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Abstract

The advent of massively parallel sequencing technologies has allowed the characterization of

cancer genomes at an unprecedented resolution. Investigation of the mutational landscape of

tumours is providing new insights into cancer genome evolution, laying bare the interplay of

somatic mutation, adaptation of clones to their environment and natural selection. These studies

have demonstrated the extent of the heterogeneity of cancer genomes, have allowed inferences to

be made about the forces that act on nascent cancer clones as they evolve and have shown insight

into the mutational processes that generate genetic variation. Here we review our emerging

understanding of the dynamic evolution of the cancer genome and of the implications for basic

cancer biology and the development of antitumour therapy.

Cancer is a disease of the genome. The classic model of carcinogenesis describes multiple,

successive clonal expansions driven by the accumulation of genomic changes or ‘mutations’

that are preferentially selected by the tumour environment1,2,3. This traditional picture of

linear cancer genome evolution has become more nuanced over the past decade as the

research scalpel allows ever-sharper prosection of the underlying biology (FIG. 1; BOX 1).

Recent advances in sequencing technologies have delivered, for the first time, the

opportunity to scrutinize all expressed genes (‘transcriptomes’), all exons (‘exomes’) and

whole cancer genomes at base-pair resolution4. A number of different sequencing platforms

now exist, including pico-titre plate pyrosequencing and ligation-based sequencing. From

the viewpoint of understanding cancer genome evolution, the key aspect of this generation

of sequencing technologies is that billions of independent sequencing reads are generated in

parallel, with each read deriving from a single molecule of DNA. Thus, albeit with some

sampling biases, the data represent a random sample of DNA molecules (and hence the

genomes of individual cells) contained in the tumour sample. By contrast, the data derived

from conventional genomic approaches, such as capillary sequencing or copy number

arrays, are aggregate signals from many thousands of DNA molecules (BOX 2). Harnessing

the attractive statistical properties of massively parallel data thus enables us to draw robust

inferences about the mutational mix of a tumour sample, generating unprecedented insights

into the fundamental genomic events that underlie the development of cancers and the order,

rate and mechanisms by which they occur5–7.

These approaches have been used to generate comprehensive catalogues of somatic

mutations by comparing the genomic sequence of DNA taken from a patient’s cancer cells

to the sequence of their germline DNA7,8. In particular, these studies have given an
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indication of the heterogeneity in cancer genome evolution, across tumour types, across

individuals within a given tumour type and even within a single individual’s tumour9,10. In

this Review, we provide an initial overview of recent strategic and methodological

developments in cancer genomics. Heterogeneity is central to cancer genome evolution, and

we describe this at the level of cancer genes and within individual patients. We consider the

evidence for the role of different processes, gradual and abrupt, by which heterogeneity may

arise. Finally, we present the evidence for an elevated mutation rate in shaping cancer

evolution.

Recent strategic and methodological advances

Tumour multi-sampling strategies

With the objective of understanding how the cancer genome varies over space and time,

various groups have carried out studies of tumours and their respective non-malignant

tissues obtained from an individual patient. These approaches may be broadly divided into

‘geographical’ and ‘longitudinal’ sampling strategies. ‘Geographical sampling’ encompasses

those studies that compare multiple samples from an individual cancer that have been

obtained at a single point in time. These samples may be derived from geographically

distinct areas within a single large tumour mass and/or may include metastatic deposits in

lymph nodes or distant organs11,12. ‘Longitudinal sampling’, by contrast, compares samples

obtained at different time points in the life history of a cancer: for example, at diagnosis,

relapse and metastasis7. A limited number of published studies have included samples that

are separated by both space and time9. The biological question posed and the clinical

feasibility largely determine the sampling strategy.

Single-cell sequencing

Single-cell sequencing is a potentially useful approach towards the study of cancer evolution

and is the ultimate resolution of the multi-sampling approach. In proof-of-principle studies,

this approach has been successfully applied to generate catalogues of point mutations in

protein-coding regions and copy number changes10,13,14. These approaches have a

requirement for whole-genome amplification of the genome of each cell, and this introduces

several biases, with the potential for both false-positive and false-negative mutation calls.

For haematological malignancies, in situ hybridization techniques allow single cells to be

studied for cytogenetic abnormalities15, and it is feasible that in the future, microfluidic

techniques will allow cells to be isolated and analysed in one step for solid tumour samples

as well16,17. The ability to make inferences about phylogenetic structure using single-cell

sequencing will, however, still be fundamentally limited by how representative the biopsy

sample is of the whole-tumour bulk and by how many cells are individually analysed.

Mathematical algorithms

Mathematical models have been widely applied in an attempt to unpick the complex and

multifactorial influences on cancer progression18–20. Massively parallel sequencing data are

particularly amenable to mathematical analysis because they represent a random sample of

DNA molecules, and hence of individual cancer cell genomes, within a tumour specimen

(BOX 2). Statistical algorithms for exploiting these properties have been developed,

providing important insights into the clonal mix of the sample sequenced. For example,

using the fraction of reads reporting a point mutation, the copy number at that locus and the

level of normal cell contamination, we can work out whether the mutation is likely to be

clonal or subclonal and whether the mutation has been duplicated by a subsequent copy

number change7,21,22–24. Within a given copy number segment, this mandates a clear

temporal precedence. The earliest mutations are those that are subsequently duplicated,

followed by those that are clonal but that are present on a single copy of the locus and then
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by those that are subclonal. This allows inferences about the relative timing of the copy

number gain and about the changing mutational signatures that are operative in the different

epochs22,25.

With the exception of more complex processes such as chromothripsis (discussed below),

genomic rearrangements generally represent simple events (such as deletions or inversions),

occurring over the evolutionary time course of a cancer. Mathematically, these

rearrangements can be considered as sequential selections from a known library of genomic

transformations — remarkably, the constraints imposed by the simplicity of the repertoire of

possible rearrangement types, the genome-wide, allelespecific copy number data and the

observed breakpoints mean that even deeply complex clusters of rearrangements can be

disentangled to yield both the final genomic configuration of segments and the temporal

order in which the rearrangements occurred26.

Mutations occur in a given genomic context, and this can also be exploited to understand

cancer evolution. In particular, mutations can be ‘phased’ with nearby heterozygous

germline SNPs, allowing haplotypespecific analysis of clonal and subclonal mutations24.

Furthermore, pairs of mutations can be phased relative to one another, allowing patterns of

branching and subclonal evolution to be delineated5,24 (BOX 2). Although such approaches

are currently limited to samples with hypermutable regions or with a high mutation burden,

the increasing read lengths coming in future generations of single-molecule sequencers will

vastly expand the power of this approach.

The heterogeneous cancer genome

The cancer genome is characterized by heterogeneity that is seen across tumour types,

among cases of a particular tumour type and even within an individual cancer. This

heterogeneity reflects the action of the twin evolutionary forces of variation generation and

selection. The extent of genomic variability is testament to the diverse and dynamic nature

of these forces.

The heterogeneity of cancer genes

Massively parallel sequencing has enabled us to construct nearly comprehensive catalogues

of every mutation within an individual cancer genome at a single point in time6. To date,

using conventional and newer technologies, almost 500 cancer genes have been identified27.

In a handful of cancer types, specific underlying cancer genes are consistently mutated, such

as the oncogenic fusion protein BCR–ABL in chronic myeloid leukaemia (CML) or

inactivating mutations in the tumour suppressor gene retinoblastoma 1 (RB1) in

retinoblastomas28. Specific cancer genes have also been implicated in the development of

the same rare cancer type in different tissues. The oncogenic fusion gene MYB–NFIB, for

example, drives the development of adenoid cystic carcinomas that arise in both breast and

salivary tissues29.

These examples, however, remain the exception rather than the rule. Most common cancers

are associated with many diverse cancer genes that are mutated at a low frequency. One of

the most striking observations from large cancer databases is the genetic heterogeneity

between cancers and even within individual cancer types. The Cancer Genome Atlas Project

analysed 489 high-grade serous ovarian cancers, and among the thousands of somatic

mutations identified, only 10 of these were recurrently mutated cancer genes, and all but

TP53 were present in less than 10% of cases. The recent genomic analysis of 77 oestrogen-

receptor-positive breast cancers also identified that most recurrent mutations occur

infrequently, but they do cluster within a limited number of cellular pathways that are

central to tumour cell biology30.
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Long-standing evidence indicates that breast cancer exhibits heterogeneity in terms of

clinical behaviour and response to therapy. More recently, the genomic diversity underlying

this heterogeneity has been documented25,30–32. For example, identification of a TP53

mutation in breast cancer correlated with a higher proliferation index before therapy and less

dramatic suppression of proliferation during therapy with an aromatase inhibitor30. The

conventional subclasses of breast cancers are based on histopathological type and grade,

immunohistochemical analysis of hormone receptors and overexpression of human

epidermal growth factor receptor 2 (HER2; also known as ERBB2). However, in the past

few years, these categories have been extended by molecular profiling studies that use

expression analysis to reclassify breast cancers with unique biological and prognostic

features33. These categories, which can be identified on gene expression profiles, reflect to

some extent the underlying genomic profiles of the tumours31, and it will be interesting to

see how integrative transcriptional and genomic studies define this further in the whole-

genome sequencing era.

The heterogeneity of the mutational landscape

In addition to the heterogeneity of cancer genes, there is considerable diversity in the nature,

number and distribution of mutations within and across different cancer histologies25.

Recent studies have revealed, for example, that the childhood cancers retinoblastoma and

medulloblastoma contain substantially fewer somatic substitutions than do common adult-

onset solid tumours and haematological malignancies, such as breast cancer or acute

myeloid leukaemia (AML)7,34–37. This extends even to specific subtypes of tumours — for

example, the number of mutations among individual HER2-positive breast cancers differed

by a factor of six in a recent study25.

Patterns of structural variants differ across tumour types: breast and ovarian cancers show

many more tandem duplications than other tumour types do38,39; pancreatic cancer is

characterized by frequent breakage–fusion–bridge cycles of chromosomal rearrangement12;

prostate cancer shows balanced chains of rearrangements40,41; and various cancers,

especially sarcomas and neuroblastomas, demonstrate chromothripsis (discussed

below)37,42,43. Similarly, patterns of base substitutions differ extensively across tumours,

depending on DNA repair defects and carcinogenic exposures8,44,45. Many of the pathways

underlying the acquisition of somatic mutations in these cancers are poorly understood. For

example, at least six or seven distinct point mutational signatures can be identified in breast

cancers, of which only one or two can currently be attributed to known biological

processes25.

It is, in many ways, remarkable that this degree of heterogeneity in the routes to cancer can

lead to such convergent phenotypes. Although detailed genotype–phenotype studies in the

massively parallel sequencing era are lacking, it is nonetheless the case that, for example, a

histologically typical ER-positive breast cancer can result from a wide array of different

cancer genes that have been mutated through many different processes. It is also conceivable

that diverse sets of genes will also give rise to cancers with similar behaviours and

sensitivities to certain treatments. Optimizing the clinical benefit of cancer genomics for the

future therefore demands the systematic integration of genomic data with meaningful

clinical information in large databases.

Heterogeneity within an individual cancer

A number of external forces can act on the cancer genome to generate heterogeneity and to

influence the subclonal structure (FIG. 2). The tumour microenvironment has an important

role in selecting the cells that are best adapted to the (often hostile) environments in which

they exist46. The identification of organ-specific branches within phylogenetic trees in
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metastatic studies is also indicative of environmental factors that select and drive specific

genomic changes11,12 (BOX 1). Carcinogenic exposures, such as tobacco smoke, ultraviolet

light and even some cancer treatments, may also have an important direct role in driving

cancer heterogeneity6,45,47–49. The selective ‘environment’ also includes anticancer

treatments. For example, verumafenib — an inhibitor of the serine/threonine protein kinase

BRAF — has revolutionized the treatment of metastatic melanoma by providing a targeted

therapy for patients with the V600E BRAF point mutation. However, patients usually

relapse within a few months as a result of emerging resistance. It is postulated that resistant

clones are selected on the basis of either pre-existing or de novo abnormalities arising in

alternative pathways50,51. This implies that genomic heterogeneity supports cancer survival

in response to a changing environment.

Cellular ground state and cancer evolution

The observation that specific genes are associated with certain types of cancer in some

tissues but not others indicates that the cell of origin may be an important factor in dictating

the evolutionary trajectory. Every cell in the body is clonal, having arisen from a single

zygote. There is some ‘physiological’ genomic change within organ systems, such as

rearrangement and mutation of immunoglobulins in lymphocytes and somatic

retrotransposition of long interspersed elements (LINEs) in the brain52, but it is largely the

case that the huge phenotypic variability among cells in a human is dictated by the

epigenome, transcriptome and proteome of those cells. It follows that this ‘ground state’ of a

cell in which a somatic mutation arises will strongly influence how that mutation plays out,

as the early life of a somatic mutation is fraught with the threat of extinction through random

genetic drift. This concept is exemplified by the BCR–ABL fusion gene, which is frequently

associated with a range of haematological malignancies. Studies have identified that the

activation of ABL kinases in breast cancer cell lines promotes invasiveness; however, BCR–

ABL has not been implicated in the pathogenesis of solid tumours53. Reasons for this

specificity may include the low transcriptional activity of the BCR promoter in non-

haematological cells, a lack of interacting partners needed for full oncogenic effects of the

fusion protein or failure to induce a sustaining population of cancer cells.

The importance of the ‘ground state’ is exemplified by the specific ‘oncogenicity’ of KIT

mutations in gastrointestinal stromal tumours (GISTs). KIT is a receptor tyrosine kinase that

is activated by stem cell factor binding (also known as mast cell growth factor binding),

resulting in a signalling cascade that promotes cell survival, differentiation and proliferation,

and germline KIT-activating mutations are associated with hyperplasia of interstitial cells of

Cajal (ICCs) and GISTs54. In mouse models, it has recently been demonstrated that GISTs

exclusively arise in a subset of ICCs that expresses high levels of endogenous ETS variant 1

(ETV1)55,56. ETV1 is a member of the ETS family of transcription factors, which are

involved in various key cellular processes, including cell cycling, proliferation and

differentiation. In ICCs, ETV1 acts as both a survival factor and as a master regulator of a

specific transcription programme that is co-opted by and required for transformation by

activated KIT56. The implication is that in the absence of high levels of endogenous ETV1

expression, KIT mutations fail to drive the emergence of GIST cancers.

However, in most situations, the link between the cell of origin and the cancer phenotype

appears to be less clear-cut. As an increasing number of genomic studies report broad

catalogues of cancer genes, it is becoming apparent that many of the same genes are

implicated across a broad range of tissue types — albeit at different frequencies. For

example, two independent studies identified that cancer genes that are historically associated

with haematological malignancy, such as runt-related transcription factor 1 (RUNX1) and

core-binding factor, beta subunit (CBFB), are also recurrently mutated in breast cancer30,57.
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The role of epistasis in cancer genome evolution

A new mutation in a cancer gene does not occur in isolation but rather enters into an

established genomic landscape. This existing gene network may have a profound effect on

the fate of the cell, determining whether there is a cell death or clonal expansion. The

ground state of a cell can be considered to represent interactions with cellular identity,

whereas epistasis, by contrast, represents interactions among oncogenic mutations.

Three major lines of evidence drawn from recent studies have demonstrated the probable

importance of epistatic factors in cancer genome evolution. First, the large cancer gene

databases have shown that, despite extensive heterogeneity in common cancers, particular

combinations of somatic mutations may co-occur more than expected by chance, such as

TP53 and breast cancer 1, early onset (BRCA1) and breast cancer 2, late onset (BRCA2)

mutations in breast cancer58 or the oncogenic KRAS and serine/threonine kinase 11

(STK11; also known as LKB1) mutations in lung cancer59,60. Second, activation of many

oncogenes, including KRAS, can lead to a state of ‘oncogene-induced senescence’61,62. This

is an acute and telomere-independent form of senescence that can occur in response to the

expression of oncogenes and is protective against cancer. It is widely believed that second

hits, such as cyclin-dependent kinase inhibitor 2A (CDKN2A) inactivation, are required to

ameliorate these effects63,64. Third, convergent evolution among subclones within the

malignant tumour (or tumours) of a particular patient also implies cooperativity among

somatic mutations12,15,65, and this is exemplified by patients with renal cancer9 (BOX 1). A

recent multi-region sampling study identified that after ubiquitous von Hippel–Lindau

tumour suppressor, E3 ubiquitin protein ligase (VHL) loss, driver mutations inactivating

histone modifiers can independently arise in different branches of the phylogenetic tree.

Even more strikingly, independent phosphatase and tensin (PTEN) mutations occurred twice

in one patient in different subclones, despite PTEN mutations being found in only 1% of

renal cancers overall9. This implies that some specific feature of the genomic landscape of

this patient’s cancer was particularly dependent on the inactivation of PTEN — an event that

is not required for most renal cancers.

Little is known about whether the order of mutation acquisition is important. The renal

cancer studies described above do suggest a pre-requisite for early VHL loss in renal cancer,

but the extent to which this is a general rule is unclear. Ancestral gene reconstruction and

protein-engineering studies demonstrate that epistatic interactions can limit the potential

mutational trajectories that are available and can also enforce ratchet-like constraints by

inhibiting the reversibility of the evolutionary process66. Certain oncogenic mutations may

mandate that specific cellular pathways be targeted by subsequent mutations. Such an effect

would restrict the set of potential driver mutations that could occur after the initial event67.

The strands of data discussed above imply cooperativity among cancer-causing mutations,

and this cooperativity can include mutations that ameliorate negative effects of other

variants (synthetic viability) or mutations that, when combined, result in synergistic effects

(greater than the sum of their individual effects). This is exemplified by the interaction

between the proto-oncogene MYC (also known as c-MYC) and B cell CLL/lymphoma 2

(BCL2) in cell lines. The overexpression of MYC induces apoptosis, but the co-expression

of BCL2 overrides this effect and permits MYC to drive the cell into cycling68,69.

From the clinical standpoint, discovering and understanding epistatic interactions such as

synthetic lethality is proving useful in the design of targeted therapies70. The sensitivity of

BRCA1−/− cells to poly(ADP-ribose) polymerase (PARP) inhibitors is already a widely

cited ‘synthetic lethality’ interaction in the clinic71. BRCA1 is essential for homologous

recombination repair of dsDNA breaks. BRCA1−/− cells are able to survive despite this

defect, but it comes at the cost of critical dependence on alternative repair pathways
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involving PARP function. Therefore, in BRCA1−/− cells that have been treated with PARP

inhibitors, DNA breaks that arise from collapsed replication forks cannot be repaired,

resulting in cell arrest and death. However, in the face of PARP inhibitor therapy,

‘reversion’ mutations in BRCA1 and BRCA2 can result in the restoration of a partially

functional protein homologous recombination72,73, leading to the escape of the clone from

the detrimental effects of the treatment. This example shows the clinical potential to exploit

epistatic interactions but also the complexity of these networks and the problems posed by

the dynamic and rapidly evolving cancer genome.

The role of genomic crises in tumorigenesis

Recent lines of evidence derived from directly studying cancer genomes indicate that, in

some cases, a huge number of mutations can occur in a timescale that is considerably shorter

than that on which clonal selection operates (FIG. 3). These mutational processes can take

several forms.

Telomere attrition is associated with end-to-end chromosome fusions, and this can drive

massive genomic disruption through repeated breakage–fusion–bridge cycles74. An end-to-

end chromosome fusion generates a dicentric chromosome (that is, a chromosome with two

centromeres), and the two centromeres are pulled to opposite daughter cells during mitosis,

generating further DNA breaks. This process can be repeated with every cell cycle until a

telomere is restored to the naked DNA ends. Within a few cell cycles, and certainly on a

much faster timescale than natural selection can operate, widespread chromosomal deletions

and exponential genomic amplification can develop75,76.

Balanced chains of somatically acquired genomic rearrangements have been observed in

prostate cancer40 and some haematological malignancies. These chains can show up to ten

genomic regions involved in a mutual exchange of DNA segments without copy number

loss. In some cases, these generate oncogenic fusion genes (for example, in the TMPRSS2–

ERG loci) or gene disruptions. Curiously, regions that are involved in these chains show a

propensity to involve highly transcribed genes. In one example, breakpoints were in close

proximity to four potential cancer genes: TANK-binding kinase 1 (TBK1), TP53, mitogen-

activated protein kinase kinase 4 (MAP2K4) and ABL1.

Approximately 2–3% of cancers show evidence for a catastrophic mutational process that

has been coined chromothripsis41. A process of genome shattering and reassembly occurs in

a one-off crisis, resulting in a characteristic pattern of oscillating DNA copy number and up

to several hundred genomic rearrangements localized to one or a few chromosomes. This

localization may be the result of physically isolating the damaged chromosomes in

micronuclei created during anaphase77. Chromothripsis has been observed at a low

frequency in a diverse range of cancers, including chronic lymphocytic leukaemia (CLL),

neuroblastomas, myelomas, breast cancer, small and non-small-cell lung cancers and renal,

thyroid and gastrointestinal malignancies8,41,43. It is notable that a recent study identified

high rates of chromothripsis in medulloblastomas and AML in the presence of mutant TP53

(100% and 47% of cancers, respectively) but not wild-type TP53 (0% and 1%,

respectively)42. Bone sarcomas also seem to have a particularly high rate of

chromothripsis41.

In addition to clusters of structural variants, multiple point mutations can also be acquired in

one-off bursts. In a sizable proportion of breast cancers, we have observed clusters of

cytosine mutations near sites of genomic rearrangement: a process that we termed

kataegis24. These clusters can represent up to 10–20 base substitutions in one or two

kilobases, all occurring at cytosines in a TpC context, all collinear (that is, in linkage) and all

occurring on either the forward or reverse strand of DNA. The mechanism underlying such

Yates and Campbell Page 7

Nat Rev Genet. Author manuscript; available in PMC 2013 May 29.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



events remains mysterious, although the mRNA-editing APOBEC proteins may be

involved25. This phenomenon has not yet been reported in other types of cancer.

All of these catastrophic mutational processes imply that cancer genome evolution may not

always be a gradual stepwise progression (FIG. 3). In one of the patients with

chromothripsis, the crisis simultaneously disrupted three tumour-suppressor genes — the E3

ubiquitin protein ligase FBXW7, CDKN2A and the RecQ helicase WRN41. This suggests

that the clone would have taken a substantial leap along the path to malignancy after the

catastrophic event. In multiple myelomas, samples with evidence for chromothripsis were

associated with reduced survival, indicating that the large-scale genomic disruption may

have rendered the myeloma cells more malignant, with similar data emerging for

neuroblastoma78,43. These mechanisms of mutation accumulation are not mutually

exclusive. Gradual mutation accumulation occurs to some degree in all cancers, representing

perpetual adaptation to the tumour environment but may be punctuated by highly disruptive

episodes.

The role of mutation rate in cancer evolution

The number of driver mutations required for a cancer to become fully malignant is debated,

but it is generally considered to be between 2 and 20 in most types of common solid

malignancy79,80. Some cancers, such as certain subtypes of AML, accumulate a sufficient

complement of mutations to transform to a malignant phenotype in the presence of an

apparently normal mutation rate81. There are several lines of evidence, however, indicating

that many cancers achieve the required complement of driver mutations by means of an

elevated mutation rate.

‘Mutator mutations’ in carcinogensis

‘Mutator mutations’ are mutations within cancer genes that increase the mutation rate across

the cancer genome. The effects of such mutations can be broadly categorized as: reduced

ability to detect and/or repair DNA damage; failure of genomic surveillance mechanisms;

and increased susceptibility to DNA damage by exogenous and endogenous carcinogens

(FIG. 4). It has long been recognized that inherited cancer syndromes, including ataxia

telangiectasia, xeroderma pigmentosum, Bloom’s syndrome and hereditary non-polyposis

colorectal cancer, are caused by germline defects in specific DNA repair genes82. They are

associated with an elevated mutation rate and are characterised by early onset cancers.

Microsatellite instability (MSI) is characterized by a high rate of substitutions and small

insertions and deletions, and it arises from mutations in mismatch repair genes, including

MSH2 and MCH1 (REF. 44). MSI occurs in less than 20% of colorectal cancers and has

also been reported at low frequency in a diverse range of other tumour types including

gastric, endometrial and sebaceous cancers and lymphomas83. A much more frequent

pattern of genomic instability that is seen in nearly all types of common solid malignancy,

including breast and colorectal cancer, is chromosomal instability (CIN), which is a process

whereby whole-chromosome segregation abnormalities during mitosis result in

aneuploidy84–86.

Epigenetic instability is also common in a wide range of cancers (BOX 3). Aberrant

methylation of CpG islands in promoter regions is correlated with silencing of multiple

tumour suppressor genes, resulting in the CpG island methylator phenotype (CIMP). This

has been observed in many cancer types and is associated with aetiologically and clinically

distinct types of colorectal cancer87 and glioma88.
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Elevated mutation rate

Many of the aggressive clinical characteristics of cancers, such as the abilities to resist

treatment, to relapse and to metastasize, depend on the continued generation of genetic

variation that permits adaptation7,12. However, whether all cancers have elevated mutation

rates compared to normal cells has been controversial81,89,90. In the era of whole-

cancergenome sequencing, however, it is becoming clear that the overwhelming majority of

tumours carry hundreds to hundreds of thousands of somatic mutations, which is suggestive

of an elevated mutation rate.

A preponderance of a specific type of base substitution in a given context, such as C-to-T

mutations in a CpG context, can be viewed as a ‘mutational signature’ that reflects an

underlying mutational process6,12,45. Analysing these mutational signatures in 21 breast

cancer genomes identified several major processes involving base substitutions, small

insertions and deletions and genomic rearrangements25. Mutations acquired early in the

development of the cancer were dominated by C-to-T transitions, especially in a CpG

context, that are likely to represent spontaneous deamination of methylated cytosines. This

is a rather generic mutational process, is similar to that seen in the germ line and reflects that

seen by exome sequencing of normal haematopoietic stem and/or progenitor cells in healthy

people81. However, nearly all tumours demonstrated a substantial shift in the contribution

from individual processes over time with several novel mutational processes reported

generally emerging late in the development of the cancer24. Taken together, this information

implies that the vast majority of breast cancers have an elevated, cancer-specific increase in

mutation rate. Environmental exposures, including the traditional cancer treatments (namely,

chemotherapy and radiotherapy), also influence mutation rate and spectrum. Chemotherapy,

for example, is associated with an increase in transversions21. The functional effect of

endogenous and external factors that increase mutation rate on cancer progression remains

to be elucidated.

There may be examples of tumours in which mutation rate per cell division is not increased.

AML, for example, does not have an excessive mutation burden, and when compared with

age-matched normal haematopoietic cells, mutation numbers are broadly similar81. In a

similar fashion, there is a correlation between age and mutation burden in the childhood

tumour, medulloblastoma34,91, suggesting that mutation accumulation in this disease is more

a function of time than it is an acquisition of specific mutational processes.

Mutation rate distribution across the cancer genome

Mutation is generally modelled as a random process, but there is increasing evidence that the

distribution of somatic mutations shows variegation across the genome in both the rate and

the type of variation. The most extreme example of this is somatic hypermutation in

lymphoid malignancies. In normal B lymphocyte ontogeny, the immunoglobulin gene is

subjected to targeted mutation to increase antibody diversity in response to infection.

Sometimes, however, the tightly controlled genomic localization of the hypermutation

machinery can be loosened, and other genes that are highly expressed during lymphoid

differentiation may be subjected to this process. This aberrant somatic hypermutation has

only been described in association with a handful of genes. It preferentially targets the 5′
untranslated region and the first coding exon of the gene and can repeatedly occur during

lymphoma development, driving much subclonal diversity just at these specific loci92. In

particular, the oncogene BCL6 is commonly mutated in this way in diffuse large B cell

lymphoma93,94.

Less extreme examples of variable mutation rates across the genome abound. Chromosomal

fragile sites have been documented in cytogenetic studies for some years, and cancers show
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increased rates of heterozygous and homozygous deletion at these sites compared to other

regions of the genome95,96. This increased rate of genomic rearrangement may in part result

from these regions having fairly sparse origins of replication and being late replicating

during the cell cycle97,98. In many cases, these deletions are of no biological consequence to

the cell, but there is some evidence that cancer genes may reside in these loci. For example,

Parkinson protein 2, E3 ubiquitin protein ligase (PARK2) can be recurrently deleted and

mutated in gastrointestinal tumours99, and knockout of the gene in mice increases the rate of

APC-induced colorectal tumours100.

The underlying chromatin state may also contribute to genomic rearrangement. In

lymphomas, genes that are frequently fused with the immunoglobulin locus are often

geographically proximate during interphase101, and in prostate cancer androgen can induce

intra- and interchromosomal proximity between the ETS fusion gene partners102,103. In

breast cancer, 50% of somatically acquired genomic rearrangements involve a gene footprint

compared with 40% expected by chance104.

With regard to point mutations, mismatch repair deficiency causes a specific distribution and

signature of mutations across the genome. For example, in microsatellite-unstable colorectal

cancer, genes such as the type 2 TGFβ receptor gene are particularly prone to mutation

owing to their specific nucleotide mix, whereas this gene is almost never mutated in

microsatellite-stable colorectal cancer105. Similarly, the distribution of oncogenic point

mutations in TP53 and KRAS in tobacco-induced lung cancer differs from lung cancers that

develop in people who have never smoked45,49. The efficacy of DNA repair processes also

leads to genomic variation in mutation rate: in carcinogen-induced tumours especially, lower

rates of mutation are seen in highly expressed genes compared with non-expressed genes106.

How does this variegation in mutation rate across the genome impact on our understanding

of cancer evolution? Clearly, cancer can arise from a vast array of different possible driver

mutations. These data indicate that the observed distribution of driver mutations seen in a

given tumour type depends not only on the oncogenicity of the given genes in that cellular

context (namely, the selective advantage associated with the mutation) but also on the

probability with which a given change can arise in the population of competing clones.

Conclusions

In the not too distant future, genomic features of every patient’s cancer type will be

characterized at the point of diagnosis. A list of implicated cancer genes and mutational

processes will be generated, and a personalized therapeutic regimen will be chosen. One of

the major challenges to this vision is how to sample the cancers to attain an accurate view of

the underlying complexity and to address the fact that cancers are highly dynamic

evolutionary processes9. A single sample is a ‘snapshot’ in space and time. Multi-region

sampling and sampling of distinct metastatic sites will help to reduce the problem posed by

geographical heterogeneity but will have to be balanced with clinical risk and patient choice.

It is necessary to acknowledge that even with the most sensitive and accurate of genomic

technologies, clinically important mutations that are confined to subclones may be missed

on account of inadequate sampling. The clinical approach towards sampling will therefore

be guided by multi-sampling studies within all cancer types, and in particular important

insights may be gained from studies that use sequential time-ordered sampling of cancers

with well-defined precursor lesions, such as cervical intra-epithelial neoplasia in cervical

cancer and Barrett’s oesophagus in oesophageal cancer.

Understanding how the cancer genome responds to treatment and promotes metastasis

presents a further challenge, requiring longitudinal sampling strategies incorporated into

Yates and Campbell Page 10

Nat Rev Genet. Author manuscript; available in PMC 2013 May 29.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



long-term clinical trials. Furthermore, the optimal targeted therapeutic approaches to cancers

with branching evolutionary architectures remains unclear. The observation that any

individual cancer may contain both clonal driver mutations (that is, mutations that occur

within the phylogenetic tree trunk) and subclonal driver mutations, which are linked through

epistatic interactions, indicates that cancer eradication may well demand complex

combinations of drugs.

Finally, the heterogeneity of cancer genes and cancer pathways mutated across human

malignancy mandates the development of large-scale, publicly available databases with

carefully annotated clinical outcome data linked to detailed genomic analyses. After sample

sizes in these databases have reached numbers in the tens of thousands, we will have the raw

material with which to build algorithms for personalized decision support for oncologists.
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Glossary

Mutational
signatures

Patterns of mutations that are characteristic of a type of cancer or

that are indicative of a specific process.

Chromothripsis A single event that causes genome shattering and reassembly,

resulting in a characteristic pattern of oscillating copy number and

up to several hundred genomic rearrangements localized to one or

a few chromosomes

Driver mutations Somatic mutations within cancer genes that confer a clonal

advantage, that are causally implicated in oncogenesis and that are

positively selected for during cancer evolution.

Synthetic lethality Two genes are synthetically lethal if mutation of either in isolation

is compatible with viability, but mutation of both to cell death.

Kataegis A localized hypermutation that often colocalizes with somatic

rearrangements.

Microsatellite
instability

(MSI). Microsatellites are repeating sequences within DNA of 2–6

base pairs in length; defects in mismatch repair can give rise to

genomic instability within these regions.

Chromosomal
instability

(CIN). A form of genomic instability that is common in cancers

and is characterized by large chromosomal losses by as of yet

undefined mechanisms.
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Box 1

Phylogenetic cancer trees

A phylogenetic tree is a pictorial representation of how a tumour is inferred to have

evolved. As discussed in the text, these inferences can be based on a wide range of

molecular biology and sampling techniques coupled with existing and new

bioinformatics algorithms for reconstructing the tree. Several key properties of the

evolution of a tumour are coded in the tree and provide important biological information

about the genetic diversity of a cancer and clonal mix.

All trees have a shared ‘trunk’, which represents the complement of mutations shared by

all malignant cells within the cancer. Because these mutations are fully clonal, there must

have been a single ancestral cell that carried all of these mutations and through which all

extant tumour cells can trace their lineage; we denote this cell the ‘most recent common

ancestor’, borrowing the term from population genetics. Emergence of this cell initiated

the final complete selective sweep within the cancer: all clonal expansions thereafter are,

by definition, incomplete. All mutations that occur after the most recent appearance of a

common ancestor are subclonal.

The length of individual branches (and the trunk) denotes the number of mutations that

occurs in that lineage: a so-called ‘molecular clock’. If mutation rates per unit time were

constant, then this would correlate with chronological time. However, for many cancers,

this assumption is probably invalid (as discussed in the text), and molecular time is likely

to be a poor proxy for chronological time.

The branching structure of the tree captures the number of subclonal populations within

the cancer samples and their genetic relationships. For example, both linear and

branching patterns of evolution have been described in a range of cancers. Linear

evolution (panel a of the figure) was described in acute myeloid leukaemia (AML) and

identifies the post-treatment relapse clone as a direct descendant of the major clone. The

tree in panel b demonstrates branching evolution and specifically convergent evolution,

in which the same genetic consequence independently emerges in separate clades of the

phylogenetic tree highlighted by green boxes containing recurrently mutated genes.
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Brown circles represent cytogenetically distinct populations, and the numbers represent

the number of copies of each adjacent gene. Solid lines represent the most likely

ancestral origin of subclones, whereas dashed lines suggest alternative origins.

As sequencing goes genome-wide, phylogenies have been constructed for single-tumour

samples that are composed of multiple constituent cellular subclones. The identification

of tens of thousands of mutations genome-wide permits the delineation of distinct

clusters of mutations — these clusters consist of groups of mutations that share similar

mutant allele frequencies (corrected for local copy number). In the tree in panel c, we

present a phylogenetic tree in which the variable thicknesses of the branches reflect the

numbers of mutations within each distinct mutation ‘cluster’. This gives an indication of

the patterns of subclonal importance and dominance within the cancer population. Chr,

chromosome; ETV6, ETS variant 6; F, ETV6–RUNX1 fusion gene; GATA3, GATA-

binding protein 3; IDH2, isocitrate dehydrogenase 2; PAX5, paired box 5; PIK3CA,

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha; NCOR1, nuclear

receptor co-repressor 1; MLL3, myeloid/lymphoid or mixed-lineage leukaemia 3; NPM1,

nucleophosmin (nucleolar phosphoprotein B23, numatrin); RUNX1, runt-related

transcription factor 1; SMAD4, SMAD family member 4; STOX2, storkhead box 2.

Panel a is adapted, with permission, from REF. 21 © (2012) Macmillan Publishers Ltd.

Panel b is adapted, with permission, from REF. 15 © (2011) Macmillan Publishers Ltd.

All rights reserved. Panel c is adapted, with permission, from REF. 24 © (2012) Cell

Press.
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Box 2

Methodologies for understanding cancer genome evolution

The existing methods used to hypothesize the order of evolutionary events, or phylogeny,

derive from molecular genetics. These methods use multiple sampling techniques and

assume that individuals can be isolated in a population. The evolutionary connections

between organisms are calculated using a range of mathematical models, including

parsimony, maximum likelihood, Markov chain Monte Carlo and Bayesian inference.

Cancer genomics has adopted these tools to reconstruct the relationships between mixed

populations of cells in individual cancers10,13–15. This approach is suitable when

individual subclonal populations in a cancer can be reliably isolated, such as through

single-cell sequencing or cytogenetics. A simplified example of this is represented in

panel a of the figure, in which two different mutations result in evolutionary divergence

from a presumed most recent common ancestor.

However, as illustrated in panel b of the figure, most cancer samples consist of mixed

populations of normal cells and tumour cells, and next-generation sequencing data

therefore provide a composite view of a random sample of DNA molecules from these

different populations. Mutations in the data follow defined probability distributions that

are dictated by coverage and the underlying allele frequency. There remains a paucity of

statistical algorithms for analysing these data, but some useful techniques have recently

been developed, such as mutational clustering, using kernel density analysis21 and

Bayesian Dirichlet process modelling24,107, digital karyotyping26 and phasing adjacent

somatic mutation pairs or adjacent somatic mutations and germline variants24. The

phasing technique is summarized in the focus box (panel b).

The above methodologies may be amalgamated to handle the data from multi-site

sampling studies that include defined populations that are nonetheless genetically

heterogeneous7,9,12.
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Box 3

The interplay of the epigenome and genome in cancer evolution by natural
selection

For epigenetic factors to be important in cancer evolution, three criteria must be met:

stochastic variation must exist among competing clones in a given epigenetic locus; this

variation must be heritable; and there should be phenotypic consequences of epigenetic

variation for natural selection to act on.

Within cancers, individual tumour suppressor genes may be epigenetically silenced

through promoter CpG island hypermethylation108. However, in contrast to mutation,

little is known about the stochastic acquisition and loss of epigenetic changes.

Nonetheless, bisulphite sequencing of individual haplotypes of CpGs has shown that

some regions do show variability across different cells in a sample109,110. There is a

robust machinery of cytosine methylases that faithfully copy methylation at CpG

dinucleotides from the template strand to the newly synthesized DNA strand during DNA

replication, indicating that these changes are heritable. It is less clear how histone marks

are transmitted to the daughter cells, although such pathways are presumed to exist.

An emerging theme of recent genomic discoveries in cancer has been the frequent

mutation of genes that are involved in epigenetic regulation, further highlighting the

importance of interactions between genetic and epigenetic changes. This is exemplified

by mutations in AT-rich interactive domain 1A (ARID1A) in ovarian cancer111,112,

inactivation of polybromo 1 (PBRM1), lysine-specific demethylase 5C (KDM5C),

KDM6A (also known as UTX) and SET domain containing 2 (SETD2) in renal cancer113

and the remarkable observation of activating mutations of the Polycomb group gene

EZH2 in follicular lymphoma54 but inactivating mutations of the same gene in chronic

myeloid malignancies114,115. Chromatin studies have indeed shown epigenetic

consequences of these mutations, but we lack a detailed understanding of the particular

target genes involved or the Darwinian evolution of the epigenetic landscape after these

genomic aberrations appear. Nonetheless, a recent genome-wide methylation profiling

study in acute myeloid leukaemia identified that genetically distinct subtypes of disease

carried characteristic epigenetic profiles116. This implies that a particular driver gene

may promote the evolution of and may cooperate with an epigenetic landscape that is

‘optimal’ for that genomic change.
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Figure 1. The evolution of clonal populations
Cancers are genomically diverse and dynamic entities. Unique clones (represented by

different coloured bubbles) emerge as a consequence of accumulating driver mutations in

the progeny of a single most recent common ancestor (MRCA) cell. Ongoing linear and

branching evolution results in multiple simultaneous subclones that may individually be

capable of giving rise to episodes of disease relapse and metastasis. The dynamic clonal

architecture is shaped by mutation and competition between subclones in light of

environmental selection pressures, including those that are exerted by cancer treatments.
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Figure 2. The role of the environment in evolutionary adaptation
A multitude of environmental factors may shape the evolutionary processes within a single

cancer. Blue and purple bubbles represent successive cancer clones, the expansion of which

is altered by directly mutagenic factors (grey arrows) and non-mutagenic factors (black

arrows).
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Figure 3. Stepwise versus crisis-driven mutation accumulation
Multi-step and crisis event models of carcinogenesis are represented. It is thought that these

pathways are not necessarily mutually exclusive but that they may coincide and overlap. In

this example, mutations A–E (orange to red circles) are those that are required to initiate

clonal expansion and malignant transformation, whereas mutations F–H (blue circles) drive

ongoing evolution and the acquisition of aggressive clinical characteristics. The pre-

malignant phase (P) and the time from malignancy onset to acquisition of an aggressive

phenotype (A) are reduced in the crisis event model compared to the multi-step model. This

indicates that standard screening techniques that aim to detect pre-invasive and early

malignancies may be inadequate in cancers that develop through crisis events.
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Figure 4. ‘Mutator mutations’ drive genomic instability in cancers
There are two major recognized routes by which genomic instability may arise.

Chromosomal instability (CIN) is common across all types of cancer and may be numeric

(aneuploidy) or structural. CIN may arise through mutations in a wide range of genes

involved in cell cycling and division (orange boxes) or through other diverse mechanisms,

such as telomeric dysfunction or as a consequence of failure in homologous repair.

Microsatellite instability (MSI) is less common and occurs as a result of mutations in the

mismatch repair genes (purple boxes). Instability may also directly arise as a consequence of

defects in homologous repair, necessitating the use of alternative error prone pathways, such

as non-homologous end joining (NHEJ) and single-strand annealing (SSA). Error-prone

pathways may result in both chromosomal instability and genomic instability through
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frequent small deletions or substitutions. Mutagenic exposures may also contribute to

genomic instability. ATM, ataxia telangiectasia mutated; ATR, ataxia telangiectasia and

Rad3-related; BUB1, budding uninhibited by benzimidazoles 1; BUBR1, budding

uninhibited by benzimidazoles 1 beta; BRCA1, breast cancer 1, early onset; BRCA2, breast

cancer 2, early onset; DSB, double-strand break; indel, insertion or deletion mutation;

MAD2, MAD2 mitotic arrest deficient-like 1; MSH2, mutS homologue 2, colon cancer,

nonpolyposis type 1; MLH1, mutL homologue 1, colon cancer nonpolyposis type 2; PALB2,

partner and localizer of BRCA2.
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