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Abstract

Alzheimer’s disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features
that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related
gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of
gene expression changes are conserved in all three species, including robust age-dependent upregulation of the
neuroprotective gene apolipoprotein D (APOD) and downregulation of the synaptic cAMP signaling gene calcium/
calmodulin-dependent protein kinase IV (CAMK4). However, analysis of gene ontology and cell type localization shows that
humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of
neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes
associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of
both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of
neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that
may alter neural networks and contribute to age-related cognitive changes.
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Introduction

Aging is the primary risk factor for Alzheimer’s disease and

other prevalent neurodegenerative disorders [1,2]. Little is known,

however, about the degree to which normal brain aging is

conserved among mammalian species, an issue of central

importance in the biology of aging and the development of

animal models of human neurological diseases [3]. Gene

expression changes that appear during normal brain aging have

been explored using microarrays that interrogate only part of the

genome in a number of species, including mice, rats, monkeys, and

humans [4,5,6,7]. Comparison of the partial expression profiles of

the aging mouse and human brain did not show significant overlap

[8]. However, there has yet to be a systematic comparison of gene

expression at a genome-wide scale in aging mice, monkeys, and

humans. Recent advances in sequencing the rhesus macaque,

mouse, and human genomes have enabled us to perform a

genome-scale comparative analysis of gene expression in the aging

mammalian brain [9,10,11,12]. Although a small subset of age-

related gene expression changes are conserved from mouse to

man, major changes in the expression of genes involved in

neurotransmission have evolved in the primate cortex that are

potentially relevant to age-related changes in cognition and

vulnerability to neurodegeneration.

Results

Phylogenetic Analysis of Brain Aging in Humans, Rhesus
Macaques, and Mice

A central issue in a cross-species comparative analysis of aging is

the identification of similar aging groups in species with very

different maximal life spans. We previously defined the expression

profile for age-related expression changes in the human cortex and

demonstrated that these changes occur in the majority of

individuals by the age of 70 years [6]. We used this expression

profile as the basis for defining our aged group in humans as

individuals older than 70 years of age who were not diagnosed

with a neurodegenerative disorder (Table S1). To identify a similar

age group in mice, we used comparative survival curves for

humans and mice which suggest that a 30-month-old mouse is

similar to an 81-year-old human since at these ages approximately

25% of the original populations survive. A similar survival analysis

in rhesus monkeys in captivity determined that 25% survival

occurred at approximately 26 years of age [13]. Hence, we chose

30 months and 28–31 years as the aged groups for mice and rhesus

monkeys, respectively.

To identify age-related changes in gene expression, cortical

samples from 13 young (#40 years old) and 15 aged ($70 years
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old) humans were hybridized to Affymetrix U133plus 2.0 arrays,

5-month-old (n = 5) and 30-month-old mice (n = 5) were hybrid-

ized to Affymetrix Mouse 430 2.0 arrays, and samples from 5–6-

year-old (n=5) and 28–31-year-old (n=6) rhesus macaques were

hybridized to Affymetrix whole genome rhesus arrays. Since the

rhesus macaque genome has only recently been sequenced [9], the

rhesus microarrays are based primarily on gene predictions.

Therefore, we used an all-against-all protein BLAST to identify

orthologous genes between the rhesus predictions and the other two

species. For each homolog pair, we required a BLAST score of

greater than 200, and at least 80% alignment of the human or mouse

protein sequence with the rhesus sequence (Table S2). The final gene

set was composed of genes that possess an ortholog in every species

and are represented on all three array platforms. We then employed

a two-sample t-test between young and aged age groups with a 1%

false discovery rate (FDR) cut-off to identify 3542, 573, and 2347

age-related genes in mice, rhesus monkeys, and humans, respectively

(Tables S3–5). Among these age-related changes, only 154 were

significantly associated with aging in all three species (Fig. 1a and

Table S6). To assess this gene group as an indicator of brain aging,

the behavior of all 154 genes was compared across age groups and

species to derive Pearson correlation coefficients. The resulting

correlation matrix showed that this core gene set distinguishes

between young and aged samples in all three species (Fig. 1b).

Furthermore, this set of age-related gene expression changes

distinguished between chronological and biological age. For

example, a 30-year-old rhesus monkey more closely resembled a

70-year-old human than a 30-year-old human. This set of common

age related expression changes is therefore linked to the biology of

the aging process in the brain.

Hierarchical clustering of the common age-regulated genes

demonstrated that they fall into three distinct groups: I. Age-

regulated genes that are conserved among all three species. II.

Genes that change with age in all 3 species but differ in

directionality between mouse and rhesus (e.g., from age-downreg-

ulated to age-upregulated); and III. Age-regulated genes that

change directionality between rhesus and human (Fig. 2 and

Table 1). Among the category I genes conserved in all 3 species,

the most robustly age-upregulated gene was the anti-oxidant lipid

binding protein apolipoprotein D. The most robustly age-

downregulated genes in the conserved category were CAMK4, a

component of synaptic cAMP-mediated signaling, and ARPP-21,

a phosphoprotein also implicated in neuronal cAMP signaling [14]

(Table 1). The genes in category II were composed almost entirely

of genes that are age-upregulated in mice and downregulated in

both rhesus monkeys and humans, defining a set of age-related

gene expression changes common to rhesus monkeys and humans.

The most robustly downregulated of these primate aging genes

was calbindin 1 (CALB1), a marker of cortical inhibitory

interneurons (Table 1).

Cell-Type Enrichment of Age-Related Gene Expression
Changes
To identify the cell types in the brain that exhibit prominent

age-related changes in gene expression, we utilized the Allen Brain

Atlas [15]. This database, derived by in situ hybridization and 3-

dimensional imaging of the adult mouse brain (56 days old),

includes genes in which expression was significantly enriched in

one of five specific cell types. By combining this cell type analysis

with our mouse gene expression data, a subset of age-related gene

expression changes was localized to specific cell types. To

determine whether the mouse brain dataset predicts the cell type

distribution of these genes in the human brain, we performed

microarray analysis of isolated neurons, astrocytes, and microglial

Figure 1. Genome-wide comparison of brain aging in humans, rhesus macaques, and mice. a. Venn diagram indicating the extent of
overlap in age-related gene expression changes between the three species. The size of each circle corresponds to the number of age-related
expression changes in each species. b. A group of 154 common aging genes provides an indicator of biological aging in all three species. Shown is a
matrix of Pearson correlation coefficients that indicate the degree of overall similarity between any two samples (see Methods). Positively correlated
sample pairs are indicated by red and negatively correlated pairs are indicated by blue. The degree of correlation correlates with color intensity. The
species and age groups are indicated (Human: young #40 years; aged $70 years. Rhesus macaque: young 5–6 years; aged 28–31 years. Mouse:
young 5 months; aged 30 months).
doi:10.1371/journal.pone.0003329.g001
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Figure 2. Age-regulated genes common to humans, rhesus macaques, and mice. The transcriptional profiles of genes that are age-
regulated in all three species were analyzed by hierarchical clustering. Reduced expressed with aging is indicated by a transition from red in the
young to blue in the aged, and vice versa. Genes separate into three groups based on whether the direction of age-related changes (i.e., age-
upregulated or age-downregulated) is conserved in all three species (category I), changes between mice and rhesus macaques (category II), or
changes between rhesus macaques and humans (category III). Also indicated is the evolutionary time of divergence in years for each pair of species
based on analysis of protein sequence alignments [37].
doi:10.1371/journal.pone.0003329.g002
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Table 1. Age-regulated genes common to humans, rhesus macaques, and mice.

Gene Description Gene Symbol Q-Value (%) Fold Change

Human Rhesus Mouse Human Rhesus Mouse

I. Phylogenetically Conserved Aging Genes

apolipoprotein D APOD 0.035 0.856 0.017 2.251 4.006 2.245

G protein-coupled receptor, family C, group 5, member B GPRC5B 0.279 0.232 0.017 1.642 1.412 1.415

tripeptidyl peptidase I TPP1 0.390 0.438 0.017 1.496 1.247 1.145

ribosomal protein S9 RPS9 0.549 0.232 0.028 1.337 1.754 1.270

calnexin CANX 0.090 0.232 0.057 1.200 1.371 1.677

solute carrier family 35 (UDP-galactose transporter), member A2 SLC35A2 0.035 0.438 0.028 21.136 21.525 21.447

Cofactor required for Sp1 transcriptional activation, subunit 8, 34 kDa CRSP8 0.195 0.856 0.120 21.175 21.323 21.323

Hypothetical protein MGC29898 MGC29898 0.279 0.232 0.776 21.195 21.967 21.306

glutathione synthetase GSS 0.279 0.438 0.348 21.200 21.534 21.603

ubiquitin-conjugating enzyme E2Q (putative) 1 UBE2Q1 0.549 0.720 0.639 21.202 21.534 21.249

tRNA methyltranferase 12 homolog (S. cerevisiae) TRMT12 0.740 0.501 0.240 21.229 21.452 21.538

eukaryotic translation termination factor 1 ETF1 0.195 0.856 0.412 21.231 21.409 21.215

hypothetical protein FLJ20232 RP5-1104E15.5 0.020 0.943 0.776 21.244 21.304 21.283

dual specificity phosphatase 14 DUSP14 0.065 0.856 0.057 21.260 21.296 21.428

member RAS oncogene family RAB14 0.035 0.537 0.288 21.294 21.547 21.314

Transmembrane protein 49 TMEM49 0.020 0.943 0.017 21.299 21.535 21.613

NEDD8-conjugating enzyme UBE2F 0.020 0.534 0.288 21.300 21.467 21.119

zinc finger protein 64 homolog (mouse) ZFP64 0.090 0.856 0.348 21.304 21.623 21.508

transmembrane protein vezatin VEZT 0.020 0.943 0.288 21.318 21.608 21.293

transmembrane protein 4 TMEM4 0.020 0.537 0.120 21.351 22.788 21.307

tribbles homolog 2 (Drosophila) TRIB2 0.965 0.232 0.949 21.365 21.520 21.209

Glutamine-fructose-6-phosphate transaminase 1 GFPT1 0.035 0.639 0.949 21.385 21.600 21.923

protein disulfide isomerase family A, member 6 PDIA6 0.020 0.856 0.240 21.436 21.419 21.303

Metallophosphoesterase domain containing 1 MPPED1 0.020 0.943 0.120 21.441 21.457 21.307

armadillo repeat containing 8 ARMC8 0.195 0.438 0.057 21.454 21.472 21.331

Ribonuclease H1 RNASEH1 0.020 0.599 0.120 21.478 21.425 21.174

kelch repeat and BTB (POZ) domain containing 6 KBTBD6 0.020 0.537 0.057 21.479 21.548 21.539

Membrane-associated ring finger (C3HC4) 1 MARCH1 0.195 0.639 0.120 21.481 21.361 21.977

Acetoacetyl-CoA synthetase AACS 0.020 0.775 0.412 21.517 21.347 21.456

adrenergic, beta, receptor kinase 2 ADRBK2 0.020 0.856 0.057 21.525 22.077 21.335

golgi autoantigen, golgin subfamily a, 1 GOLGA1 0.020 0.856 0.412 21.565 21.542 21.192

transmembrane protein 14B TMEM14B 0.020 0.438 0.039 21.619 21.876 21.240

Transforming growth factor, beta receptor associated protein 1 TGFBRAP1 0.090 0.775 0.776 21.738 21.226 21.117

Cyclic AMP-regulated phosphoprotein, 21 kD ARPP-21 0.020 0.232 0.017 21.953 21.457 21.137

Calcium/calmodulin-dependent protein kinase IV CAMK4 0.020 0.438 0.193 22.174 22.111 21.560

II. Aging Genes that Diverged Between Mice and Rhesus Monkeys

calbindin 1, 28 kDa CALB1 0.020 0.880 0.348 23.722 21.629 1.281

neuronal pentraxin II NPTX2 0.020 0.880 0.017 22.340 21.815 1.323

chromobox homolog 6 CBX6 0.020 0.943 0.017 22.305 21.199 1.377

adenylate cyclase 2 (brain) ADCY2 0.020 0.856 0.193 21.973 21.264 1.109

tubulin tyrosine ligase TTL 0.020 0.599 0.057 21.964 21.527 1.198

3-hydroxy-3-methylglutaryl-Coenzyme A reductase HMGCR 0.020 0.232 0.288 21.866 21.367 1.469

hepatic leukemia factor HLF 0.020 0.639 0.017 21.851 21.250 1.337

similar to hepatocellular carcinoma-associated antigen HCA557b LOC151194 0.020 0.501 0.240 21.838 21.479 1.127

trophoblast glycoprotein TPBG 0.020 0.438 0.017 21.809 21.988 1.563

phospholipase C-like 2 PLCL2 0.020 0.375 0.017 21.770 21.566 1.163

Fusion (involved in t(12;16) in malignant liposarcoma) FUS 0.020 0.959 0.412 21.743 21.535 1.145
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Gene Description Gene Symbol Q-Value (%) Fold Change

Human Rhesus Mouse Human Rhesus Mouse

protein phosphatase 3 (formerly 2B), catalytic subunit, beta isoform
(calcineurin A beta)

PPP3CB 0.020 0.720 0.039 21.725 21.074 1.202

KIAA1944 protein KIAA1944 0.020 0.232 0.949 21.687 21.673 1.169

Chromosome 18 open reading frame 1 C18orf1 0.020 0.537 0.949 21.650 21.299 1.331

phosphodiesterase 4D interacting protein (myomegalin) PDE4DIP 0.195 0.534 0.057 21.640 21.333 1.292

similar to aspartate beta hydroxylase (ASPH) ASPHD2 0.020 0.232 0.120 21.628 21.494 1.154

discs, large homolog 3 (neuroendocrine-dlg, Drosophila) DLG3 0.020 0.880 0.085 21.610 21.228 1.124

adrenergic, alpha-2A-, receptor ADRA2A 0.020 0.232 0.639 21.597 22.092 1.306

component of oligomeric golgi complex 8 COG8 0.020 0.775 0.017 21.557 21.327 1.274

protein tyrosine phosphatase, non-receptor type 3 PTPN3 0.020 0.856 0.949 21.538 21.701 1.201

Small nuclear ribonucleoprotein polypeptide A9 SNRPA1 0.020 0.943 0.146 21.528 21.217 1.250

RAS guanyl releasing protein 1 (calcium and DAG-regulated) RASGRP1 0.020 0.232 0.098 21.525 21.648 1.150

Signal-induced proliferation-associated 1 like 2 SIPA1L2 0.020 0.232 0.500 21.520 22.293 1.189

Ubiquitin carboxyl-terminal hydrolase L5 UCHL5 0.020 0.775 0.028 21.492 21.999 1.357

neuregulin 3 NRG3 0.020 0.959 0.017 21.491 21.293 1.216

tubulin, alpha 1 (testis specific) TUBA1 0.020 0.438 0.949 21.486 21.289 1.067

solute carrier family 36 (proton/amino acid symporter), member 1 SLC36A1 0.065 0.232 0.146 21.482 21.860 1.235

opsin 3 (encephalopsin, panopsin) OPN3 0.020 0.943 0.057 21.478 21.430 1.268

bicaudal D homolog 2 (Drosophila) BICD2 0.020 0.501 0.017 21.470 21.523 1.426

p21(CDKN1A)-activated kinase 7 PAK7 0.020 0.959 0.017 21.455 21.343 1.534

chromosome 21 open reading frame 5 DOPEY2 0.035 0.232 0.017 21.453 21.667 1.272

Nuclear factor I/B NFIB 0.195 0.856 0.348 21.450 21.230 1.209

membrane associated guanylate kinase, WW and PDZ domain
containing 1

MAGI1 0.020 0.639 0.500 21.450 21.364 1.167

TNF receptor-associated factor 3 TRAF3 0.279 0.232 0.776 21.447 21.498 1.112

small glutamine-rich tetratricopeptide repeat (TPR)-containing, beta SGTB 0.090 0.959 0.017 21.445 21.806 1.316

hypothetical protein FLJ20701 FLJ20701 0.020 0.720 0.146 21.442 21.208 1.175

LanC lantibiotic synthetase component C-like 2 (bacterial) LANCL2 0.020 0.639 0.639 21.440 21.380 1.113

Rho GTPase-activating protein RICS 0.065 0.880 0.240 21.437 21.507 1.141

chromosome 10 open reading frame 9 C10orf9 0.020 0.856 0.017 21.425 21.379 1.490

dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 DYRK2 0.195 0.232 0.039 21.422 21.821 1.251

Zinc finger protein 148 (pHZ-52) ZNF148 0.020 0.599 0.017 21.420 21.336 1.320

similar to BcDNA:GH11415 gene product C3orf59 0.020 0.232 0.017 21.412 21.333 1.689

importin 11 IPO11 0.195 0.880 0.017 21.408 21.358 1.334

neuronal pentraxin receptor NPTXR 0.090 0.943 0.288 21.407 21.199 1.310

solute carrier family 35, member B4 SLC35B4 0.020 0.537 0.017 21.403 21.780 1.341

secretogranin III SCG3 0.020 0.720 0.500 21.401 21.255 1.125

Proprotein convertase subtilisin/kexin type 2 PCSK2 0.020 0.232 0.146 21.399 21.280 1.243

Programmed cell death 8 (apoptosis-inducing factor) PDCD8 0.020 0.856 0.017 21.397 21.507 1.265

tripartite motif-containing 44 TRIM44 0.020 0.943 0.017 21.387 22.430 1.201

v-akt murine thymoma viral oncogene homolog 3 (protein kinase B,
gamma)

AKT3 0.020 0.880 0.017 21.385 21.155 1.475

reticulon 4 receptor-like 1 RTN4RL1 0.020 0.959 0.288 21.378 21.369 1.187

WD repeat domain 32 WDR32 0.140 0.959 0.057 21.378 21.364 1.324

zinc finger, DHHC-type containing 4 ZDHHC4 0.020 0.639 0.146 21.370 21.995 1.181

karyopherin alpha 6 (importin alpha 7) KPNA6 0.090 0.959 0.017 21.362 21.452 1.370

tribbles homolog 1 (Drosophila) TRIB1 0.279 0.534 0.017 21.359 21.758 1.519

calmodulin regulated spectrin-associated protein 1 CAMSAP1 0.020 0.534 0.017 21.351 21.267 1.453

member RAS oncogene family RAB22A 0.020 0.524 0.057 21.345 21.766 1.303

Calumenin CALU 0.035 0.856 0.039 21.344 21.923 1.292

Table 1. cont.
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Gene Description Gene Symbol Q-Value (%) Fold Change

Human Rhesus Mouse Human Rhesus Mouse

HEPIS LOC119710 0.020 0.775 0.146 21.342 21.443 1.152

Ankyrin repeat domain 6 ANKRD6 0.140 0.943 0.098 21.341 21.361 1.220

kelch repeat and BTB (POZ) domain containing 7 KBTBD7 0.020 0.537 0.017 21.327 21.548 1.226

Rho-associated, coiled-coil containing protein kinase 2 ROCK2 0.020 0.232 0.120 21.323 21.773 1.289

dynactin 4 (p62) DCTN4 0.090 0.375 0.028 21.320 21.306 1.317

UDP-glucuronate decarboxylase 1 UXS1 0.279 0.232 0.017 21.315 21.943 1.558

chromosome 1 open reading frame 21 C1orf21 0.020 0.599 0.017 21.307 21.326 1.259

proliferation-associated 2G4, 38 kDa PA2G4 0.090 0.775 0.028 21.303 21.761 1.186

isocitrate dehydrogenase 2 (NADP+), mitochondrial IDH2 0.965 0.720 0.057 21.300 21.538 1.292

ring finger protein 41 RNF41 0.140 0.375 0.057 21.299 22.333 1.286

ATPase, aminophospholipid transporter-like, Class I, type 8A, member 2 ATP8A2 0.035 0.720 0.949 21.296 22.771 1.272

zinc finger protein 697 ZNF697 0.279 0.524 0.057 21.295 21.543 1.193

makorin, ring finger protein, 1 MKRN1 0.020 0.537 0.500 21.295 21.224 1.085

eukaryotic translation initiation factor 3, subunit 12 EIF3S12 0.020 0.501 0.120 21.294 22.174 1.187

transforming, acidic coiled-coil containing protein 1 TACC1 0.035 0.537 0.017 21.288 21.945 1.968

THUMP domain containing 3 THUMPD3 0.090 0.639 0.098 21.285 21.648 1.175

mediator of RNA polymerase II transcription, subunit 8 homolog (yeast) MED8 0.020 0.438 0.193 21.282 21.376 1.131

Casein kinase 2, alpha 1 polypeptide CSNK2A1 0.020 0.959 0.098 21.279 21.367 1.572

metastasis associated 1 family, member 3 MTA3 0.390 0.959 0.017 21.276 21.299 1.268

DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 DDX54 0.965 0.959 0.017 21.272 21.272 1.322

Ras-associated protein Rap1 RBJ 0.020 0.856 0.949 21.270 21.325 1.131

cleavage stimulation factor, 39 pre-RNA, subunit 3, 77 kDa CSTF3 0.020 0.534 0.146 21.268 21.145 1.472

N-myristoyltransferase 1 NMT1 0.090 0.943 0.017 21.262 21.174 1.340

Component of oligomeric golgi complex 1 COG1 0.035 0.959 0.017 21.258 21.685 1.659

SERPINE1 mRNA binding protein 1 SERBP1 0.035 0.943 0.240 21.257 21.303 1.143

kelch domain containing 3 KLHDC3 0.140 0.720 0.193 21.252 21.255 1.194

zinc finger protein 436 ZNF436 0.195 0.232 0.193 21.249 21.379 1.122

KIAA1217 KIAA1217 0.965 0.639 0.240 21.247 21.953 1.328

sideroflexin 4 SFXN4 0.020 0.639 0.639 21.247 21.233 1.182

ankyrin repeat domain 28 ANKRD28 0.065 0.856 0.120 21.238 21.505 1.345

Phosphodiesterase 8B PDE8B 0.140 0.856 0.017 21.236 21.964 1.329

casein kinase 2, alpha prime polypeptide CSNK2A2 0.020 0.943 0.288 21.231 21.315 1.137

Ras association (RalGDS/AF-6) domain family 5 RASSF5 0.965 0.524 0.017 21.222 21.416 1.304

microfibrillar-associated protein 1 MFAP1 0.090 0.501 0.017 21.221 21.347 1.280

tRNA nucleotidyl transferase, CCA-adding, 1 TRNT1 0.065 0.537 0.288 21.219 21.673 1.137

golgi SNAP receptor complex member 2 GOSR2 0.390 0.959 0.639 21.216 21.404 1.545

v-ral simian leukemia viral oncogene homolog A (ras related) RALA 0.965 0.232 0.017 21.207 21.690 1.240

hypothetical protein FLJ11305 RP11-98F14.6 0.965 0.943 0.348 21.205 21.411 1.312

Zinc finger protein 291 ZNF291 0.279 0.943 0.017 21.205 21.342 1.458

UDP-N-acetyl-alpha-D-galactosamine (GalNAc-T2) GALNT2 0.390 0.537 0.017 21.202 21.155 1.388

Acyl-Coenzyme A dehydrogenase family, member 9 ACAD9 0.020 0.232 0.017 21.185 21.364 1.403

deltex 4 homolog (Drosophila) DTX4 0.020 0.599 0.017 21.180 21.254 1.314

casein kinase 1, gamma 1 CSNK1G1 0.279 0.856 0.017 21.169 21.430 1.274

KIAA1698 protein KIAA1698 0.279 0.534 0.017 21.157 21.405 1.380

Yip1 domain family, member 3 YIPF3 0.965 0.599 0.017 21.143 21.703 1.540

Adducin 3 (gamma) ADD3 0.065 0.599 0.085 1.540 1.329 21.289

III. Aging Genes that Diverged Between Rhesus Monkeys and Humans

cell division cycle 42 (GTP binding protein, 25 kDa) CDC42 0.020 0.524 0.017 21.688 1.608 1.186

melanoma antigen family H, 1 MAGEH1 0.020 0.232 0.776 21.504 1.697 1.203

Table 1. cont.
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cells derived from primary human cortical cultures, as previously

described [16]. For each set of genes enriched in a specific cell type

in mice, we determined the median fold enrichment in each of the

three human cell type arrays. Genes that were predicted to be

enriched in astrocytes and neurons in the mouse brain by the Allen

database were also enriched in the corresponding cell types

derived from the human cortex (Fig. S1 and Table S7).

The agreement between the human and mouse cell-type

enrichment datasets enabled us to use the Allen Brain Atlas to

localize age-related gene expression changes in both species. The

limited number of age-related changes in the rhesus dataset

prevented us from conducting a comprehensive cell type analysis

in rhesus macaques. To determine whether there is a relationship

between age-related expression changes and cell type localization,

we determined the number of age-related gene expression changes

that could be localized to each cell type using the Allen Brain Atlas. A

relationship between age-related expression changes and cell type

localization was analyzed statistically by determining if the number

of age-regulated genes enriched in specific cell types deviated

significantly from the number expected if these changes were

Figure 3. Cell type localization of gene expression in the aging cortex. Genes enriched in specific cortical cell types, based on the Allen Brain
Atlas, were analyzed in the aging mouse and human gene expression profiles. The percentage of age-regulated genes enriched in each cell type is
represented by the Y-axis was determined as described in Methods. The expected percentages are indicated by the dashed line. Statistically
significant cell type enrichment was determined using a Chi-square test with a permutation-based p-value (1,000 replicates). Specific cell types that
exhibit a statistically significant change in age-regulated genes are indicated by an asterisk.
doi:10.1371/journal.pone.0003329.g003

Gene Description Gene Symbol Q-Value (%) Fold Change

Human Rhesus Mouse Human Rhesus Mouse

Seryl-tRNA synthetase SARS 0.020 0.501 0.017 21.453 1.375 1.650

clathrin, heavy polypeptide (Hc) CLTC 0.020 0.375 0.057 21.438 1.056 1.207

E-1 enzyme MASA 0.020 0.524 0.949 21.323 1.618 1.158

F-box protein 28 FBXO28 0.020 0.232 0.146 21.301 1.701 1.155

abhydrolase domain containing 14A ABHD14A 0.390 0.501 0.017 21.192 1.318 1.404

eukaryotic translation initiation factor 1A, X-linked EIF1AX 0.740 0.232 0.146 21.175 2.762 1.278

hypothetical protein FLJ11155 FLJ11155 0.140 0.959 0.085 1.868 23.539 21.172

Shown are fold changes (aged to young intensity ratio; minus sign for age-downregulated, no sign for age-upregulated) and statistical q-values (%) derived by
Significance Analysis of Microarrays (SAM) as described in Methods. Category I contains genes for which age-related expression changes are conserved, both in terms of
significance and direction, across all three species. Category II contains genes in which the direction of the relationship with age changes from mouse to rhesus
macaque. Category III contains genes in which the direction of the relationship with age changes between rhesus macaque and human.
doi:10.1371/journal.pone.0003329.t001

Table 1. cont.
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independent of cell type localization. Both the human and mouse

localization analysis showed significant deviation from values

expected under the independence assumption (p-value,0.05).

Statistical significance was assessed using a Chi-squared test in

which the null distribution was estimated based on 1,000 replications

(see Methods). The primary data and hypergeometric-based

estimates are provided in Tables S8 and S9, respectively. Both

humans and mice exhibit a larger fraction of age-upregulated

astrocyte- and oligodendrocyte-enriched genes, and age-downregu-

lated neuron-enriched genes, than would be expected by chance

alone (Fig. 3). However, relative to mice, human aging is

distinguished by a dramatic increase in the proportion of neuron-

enriched downregulated genes (Fig. 3). This was also observed when

the data was stratified by gender (Text S2). Analysis of our data using

a different cell type transcriptome database, derived by isolation of

astrocytes, neurons and oligodendrocytes from transgenic mouse

cortex [17], confirmed that downregulation of neuronal genes

distinguishes aging humans from aging mice (data not shown).

As an independent line of evidence for age-related downregu-

lation of neuronal genes, we identified Gene Ontology (GO)

groups that were significantly enriched for age-related expression

changes (Table S10). In total, 24 neuronal GO groups were

significantly enriched for age-related expression changes in

humans (hypergeometric p-value,0.005) (Fig. 4a). In contrast,

only 5 of these 24 neuronal GO terms were slightly enriched for

genes significantly associated with age in mice (hypergeometric p-

value,0.05), despite similar or greater gene numbers for each GO

term represented on mouse versus human microarrays (Fig. 4b).

Further characterization of these GO terms revealed that the vast

majority of genes in the human-enriched neuronal GO terms were

downregulated with age. In contrast, the significant mouse neuronal

GO terms were primarily enriched for age-upregulated genes

(Fig. 4a). Thus, aging reduces the expression of genes with a variety

of neuronal functions to a much greater extent in humans than mice.

Age-Related Repression of Genes Involved in Inhibitory
Neurotransmission
Aging is associated with characteristic neurophysiologic and

cognitive changes attributable to specific neurotransmitter systems.

An important question, therefore, is whether age-related repres-

sion of neuronal genes selectively affects specific neurotransmitter

systems. We noted that the only significantly enriched GO groups

relating to a specific neurotransmitter were ‘‘GABA and GABA-A

receptor activity’’ (Fig. 4). To explore this finding further, we

examined the age-regulated expression of genes related to each of

the major cortical neurotransmitters, including glutamate, gam-

ma-aminobutyric acid (GABA), dopamine, glycine, serotonin, and

acetylcholine (Fig. 5a). The most robustly age-regulated group

corresponded to genes involved in GABA-mediated inhibitory

neurotransmission (Fig. 5a and Table S11). Multiple genes in this

category were age-downregulated with large fold changes in

humans, including GABA A receptor subunits alpha 1 (GABRA1),

alpha 5 (GABRA5), beta 3 (GABRB3) and gamma 2 (GABRG2),

the GABA vesicular transporter (SLC32A1), and the GABA

biosynthetic enzymes glutamate decarboxylase 1 and 2 (GAD1

and GAD2) (Table S11). Moreover, genes for the neuropeptides

calbindin 1 (CALB1), somatostatin (SST), vasoactive intestinal

peptide (VIP), cholecystokinin (CCK), tachykinin (TAC1), and

Figure 4. Neuronal gene ontology groups distinguish the expression profiles of the aging human and mouse cortex. a. Neuronal
gene ontology (GO) groups that are significantly enriched (p-value#0.005; binomial approximated p-value for a hypergeometric distribution) for age-
related expression changes (SAM comparison, FDR#0.01) were identified. The X-axis represents the percentage of genes in a GO group with age-
related up- or down-regulation. Multiple neuronal GO groups are enriched in the human aging profile; while only a few neuronal GO terms appear at
less significant thresholds in the mouse aging profile. Age-upregulated and age-downregulated genes are shown separately. b. Number of genes in
each GO group that are represented on the mouse and human microarray platforms.
doi:10.1371/journal.pone.0003329.g004
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nociceptin (PNOC), which are markers of inhibitory neuronal

subpopulations in prefrontal cortex, were significantly age-

downregulated (Fig. 5b). These genes were not significantly age-

downregulated in mice, although some inhibitory markers, such as

calbindin 1 and GABA A receptor subunit alpha 1, were

significantly age-downregulated in rhesus macaques (Fig. 5).

Downregulation of several glutamate-related genes, such as the

glutamate receptor subunits AMPA 1 (GRIA1) and kainate 1

(GRIK1), was also observed, but the number and magnitude of

these expression changes were less than that observed for GABA-

related genes (Fig. 5a and Table S11). A subset of these age-related

changes, notably calbindin 1, GABA A receptor subunit b3 and

AMPA 1, have been confirmed by quantitative real time RT-PCR

[6]. Thus, genes associated with inhibitory neurotransmission are

repressed in the aging human cortex.

Age-Related Reduction of Neuronal Proteins Is Not
Associated with Overall Neuronal or Synaptic Loss
To determine whether reduced mRNA levels are associated

with reduced protein levels in the aging brain, a subset of gene

products expressed in GABAergic neurons was examined by

quantitative Western blotting in cortical samples from young adult

and aged humans and mice. The protein level of the major GABA

biosynthetic enzyme in the brain, GAD1, was significantly reduced

in the aging human cortex, as well as the levels of calbindin 1 and

somatostatin, in agreement with the microarray data (Fig. 6a and

Fig. S2a). The neuropeptide VIP did not show a significant age-

related change at the protein level, in contrast to the age-related

reduction in VIP mRNA. This difference may reflect limited

sensitivity of the antibody used for Western blotting of VIP, or

post-translational regulation of VIP levels. In contrast to aging

human cortex, the aging mouse cortex did not exhibit altered

levels of calbindin or somatostatin, which is also in agreement with

the microarray data (Fig. 6b and Fig. S2b).

Stereological cell counting studies suggest that neuronal loss is

not significant in the aging human prefrontal cortex. To confirm

this finding, we performed quantitative Western blotting for two

established neuron-specific markers, b-tubulin III and neurofila-

ment L chain [17]. The levels of both proteins did not change

significantly in the aging human prefrontal cortex (Fig. 6a and Fig.

S2a). We also examined the presynaptic marker synaptophysin,

which did not show a significant age-related change in this cortical

region (Fig. 6a and Fig. S2a). These results suggest that

downregulation of neuronal genes in the aging human cortex

cannot be attributed to overall loss of neurons or synapses.

Discussion

We have compared the protein-coding transcriptome of the

aging cerebral cortex in mice, rhesus monkeys, and humans by

utilizing species-specific genome-scale microarrays. As such, this

study is not confounded by cross-species hybridization of RNA to

microarrays, and provides a broad view of the evolution of the

mammalian aging brain. Our results suggest that a relatively small

subset of age-regulated gene expression changes are conserved

from mouse to man. The most robustly age-upregulated of these

conserved genes is apolipoprotein D, which has been shown to

protect against oxidative stress and extend lifespan in Drosophila

Figure 5. Global repression of genes associated with GABA-mediated inhibitory neurotransmission. Shown are age-related changes in
the expression of genes that mediate major neurotransmitter systems in the cortex of humans, rhesus monkeys, and mice. a. Genes involved in
specific neurotransmitters were identified based on membership in the corresponding GO groups. Age-related fold changes in genes with orthologs
in all three species and represented on all three microarray platforms are shown for humans, rhesus monkeys, and mice. Gene identities are provided
in Table S11. *q-value#0.01. b. Age-related fold changes for markers of inhibitory neuronal subpopulations. Statistical significance in a specific
species (q-value#0.01) is denoted with an asterisk.
doi:10.1371/journal.pone.0003329.g005
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[18,19]. Moreover, apolipoprotein D is upregulated at the protein

level in the aging human brain and to a greater extent in a variety

of neurological diseases, including Alzheimer’s disease [20,21].

The most robustly age-downregulated gene conserved in all three

species is CAMK4, a key component of the cAMP signaling

cascade that links synaptic activity to CREB-dependent transcrip-

tion and modulates synaptic plasticity [14,22]. Another key cAMP

signaling gene, adenylate cyclase 2, is age-downregulated in

humans and rhesus macaques. Thus, increased expression of

neuroprotective genes and reduced expression of genes involved in

synaptic function are conserved features of mammalian aging.

Localization of gene expression by in situ hybridization and

analysis of gene ontology groups indicates that 3 cell types –

astrocytes, oligodendrocytes, and neurons – exhibit significant age-

dependent changes in gene expression in mice and humans.

However, age-related downregulation of neuronal genes has

increased dramatically from mouse to man, and is a major

distinguishing feature. Several lines of evidence suggest that this is

unlikely to be secondary to neuronal cell death. First, stereological

analysis of neuronal cell number did not detect neuronal loss in the

region of the aging human prefrontal cortex used in this study

[2,23]. Second, we have shown that expression of a number of

neuron-specific genes is unaltered in the aging human prefrontal

cortex at both the mRNA and protein levels. Moreover, the

absence of a significant age-related change in synaptophysin levels

suggests that overall synapse numbers may also be preserved.

However, this does not rule out more subtle changes in synaptic or

dendritic spine structure as reported in aging rhesus monkeys [24].

Finally, we showed previously that age-related gene downregula-

tion did not correlate with postmortem interval in the range used

in our study [6], consistent with the lack of an effect of postmortem

interval on RNA integrity in another study [25]. In addition, we

monitored brain tissue pH to exclude human cases with prolonged

terminal hypoxia [26]. Taken together, these findings are

consistent with a primary age-related change in the regulation of

neuronal gene expression. In a previous study, we found that

downregulated neuronal genes were associated with DNA damage

in the aging human cortex, and that DNA damage can repress the

transcription of these genes in primary neuronal cultures [6].

Another study suggested that some genes undergo age-dependent

DNA methylation [27]. Thus, transcriptional repression in

neurons may be a primary feature of human brain aging that

has evolved in long-lived primates.

A systematic investigation of genes involved in the major

cortical neurotransmitter systems suggests that the GABA system,

which mediates inhibitory neurotransmission, may be particularly

affected in the aging human prefrontal cortex. This is underscored

by the 50–60% reduction in mRNA and protein levels of GAD1,

the primary GABA biosynthetic enzyme in the brain. In addition,

the marked downregulation of calbindin 1 and somatostatin

suggests that specific inhibitory neuronal subpopulations may be

unusually vulnerable. Reduced calbindin 1 immunocytochemical

staining has also been demonstrated during normal brain aging in

rhesus monkeys and humans, and becomes more pronounced in

Alzheimer’s disease [28]. Thus, aging of the brain may be

associated with reduced inhibitory neurotransmission.

The central role of GABA in cognition and affective state raises

the possibility that age-dependent downregulation of this system

might contribute to neurophysiological and psychological changes in

the aging population [29]. Reduced inhibitory circuit activity might

increase cortical activation during the performance of routine

cognitive tasks, a phenomenon that has been demonstrated in the

aging human prefrontal cortex by functional imaging studies [30,31].

This pattern of increased cortical activation may initially be

compensatory, enabling aged individuals to function at a higher

level [31]. However, increased excitation could predispose to

excitotoxicity, a mechanism of neuronal cell death associated with

a variety of age-related neurological disorders, including Alzheimer’s

disease [32]. Functional imaging studies have implicated cortical

overactivation due to impaired inhibitory function in patients with

Alzheimer’s disease [33]. The relevance of overexcitation to disease

pathogenesis is suggested by the clinical efficacy of the NMDA

receptor antagonist memantine, currently the only treatment that

delays progression of moderate to late stage Alzheimer’s disease [34].

Interestingly, significant downregulation of GABA-related genes is

not detected in the aging mouse cortex, which may increase

resistance to excitotoxicity relative to aging humans. This may, in

turn, contribute to the paucity of neuronal cell death in mouse

models of neurodegenerative diseases compared with the human

pathology [2]. Hence, a greater understanding of normal brain aging

and its evolution may provide new insights into pathogenic

mechanisms involved in age-related neurodegeneration.

Materials and Methods

Samples and Microarray Platforms
All aspects of animal housing and experimental procedures were

approved by the Institutional Animal Care and Use Committees of

Children’s Hospital Boston and the Beth Israel-Deaconess

Hospital (for rhesus macaques) and by the William S. Middleton

V.A. Medical Center and the University of Wisconsin-Madison

Figure 6. Reduced protein markers of inhibitory neurons in the
aged human cortex. a. GAD1, calbindin-1, and somatostatin protein
levels are significantly lower in the aged (71–91 yr; white) human cortex
than in the young adult (24–35 yr; black) cortex, in agreement with
microarray results. VIP expression is age-stable at the protein level. The
neuronal markers b-tubulin-III and neurofilament-L are age-stable at the
protein level, as is the synaptic protein synaptophysin. n = 15. The
primary Western blot data are shown in Figure S2a. b. Calbindin-1,
somatostatin, and VIP protein levels are age-stable in the mouse cortex,
in agreement with the microarray results. Likewise, b-tubulin-III and
synaptophysin do not change significantly with age. Attempts to probe
for mouse GAD1 and neurofilament-L were not successful. n = 6. The
primary Western blot data are shown in Figure S2b. In both a and b, the
level of each protein was normalized to the level of actin. Values
represent the mean6S.E.M. expressed as percent of the mean young
value for each protein. * P,0.05 by Student’s two-tailed t-test.
doi:10.1371/journal.pone.0003329.g006
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Medical School (for mice). Postmortem human tissue was

procured in accordance with institutional guidelines. Detailed

description of the human, rhesus macaque and murine samples

and extraction protocols are supplied in Text S1 and Table S1.

Postmortem human cortical samples were derived from subjects

that did not carry a diagnosis of Alzheimer’s disease or another

neurodegenerative disease, and showed neuropathological findings

within the normal range for age. In addition, human brain tissue

samples with a pH.6.5 were used to exclude prolonged terminal

hypoxia [26]. We generated genome-wide expression profiles of

young and aged cortical samples in humans, rhesus monkeys and

C57BL/6J mice using Affymetrix Human Genome U133plus 2.0

arrays, Rhesus Macaque Genome arrays and Mouse Genome 430

2.0 arrays, respectively. Affymetrix Human Genome U133plus 2.0

arrays were also used for expression profiling of neurons, microglia

and astrocytes isolated from primary fetal human cortical cultures.

Samples with acceptable parameters of RNA quality (Text S1)

were hybridized to the corresponding Affymetrix oligonucleotide

arrays, which were then scanned and expression data extracted

using the standard Affymetrix Microarray Suite Software.

Gene Mapping
Predicted rhesus macaque proteins, based on the Jan. 2006

version of the rhesus genome (Baylor College of Medicine HGSC

v1.0), were aligned to human Refseq protein sequences mapped to

NCBI Build 36 of the human genome. The mapping was

conducted using the BLAST program [35] by first creating a

BLAST protein database from the predicted rhesus proteins.

Using protein-BLAST, individual human Refseq proteins were

then compared to the rhesus protein database. A BLAST score

greater than 200, and at least 80% of the human protein aligning

to the predicted rhesus protein, was required to declare an

orthologous pair between the two species. A complete list of

orthologous human-rhesus gene pairs is provided in Table S2.

Expression Profiling and Analytical Approaches
To compare expression across species, genes were required to

have orthologs in the human, rhesus macaque and mouse genome

databases, and to have probesets in the microarray platforms for

each species. We also required that probes be called present using

dChip software in at least 20% of the arrays for each species. Four

approaches were used to analyze the genes meeting these criteria.

1. Significance Analysis of Microarrays (SAM) software was used

to compare young and aged groups within each species with the

following criteria for identifying age-related expression changes:

1000 permutations and median false discovery rate (FDR) #0.01.

Significant age-related gene expression changes are listed for

humans, rhesus macaques and mice in Tables S3, S4, and S5,

respectively. The subset of genes that are age-regulated in all three

species is provided in Table S6. These common age-related genes

were also resolved by hierarchical clustering using dChip software

(build date: April 11, 2007) [36]. The display range used in the

hierarchical clustering was 2.0 (a value greater than 2.0 standard

deviations above the mean is pure red, below is pure blue, and

equal to the mean is white). 2. Correlation coefficients between

samples were calculated and visualized using dChip software

across the 154 genes that are significantly associated with aging in

all three species. The range of observed correlation coefficients was

(20.78, 0.82), excluding a sample’s correlation with itself. The

display range used was 0.7 (correlation above 0.7 is pure red,

below is pure blue, and 0 is white). 3. The cell type enrichment

analysis of age-regulated genes was performed independently for

mice and humans, and included all genes that met the above

microarray criteria and were also present in the list of cell type-

enriched genes in the Allen Brain Atlas (Table S8). For the analysis

in humans, we required that the mouse ortholog to the human

gene be present in the list. For each species, the number of

significant age up- and down-regulated genes, as well as the

number of non-significant genes, was determined for each of the

five cell types indicated in the Allen Brain Atlas resulting in a 3-by-

5 table (Table S9). Assuming independence between cell types and

age-related expression changes, the expected count within each cell

of the table was estimated using the row and column totals. As a

result of the low count in some cells, a Monte Carlo p-value, based

on 1000 replications was calculated for each species to test whether

the observed count significantly deviated from what was expected by

chance. 4.GeneOntology analysis was performed independently for

humans and mice using dChip software (Table S10). A Gene

Ontology group is considered to be enriched in the aging database if

it contains a greater number of significantly age-related genes than

expected by chance. The statistical significance of GO group

enrichment is determined using a binomial approximation to the

hypergeometric distribution with a p-value cut-off of 0.005, as

described in detail elsewhere (www.dchip.org) [36].

Analysis of Cultured Human Cortical Cell Types
Neurons, astrocytes and microglia were isolated from primary

fetal human cortical cultures as described previously [16]. Expression

profiling of the isolated cortical cell types was performed using

Affymetrix U133 plus 2.0 arrays. To assess the concordance of gene

expression profiles of corresponding human and mouse cortical cell

types, we analyzed the probe sets on the human U133plus 2.0 arrays

that corresponded to the Allen Brain Atlas list of mouse cell type-

enriched genes (Table S7). Fold enrichment of a particular gene in a

specific human cell type was calculated as follows: the intensity of the

gene in one cell type was divided by the maximum of the intensities

in the two remaining cell types. The median fold enrichment of a

particular human cell type was then calculated over all of the genes

that were called enriched in a specific mouse cell type (Allen Brain

Atlas). The result was a human cell type enrichment score for every

human-mouse cell type combination (Fig. S1). Median fold values

greater than 1.0 indicated enrichment.

Western Blot Analysis
Human Brain. Postmortem human cortical tissue (Brodmann

area 9/10) was flash frozen and stored at2150u until use. Tissue was

homogenized in RIPA-DOC buffer containing protease inhibitors

(Complete, Roche) with microcystin (1 mm) and Na3Vo4 (1 mM).

Tissue was homogenized, sonicated, and centrifuged at 10,000 rpm

at 4uC and the protein concentration in the resulting supernatant

was assayed (BioRad protein assay). Samples were boiled in 16SDS

sample buffer containing DTT and resolved by 7% SDS-PAGE

using the Criterion System (BioRad) and electrotranferred to PVDF

membranes (Immobilon, Millipore). The primary antibodies and

dilutions used to probe the PVDFmembranes are described in Table

S12. Secondary antibodies (Jackson ImmunoResearch) were used at

1:2000 diluted in 5% nonfat milk. Blots were developed on film or

with a gel documentation system (Syngene) and quantified with

GeneTools software (Syngene).

Mouse Brain. Three young B6C3F1 mice (5 months) and

three aged B6C3F1 mice (30 months) were sacrificed and the

cortex was isolated and homogenized in 20 mMHEPES, 125 mM

NaCl, 0.1% NP40, 0.1% Triton X-100, 1 mM EDTA, 10 mM

nicotinamide, 1 mM trichostatin A, protease inhibitors (Complete,

Roche), and phosphatase inhibitors (PhosSTOP, Roche). Samples

were boiled in SDS sample buffer containing DTT, resolved by

SDS-PAGE on 10% or 12.5% Tris-glycine gels and

electrotransferred to PVDF membranes.
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