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Abstract

The axial musculoskeletal system represents the plesiomorphic locomotor engine of the vertebrate body, playing a

central role in locomotion. In craniates, the evolution of the postcranial skeleton is characterized by two major

transformations. First, the axial skeleton became increasingly functionally and morphologically regionalized. Second,

the axial-based locomotion plesiomorphic for craniates became progressively appendage-based with the evolution

of extremities in tetrapods. These changes, together with the transition to land, caused increased complexity in the

planes in which axial movements occur and moments act on the body and were accompanied by profound

changes in axial muscle function. To increase our understanding of the evolutionary transformations of the

structure and function of the perivertebral musculature, this review integrates recent anatomical and physiological

data (e.g., muscle fiber types, activation patterns) with gross-anatomical and kinematic findings for pivotal craniate

taxa. This information is mapped onto a phylogenetic hypothesis to infer the putative character set of the last

common ancestor of the respective taxa and to conjecture patterns of locomotor and muscular evolution. The

increasing anatomical and functional complexity in the muscular arrangement during craniate evolution is

associated with changes in fiber angulation and fiber-type distribution, i.e., increasing obliqueness in fiber

orientation and segregation of fatigue-resistant fibers in deeper muscle regions. The loss of superficial fatigue-

resistant fibers may be related to the profound gross anatomical reorganization of the axial musculature during the

tetrapod evolution. The plesiomorphic function of the axial musculature -mobilization- is retained in all craniates.

Along with the evolution of limbs and the subsequent transition to land, axial muscles additionally function to

globally stabilize the trunk against inertial and extrinsic limb muscle forces as well as gravitational forces.

Associated with the evolution of sagittal mobility and a parasagittal limb posture, axial muscles in mammals also

stabilize the trunk against sagittal components of extrinsic limb muscle action as well as the inertia of the body’s

center of mass. Thus, the axial system is central to the static and dynamic control of the body posture in all

craniates and, in gnathostomes, additionally provides the foundation for the mechanical work of the appendicular

system.

Introduction
The axial musculoskeletal system represents the plesio-

morphic propulsive engine of the vertebrate body and

maintains a central role in locomotion in all craniates.

Considering its evolutionary antecedence to the appen-

dicular system and its importance for locomotion, our

understanding of the axial system is surprisingly limited

compared to our understanding of the limbs.

The evolution of the axial system is marked by pro-

found changes in its morphology and function. The

increasing differentiation of its muscular, neural, and

skeletal elements is certainly partly responsible for the

diversity of locomotor mechanics among craniates. The

arrangements of the axial musculature among verte-

brates show at least as much diversity as any other mus-

cle system. Understanding the adaptive value of the

various muscular arrangements is an undertaking to

which this review attempts to contribute. To develop a

plausible scenario of the evolutionary transitions in the

structure and function of the perivertebral musculature,
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the functional, anatomical, and physiological characters

of representatives of pivotal taxa were mapped onto a

phylogenetic hypothesis. Such an approach allows infer-

ence of the most likely character set of the last common

ancestor of the respective taxa as well as informed specu-

lations concerning the patterns of locomotor and muscu-

lar evolution. The function of a muscle can be deduced

from morphological and physiological variables such as

its topography, fiber architecture, fiber-type composition,

in-vivo muscle strain and ex-vivo work loops. The inte-

gration of these data with other physiological data such

as the muscle’s activity as well as with biomechanical

data such as the associated locomotor kinematics allows

one to test functional hypotheses and to infer a muscle’s

possible functions. Because only some of these variables

have been studied in axial muscles of a number of crani-

ates, inference of the muscle function will be based on a

subset of this ideally available information (i.e., muscle

topography, fiber architecture, fiber-type composition,

activation patterns, kinematics).

Parts of the proposed scenario cannot be tested directly

because some kinds of information, such as data about

soft tissues, are either inadequately preserved in the fossil

record or are missing altogether. An indirect method, the

‘extant phylogenetic bracket’ often allows reconstruction

of soft tissue characters of fossils [1]. Hypotheses are

thereby formulated by evaluating osteological character

states causally related with the tested characters in at

least the first two extant outgroups of the fossil taxon of

interest [outgroup rule, [2]]. Regarding the axial system,

simple inference from extant sister taxa fails in some

cases because of the fundamental anatomical differences

among the groups and the absence of the critical osteolo-

gical traits in the respective sister taxa. Additionally, the

data available on soft tissue characters such as fiber com-

position are currently too incomplete for many extant

craniates to allow a strict phylogenetic reconstruction of

the evolution of their axial system. Assuming that the

same biomechanical laws operate now as have in the

past, the inferred intramuscular transformations that

accompanied gross-anatomical and functional changes

during craniate evolution were inferred from studying

species that resemble the hypothetical last common

ancestor of the particular taxon of interest. For that rea-

son, this review focuses on specific craniate taxa only.

Groups highly derived in their postcranial anatomy and

locomotor style such as snakes, birds, or monotremes

were not included in the proposed scenario; although, of

course, they would be potentially interesting and relevant

to some of the major themes discussed below.

Axial muscles may serve a number of different locomo-

tor functions. They may produce movements of the axial

skeleton that generate positive or negative external work

(referred to as mobilization). They also may counteract,

control, or restrict movements that are either passively

induced by gravitational or inertial forces, actively pro-

duced by antagonists, or transmitted to the trunk by

extrinsic limb muscles, i.e. they stabilize the trunk. Such

stabilizing role may involve long periods of activation, for

example to ensure such as the structural linking of the

skeletal elements (called tonic, local stabilization), but also

faster, briefer muscle action for quick responses for exam-

ple required to stabilize the trunk against rapid loading

(dynamic, global stabilization). Accordingly, local stabili-

zers can be expected to contain high proportions of fati-

gue-resistant fibers and are likely in close proximity to the

joint they stabilize, while global stabilizers should contain

primarily fast contracting fibers and be well effectively

positioned relative to the axis of motion. Mobilization, for

example to produce body propulsion, may involve slow or

fast fibers depending on locomotor speed. As is the case

for global stabilizers, mobilizers are expected to be well

situated for the production of locomotor work. This classi-

fication, first proposed as human-specific trait based on

their back muscle topography and activity [3,4], was

adopted and further developed by research on other mam-

malian species [e.g., [5,6]], and revealed as generally

applicable to the trunk musculature of tetrapods [e.g., [7]].

Although too strict categorization risks oversimplification,

because muscles likely fulfill different functions during dif-

ferent behaviors or even the course of one behavior, such

classification of the perivertebral muscles into local and

global stabilizers as well as global mobilizers has heuristic

value and provides a framework for the formulation of tes-

table hypotheses [8]. Because the evolution of the axial

muscle function and morphology is tightly linked to the

evolution of the postcranial skeleton, a few relevant

aspects of the evolutionary transformations in the postcra-

nial skeleton will first be summarized before the evolution

of the perivertebral musculature is discussed.

Evolution of the postcranial skeleton
The evolution in the postcranial system in craniates

from the agnathan fish ancestors to mammals is charac-

terized by two major transformations. First, the axial

skeleton became more and more regionalized. Second,

the ancestrally axial-based locomotion became increas-

ingly appendage-based with the evolution of extremities

and their reorganization within tetrapods. Both events

were associated with fundamental changes in the body

planes in which movements occur and moments act on

the body. Furthermore, the moments acting on the

trunk changed substantially during tetrapod evolution

with the transition to land.

In petromyzontids, the axial skeleton consists of more

or less similar, arch shaped elements situated dorsally to

the notochord (arcualia) (Figure 1). In gnathostome

fishes, the vertebral column is regionalized into trunk
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Figure 1 Hypothesized evolutionary transformations of the morphology and function of the axial system in craniates. Data were

compiled from various sources (see text) and mapped onto a simplified phylogenetic hypothesis based on [71]. Character states plesiomorphic

for craniates are indicated by arrows. – Axial skeleton (rectangles): Notochordates (i.e., Cephalochordata + Craniata) ancestrally possess a

notochord, eponymous for the group. In early vertebrates, cranio-caudally uniform vertebral elements evolved (VE). In gnathostomes, the axial

skeleton is regionalized. A trunk (= dorsal, D) and tail region (caudal, CD) are distinguished in gnathostome fishes, while a cervical (C), truncal,

sacral (S), and caudal region are present in early tetrapods. In mammals, the truncal region is further subdivided into a thoracic (T) and a lumbar

(L) region. – Axial musculature (circles): Gross anatomy and fiber orientation: Transformations in the arrangement of the perivertebral

musculature are illustrated by schematic cross-sections showing the gross-anatomical changes (left) and cartoons of a few body segments in
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and tail by the presence of ribs and large neural and

hemal spines, whereas cervical, truncal, sacral, and tail

regions are distinguished in tetrapods. In mammals, the

truncal series was further subdivided into a thoracic and

a lumbar region, resulting in altogether five morphologi-

cally and functionally different divisions of the vertebral

column (Figure 1).

Subdivisions of the axial skeleton allow particular body

regions to be morphologically and physiologically spe-

cialized for certain functions such as body propulsion.

For example, the primary function of the tail in gnathos-

tome fishes is propelling the body by lateral undulations

[e.g., carangiform swimming, [9]] and therefore it must

allow lateral flexion but resist longitudinal compression.

In adaptation to this locomotor function, the tail region

has no ribs and large hemal arches to provide attach-

ment sites and leverage for the axial muscles. This cra-

nio-caudal regionalization of the body is augmented by

soft tissue traits such as differences in fiber population

[10,11], fiber contractile properties [12,13] or the

arrangement of the connective tissue [14-16]. The

reduction of the role of trunk bending in locomotion in

carangiform swimmers compared to anguilliform loco-

motion, as for example in agnathans, may reduce pres-

sure peaks in the body cavity, and thereby interference

with inner organ function, but first and foremost it

reduces the internal work of locomotion because only

part of the body undergoes bending. Similarly, the for-

mation of functional regions of the mammalian trunk

facilitated specialization of the vertebral series. The

thoracic region allows movements in the horizontal and

transverse planes, reflected by more or less horizontally

oriented zygapophyses, and the presence of ribs forming

the rib cage provides rigidity for the thorax to ensure

lung function [17-20]. In contrast, intense motions in

the sagittal plane are facilitated in the rib-free lumbar

region due to vertical zygapophyses [19-21].

In contrast to the primarily axial-based locomotion of

aquatic craniates, body propulsion results from inte-

grated action of trunk and limbs in tetrapods. Therefore,

in addition to the plesiomorphic function of contribut-

ing to the work of locomotion, the body axis provides

the foundation for the production of mechanical work

by the limbs, and thus is central to the static and

dynamic control of body posture and the integration of

coordinated actions of the limbs in all tetrapods. In the

lineage leading from the hypothesized ancestor of tetra-

pods to therian mammals, body propulsion became

increasingly dependent on limb action. In salamanders

and lizards, the fore- and hindlimbs are composed of

three serially homologous elements that function

roughly in the same manner regarding their range of

excursion and positioning during locomotion [22]. The

evolutionary transformation from the ancestral (tetra-

pod) sprawled limb posture to the derived parasagittal

position in therian mammals entailed a dissociation of

serial and functional homologues [23,24]. With the

reduction of the coracoid, the scapula lost its rigid con-

nection to the trunk in therian mammals and gained

mobility unique among tetrapods. In the hindlimb, the

proximal part of the autopodium was elongated to form

a new functional segment. As a result, the typical ther-

ian limb consists of three functionally equivalent ele-

ments plus a contact segment [i.e., scapula-femur,

humerus-shank, lower arm-metatarsus, hand-toes

[23,25]]. Associated with the evolution of a parasagittal

limb posture was a fundamental change in the moments

that act on the trunk. While extrinsic pro- and retractor

lateral perspective illustrating the changes in muscle and/or fiber arrangement (right). Dorsal and ventral parts of the myomeres are innervated

by separate rami of the ventral root in agnathan fishes (light and dark brown). In each segment, muscle fibers span longitudinally between

adjacent myosepta. In gnathostomes, the dorsal and ventral myomere parts are morphologically separated by the horizontal septum (pink)

resulting in epaxial (ep) and hypaxial (hy) muscles. Likely associated with the evolutionarily new requirements to stabilize the body against long-

axis torsion, deeper muscle fibers are obliquely oriented. In non-amniote tetrapods, the epaxial musculature retained its segmental organization

in contrast to the hypaxial musculature, which comprises the polysegmental subvertebral (sv) and the abdominal wall muscles (the latter are not

shown here). The majority of the epaxial fibers connects adjacent myosepta longitudinally, while deeper fibers run at different angles. In

amniotes, the epaxial musculature is reorganized into three longitudinal and polysegmental muscle tracts (tr: transversospinal, lo: longissimus, ilc:

iliocostalis). In mammals, the transversospinal muscle is subdivided into several entities forming the transversospinal system (trs). The mammalian

ventrovertebral musculature is strengthened by the psoas major (ps). – Axial muscle function (diamonds): The plesiomorphic function of the

axial musculature is to mobilize the body in the horizontal plane. The horizontal and torsional moments that result from the evolution of fins

and a heterocercal tail, which tend to laterally bend the trunk and cause long-axis torsion, respectively, have to be counteracted by the axial

muscles in gnathostome fishes. In tetrapods, as a consequence of the evolution of supporting limbs and transition to land, the axial muscles

additionally function to globally stabilize the trunk against inertial and extrinsic limb muscle forces as well as against gravitational forces. Note

that the evolution of limbs preceded the transition to land. In tetrapods with a sprawled limb posture, extrinsic limb muscle forces in the

horizontal plane are relatively large. The greater agility and maneuverability as well as an increased importance of limb action for body

propulsion, likely requires the axial muscles to dynamically stabilize the trunk to a greater extent in amniotes than in non-amniote tetrapods.

Associated with the evolution of sagittal mobility and a parasagittal limb posture in mammals, the axial muscles additionally function to globally

stabilize the trunk against sagittal components of extrinsic limb muscle action as well as against inertia. Furthermore, the axial musculature

mobilizes the trunk in the sagittal plane during asymmetrical gaits.
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muscle activity can be expected to act primarily in the

horizontal plane and thus cause lateral bending in a

sprawled limb posture, swinging the legs back and forth

in a parasagittal plane results in the limb pro- and

retractors acting on the trunk in the sagittal plane and

thus causing sagittal bending [26]. Furthermore, the lat-

eral components of the propulsive forces, that tend to

laterally bend the trunk and exert rotational torque on

the girdles, are larger in an animal with a sprawled limb

posture compared to one with parasagittal limb motion

[27]vs. [28].

Evolution of axial muscle function and
morphology
Agnathans

The organization of the axial musculature into serial

units (i.e., myomeres) by a complex myoseptal system is

plesiomorphic for craniates (Figures. 1, 2). Each myo-

mere is composed of a superficial layer of tonic fibers

and a central stack of twitch fibers, all fibers spanning

longitudinally between adjacent myosepta [29-35]. The

dorsal part of the myomere is innervated by a dorsal

branch of the ventral root, while the ventral portion is

innervated by a ventral branch [36]. These two myomere

portions are innervated by different motoneurons [37],

intermingled in the ventral portion of the gray matter of

the spinal chord [38]. Each motoneuron innervates mus-

cle fibers in two or three myomeres, resulting in con-

tractions that extend beyond a given segment [36].

Observations on swimming lampreys show a rhythmic,

alternating, and posteriorly propagating activation of the

axial musculature suitable for producing a traveling

wave of lateral bending [39,40]. In both, hagfish and

lampreys, the whole body is involved in the undulatory

movements with little longitudinal variation in either

the burst duration as a percentage of cycle duration or

in the lateral displacement [40,41] (i.e., anguilliform

swimming), which likely accounts for the anterior-pos-

teriorly undifferentiated musculoskeletal system; the

body segments are a repetition of virtually identical sub-

units. The generated force is primarily transmitted to

the notochord by the myoseptal system. The notochord

occupies a position near the neutral axis of lateral bend-

ing and has been shown to 1) dominate the viscoelastic

properties of the body, 2) provide dynamic passive stabi-

lity, and 3) act as a power amplifier in hagfish [42,43]. It

has been suggested that the muscular system actively

tunes the body’s stiffness in order to match its resonant

frequency to undulatory frequency during locomotion

[42-44]. Particularly the superficial, tonic fibers are well

suited to modulate the stiffness of the body over long

periods; possibly directly via the myoseptal system and

indirectly via the skin, onto which the myosepta attach

[45]. The parietal, tonic fibers could also be involved in

slow frequency swimming, as has been shown for var-

ious gnathostome fishes (see below), but unfortunately,

no separate recordings from the parietal vs. the central

fibers exist.

Given the great similarities in myotome organization

between lancelets and agnathan craniates [29,38,46,47],

the morphology and the function of the axial muscula-

ture of agnathan craniates to 1) produce lateral bending,

and thus to mobilize the trunk, and 2) to modulate the

body’s stiffness are most likely plesiomorphic for crani-

ates (Figure 1).

Gnathostome fishes

In contrast to agnathan fishes and lancelets, a transverse

septum (Septum horizontale) separates the myomeres

into epaxial and hypaxial parts in gnathostomes, which

are innervated by separate rami of the ventral root of

the spinal nerve. This general separation into epaxial

and hypaxial muscles is retained in all gnathostomes,

regardless of how profoundly the axial musculature was

reorganized in the different taxa. The traditional view of

epaxial and hypaxial muscles with their respective inner-

vation is challenged however by the fact that dorsal and

ventral parts of the myomeres are also innervated by

separate rami in the hagfish [Peters, 1963, cited in [38]]

and the lamprey [37]. Therefore, the horizontal septum

morphologically separates two previously neurologically

distinct units in gnathostomes [48]. Further, in actinop-

terygian and lungfishes three rami emerging from the

ventral root innervate the dorsal, medial, and ventral

parts of a myomere, respectively [48-50]. Most likely

associated with that, the extreme dorsal and ventral por-

tions show distinct activation patterns that are not

necessarily correlated with the activity of the central

fibers near the horizontal septum [51]. Nevertheless, the

horizontal septum represents the major transmitter of

muscle force to the axial skeleton [52], and therefore

represents an important locomotor adaptation apo-

morphic for gnathostome fishes (Figure 1).

Gnathostome fishes have complexly folded, W-shaped

myomeres [45,48,53], which are primarily composed of

twitch fibers. Tonic fibers are segregated superficially

and laterally in a wedge-shaped area close to the hori-

zontal septum (Figure 2), providing good leverage for

the production of lateral bending [e.g., chondrichthyans:

[54,55]; actinopterygians: [47,56]; lungfish: [10]]. Consid-

erable variation in the amount of tonic fibers and the

relative proportion of tonic to twitch fibers may occur

along the body or interspecifically and depending on

lifestyle [e.g., [10,57-59]], but the general arrangement is

very similar among gnathostome fishes. In chondrichth-

yan fishes, one spinal nerve innervates muscle fibers in

two adjacent myomeres [38]. Similar to agnathans, the

axial muscles of gnathostome fishes are activated
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Figure 2 Histological cross-sections of the perivertebral musculature showing the distribution of the muscle fiber types (left) and

schematic illustration of the segregations of fatigue-resistant fibers (right). Data were assembled from: hagfish, Myxine glutinosa: Sudan

black B staining [from [30], reproduced with permission of author and Springer Verlag]; velvet belly lantern shark, Etmopterus spinax: cross-section

from behind the anus, Sudan black B staining (Photos by P.R. Flood, Copyright by Bathybiologica AS); tiger salamander, Ambystoma tigrinum, 4th

external trunk segment, enzyme-histochemical reaction for mATPase (acid preincubation) [7]; desert iguana, Dipsosaurus dorsalis, 14th trunk

vertebra, combined enzyme-histochemical reaction for mATPase (alkaline preincubation) and NADH-TR (S. Moritz, unpubl. data); common vole,

Microtus arvalis, intervertebral level between 6th and 7th lumbar vertebrae, enzyme-histochemical reaction for mATPase (alkaline preincubation)

and NADH-TR [8]. Cross-sections were selected to illustrate of the muscular characters discussed in the text. Note that cranio-caudal changes in

the proportion of the respective fiber types may occur (see text for details).
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alternating and sequentially consistent with the produc-

tion of a traveling wave of trunk bending [e.g., chon-

drichthyan: [60]; actinopterygians: [59,61-63]; lungfish:

[64]]. Red, tonic fibers are active during low-tailbeat-fre-

quency, sustained swimming, while white, twitch fibers

are additionally recruited during fast bursts and high-

tailbeat-frequency swimming [e.g., [65-70]].

The evolution of paired extremities increased the

maneuverability in gnathostomes [71]. The associated

extrinsic muscles apply forces to the body that induce

torsional and bending moments on the trunk. Because

many gnathostome fishes are neutrally buoyant, primar-

ily the horizontal (fore/aft) and the lateral components

of the propulsive forces produced by the fins play a role

in locomotion. The horizontal components cause rota-

tional torque on the girdles and thus lateral bending,

requiring preferably longitudinal fiber orientation for

stabilization, while the lateral components induce long-

axis torsion and require an oblique fiber orientation

[26,72]. Because early representatives of gnathostomes

such as placoderms typically had a heterocercal tail fin,

additional torque about the long-axis of the body likely

resulted from tail beating. Compared to agnathan fishes,

in which the muscle fibers are oriented longitudinally

[29], the evolutionarily new requirements to stabilize the

body against long-axis torsion are reflected by the apo-

morphic oblique fiber orientation found in most

gnathostome fishes. For example, the fibers are parallel

to the long axis of the body in the superficial portion of

the epaxial myomeres, while deeper fibers run at angles

between 10° and 35° relative to the body axis [73]. In

the lateral hypaxial musculature, muscle fibers of the

two oblique layers have opposing radial orientations

[45], well suited to stabilize the body against long-axis

torsion (Figure 1). In addition, oblique fiber orientation

provides an advantage for shortening velocity due to the

greater architectural gear ratio, that is, a greater short-

ening distance resulting from fiber rotation as a conse-

quence of the constant volume of the segment [74].

Hence, the axial musculature of non-tetrapod gnathos-

tomes retained its plesiomorphic function of mobilizing

the body and producing locomotor work. Associated

with the evolution of fins and a heterocercal tail, the

axial musculature also stabilizes the body against the

locomotor forces produced by the extrinsic fin muscles

and torsional moments resulting from tail beating

(Figure 1). These new functions are reflected by an

oblique fiber orientation hypothesized to be apomorphic

for gnathostomes.

Tetrapods

The plesiomorphic segmental organization of the axial

musculature underwent stepwise reorganization during

the evolution of tetrapods. In salamanders, the only

available postural model for early representatives of the

tetrapods, the epaxial musculature retained its plesio-

morphic segmental arrangement in contrast to the

hypaxial muscles. The hypaxial musculature consists of

the abdominal wall muscles and a subvertebral muscle

mass, which is associated with the ventral aspect of the

vertebrae and ribs. Additional to the rectus system,

the abdominal wall generally comprises three layers: the

external and the internal oblique muscles as well as

the transversus muscle. The latter is an apomorphic fea-

ture of tetrapods [53] and involved in ventilation [75].

In most urodeles, the lateral hypaxial musculature is

secondarily segmentally organized by tendinous inscrip-

tions [76,77] and displays different fiber angles depend-

ing on the layer [78,79]. Associated with the evolution

of polysegmental hypaxial muscles was likely a change

in muscle fiber type distribution from a superficial posi-

tion of fatigue-resistant fibers in fishes to a deep locali-

zation in tetrapods such as salamanders [7]. As in

gnathostome fishes and thus plesiomorphic for tetra-

pods, the majority of the fibers connect adjacent myo-

septa longitudinally; only deeper fibers associated with

the vertebrae run at different angles within the epaxial

myomeres [80-82]. The segregation of the muscle fiber

types in the epaxial musculature of urodeles resembles

the pattern plesiomorphic for craniates [47,83]. That is,

tonic and slow-twitch fibers are co-localized superfi-

cially, while fast-twitch fibers form the bulk of the deep

muscle [7,84] (Figure 2). In the only two salamander

species for which data exist so far, this pattern is more

or less unchanged along the trunk [7].

Similar to fishes, when salamanders swim, their main

epaxial and all hypaxial muscles are active synchro-

nously and alternating. Activation propagates along the

body, consistent in timing with the production of a tra-

veling wave of lateral undulation [85-90]. Thus, in sala-

manders, most axial muscles mobilize the body during

swimming, i.e. their plesiomorphic function is retained.

In accordance with its poor mechanical advantage for

trunk bending and high percentage of tonic red and

twitch intermediate muscle fibers [7], the biphasic activ-

ity of the interspinalis muscle suggests that this muscle

functions in vertebral stabilization rather than lateral

bending [90]. Active modulation of the body’s stiffness

was suggested as one of the adaptations to swimming in

salamanders [85], and the superficial segregation of fati-

gue-resistant fibers in the dorsalis trunci muscle could

modulate the body stiffness via the myoseptal system

and the skin [7]. Unfortunately, no study has investi-

gated the recruitment patterns of the different fiber

populations in this muscle, but the striking resemblance

of myomere organization to non-tetrapod craniates

invites such speculation. Nevertheless, when salaman-

ders swim, most of their axial muscles produce lateral
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bending, some likely also modulate the body’s stiffness,

and others provide local stabilization.

The evolution of limbs predated the transition to land

as has been argued based on the analysis of early repre-

sentatives of tetrapods such as Acanthostega [91] and

members of the sister-group of tetrapods such as Tik-

taalik [92]. Because aquatic stepping was likely the pri-

mitive locomotor function of the tetrapod limb [93],

trunk stabilization against locomotor forces produced by

extrinsic limb muscles is evolutionarily older than stabi-

lization against gravitational forces. Thus, the evolution-

ary transition to land, basically a transition from high to

low viscosity and density and from low to high gravita-

tional loads, was primarily associated with decreased

inertia and drag during the limb’s swing phase and

increased gravitational loading of the body resulting in

increased postural work for limb and trunk muscles

[94]. Furthermore, the vertical components of the forces

produced by the limbs, that are partially compensated

by buoyancy during aquatic stepping, induce long-axis

torsion of the body during terrestrial stepping [26].

A comparison of axial muscle activity during aquatic

and terrestrial stepping showed that muscle recruitment

(i.e., intensity) increased in all trunk muscles, despite

similar temporal patterns of muscle activation [90]. This

suggests that the trunk is stiffened during terrestrial loco-

motion, whereas the basic functions of the muscles are

conserved across environments. Consistent with this, the

perivertebral musculature contains an overall higher pro-

portion of red tonic and intermediate twitch fibers in sal-

amanders when compared to other sarcopterygians such

as lungfish. Comparisons of the fiber type composition in

various ecotypes, for example of predominantly terrestrial

vs. aquatic species would allow testing this hypothesis. In

addition, fatigue-resistant fibers are segregated in a cen-

tral region of the lateral part and in ventral proximity to

the vertebral column in the medial part of the subverteb-

ral muscle, allowing them to provide stability against tor-

sion and sagging, respectively [7].

During both aquatic and terrestrial stepping, body pro-

pulsion is achieved by concerted trunk and limb muscle

action in salamanders. Lateral bending was suggested to

be actively produced by the trunk muscles to facilitate

the placement of the feet, which serve as anchors and

contribute to stride length [95,96]. But lateral bending

may also result passively from extrinsic limb muscle

action acting on the trunk via the limb girdles [97,98].

Consistent with the production of a standing wave of lat-

eral bending, uniphasic and cranio-caudally synchronized

activity of the majority of the trunk muscles has been

observed [85-90] (Figure 3). Additional bursts close to

limb girdles indicate that the dorsalis trunci muscle also

stabilizes the trunk against limb muscle action [88]. This

additional activity likely serves to dynamically stabilize

the trunk in the horizontal plane. Accordingly, the mus-

cle primarily contains white twitch fibers [7,99], which

are arranged parallel to the long-axis of the body

[80,81,100] and the fore/aft and lateral components of

extrinsic limb muscle action can be expected to be

greater than the vertical ones given the sprawled limb

posture. Consistent with their oblique fiber orientation

[77,80], activity of the lateral hypaxial muscles resists

long-axis torsion [86,89,90]. The biphasic activity of the

fatigue-resistant interspinalis muscle suggests that it

functions as a local stabilizer during stepping, similar to

its function during swimming [90].

In summary, the axial musculature of basal tetrapods

such as salamanders mobilizes the trunk by producing

lateral bending, modulates body stiffness (both putative

plesiomorphic) and provides local stability to ensure the

integrity of the axial skeleton during swimming (putative

apomorphic for tetrapods). During aquatic stepping, it

additionally resists extrinsic limb muscle forces causing

lateral bending and long-axis torsion of the trunk; func-

tions likely plesiomorphic for the group. During terres-

trial locomotion, the axial musculature also stabilizes

the body against gravitational forces (Figure 1); an apo-

morphic function for terrestrial tetrapods.

Amniotes

A notable difference between anamniote and amniote

tetrapods is the greater terrestrial agility in amniotes.

Early amniotes were gracile, small animals with a snout-

vent length of up to 24 cm [e.g., Paleothyris or Hylono-

mus, [101]], and thus comparable to extant small lizards

such as desert iguanas. Analyses of the axial skeleton

and reconstructions of the associated musculature in

various fossils indicate great similarity between these

early amniotes and generalized extant lizards and there-

fore imply similar trunk motions [102,103]. Their diet

and associated with that their lifestyle was presumably

also similar to extant small lizards, i.e. mainly preying

on arthropods, mixed with some plant material

[104,105]. Therefore, both burst and slow locomotion

must have constituted the locomotor repertoire of early

amniotes. Associated with a higher aerobic capacity

[106] and relatively higher body temperatures during

activity [107], amniotes such as lizards are characterized

by greater swiftness and maneuverability compared to

anamniote tetrapods such as salamanders. Swifter move-

ments and increased performance are connected with

faster accelerations and decelerations of the limbs and

the center of mass of the body (CoM), and thus higher

peak loading of the limbs and trunk. Consequently,

amniotes have an increased need for dynamic stabiliza-

tion of the body compared to anamniote tetrapods.

Similar to lissamphibians, amniotes such as lizards

exhibit a sprawling limb posture in which the feet are
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positioned far laterally from the body axis. Compared to

a parasagittal limb posture, a sprawling posture is asso-

ciated with greater lateral components of the propulsive

forces see [[27]vs. [28]] and greater horizontal compo-

nents of extrinsic limb muscle forces due to pro- and

retraction of the stylopods in the horizontal plane

[22,26,108,109]. Both aspects result in moments that lat-

erally bend the trunk. Compared to salamanders, limb

action can be expected to play a greater role in the pro-

duction of locomotor work of lizards because of their

Figure 3 Activity patterns and hypothesized functions of the epaxial muscles in tetrapods during locomotion [modified from [118]].

Data for the epaxial muscle activity were assembled from: spotted salamander, Ambystoma maculatum, m. dorsalis trunci, 8th external trunk

segment, mean and standard error [90]; desert iguana, Dipsosaurus dorsalis, m. longissimus dorsi, 14th trunk vertebra, mean and standard

deviation (S. Moritz, unpubl. data); dog, Canis familiaris, m. longissimus thoracis et lumborum, 6th lumbar vertebra, median and upper and lower

quartiles [118]. The x-axis represents the stride cycle beginning with the touch down of the ipsilateral hindlimb. The footfall patterns of the both

hindlimbs are illustrated on the bottom of each graph (walk, trot: black: ipsilateral limb (iHL), gray: contralateral limb (cHL); gallop: black: trailing

limb (tHL), gray: leading limb (lHL). Note that for the galloping dog, the EMG trace associated with the trailing hindlimb is black, the one

associated with the leading hindlimb is gray. Bending traces above the electromyograms indicate the unimodal lateral flexion and extension on

the body side ipsilateral to the recorded muscle activity (salamander, lizard) and the bimodal flexion and extension in the sagittal plane

(mammal). Body planes in which moments and/or movements are suggested to occur are illustrated in the right top corner of each graph (for

details see Figure 1). Note that the unilateral and monophasic epaxial activity in the walking salamander and lizard associated with the ipsilateral

stance phase corresponds to the main activity observed in mammals. In mammals, the increased need for sagittal stability is met by bilateral

activity resulting from a second burst during ipsilateral swing phase.
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relatively stronger limbs and greater limb excursions.

Therefore, lateral bending in lizards may be a conse-

quence of limb posture and limb muscle action, in addi-

tion to being actively produced for example to

contribute to the production of locomotor work [72]

and to facilitate limb positioning [109,110]. It is

hypothesized that during the evolution of amniotes a

shift in trunk muscle function occurred from primarily

producing lateral bending (anamniote tetrapod mode) to

increasingly controlling and counteracting moments

caused by limb action and greater peak loading.

In amniotes, the epaxial muscle mass was reorganized

into longitudinal and polysegmental tracts, forming the

transversospinal, the longissimus, and the iliocostalis

groups (Figure 2). The complexity and the arrangement

of these tracts vary greatly among amniotes due to dif-

ferentiation into smaller muscle units and/or variations

in their relative sizes [20,100]. The hypaxial musculature

shows a wide range of variation in ectothermic amniotes

such as lizards primarily due to splitting and delamina-

tion of the main layers [111,112]. This anatomically

more complex arrangement compared to other tetra-

pods such as salamanders is likely partially related to

their enhanced locomotor performance but likely also

because axial muscles fulfill other functions such as ven-

tilation in addition to their plesiomorphic role in loco-

motion [113]. As in salamanders, the muscle fibers in

the various layers of the lateral hypaxial musculature are

oriented obliquely at different angles [72,111]. In the

epaxial musculature, the most medial tract shows an

oblique fiber orientation in lizards, while the fibers in

the two lateral tracts are more or less parallel to the

long-axis of the body [100,114,115]. In contrast to ana-

mniotes, in which the motoneuron pools of the epaxial

and hypaxial muscles overlap in the medial column,

motoneurons are spatially segregated in amniotes [116].

Motoneurons innervating epaxial muscles are located in

the ventromedial portion of the ventral horn, while the

hypaxial motoneurons reside dorsolaterally. Therefore,

discrete pools serve individual muscles, resulting in a

topographic map of motor pool organization that likely

facilitates proper control of the anatomically and, more

importantly, functionally diverse muscles originating

from the same myotome [38].

It remains controversial whether or not epaxial and

hypaxial muscles are involved in the production or the

counteraction of lateral bending in lizards as they are in

salamanders [117,118]. A functional division between

epaxial and lateral hypaxial muscles was proposed as a

basal feature of amniotes [117]; the former serving to

stabilize the trunk against torsional forces [119], while

the latter function to laterally bend the trunk and pro-

vide stabilization against long-axis torsion [72]. For the

epaxial muscles, Ritter concluded that they are not

involved in bending based on the timing of the activity

as well as denervation experiments [117]. Several obser-

vations question this hypothesis: 1) Recent recordings

from walking lizards do suggest that the timing of the

activity of the epaxial muscles is consistent with the

production of lateral bending [120] (Figure 3) and

thereby confirm previous recordings [110]. These recent

data imply speed dependency in the epaxial muscle

function, and thus may reconcile the controversy obser-

vations [120]. 2) The denervation experiment, which

provided the main evidence against lateral stabilization,

was carried out around the mid-trunk, where the impact

of the extrinsic limb muscles is likely to be small. Also,

possible compensatory actions of other muscles such as

the hypaxial muscles were not tested. Furthermore, the

timing of epaxial muscle activity in lizards is similar to

that in salamanders and mammals, for which a stabiliz-

ing function against lateral bending was shown, at least

near the limb girdles, by simultaneous recordings of

extrinsic limb and back muscles [88,121]. 3) The impor-

tance of lateral trunk bending, its production or coun-

teraction, is reflected in the anatomy of the epaxial

muscles. The two lateral tracts, well positioned to act

laterally on the vertebral column, are relatively large in

lizards [122], and their muscle fibers are oriented longi-

tudinally, a fiber orientation well suited to laterally

mobilize and stabilize the trunk [100,114,115]. Thus, a

mobilizing and/or stabilizing role in lateral bending can-

not be ruled out for the epaxial muscles in lizards and

further experiments, for example manipulating the loco-

motor forces, are necessary to clarify the function of the

epaxial muscles in lizards.

In addition to the plesiomorphic side-to-side move-

ments, rotations about the long-axis of the body are an

important component of amniote locomotion and parti-

cularly the transversospinalis muscle was thought to

provide torsional stabilization based on its activity

[117,119] and the morphology of the neural spines

[103]. Its oblique fiber orientation [100,114] is consistent

with a stabilizing function against long-axis torsion and

distinguishes amniote from anamniote tetrapods. As

pointed out above, compared to salamanders, extrinsic

limb muscle and inertial forces can be expected to be

greater in lizards with their greater agility and locomo-

tor speed. Therefore, torsional stabilization is addition-

ally provided by the epaxial musculature of lizards [117],

but solely accomplished by the lateral hypaxial muscles

in salamanders [86,89].

The evolutionary disintegration of the plesiomorphic

segmental organization of the epaxial musculature of

tetrapods resulted in longitudinal, polysegmental muscle

tracts in amniotes and, likely more importantly, in an

overlapping muscle arrangement. Although this segmen-

tal disintegration may be connected with a slightly
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increased number of sarcomeres in series and thereby a

small increase in contraction speed, one advantage of a

polysegmental over a segmental arrangement may be

that it allows for stabilization or mobilization of a whole

region of the trunk by activating a single motor unit. In

contrast, simultaneous activation of several adjacent seg-

ments is required in a myomeric organization to affect a

larger body region (e.g., to produce a standing wave).

Simultaneous action on a body region may be advanta-

geous if the primary mode of trunk bending during

locomotion is a standing wave, rather than a traveling

wave, during which adjacent segments undergo lateral

excursion sequentially. On the other hand, an overlap-

ping arrangement with attachment sites on each verte-

bra also allows the production of a traveling wave, as for

example in snakes [123,124]. But, more importantly, the

possession of muscle fibers of different lengths orga-

nized in an overlapping arrangement may increase the

animal’s maneuverability because it allows for activation

and control of specific and varying body regions and

thus for greater versatility. Associated with the reduction

of the myoseptal system, the muscle fibers also act

directly on the vertebrae in amniotes rather than indir-

ectly via the myosepta. Direct muscle action on the ver-

tebral column was associated with a greater degree of

vertebral structuring, i.e., relatively longer processes and

larger protuberances, which provide increased lever

arms and attachment sites for the muscles [103,112]. In

summary, possibly greater contraction speed and dis-

tance, more precise and selective activation and control

of a specific body region due to an overlapping muscle

arrangement, and improved muscle lever arms may have

facilitated more rapid mobilization and stabilization of

the body and are likely connected with the greater agi-

lity and versatility of amniotes.

Preliminary results on the perivertebral musculature of

lizards indicate, when compared with results on mam-

mals [8], similarities in the overall fiber type distribution

among these amniotes [125]. Fatigue-resistant fibers are

segregated in deeper muscle areas, close to tendons and

bones, while the majority of the muscles comprises pri-

marily fast twitch fibers (Figure 2). Consistent with the

superficial and polysegmental muscles functioning in

mobilization and global stabilization in lizards, they con-

tain primarily fast-twitch glycolytic muscle fibers [125].

To allow these polysegmental muscles to act on a given

division of the vertebral column without causing verteb-

ral dislocation, monosegmental muscle fibers are

hypothesized to ensure spinal integrity. The demands

for local stabilization can be expected to be greater in

lizards compared to salamanders due to their greater

trunk loading and their polysegmental structure of both

epaxial and hypaxial muscles. Given their topography

and fatigue-resistant properties [125], local stabilization

is probably accomplished by the deeper fibers of the

transversospinalis muscle (Figure 2). Unfortunately, no

EMG recordings exist of this muscle region to test this

hypothesis. In contrast to anamniote tetrapods, in which

tonic and slow-twitch fibers are segregated superficially,

likely to modulate the body stiffness via the myoseptal

system and the skin, the fatigue-resistant fibers of

amniotes are regionalized in the depth of the muscles

close to the bones and intramuscular tendons in

amniotes [8] (Figure 2). This intramuscular reorganiza-

tion has been suggested to be related to the complete

independence from water [35]. Independence from

water required changes in skin anatomy to reduce eva-

poration and may have simultaneously decreased the

skin’s ability to participate in force transmission.

Furthermore, the intimate connection between the myo-

septal system and the skin was dissolved with the evolu-

tion of longitudinal muscle tracts. Thus, axial muscle

forces are directly transmitted to the vertebrae in

amniotes [112] and the body does not function as a

hydrostatic system in body support as in anamniotes.

Thus, the loss of the superficial fatigue-resistant fibers

may be associated with the substantial reorganization of

the epaxial musculature and the high degree of amniote

terrestriality.

In summary, the axial musculature of lizards appears

to fulfill similar functions as to those in salamanders,

allowing tentative inference that these functions are ple-

siomorphic for amniotes. But, compared to salamanders,

the need for local and especially global stabilization of

the trunk is increased in lizards due to their greater agi-

lity and locomotor speed, and this need is reflected in

the detailed muscle morphology.

Mammals

One of the most striking apomorphic characteristics of

mammalian locomotion is sagittal bending [126-128].

The ability to dorsoventrally flex and extend the body

axis enabled the evolution of asymmetrical gaits in

mammals such as gallop or half-bound [19] [note the

convergent evolution of galloping in crocodilians

[129-131]]. Several vertebral characteristics have been

proposed to be prerequisite for sagittal bending and,

thus, to have predictive value for the trunk region

involved: 1) reduction of ribs in the posterior trunk and

thus the formation of a lumbar region; 2) orientation

and width of the spinous processes and thus the posi-

tion of the anticlinal vertebra in the vertebral series; 3)

orientation of the zygapophyseal facets and thus the

location of the diaphragmatic vertebra(e) along the ver-

tebral column [18-21,132]. A comparative analysis of

intervertebral movements in small therians during fast

locomotion showed however that these skeletal charac-

ters were not simply related to the trunk region involved
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in bending during locomotion, questioning their predic-

tive value for the trunk region involved in sagittal bend-

ing [133,134]. It has been suggested, therefore, that

behaviors other than those directly related to locomo-

tion may have driven the evolution of sagittal mobility,

which was subsequently incorporated into the locomo-

tor repertoire [133,135].

During the evolution of mammals, extensive fusion

and reorganization of the epaxial tracts was associated

with the reduction of the posterior ribs and the evolu-

tion of a rib-free lumbar region. In many mammals, the

two lateral tracts are inseparable in the lumbar region

and therefore referred to as the sacrospinalis muscle

[100]. Associated with the evolution of asymmetrical

gaits and the corresponding intense dorsoventral flexion

of the posterior trunk were major reorganizations in the

muscular system. For example, in mammals the size of

the two medial epaxial tracts is increased compared to

lizards [20]. Accordingly, both the multifidus and the

longissimus muscles exhibit recruitment patterns consis-

tent with the mobilization of the axial skeleton in gal-

loping mammals [118,136,137]. Additionally, compared

to non-mammalian amniotes, the subvertebral muscula-

ture was strengthened in mammals and assists the

abdominal wall muscles as an antagonist of the epaxial

musculature. Parts of the hindlimb musculature shifted

onto the trunk (i.e., puboischiofemoralis as iliopsoas

muscle) and an axial slip of the subvertebralis muscle

became independent as the psoas minor muscle

[112,138,139]. Both act as hindlimb protractors and flex-

ors of the vertebral column in mammals [140-143].

These muscular changes in the epaxial and the hypaxial

musculature augmented the fast, glycolytic muscle mass

around the vertebral column and therefore were likely

associated with the evolution of vigorous sagittal spine

movements, i.e. the evolution of asymmetrical gaits [8].

Consistent with the caudally increasing importance of

sagittal bending in body propulsion [133], the propor-

tion of glycolytic muscle mass relative to the total anato-

mical cross-sectional area of the axial musculature

increases caudally [5,6,8].

The increased mobility in the posterior trunk and its

vigorous mobilization during fast locomotor activities

was hypothesized to be associated with an increased

need for local stabilization [8]. The evolutionary subdivi-

sion of the transversospinalis muscle into several mus-

cular entities in mammals (i.e., the transversospinal

system) is probably related to this greater demand for

intervertebral stabilization because it was accompanied

by the functional specialization of its subunits [8]. Sev-

eral deep, mono- and polysegmental muscles evolved (e.

g., rotatores, intermammillares, mammilloaccessorii

muscles) and are predominantly composed of fatigue-

resistant, slow fibers and thus well suited to provide

sustained intervertebral stability [5,6,144]. In contrast,

the superficial, multisegmental division of the transver-

sospinal complex (i.e., the multifidus muscle) contains a

high proportion of fast fibers [e.g., [8,145,146]; Figure 2]

that can mobilize as well as dynamically stabilize the

trunk [118,121,137,136].

Another consequence of the greater mobility in all

body planes, particularly in the posterior trunk, is an

increased need for postural feedback. Mammals differ

from other amniotes in that they possess a central, slow

region in the in the lateral longissimus muscle, which

extends between the iliac blades and the 4th to 2nd pre-

sacral vertebrae [8]. This region contains a large number

of muscles spindles [147,148] and is activated tonically

and independently from the rest of the muscle belly

[149,150]. Its responsiveness is modulated by the verteb-

ral position [151]. It was suggested to function as a pro-

prioceptive system monitoring the position of the pelvis

relative to the vertebral column [147,149]. Because no

such region has been found in lizards (S. Moritz, pers.

commun.) and salamanders [7], it is hypothesized to

represent an apomorphic character of mammals and to

be correlated with the evolution of a mobile lumbar

region [8].

During the evolution of mammals, truncal motions in

the sagittal plane were added to the plesiomorphic

movements in the horizontal and transverse planes.

Both, lateral bending and long-axis torsion occur during

symmetrical gaits [e.g., [134,152-155]]. They are, how-

ever, less pronounced in mammals than in other tetra-

pods. The functional roles of the axial muscles during

symmetrical gaits have been investigated in more detail

in mammals than in any other tetrapod group, but still

seem poorly understood compared to the understanding

of the limb musculature. Whereas the functional roles

of the lateral hypaxial muscles were clarified in a series

of experiments [156-158], the function of the epaxial

muscles have become more clear only recently. Because

their activity was not directly correlated with the pro-

duction of lateral bending or tilting, the epaxials were

suggested to stabilize the trunk [137,159-163]; thereby,

only two studies tested the specific locomotor forces

and moments that may require stabilization [’sagittal

rebound’, [164,165]]. Their primary function, at least

near the hindlimb girdle, is to provide global stabiliza-

tion against the vertical components of retractor mus-

cles and the horizontal components of pro- and

retractor muscles [121]. Furthermore, epaxial muscles

probably assist in the production of lateral bending dur-

ing symmetrical gaits because the observed cranio-cau-

dal activation patterns during walking and trotting

accord in timing with both the traveling and the stand-

ing wave of trunk bending observed in these gaits,

respectively [118]. Consistent with a function as
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dynamic stabilizers as well as mobilizers, the largest

epaxial muscles (i.e., the multifidus and the sacrospinalis

muscles) consist predominantly of fast, glycolytic fibers

[see [8] and references therein] (Figure 2).

Compared to the sprawled limb posture of lower tet-

rapods, the parasagittal limb posture of mammals can

be expected to result in relatively smaller lateral but

greater sagittal components of the propulsive forces pro-

duced by the limbs [97]. Furthermore, although the ver-

tical moments acting on the trunk due to inertia are

similar in lizards and mammals with the same size and

locomotor speed, they are most likely largely passively

stabilized in lizards by their horizontally oriented zyga-

pophyseal facets, but would bend and extend the trunk

sagittally in mammals due to their more vertical facets.

Both, the locomotor forces produced by the limbs and

the inertia of the body, result in an increased need for

dynamic muscular stabilization in the sagittal plane.

This increased need is reflected by changes in muscle

morphology and function in mammals compared to

lizards. For example, the two medial epaxials, best suited

to provide sagittal stability and mobility due to their

more dorsal position relative to the neutral axis of the

vertebral column, are increased in size in mammals [20].

Furthermore, all epaxial muscles have a distinct oblique

fascicle orientation [100], which allows for mobilization

and stabilization in all planes of the body simultaneously

and thus better meets the complex needs for trunk

mobility and stability in mammals. This oblique fiber

orientation likely provides an advantage in the shorten-

ing velocity of the entire muscle [74]. Furthermore, all

mammals investigated so far display a biphasic and

bilateral activity in their epaxial muscles during symme-

trical gaits [137,159-166]. Of these two bursts during

each locomotor cycle, only the main burst occurring

during ipsilateral hindlimb stance corresponds to the

epaxial activity observed in other tetrapods (Figure 3),

while the second burst, associated with the hindlimb

swing phase, distinguishes mammals from other tetra-

pods [118] and thus appears to be an apomorphic fea-

ture of mammals. Based on recruitment symmetry (i.e.,

bilateral activity) or asymmetry (i.e., unilateral activity)

between both body sides a net extensor or net lateral

bending/torsional moment can be inferred [167]. A net

extensor moment is expected if sagittal forces dominate

(e.g., due to the vertical oscillations of the CoM or verti-

cal components of the extrinsic limb muscles), and the

main function of the muscle is to stabilize the trunk in

the sagittal plane. The fact that mammals consistently

show biphasic, bilateral activity in their epaxial muscles

corroborates the interpretation that there is an increased

need for sagittal stability [118].

Among amniotes, only birds and mammals are able to

locomote and ventilate their lungs at the same time

[113], except secondarily derived solutions for example

in varanid lizards [168]. In mammals, the evolution of a

diaphragm freed most axial muscles from a ventilatory

function during locomotion [158,169]. Because the dia-

phragm attaches to the posterior ribs, action of the dia-

phragm results in anterior tilting of the ribs. To provide

a firm base for the action of the diaphragm, the ribs

need to be stabilized (e.g., pulled caudally). The abdom-

inal wall muscles, namely the oblique muscles, are well

positioned to retract the ribs and counteract rib protrac-

tion. However, both the internal and the external obli-

ques are locomotor muscles [158], stabilizing the trunk

against sagittal shear during locomotion [157], and

therefore cannot provide costal stabilization. Especially

during asymmetrical gaits, inhalation is coupled with

trunk extension [133,170], thus the oblique abdominal

wall muscles would have to stabilize the ribs during

sagittal extension. Such activity of the oblique hypaxial

muscles would cause sagittal flexion and thus interfere

with the extension of the trunk. Rather, the oblique

abdominal wall muscles are in a good position to assist

the rectus abdominis muscle, which is the most impor-

tant spinal flexor and active at the appropriate time

[137]. EMG recordings of the external oblique muscle in

galloping dogs are consistent with such locomotor func-

tion [Deban, Schilling, Carrier, unpubl. data]. However,

neither during symmetrical nor during asymmetrical

gaits can rib stabilization be provided by the abdominal

wall muscles.

Rib stabilization and possibly widening of the pleural

cavity during inhalation may be provided by the quadra-

tus lumborum muscle based on its activation pattern as

has been shown in rabbits [171]. The homology of this

muscle has been subject of controversy [i.e., partially

subvertebralis, [172], intercostalis system: intertransver-

sarii muscles, [112], levatores costarum muscles, [173]].

Its innervation either from the dorsal or the ventral

rami [174] and the location of its motoneurons in the

ventromedial and the lateromedial motor pools [175]

implies a mixed origin. However, its anatomical position

on the ventral aspects of the centra and insertion onto

the most posterior ribs allows the quadratus lumborum

muscle to provide costal stabilization without interfering

with locomotor events. Its proximity to the vertebral

column gives it poor leverage for sagittal flexion and

therefore its contribution to sagittal bending can be

expected to be low. Consistent with its function in rib

stabilization, the quadratus lumborum muscle showed a

striking central accumulation of slow fatigue-resistant

fibers, particularly in its anterior part in various therians

[5,6,8,176]. This central region was hypothesized to act

independently from the rest of the muscle belly [8],

similar to deep slow regions in anti-gravity muscles

[177,178]. In accordance with a function in ventilation,
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its muscle fiber type composition did not show the phy-

siological adaptations found in other perivertebral mus-

cles with changes in body shape [e.g., in ferrets [179]] or

body size [176].

In summary, the evolution of sagittal mobility in

mammals added a new body plane, in which movements

can be produced but also have to be controlled and

counteracted. Thus, the axial muscles in mammals

mobilize the trunk in the sagittal plane (apomorphic for

mammals), in addition to their plesiomorphic role in

bending and twisting (Figure 1). In the epaxial muscula-

ture, the increased need for dynamic sagittal stabiliza-

tion due to the parasagittal limb posture and the vertical

zygapophyses was met 1) locally by the evolution of

numerous deep, short, fatigue-resistant muscles and 2)

globally by a biphasic activity of superficial, polysegmen-

tal, fast muscles.

Concluding remarks
Intramuscular (re)organization in craniates

Muscular properties such as the distribution of muscle

fiber types are primarily determined by a muscle’s func-

tion and less by phylogeny. During the evolution of

craniates, the composition and distribution of fiber types

changed profoundly with a general tendency to segre-

gate fatigue-resistant fibers in deeper muscle regions.

Various factors have been discussed to account for a

certain, ‘preferred’ location of a given fiber type within a

muscle or a muscle group such as heat loss or thermal

balance [reviewed in [180]]. Briefly, it is argued that

because red muscle tissue has better circulation at rest

than white one, a superficial position of red fibers would

cause greater heat loss [181], assuming that the environ-

ment is cooler than the animal. The thermal balance

argument is based on the observation that muscle fibers

increase their shortening speed and power as they

become warmer, which would be advantageous for dee-

ply located, more insulated fibers. The temperature

dependence of these characteristics is essentially similar

between red and white fibers [e.g., [182-186]], and there-

fore would support either fiber type distribution. The

comparison of the intramuscular organization among

craniates illustrates that red or white fibers may be clo-

ser to the core of the body indicating that other factors

in addition to heat conservation are relevant to intra-

muscular organization.

Muscle fibers of different types are either segregated

from each other within a muscle or a muscle group or

they are intermingled (’salt-and-pepper pattern’). Gath-

ering one fiber type may be advantageous because it

unites similar metabolic needs, neural control, and bio-

mechanical properties. For example, red and white fibers

differ in their blood supply, in both the course and the

branching pattern of the capillary network [e.g.,

[187-189]] as well as in their capillary to fiber ratio [e.g.,

[190-195]]. Whether the higher capillary content, and

thus a relative higher collagen proportion per muscle

area due to the vessel walls accounts for the different

biomechanical properties reported for red and white

muscle tissue [e.g., [189,196]] or differences in the con-

nective tissue itself, for example in the structure of the

endomysial collagen [197-200], is controversial, but a

greater potential for elastic energy storage and a higher

stiffness was found in red compared to white muscle tis-

sue [199,201]. Thus, congregating fibers of similar meta-

bolic needs may reduce the costs of the formation and

maintenance of the supply network and concentrating

fibers with similar mechanical properties may reduce

intramuscular shear [188,202]. Furthermore, segregation

of a specific fiber type allows a muscle region to specia-

lize for a specific function, because the properties of the

various fiber types are optimized for different motor

tasks [203]. Thus, an accumulation of a specific fiber

type indicates that this muscle or muscle region fulfills

first and foremost the same function in the same man-

ner. In contrast, a mixed composition of a muscle or

muscle region places fibers with different contractile

properties in the biomechanically advantageous position.

Such arrangement allows the muscle to fulfill the same

function in different ways, i.e. by using different fiber

types and thus different motor units, for example to

accomplish the function with various force, speed, or

frequency [204,205].

In addition, the reorganization of the myoseptal sys-

tem into polysegmental muscle tracts resulted in an

architectural problem in amniotes. The evolution of

polysegmental muscle tracts likely increased the impor-

tance of local stabilization of the intervertebral joints to

allow the polysegmental muscles to act on larger but

variable units of the vertebral column without causing

intervertebral instabilities. To provide local stabilization

and prevent vertebral dislocation, short muscle bundles

containing fatigue-resistant fibers and interlinking the

vertebrae (i.e., monosegmental muscles) must be posi-

tioned close to the vertebral column, while the polyseg-

mental muscles are necessarily layered above. Thus,

simple architectural constraints additionally influence

muscle-fiber-type distribution. Further research is neces-

sary to increase our understanding of why muscle fibers

of a given type are localized in particular muscle areas

and how the observed patterns of muscular organization

evolved.

Methodological caveats

Muscle is one of the most plastic tissues, which allows

the study of adaptations to changing functional demands

on the one hand, but requires a thorough selection of

the individuals and species studied on the other hand,
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because interindividual or interspecific variability may

mask the investigated traits. Hence, observed differences

may represent phylogenetic divergence, functional diver-

gence, and/or effects of environmental factors that dif-

fered among the individuals studied (phenotypic

plasticity). The species discussed herein were selected

based on their resemblance (particularly body size and

proportions as well as locomotor mode) to early repre-

sentatives of higher taxa pivotal for the reconstruction

of the evolution of the craniate axial system. The mus-

cular differences observed among them are assumed to

correlate with evolutionary changes in function and

morphology and that these differences are greater than

inter-individual variation.

This approach bears several caveats limiting inference

of character states. 1) Depending on the fossil record

and the availability of extant species resembling early

representatives of a given group in the critical traits, the

conclusions are better supported in some groups than

others. For example, extant small mammals such as

mice, rats, or tree-shrews highly resemble Mesozoic

mammals such as Morganucodon in their postcranial

anatomy [reviewed in [8]] and therefore are well-suited

to infer soft tissue characters for early mammals. In

contrast, salamanders differ in several essential postcra-

nial characters from early representatives of tetrapods

such as Acanthostega or Ichthyostega [91,206] such as

the reduction of ribs and the relatively small body size.

However, salamanders are the only available postural

model for early tetrapods among extant taxa [207,208]

and were therefore considered herein despite these post-

cranial differences. 2) All species represent a mosaic of

plesiomorphic and apomorphic features [groundplan;

[2]]. For example, extant agnathans resemble early crani-

ates such as the conodonts in their myomeric organiza-

tion of their axial muscles or the possession of a

notochord as the main axial skeleton [69]. However,

they are highly specialized relicts of a multifaceted

group of jawless craniates that possessed for example

dermal armor to a varying extent [i.e., ostracoderms,

[69]]. Therefore, inference of plesiomorphic axial muscle

characteristics for craniates is potentially confounded by

derived character states in extant hagfish and lampreys.

3) The depth to which we know intra-taxon variation

and the confidence with which we can infer the set of

character states in the common ancestor of the respec-

tive groups varies greatly. Groups such as actinoptery-

gians or mammals have been investigated intensively.

Therefore, their interspecific variability and the adaptive

value of the various muscular arrangements are fairly

well-understood. In such groups, we can start sorting

out character states that represent phylogenetic history

from those that are more likely the immediate result of

adaptation. Only very few species have been studied so

far in other groups such as salamanders or lizards and

the ground-plan set of character states may not be

unequivocal yet. Some caution is required when species

from such groups are used to infer character states in

ancestors as the full extend of within-group muscular

variation has not been established yet. However, this

considered, inclusion of the currently known evidence

in hypotheses as stated herein provides a clear frame-

work for future hypothesis driven research with options

for falsification.
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