive weight ω1. This

leads to a quadratic objective function of the unknown time

derivatives ċ = (ċi)i=1,2,...,n. The solution ċ(τ) is found by

solving a sparse linear system of equations,

∂

∂ċi

F (ċ) = 0, i = 1, . . . , n. (3.16)

Very efficient algorithms for solving systems of this type ex-

ist [4].

We then generate the updated control coefficients

c(τ + ∆τ) = c(τ) + ċ∆τ. (3.17)

simply by using an explicit Euler step ∆τ . The step size

is chosen as min(1, {C/v(xj , τ)}j=1,...,N0
), where C is a

user-defined value. The traveling distance (approximately

∆τ · v(xj , τ)) of each point xj on the T-spline level set is

constrained to be (approximately) less than the constant C.

The combination of evolution term E and the signed dis-

tance field constraint term S helps to maintain the signed

distance property of the level set function during its evo-

lution, without any additional re-initialization steps. Fig-

ure 3 illustrates the effects which can be achieved by us-

ing various weight values of ω1. A large value of the weight

(top, let) leads to a T-spline function which is almost the

signed distance function of a circle (i.e., its graph is a circu-

lar cone). On the other hand, a very small value produces a

T-spline level set with additional branches (bottom, right).

In between these two extreme situations, a proper choice of

the weight gives the desired result (bottom, left).

(a) ω1 = 100 (b) ω1 = 10

(c) ω1 = 0.1 (d) ω1 = 0.01

Figure 3. Influence of the weights ω1. The fig-
ures show the graphs of the T-spline func-
tion (green), the T-spline level set (red) and
the target shape (blue).

4. Geometry Reconstruction through Evolu-

tion of T-spline Level Sets

In this section, we give an unified algorithm for solv-

ing two problems through evolution of T-spline level sets.

For Problem 1, image segmentation, we assume that image

data (i.e., a scalar field of, e.g., grey values) is given. On the

other hand, Problem 2 is shape reconstruction from unorga-

nized point data.

The reconstructed geometry (2D curves or 3D surfaces)

may have complex topology, which is unknown a priori.

The algorithm takes as input an image data or a set of un-

organized points (possibly with noise), and produces a T-

Huaiping Yang et al.: Evolution of T-spline Level Sets 6

spline level set approximating the given image contour or

unorganized points with an appropriate number of control

coefficients (control points).

4.1. Outline of the Algorithm

The algorithm can be divided into three stages: initial-

ization, evolution, and refinement. Figure 4 shows the flow

chart of the presented algorithm.

Pre-filter the given image data or

Pre-compute the UDF of PC data

Final refinement

Stopping criterion
satisfied?

start

done

yes

no

Solve the evolution equation

Update the T-spline level set

Generate T-Mesh or T-Lattice

Initialize the T-spline level set

Compute the speed function

1

2

3

Figure 4. Algorithm for geometry reconstruc-
tion using T-spline level sets.

In the initialization stage, the given image data (Problem

1) is pre-filtered or the unsigned distance field of the given

unorganized points (Problem 2) is pre-computed, e.g., by

using the fast marching method [18]. In the 2D case, we use

graphics hardware acceleration [12].

The T-mesh (or T-lattice) is generated according to the

given data (image or points), see below. The T-spline level

set is then initialized to be a circle-shaped curve, or a

sphere-shaped surface, containing all data points, or the in-

teresting parts of the image.

During the evolution stage, the T-spline level set is

evolved towards the desired result step by step, guided

by an intelligent data-driven speed function, until some

stopping criteria is satisfied. Finally, for the last refine-

ment stage, the result of T-spline level set is further

improved by solving a non-linear least squares prob-

lem.

4.2. T-mesh / T-lattice Generation

In the case of given 2D (3D) point cloud data (Prob-

lem 2), the T-mesh (T-lattice) can be automatically gener-

ated through binary-tree (octree) subdivision (cf. Fig. 5), as

follows.

1. Set the initial T-mesh (T-lattice) to be an axis-aligned

bounding box containing all the data points.

2. For each cell containing more than n0 data points (n0

is a user-specified constant value), subdivide it by ap-

plying the binary-tree (octree) subdivision.

3. Repeat step (2) until a user-specified threshold (e.g., a

maximum level of subdivision) is reached.

Figure 5. T-mesh generated by binary-tree
subdivision.

For the given 2D (3D) image data (Problem 1), the T-

mesh (T-lattice) can be generated in a similar way. The only

difference is in step (2): instead of checking the number of

data points inside the cell Di, we check the function value

h(Di) =

∫

Di

|∇I|dD (4.1)

for the given image intensity field I . If h(Di) ≥ h̃ for some

user-specified constant h̃, then subdivide Di into smaller

cells. Figure 5 gives an example for T-mesh generation.

The theoretic motivation for this is the following. The in-

tegral (4.1) corresponds to the total length of all edges in the

intersection of I and Di. The above condition means that

the total length of the edges within each tile of the subdivi-

sion is bounded by h̃. Thus, we use a finer T-mesh in areas

of high boundary variation. This makes sense as we are in-

terested in the reconstruction of the boundary.

Huaiping Yang et al.: Evolution of T-spline Level Sets 7

4.3. Speed Function

The speed function v (Ref. Equation (3.6)) plays a key

role in the algorithm, since it decides the evolution process

as well as the final result of T-spline level set. Caselles et

al. [8] propose a geodesic active contour model based on

the following evolution equation

∂f

∂τ
= g(I)(γ + κ)|∇f | + ∇f · ∇g(I), (4.2)

which means that the level sets move according to

∂xτ

∂τ
· ~nτ = g(I)(γ + κ) − (∇g(I) · ~n), (4.3)

where γ is a constant velocity (which is also known as a bal-

loon force), κ is the curvature on the level sets of f ,

κ = div(
∇f

|∇f |
), (4.4)

and g(I) is some edge detector function. In [7], Caselles et

al. propose to use

g(I) =
1

1 + |∇I|p
(p = 1 or 2). (4.5)

The original motivation for the use of the equations (4.2)

and (4.3), respectively, stems from “Snakes” or active con-

tour models as proposed by Kass et al. [14]. Caselles et

al. [8] showed that this approach is connected to comput-

ing geodesics or minimal distance curves in a Riemannian

space, where the metric in this space is determined by the

edge detector function of the image data. This model is

called Geodesic Active Contours. They propose to solve the

resulting minimization problem using the steepest-descent

method and derive the curve evolution (4.3) with γ = 0.

This evolution process deforms an initial curve x0 towards

the object boundary. The final boundary is given by the

steady state solution of (4.3). As mentioned before, the bal-

loon force γ does not naturally appear when deriving (4.3)

from the Snake model. In [8] the authors propose setting

γ > 0 in order to increase the speed of the evolution.

For the evolution of our T-spline level sets for image seg-

mentation (Problem 1), we use a similar speed function as

that in (4.3) with a slight modification,

v = g(I)(γ + κ) − (1 − g(I))(∇g(I) · ~n) (4.6)

Generalizing (4.5), Caselles et al. [8] mention that any

strictly decreasing function g : [0,∞] → R such that

g(r) → 0 as r → ∞ qualifies as an edge detector. In or-

der to get satisfactory results for more complex topologies,

we choose

g(I) = e−η|∇I|2 , (4.7)

where η > 0 is a constant parameter. The edge detector is

more sensitive to high gradients in the image, if we choose

η to be large.

One can see that the speed (4.6) function is a linear

combination of two parts: the first part makes the level set

smooth by curvature flow, while the second part attracts the

level set to the detected edges (even if some noise or small

gaps may exist). The new term of (1−g(I)) is to weaken the

influence of the second part when the level set is far from the

edges (0 ≪ g(I) < 1), which is a natural choice in prac-

tical applications. When the level set is close to the edges

(g(I) ≃ 0), the second part again plays the leading role in

the evolution.

There are two important reasons for us to choose the

speed function in (4.6). Firstly, the smoothness of the mov-

ing level set is provided by using the curvature flow, instead

of using a tension term (e.g., thin plate regularization term),

where the latter would easily flatten the implicit field and

cause a trivial result. Secondly, the convergence result is in-

sensitive to the choice of balloon force γ. Actually, it is pos-

sible to choose γ = 0, and the model still converges (in a

slower motion) [8].

Furthermore, this speed function can be easily extended,

in order to deal with recovering shape from unorganized

points (Problem 2):

v = e(d)(γ + κ) − (1 − e(d))(∇d · ~n) (4.8)

where d is the unsigned distance function of the unorga-

nized points, e(d) is another edge detector function

e(d) = 1 − e−ηd2

. (4.9)

Again, η is a pre-defined, and its value is affected by

the size of the data range. In our experimental setting, since

all data points are contained in the same bounding box

(−1 ≤ x, y, z ≤ 1), then we can usually set η = 1. Note

that a discretized version of the unsigned distance function

d is already pre-computed in the initialization stage, thus

d(x) (and ∇d(x)) can be efficiently acquired by bi-linear

or tri-linear interpolation from the neighboring grid points

of x.

4.4. Final Refinement

The T-spline level set continues evolving until a max-

imum number of iteration steps is reached or some user-

specified stopping criterion is satisfied, e.g., the maximum

distance between the zero level set and the given data points

is smaller than a certain threshold value.

In the case of given unorganized data points (Problem 2),

we now choose the points xj in (3.7) to be the closest points

of the given data on the T-spline level set. In addition, we

derive the velocities (4.8) no longer from the (approxima-

tion to the) unsigned distance field. Instead, we derive them

Huaiping Yang et al.: Evolution of T-spline Level Sets 8

from the distance to the closest points. Consequently, we re-

place the evolution term E with

Ẽ =

M∑

k=1

(
∂f(xk, τ)

∂τ
+ ṽk|∇f(xk, τ)|)2 → min, (4.10)

where

ṽk = (xk − pk) · ~nk. (4.11)

Again, this term is combined with the signed distance field

constraint S.

The updated T-spline level set can be obtained in the

same way as that for the evolution process (Ref Section 3.4).

Then the closest points xk are recomputed, and the Equa-

tion (4.10) is reconfigured for the next iteration. The above

procedure is repeated until the approximation error (max-

imum distance between the T-spline level set and the data

points pk) cannot be reduced further.

For the given image data (Problem 1), the evolution re-

sult also can be further improved in a similar way. One may

first detect a set of sharp edge points within a narrow band

region of the T-spline level set, using some edge detector

function as shown in (4.5). Those detected edge points then

serve as the target data points to be approximated by the T-

spline level set, in order to guide the final refinement of the

segmentation result.

Remark 1 This technique is closely related to the method

of minimization of the normal distance [3], which has re-

cently been called tangent distance minimization (TDM)

[21], for parametric curves and surfaces. Indeed, the evolu-

tion defined by (4.10) with step-size ∆τ = 1 can be shown

to be equivalent to these earlier methods. As a major differ-

ence, our method is using implicitly defined T-spline level

sets and is able to deal with complex topological changes in

a natural way.

5. Experimental results

In this section, we present some examples to demonstrate

the effectiveness of our method. All the experiments are run

on a PC with AMD Opteron(tm) 2.20GHz CPU and 3.25G

RAM. All the given image or data points are contained in a

square or cubic domain (−1 ≤ x, y, z ≤ 1).

Example 1: 2D geometry reconstruction. In the first exam-

ple (see Figure 6), the data set consists of 940 points in the

plane, and the approximating T-spline level set (a curve) is

described by 272 coefficients. We start with a level set that

represents a circumscribed circle and apply the evolution.

The level set splits into three components which approxi-

mate the given data. The entire computation took about 8

seconds.

Example 2: 2D image segmentation. The second example

(Figure 7) demonstrates the use of a T-spline level set for

image segmentation. Again, we start with a circumscribed

level set and apply the evolution which is driven by the ve-

locities derived from the data. The level set splits into two

components which identify the two objects in the figure,

along with the shadows. The entire computation took about

10 seconds.

Example 3: 3D geometry reconstruction. The third exam-

ple in this section (Figure 8) deals with the reconstruction

of 3D objects from unorganized point data. In this simple

case, the data are taken from four ellipsoids. Similar to the

2D case, we start with a circumscribed sphere and apply the

evolution. The T-spline level set correctly identifies the four

components.

6. Discussion

We have shown how to formulate evolution processes

for T-spline level sets that can be used to address prob-

lems of shape reconstruction from image data (Problem

1) and from unorganized point clouds (Problem 2). These

processes are based on a least–squares approximation of the

velocity fields, which are derived from the given data. In this

section we discuss the potential benefits of using T–spline

level sets.

1. All models for geometry reconstruction and image seg-

mentation have to ensure that the resulting curve sat-

isfies some regularity conditions. Without any regular-

ization, the solution would be very sensitive to noisy

image data and essentially become ill-posed. E.g., in

the snake model, Kass et al. [14] minimize the first

and second derivative of the curve to ensure regularity.

Caselles et al. [7], [8] additionally pre-filter the image

data before starting their evolution. The same holds for

Frick and Scherzer [11].

T-spline functions are piecewise rational, and the T-

spline level sets are algebraic spline curves and sur-

faces. This naturally implies certain regularity proper-

ties of the function f and, as a consequence, of its zero

level set. Thus we are able to get satisfying reconstruc-

tion results – even for noisy data – without any pre-

processing.

2. Frequently, the the evolution equation (1.2) is numer-

ically solved on a per-pixel bases, i.e. the number of

degrees of freedom equals the number of pixels in the

picture. The T-spline representation of the level set

function is sparse and drastically reduces the number

of degrees of freedom. In addition, for both geome-

try reconstruction and segmentation, we are able to

generate the T-mesh according to the distribution of

the edges or points respectively. This means that – in

Huaiping Yang et al.: Evolution of T-spline Level Sets 9

(a) (b) (c)

Figure 6. Geometry reconstruction from 2D unorganized points using a a T-spline level set. The fig-
ure shows the initial level set with the generated T-mesh (a), an intermediate level set during the evo-
lution (b), and the final result after refinement (c).

(a) (b) (c)

Figure 7. Image segmentation using a T-spline level set. The figure shows the initial level set (a), an
intermediate level set during the evolution (b), and the final result after refinement (c).

the ideal case – the number of degrees of freedom in-

creases only linearly with the length of the curve which

is to be reconstructed.

As a straightforward modification of our algorithm,

one might adapt the structure of the T-mesh / T-lattice

to the data during the evolution, in order to introduce

additional degrees of freedom, where needed.

3. Note that the first two properties complement one an-

other. If the T-mesh is refined (thus the number of de-

grees of freedom increased), the regularization prop-

erty of the T-splines decreases. i.e. in the ideal case the

loss of accuracy by using a coarser than pixel-sized

grid is actually required to regularize the evolution

problem. That means that by using the correctly re-

fined T-mesh, we hope to reconstruct exactly as much

level of detail as the noise level of the data allows for.

4. Frequent re-initialization steps are often needed for ex-

isting level set methods, since otherwise numerical in-

stabilities and additional branches may happen during

the level set evolution. Instead of using these poten-

tially time-consuming re-initialization steps, we pro-

pose the use of an additional distance field constraint,

which is combined into the evolution equation to in-

trinsically maintain the distance field property of the

level set function. Our experimental results show that

the distance field constraint can greatly increase the

Huaiping Yang et al.: Evolution of T-spline Level Sets 10

(a) (b) (c)

Figure 8. Geometry reconstruction from 3D unorganized points using a T-spline level set. The figure
shows the initial level set (a), an intermediate level set during the evolution (b), and the final result
after refinement (c).

stability of the evolution process, and thus improve the

computed solution.

7. Future work

Frick and Scherzer [11] implicitly computed the curve

evolution proposed by Caselles et al. [7, 8] by solving a

variational problem in every time step. This involves heavy

computational effort. It is possible to do the same implicit

computation with T-spline functions. In this case the advan-

tage of less degrees of freedom would have even more im-

pact on computation times. This may be a subject of further

investigation.

Since implicitly defined curves and surfaces cannot be

used directly in many applications such as Computer Aided

Design, we plan to couple the evolution of T-spline level

sets with parametric curves and surfaces. More precisely,

the evolving T-spline level set will guide the evolution of

the parametric representation. This is expected to lead to ap-

proximation algorithms for self–adapting parametric repre-

sentations, which may automatically determine the correct

topology.

A first example is shown in Figure 9. In this example, we

generate a T-spline level set (a curve) which approximates

360 data points. Again we start with a circumscribed circle

and apply the distance-driven evolution process.

While evolving the level set, we simultaneously evolve

a closed parametric B-spline curve, which is made to fol-

low the implicitly defined T-spline curve. The control poly-

gon of the curve is shown; the curve itself cannot be distin-

guished from the zero contour of the T-spline function.

The parametric curve is synchronized with the T-spline

level set, and its topology is adapted whenever the topology

of the T-spline level set changes. As the result, we obtain

both an implicit and a parametric representation of the same

object.

We plan to extend this to the 3D case. On the one hand,

this will facilitate the computation of the evolving T-spline

level set, since the generation of sample points (for the nu-

merical integration of the normal velocity contribution to

the objective function) becomes simpler. On the other hand,

the T-spline level set has some difficulties to capture fine

details of an object. The parametric representation will be

used to capture these details in the final refinement stage.

The implicit representation serves to guide the parametric

representation to develop the correct topology.

Acknowledgment The authors were supported by the Aus-

trian Science Fund (FWF) through the Joint Research Pro-

gramme (FSP) S92 “Industrial Geometry”, subproject 2.

References

[1] D. Adalsteinsson and J. Sethian. The fast construction of ex-

tension velocities in level set methods. J. of Computational

Physics, 148(1):2–22, 1999.

[2] R. Allègre, R. Chaine, and S. Akkouche. Convection-driven

dynamic surface reconstruction. In Proc. Shape Modeling In-

ternational, pages 33–42, Cambridge, MA, USA, June 2005.

[3] A. Blake and M. Isard. Active Contours. Springer, New York,

2000.

[4] M. Botsch, D. Bommes, and L. Kobbelt. Efficient linear sys-

tem solvers for mesh processing. In R. Martin et al., edi-

tors, The Mathematics of Surfaces XI, volume 3604 of LNCS,

pages 62–83. Springer, 2005.

[5] J. C. Carr et al. Reconstruction and representation of 3D ob-

jects with radial basis functions. In Proc. SIGGRAPH’01,

pages 67–76, New York, 2001. ACM Press.

Huaiping Yang et al.: Evolution of T-spline Level Sets 11

(a) (b) (c)

Figure 9. Geometry reconstruction from 2D unorganized points by coupling the evolution of T-spline
level sets with parametric B-spline curves. The figure shows the initial B-spline curve with its control
points (a), the intermediate B-spline curve during the evolution (b), and the final result (c).

[6] R. Cartwright, V. Adzhiev, A. Pasko, Y. Goto, and T.L. Ku-

nii. Web-based shape modeling with HyperFun. IEEE Com-

puter Graphics and Applications, 25:60–69, 2005.

[7] V. Caselles, F. Catté, T. Coll, and C. Sbert. A geometric

model for active contours in image processing. Numerische

Mathematik, 66:1–31, 1993.

[8] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active con-

tours. Int. J. of Computer Vision, 22(1):61–79, 1997.

[9] R. Chaine. A geometric convection approach of 3-d re-

construction. In Proc. Symposium on Geometry Processing,

pages 218–229, 2003.

[10] T. Dokken et al. Intersection algorithms for geometry-

based IT applications using approximate algebraic methods,

eu project ist 2001–35512. http://www.sintef.no/IST GAIA,

2002–2005.

[11] K. Frick and O. Scherzer. Application of non-convex BV

regularization for image segmentation. In Proc. Interna-

tional conference on PDE-Based Image Processing and Re-

lated Inverse Problems. CMA, University of Oslo, to appear.

[12] K. E. Hoff, T. Culver, J. Keyser, Ming Lin, and D. Manocha.

Fast computation of generalized Voronoi diagrams using

graphics hardware. SIGGRAPH’99, pages 277–286, 1999.

[13] B. Jüttler and A. Felis. Least–squares fitting of algebraic

spline surfaces. Advances in Computational Mathematics,

17:135–152, 2002.

[14] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active con-

tour models. Int. J. of Computer Vision, 1(4):321–331, 1988.

[15] Chunming Li, Chenyang Xu, Changfeng Gui, and M. D.

Fox. Level set evolution without re-initialization: a new vari-

ational formulation. In Proc. Computer Vision and Pattern

Recognition, volume 1, pages 430–436. IEEE Computer So-

ciety, 2005.

[16] S. Osher and J.A. Sethian. Fronts propagating with

curvature-dependent speed: Algorithms based on Hamilton–

Jacobi formulations. J. of Computational Physics, 79:12–49,

1988.

[17] T. W. Sederberg, Jianmin Zheng, A. Bakenov, and Nasri A.

T-splines and T-NURCCs. ACM Transactions on Graphics,

22(3):477–484, 2003.

[18] J. Sethian. A fast marching level set method for monotoni-

cally advancing fronts. In Proceedings of the National Acad-

emy of Sciences, volume 93, pages 1591–1595, 1996.

[19] M. Sussman, P. Smereka, and S. Osher. A level set approach

for computing solutions to incompressible two-phase flow. J.

of Computational Physics, 1(114):146–159, 1994.

[20] K. van den Doel and U. Ascher. On level set regulariza-

tion for highly ill-posed distributed parameter estimation

problems. manuscript available at http://www.cs.ubc.ca/ kv-

doel/pubs.html.

[21] W. Wang, H. Pottmann, and Y. Liu. Fitting b-spline curves to

point clouds by squared distance minimization. ACM Trans-

actions on Graphics, page accepted, 2005.

[22] H.-K. Zhao, S. Osher, and R. Fedkiw. Fast surface recon-

struction using the level set method. In Proc. 1st IEEE Work-

shop on Variational and Level Set Methods in Computer Vi-

sion, pages 194–201, Vancouver, 2001.

