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Why Did Th2 Immunity Evolve?

Throughout evolutionary history, animals have faced attack by

fellow metazoans, often resulting in damage to tissues. This can

take the form of a worm migrating to find its reproductive niche or

eating host tissue for food, or even the bite of an insect. A pro-

inflammatory oxidative-type of immunological attack, typically

utilized against intracellular microbes, can in some cases kill these

multicellular parasites [1], but because worms and insects cannot

be contained within a single cell, the collateral tissue damage that

will result from such an attack could seriously compromise host

fitness. During the course of evolution, the most cost-effective

approach to deal with very large foreign invaders may have been

to tolerate them and quickly repair any tissue damage that

compromised fitness [2,3]. In this scenario, Th1 immunity

characterized by IFN-c production evolved to control our innate

anti-microbial pathways, while the host defense system that

evolved to cope with metazoan parasites was the innate tissue

repair process, now controlled by Th2 cells. Th2 cells subsequently

evolved additional mechanisms to contain or even expel the

offending element and produce cytokines such as IL-4, IL-5, IL-

10, and IL-13 that promote alternative macrophage activation,

eosinophil maturation and recruitment, and IgE production, to

name just a few [4]. Many of these Th2 processes promote the

‘‘walling off’’ of large bodies through granuloma formation and

matrix deposition, which would quite naturally follow from

mechanisms evolved to close open wounds.

Evolutionary hypotheses are difficult to prove, but murine

studies of helminth infection provide ‘‘modern’’ evidence that

tissue repair orchestrated by Th2 cells is a primary host defense

against metazoa. As illustrated in Figure 1 for Schistosoma mansoni,

metazoan invaders literally tear through important barriers, often

inducing micro-hemorrhages and tissue damage in multiple organs

as they complete their life cycle (Figure 1). Strikingly, S. mansoni

infection of IL-4Ra-deficient animals that lack most Th2 effector

responses results in lethal sepsis once eggs produced in the

mesenteric blood vessels cross the intestinal wall [5]. This suggests

that IL-4Ra-mediated pathways are critically needed to maintain

gut integrity and prevent leakage of luminal dwelling bacteria into

the blood. A similar scenario plays out during infections with many

gut nematodes, with broad-spectrum antibiotics providing at least

partial protection from sepsis when IL-4Ra-driven barrier

immunity is impaired [6].

The cardinal features of adaptive immunity are memory and

antigen-specificity. Since Th2 cells are part of the adaptive

immune system, this raises the question of why we need to

‘‘remember’’ to repair the wounds that are induced by specific

parasites. A hookworm causes bleeding as it migrates through the

lung and then penetrates the gut wall to feed. A parasite-specific

memory Th2 cell might accelerate wound closure, significantly

reducing detrimental effects on secondary exposures. Indeed,

adaptive immunity and memory may be equally important for

tolerance mechanisms that minimize host damage as they are for

resistance to the pathogen itself [3,7]. To date, no experiments

have directly addressed whether wounds repair faster on a

secondary encounter with the same injuring agent. However,

there is evidence to suggest that hemorrhaging is reduced on

secondary infection with lung-migrating nematodes (Graham

LeGros, personal communication).

Helminths, the best-described inducers of Th2 cytokines,

include parasites from animal phyla that diverged over a billion

years ago, and increasing evidence suggests that insect bites are

also Th2-inducers [8,9]. Thus, it appears that we are hard-wired

to mount Th2 responses to an attack by any metazoan pathogen.

Tissue destruction is a common feature of these parasites, and we

are proposing that Th2 immunity evolved as an adaptive tissue

repair mechanism that quickly heals the wounds they inflict. These

evolutionary principles, if true, must apply beyond mammals.

Infection of Atlantic salmon with sea lice causes gross skin lesions

that must be rapidly healed, as any break can result in osmotic

shock in the aqueous environment. Activated Th2 cells migrate to

the site of attachment and may mediate essential repair of the

lesion but also expulsion of the ectoparasite [10]. Importantly, an

anti-wounding response is not unique to vertebrates, but one of the

fitness advantages provided by the adaptive immune system may

have been the ability to accelerate this response as needed, to

mediate parasite-specific tolerance [3].

What Evidence Supports the Theory of Th2-
Mediated Repair?

During an ideal wound repair response, the damaged tissues are

returned to their original architecture. However, the process of

mending damaged tissues takes considerable time, so the body

responds quickly during the early phases of parasite invasion by

sealing the wounds with granulation tissue, which essentially

provides a ‘‘quick fix’’ and prevents neighboring bacteria from

invading. Granulation tissue is the fibrous connective tissue that

replaces a fibrin clot in healing wounds. It typically forms at the
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border of a wound and is able to fill wounds of almost any size.

Initially, it consists of a network of Type III collagen, a weaker form

of the structural protein that is produced rapidly by activated

fibroblasts. This is later replaced by the stronger, long-stranded

Type I collagen. Importantly, numerous studies have suggested that

the synthesis of both Col I and Col III during helminth infection is

highly dependent on the Th2 cytokines IL-4 and IL-13 [11].

In fact, many of the proteins produced in response to IL-4 and

IL-13 are associated with injury, and several, including arginase,

MMP12, and TREM-2, have well-known roles in tissue repair.

Evidence that Th2-dependent pathways are a normal part of tissue

repair comes from a study in which a surgical incision in the

peritoneal wall induces rapid elevation of Th2-associated proteins,

arginase, RELMa, and YM1, but only in mice with intact IL-4Ra
signalling [12]. More recently, these same proteins were

demonstrated in wound tissue in the first 5 days of a punch

biopsy wound model [13]. Naturally, these IL-4/13-dependent

proteins are also elevated during helminth infection, where the

parasite is presumed to be the Th2 stimulus [14]. During infection

with Nippostrongylus brasiliensis, Th2-induced proteins are particu-

larly elevated during migration of nematode larvae through the

lung [15], a process that is highly damaging and leads to

hemorrhaging that is sufficient to cause anemia [16]. Although

CD4+ Th2 cells are needed for sustained and high-level

production of these injury-associated proteins [12], arginase,

Ym1, and RELMa and are still produced in an IL-4Ra-dependent

manner in RAG-/- mice, emphasizing the innate nature of the

response [12,15].

Although there is good evidence that Th2 cytokines are

associated with injury, their actual contribution to repair is not

clear. A study by Seno et al. provides important insight [17]. Using

a colonic punch biopsy model, they demonstrated that IL-4/IL-13

blockade or deficiency in IL-4Ra signaling leads to a delay in

wound repair. Similarly, using a skin biopsy model, Sabine Eming

and colleagues have demonstrated that IL-4Ra-deficient mice also

show significantly delayed repair (personal communication). Thus,

Figure 1. Helminths induce extensive tissue damage, providing evolutionary pressure for an adaptive Th2-mediated wound
healing response. In this example, a human infected with the helminth parasite S. mansoni is faced with constant tissue damage as the parasite
completes its life cycle. (A) Infectious cercariae are released from the intermediate snail host and are attracted to lipids found on human skin. Once
attached to the skin, they often enter through hair follicles where they secrete proteases, degrade basement membranes, and ultimately gain access
to the vasculature. (B) Immature schistosomula are then swept up in the heart and lodge in the lungs, where they must cross capillary beds to enter
the arterial flow. (C) Eventually, adult parasites find their way to the mesenteric veins, where they mate and begin laying eggs. Many of the eggs
migrate from the vasculature, enter the wall of the intestine and literally burrow through until they reach the lumen and are excreted in the feces. (D)
A subset of eggs is swept by the blood flow into the liver where they are trapped in the small sinusoidal vessels, inducing a vigorous granulomatous
response. Thus, at nearly all stages of the parasite’s life cycle, it is inducing significant tissue damage and hemorrhaging in the definitive host. It is
imperative that ‘‘holes’’ in important barriers are repaired quickly; otherwise, bacteria would quickly invade and take over.
doi:10.1371/journal.ppat.1002003.g001
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despite very different healing processes in the colon and skin [17],

the rate and quality of repair in both are affected by IL-4 receptor

signaling. Indeed, delayed repair is a feature of several mouse

strains with deficiencies in Th2-induced proteins [17,18].

What Are the Consequences of Th2-Mediated
Rapid Repair?

Probably the most extensive evidence for the involvement of

Th2 cytokines in tissue repair comes from studies demonstrating

that IL-13 is a potently pro-fibrotic cytokine [11]. Thus, in order

to maintain tissue integrity, Th2 cytokines may accelerate repair

but at the cost of scar tissue. A key cellular target of the IL-13

response is the macrophage, which, when activated by Th2-type

cytokines (M2 macrophage), has been shown to control the

development of fibrosis [19]. In the early stages of repair,

macrophages produce a variety of factors that recruit and activate

fibroblasts, while in the later stages, they are involved in wound

resolution by debriding the wound, inducing apoptosis of

myofibroblasts, and producing regulatory factors like Arg1, which

can suppress T cell proliferation [19]. Recently, Lucas and

colleagues [13] demonstrated that macrophages recruited during

the early inflammatory stages of a sterile skin wound expressed

Th2 activation markers and that macrophage depletion in the first

5 days significantly delayed the rate of repair but also resulted in

less scar tissue. This is consistent with studies in which mice that

lack macrophages exhibit no scar tissue [20]. The data suggest that

Th2-activated M2 macrophages ensure rapid wound closure,

while at the same time regulating matrix turnover and wound

resolution and thus the subsequent process of scarring [19].

Why Is Th2 Immunity ‘‘Anti-Inflammatory’’?

The wound-healing hypothesis provides a framework to

consider many aspects of T helper cell biology, including

understanding why naive T cells commit to a particular lineage

at the expense of another. Evolutionary models have helped

explain the Th17/Treg counterbalance [21], but the origins of the

Th1/Th2 divide are not obvious. The requirement for counter-

regulation becomes apparent when one considers the roles of

inflammatory responses in wound repair. An injury response

typically begins with a classical inflammatory response, composed

of neutrophils and IFN-c/TLR-activated M1 macrophages that

control microbial contamination. However, the M1 activation

pathway is only essential to the repair process if microbes are

present [17,22] and thus functions primarily to control infection

and not mediate repair. Indeed, efficient wound closure and full

repair cannot occur until that inflammatory response has been

shut down [23,24]. Thus, the anti-inflammatory nature of

‘‘regulatory’’ Th2 responses makes evolutionary sense if the

responses to metazoans are primarily tissue reparative rather than

anti-microbial. On exposure to helminths, the host would avoid or

quickly shut down an ineffective and damaging Th1-type response

in favor of a mechanism that would ‘‘rapidly and adaptively’’ heal

the host and thus allow it to tolerate the presence of a persistent

pathogen [3,7,25]. Consistent with this, a mixed anti-inflamma-

tory/wound healing function is typical of many Th2-activated

macrophage products. TGF-b is the best-known example, as it can

suppress pro-inflammatory responses while at the same time

serving as a potent pro-fibrotic mediator. Similarly, TREM-2 and

12/15-lipoxygenase, both induced by IL-4, are well-known anti-

inflammatory mediators; however, both appear to accelerate

wound repair [17,26,27]. Indeed, one mechanism by which these

proteins may accelerate the repair process is to rapidly shut down

the early inflammatory response to injury. This dual function

would also be consistent with the need to sequester parasites by

wrapping them in collagen, much as flies wrap parasitoids in

melanin.

How Can This Evolutionary Model Help Us Today?

We mount Th2 responses to helminths, environmental

allergens, and insect bites. A major outstanding question is the

nature of the signals and receptors that trigger these responses

[3,25]. A common feature of these insults is the ability to damage

tissue. In particular, proteases have been highlighted for their

capacity to induce Th2 immunity [28]. Alum, an established Th2

adjuvant, acts by triggering uric acid release, a signal of cell

damage. Recently, several groups have identified a new innate

immune cell that produces IL-5 and IL-13 [29]. A critical player in

inducing the release of these Th2 cytokines is IL-33. IL-33 is

released by endothelial, epithelial, fibroblast, and adipose cells only

when they die and thus may be a critical player in inducing a

‘‘Th2 injury’’ response. Similar roles may also be played by TSLP

and IL-25, which have also been proposed as important early

inducers of Th2 responses [30].

We are not arguing that all aspects of Th2 immunity now extant

are involved in healing wounds. The threats metazoan pathogens

pose are distinct from smaller microbes and require an array of

distinct responses, a dichotomy observed in all multicellular hosts,

even plants. As the innate repair machinery evolved into a full

blown Th2-adaptive response, repair processes would have

become associated with other features of defense that increase

the fitness of its host in the face of large metazoan parasites or the

toxins they release. Thus, Th2 cytokines mediate rapid repair

while also minimizing the number of incoming parasites via IgE or

flushing out intestinal parasites via alterations to gut physiology

and excess mucus production. Over time these pathways have

become increasingly specialized, providing further rationale for Th

subset plasticity and subdivision into discrete cytokine-producing

cells such as follicular helper and Th9 cells [31]. Nonetheless, an

understanding that Th2 immunity in vertebrates evolved as a

means to rapidly repair tissue damage caused by metazoan

invaders rather than just to control parasite numbers may help in

the development of strategies to appropriately target helminth

infections as well as diseases caused by overzealous repair.
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