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Abstract. The European Space Agency’s Climate Change Initiative for Soil Moisture (ESA CCI SM)

merging algorithm generates consistent quality-controlled long-term (1978–2018) climate data records for

soil moisture, which serves thousands of scientists and data users worldwide. It harmonises and merges

soil moisture retrievals from multiple satellites into (i) an active-microwave-based-only product, (ii) a

passive-microwave-based-only product and (iii) a combined active–passive product, which are sampled to

daily global images on a 0.25◦ regular grid. Since its first release in 2012 the algorithm has under-

gone substantial improvements which have so far not been thoroughly reported in the scientific litera-

ture. This paper fills this gap by reviewing and discussing the science behind the three major ESA CCI

SM merging algorithms, versions 2 (https://doi.org/10.5285/3729b3fbbb434930bf65d82f9b00111c; Wagner

et al., 2018), 3 (https://doi.org/10.5285/b810601740bd4848b0d7965e6d83d26c; Dorigo et al., 2018) and 4

(https://doi.org/10.5285/dce27a397eaf47e797050c220972ca0e; Dorigo et al., 2019), and provides an outlook

on the expected improvements planned for the next algorithm, version 5.

1 Introduction

The European Space Agency’s Climate Change Initiative for

Soil Moisture (http://www.esa-soilmoisture-cci.org/, last ac-

cess: 17 May 2019), hereafter referred to as ESA CCI SM,

is dedicated to the development of consistent satellite-based

long-term climate data records (CDRs) for soil moisture,

aiming to serve climate science as well as numerous other

communities (Dorigo et al., 2017). The first soil moisture

CDRs produced by the ESA CCI SM were released in 2012.

To date, the ESA CCI SM serves more than 6000 registered

users, providing the basis for a host of scientific publications

and data set applications (Dorigo et al., 2017).

Central to the ESA CCI SM is a merging algorithm, which,

in essence, merges soil moisture retrievals from various satel-

lites that have finite lifetimes and significantly different in-

strument characteristics (frequency, spatial resolution, tem-

poral coverage, polarisation, revisit time, etc.) into three con-

sistent multi-decadal data sets. This process faces innumer-

able scientific challenges and is therefore subject to con-

tinuous research and development. To date, seven product

versions have been released to the general public. Differ-

ences between these product versions range from minor bug

fixes and data set extensions to major structural changes

in the way different satellite products are harmonised and

merged. Recently, the European Commission’s Copernicus

Climate Change Service (C3S) started operational near-real-

time CDR production, based on the algorithm developed

within the ESA CCI SM.

While product improvements have been validated in nu-

merous publications and the data set has been proven to be

useful in a large number of applications (for a comprehensive

review of these studies see Dorigo et al., 2015, 2017), none of

the major scientific advances of the merging algorithm (since

its first release in 2012; Liu et al., 2011, 2012; Wagner et al.,

2012) have as yet been thoroughly documented in the scien-

tific literature. This paper aims to fill this gap by providing
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a comprehensive and complete resource of the evolution of

the ESA CCI SM merging algorithm up to the current ver-

sion 4.4, which was released at the end of 2018. Moreover,

an outlook on the expected developments that are planned for

the next iteration, version 5, which is foreseen to be released

in 2019, is provided.

2 Evolution of the ESA CCI SM merging algorithm

The ESA CCI SM merging algorithm produces three in-

dividual products: (i) the ACTIVE product, which is gen-

erated by merging soil moisture retrievals from active-

microwave-based sensors only, (ii) the PASSIVE product,

which is generated by merging soil moisture retrievals from

passive-microwave-based sensors only, and (iii) the COM-

BINED product, which is generated by merging soil moisture

retrievals from both active-microwave-based and passive-

microwave-based sensors. This paper reviews the three major

ESA CCI SM merging algorithms which have been utilised

in released versions to date:

– The initial merging algorithm proposed by Liu et al.

(2011, 2012), which has been used to generate all prod-

ucts up to version v02.2 (released early 2016; Wag-

ner et al., 2018), is hereafter referred to as ESA CCI

SM v2. This algorithm is a decision-tree-based ap-

proach that selects passive-microwave-based soil mois-

ture retrievals, active-microwave-based soil moisture re-

trievals, or computes an arithmetic mean of the two

based on their mutual correlation and vegetation opti-

cal depth.

– The algorithm that has been used to generate the prod-

uct versions v03.2 and v03.3 (released at the begin-

ning and the end of 2017, respectively; Dorigo et al.,

2018) and all Copernicus C3S CDR products up to

version v201801 is hereafter referred to as ESA CCI

SM v3. This algorithm is based on a statistically rig-

orous least squares merging approach.

– The algorithm that has been used to generate product

versions v04.2 and v04.4 (released at the beginning and

the end of 2018, respectively; Dorigo et al., 2019) and

is being used in the current Copernicus C3S CDR pro-

duction system version (v201812) is hereafter referred

to as ESA CCI SM v4. This algorithm uses an improved

uncertainty characterisation approach to better parame-

terise the least squares merging scheme.

Note that the official version numbering system (vX.X) of

the ESA CCI SM products follows the convention that the

first (two-)digit number denotes the version of the underlying

data merging methodology, while the second number marks

releases with simple bug fixes and data set extensions.

Section 3 describes the level 2 (L2) soil moisture retrieval

algorithms and the pre-processing steps of the individual

input data sets, which are generally common to all ESA

CCI SM product versions. Section 4 provides a review of

the initial merging algorithm proposed by Liu et al. (2011,

2012) that was used in ESA CCI SM v2. Section 5 discusses

the limitations of this decision-tree-based algorithm and the

theoretical requirements for a statistically optimal merging

scheme. Section 6 describes how such a statistical (least

squares) merging scheme was implemented in ESA CCI

SM v3 and Sect. 7 describes the improved uncertainty char-

acterisation for this scheme that has been employed in ESA

CCI SM v4. Section 8 demonstrates the performance evo-

lution of the algorithm versions through comparison against

ground reference data. Finally, Sect. 10 concludes with a dis-

cussion on the limitations and known issues with the current

merging algorithm, which are currently under investigation

and expected to contribute to the next version of the data set.

3 Input data and preprocessing

All ESA CCI SM algorithms to date merge pre-processed L2

data, that is, gridded soil moisture products retrieved from

radiometrically calibrated backscatter or brightness tempera-

ture measurements. These data are resampled to a 0.25◦ reg-

ular grid using a Hamming-window approach and to daily

time stamps (00:00 UTC) using a nearest-neighbour search.

Note that tropical rainforest areas are masked out in all ESA

CCI SM products because microwave satellite measurements

do not contain any useful soil moisture signal in these re-

gions due to signal scattering and attenuation of the vegeta-

tion (Ulaby et al., 2014).

Currently (at ESA CCI SM v4), soil moisture prod-

ucts from four active-microwave-based instruments (active

products) and seven soil moisture products from passive-

microwave-based instruments (passive products) are merged

into the ESA CCI SM data sets. Sensors and missions, their

temporal availability and their (most relevant) characteristics

are summarised in Table 1.

3.1 Active products

Active products are retrieved using the TU Wien Water Re-

trieval Package (WARP) algorithm (Wagner et al., 1999;

Naeimi et al., 2009), which is also used to generate the of-

ficial operational ASCAT L2 soil moisture products for the

Satellite Application Facility on Support to Operational Hy-

drology and Water Management of the European Organisa-

tion for the Exploitation of Meteorological Satellites (EU-

METSAT H SAF, http://hsaf.meteoam.it/soil-moisture.php,

last access: 17 May 2019). The WARP algorithm is a change

detection approach that retrieves soil moisture as the de-

gree of saturation by scaling azimuthally corrected radar

backscatter measurements between the historically lowest

and highest observed values (at each individual grid loca-
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tion), which are assumed to represent completely dry and

saturated conditions, respectively. The multi-antenna multi-

incidence angle capability of the ERS and ASCAT scatterom-

eters are exploited to correct for the (seasonally varying)

backscatter contribution of vegetation (Vreugdenhil et al.,

2016). A threshold-based decision tree algorithm is applied

to incidence angle normalised backscatter measurements to

detect and remove measurements that were taken under

frozen or freezing/thawing conditions where no reliable soil

moisture retrieval is possible (Naeimi et al., 2012). For a

complete description of the model and how it is applied to

ERS and ASCAT data see the Algorithm Theoretical Base-

line Document (ATBD) D2.1 Version 04.4 – Soil Moisture

Retrievals from Active Microwave Sensors (Chung et al.,

2018b). Information as to which WARP algorithm versions

have been used for the different ESA CCI SM versions can

be found in Table 1.

3.2 Passive products

Passive products are retrieved using the Land Parameter Re-

trieval Model (LPRM) algorithm (Owe et al., 2008). LPRM

is a forward model which is based on the radiative transfer

model of Mo et al. (1982) and distinguishes itself from other

soil moisture retrieval algorithms due to its applicability to

a wide range of frequencies (i.e. 1–20 GHz) and by using

an analytical solution based on the Microwave Polarization

Difference Index for the derivation of the vegetation optical

depth (VOD; Meesters et al., 2005). For C-band and higher-

frequency sensors, the data is filtered for frozen conditions

using Ka-band-based temperature (Holmes et al., 2009) and

for radio frequency interference (RFI; de Nijs et al., 2015;

Li et al., 2004). For SMOS L-band retrievals, the filtering

is based on the RFI and modelled (by the European Cen-

tre for Medium Range Weather Forecasts) temperature data

are provided alongside the brightness temperature input data

(SMOS L3TB). Soil moisture retrievals of all sensors are

masked out if the VOD exceeds a certain threshold that de-

pends on the microwave frequency of the respective sensor.

For a complete description of LPRM and how it is applied

see the Algorithm Theoretical Baseline Document (ATBD)

D2.1 Version 04.4 – Soil Moisture Retrievals from Passive

Microwave Sensors (de Jeu et al., 2018) as well as van der

Schalie et al. (2016) and van der Schalie et al. (2017). In-

formation as to which LPRM algorithm versions have been

used for the different ESA CCI SM versions can be found in

Table 1.

3.3 GLDAS Noah

GLDAS Noah (Rodell et al., 2004) is used as a scaling ref-

erence in the COMBINED product to obtain a consistent cli-

matology throughout the entire ESA CCI SM period (Liu

et al., 2011, 2012, see the next sections) and as an instru-

mental product for triple collocation analysis in the ACTIVE,

PASSIVE and COMBINED products to obtain the L2 in-

put data uncertainties (Su et al., 2014). More specifically,

GLDAS Noah version 2.1 (and previously, GLDAS Noah

version 1), which provides data from 2000 to the present, is

used for both rescaling and triple collocation analysis (see the

next sections). In earlier periods, GLDAS Noah version 2.0,

which provides data from 1948 to 2010, is used for triple col-

location analyses for L2 products where there is no temporal

overlap with GLDAS Noah v2.1 (or v1). However, all L2

data sets are rescaled (for the COMBINED product) against

GLDAS Noah v2.1 (previously, v1) due to inconsistencies

with GLDAS Noah v2.0, which originate from the historic

forcing data that were used in this version.

GLDAS Noah (all versions) provides 3-hourly estimates

of soil moisture and other land variables for four different

depth layers on a 0.25◦ regular grid. Top-layer (0–10 cm) soil

moisture estimates at 00:00 UTC (coinciding with the resam-

pled satellite input data) are used for rescaling and triple col-

location analysis. Top-layer soil temperature (Ts) and snow

water equivalent (SWE) estimates are used to mask out satel-

lite measurements that were taken under conditions where no

reliable soil moisture retrieval is possible (i.e. Ts < 0◦ and

SWE > 0 mm).

4 ESA CCI SM v2

As previously mentioned, the merging algorithm for all prod-

uct versions up to v2 (released early 2016; Wagner et al.,

2018) remained relatively unchanged and is described in de-

tail in Liu et al. (2011, 2012). Therefore, only its key features

will be summarised here. The principal steps of the algorithm

are illustrated in Fig. 1 and described in the following sec-

tions.

4.1 Harmonisation of L2 data

L2 input data sets from different missions are harmonised

to a common climatology by matching the cumulative dis-

tribution function (CDF) of the individual data sets to that

of a reference product, which was chosen to be the one that

is expected to have the most stable climatology. For the ac-

tive products this is ASCAT, as it is the direct successor in-

strument of ERS, with improved spatial resolution, tempo-

ral coverage and radiometric accuracy (Naeimi et al., 2009).

For passive products it is AMSR-E due to its longer signal

wavelength and higher spatial and temporal resolution (Liu

et al., 2012). The CDF matching is realised by splitting the

data sets into percentiles and rescaling these percentiles in a

linear fashion (Liu et al., 2011).

For the harmonisation of the active products, a combined

ERS-1/2 50 km (native) resolution time series is first si-

multaneously retrieved from well intercalibrated backscatter

measurements from ERS-1 and ERS-2. Data gaps in these

time series due to the on-board storage failure of ERS-2

in 2003 are filled with the experimental higher-resolution

Earth Syst. Sci. Data, 11, 717–739, 2019 www.earth-syst-sci-data.net/11/717/2019/
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Figure 1. Merging scheme of the ESA CCI SM v2 algorithm.

25 km ERS-2-only soil moisture retrievals after rescaling

(CDF matching) them against the combined ERS-1/2 data

set. This complete ERS time series is then rescaled against

ASCAT.

Passive products are harmonised as follows. WindSat and

TMI retrievals are rescaled against AMSR-E, while AMSR2

is assumed to be properly intercalibrated with AMSR-E

(which is most likely not always the case; see Parinussa et al.,

2015 and Sect. 10). For SSM/I, only anomalies (calculated as

deviations from the mean seasonal cycle) are rescaled against

those of AMSR-E, while the mean seasonal cycle of SSM/I

is fully replaced with that of AMSR-E due to its lack of

consistency with other sensors (Liu et al., 2011, 2012). A

merged SSM/I–TMI–AMSR-E time series is then created

by selecting the best available sensor at a given time, as-

suming that the data quality negatively correlates with mi-

crowave frequency and the time since launch (Liu et al.,

2012). Since TMI data are only available between ±37◦ lat-

itude, SSM/I retrievals are used in the remaining latitude

bands, even though they are considered to be less reliable

than those from the longer-wavelength TMI sensor. Finally,

SMMR observations are rescaled against the merged SSM/I–

TMI–AMSR-E time series. Note that, as there is no tempo-

ral overlap between SMMR and successive sensors, this step

scales the observations of different periods and thus assumes

that there is no trend from the SMMR period (1978–1987)

to the combined TMI–SSM/I–AMSR-E period (1987–2011)

(Liu et al., 2012).

4.2 Generation of the ACTIVE and the PASSIVE

product

The ESA CCI SM v2 ACTIVE product is generated by con-

catenating ASCAT and the rescaled combined ERS time se-

ries. Since this product is provided in the ASCAT data space,

i.e. as the degree of saturation, a porosity map derived from

the Harmonized World Soil Database (HWSD; Nachtergaele

and Batjes, 2012) is provided alongside the data in order to

allow the soil moisture estimates to be converted to volumet-

ric units if required.

The ESA CCI SM v2 PASSIVE product is generated by

concatenating the rescaled SMMR data set, the harmonised

and pre-concatenated AMSR-E–TMI–SSM/I time series and

AMSR2. Note that in the ESA CCI SM v2 ACTIVE and

PASSIVE products, measurements from different sensors are

not merged. At all time steps, the presumed best-performing

sensor operational at that date is selected, disregarding poten-

tially available observations from the other sensors. Figure 2

illustrates the resulting sensor selection per time and latitude.

4.3 Harmonisation of the ACTIVE and the PASSIVE

product

The ACTIVE and the PASSIVE products are harmonised by

rescaling them against GLDAS Noah soil moisture simula-

tions. The rationale for using a land surface model as a scal-

ing reference for harmonisation is its supposedly long-term

consistent climatology. For more details on the implications

and caveats of this choice see Liu et al. (2011, 2012) and

Sect. 10.

4.4 Generation of the COMBINED product

The harmonised ACTIVE and PASSIVE data sets are merged

into the COMBINED product by following a decision tree

that selects either one of the products alone or uses the arith-

metic mean of both during a particular period based on the

assumption that active retrievals tend to perform better in

more densely vegetated areas, whereas passive retrievals tend

to perform better in more sparsely vegetated areas (Liu et al.,
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Figure 2. Merging periods and sensor selection of the ACTIVE (top), PASSIVE (middle) and COMBINED (bottom) ESA CCI SM v2, v3

and v4 products.

2011, 2012). For each merging period (see Fig. 2) and at each

quarter degree grid cell, the Pearson correlation coefficient

between the ACTIVE and the PASSIVE product is calcu-

lated. At all locations and during each period where the cor-

relation exceeds 0.65, the arithmetic mean between the AC-

TIVE and the PASSIVE product is used at time steps where

both are available. If one data set does not provide a valid ob-

servation at a particular time step (due to L2 quality control

and orbit characteristics), the observation of the respective

other data set is used. At locations and in periods where the

correlation threshold is not met, the ACTIVE data set is se-

lected if the multi-year average AMSR-E-based VOD at that

location is above a certain threshold and the PASSIVE data

set is selected if the VOD is below that threshold. The thresh-

old is taken as the average of multi-year average AMSR-E-

based VOD estimates over all regions where the correlation

between the ACTIVE and the PASSIVE products does ex-

ceed the aforementioned correlation threshold of 0.65 (i.e.

where the ACTIVE and the PASSIVE product are expected

to be of comparable quality). In regions and periods where

ERS data are scarce due to the failure of the on-board stor-

age (resulting in a temporal coverage below 15 %), passive

observations are used to fill these gaps, even if the correlation

and VOD threshold suggest the use of the ACTIVE product

only.

In summary, the merging algorithm behind ESA CCI

SM v2 COMBINED product is a ternary decision scheme

that selects either active-microwave-based retrievals alone,

passive-microwave-based retrievals alone or an unweighted

average of the two based on their mutual correlation and av-

erage VOD conditions at a particular time and location.

5 On the statistical optimality of data merging

While the ternary ESA CCI SM v2 decision tree algorithm

described above has proven itself to be a robust way of merg-

ing soil moisture products from various satellites (Dorigo

et al., 2015), it will hardly ever provide estimates that are

optimal in a statistical sense. As known from (generalized)

least squares, deriving the best linear unbiased estimator for a

measurand from different simultaneous measurements of that

measurand with supposedly different qualities requires rigor-

ous consideration of their individual errors and error correla-

tions (Aitkin, 1935). Specifically, such an optimal estimate

would be the weighted average of the individual measure-

ments with the weights being derived from their error vari-

ances and covariances (Gelb, 1974). To understand this, con-

sider an arbitrary number N of simultaneous measurements

of the measurand y, contained in the measurement vector x:

x = A · y + ε. (1)
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The (N × 2) design matrix A represents zero- and first-order

(additive and multiplicative) systematic errors in x and the

column vector ε represents independent (from y) additive

Gaussian random errors in x. The measurand vector y =

(1 y)⊺ allows for the consideration of additive systematic er-

rors. Note that Eq. (1) could be easily extended with higher-

order systematic errors by extending the column dimension

of the design matrix and the row dimension of the measur-

and vector but not with different types of random errors as

the method of least squares per definition allows for inde-

pendent additive Gaussian noise only. In any case, Eq. (1) is

the most commonly used error model for soil moisture data

sets (Gruber et al., 2016b). The least squares solution, that is,

the minimum random error variance estimate for y, is given

as follows:

y = (A⊺PA)−1A⊺Px, (2)

where the weight matrix P = C−1 is the inverse of the er-

ror covariance matrix with diagonal elements that are the er-

ror variances of the measurements (σ 2
εi

with i ∈ x) and off-

diagonal elements that are their error covariances (σεi ,εj
with

i,j ∈ x and i 6= j ).

In practice, the success of Eq. (2) depends on the degree to

which systematic errors and the error covariance matrix (i.e.

A and C) can be accurately estimated. Note, however, that,

even if only relative systematic differences between the mea-

surements are known, Eq. (2) still provides a minimum ran-

dom error variance estimate (up to the remaining unknown

systematic component). Recently, Gruber et al. (2017) pro-

posed an implementation of Eq. (2) for merging active and

passive microwave soil moisture retrievals, which utilises

triple collocation analysis (TCA; Stoffelen, 1998; Gruber

et al., 2016b) to estimate the input data uncertainties (i.e. di-

agonal elements of C) and CDF matching for a priori correc-

tion of relative systematic differences. This merging scheme

formed the basis for the ESA CCI SM v3 product.

6 ESA CCI SM v3

Gruber et al. (2017) showed that for a combination of AS-

CAT and AMSR-E retrievals a least squares merging scheme

approach based on TCA outperforms the ternary merging

scheme of ESA CCI SM v2. In the following sections we

discuss how the scheme was implemented and adapted for

merging four active and seven passive input data sets into

the ACTIVE, the PASSIVE and the COMBINED ESA CCI

SM v3 products (Dorigo et al., 2018). The principal steps are

illustrated in Fig. 3. Note that the ESA CCI SM v3 algorithm

continues to employ a two-stage merging scheme. That is, all

active and passive data sets are first merged into the ACTIVE

and the PASSIVE product, respectively, which are then fur-

ther merged into the COMBINED product.

6.1 Harmonisation of L2 data

The input data harmonisation is largely identical to that in

ESA CCI SM v2 (see Sect. 4.1). ASCAT observations from

MetOp-B, which were additionally included in v3, are treated

as perfectly intercalibrated with those from MetOp-A and

arithmetically averaged on days and at locations where both

satellites provide collocated measurements. SMOS, which

was additionally included in v3, is, as all the other products,

rescaled (CDF matched) against AMSR-E.

6.2 Uncertainty estimation for (harmonised) L2 data

Following Gruber et al. (2017), estimates of the random er-

ror variances (i.e. uncertainties) of the L2 data sets, required

for the parameterisation of the employed least squares merg-

ing scheme, are obtained through TCA. TCA simultaneously

estimates uncertainties in three spatially and temporally col-

located data sets with errors that are required to be mutu-

ally uncorrelated. This requirement is commonly assumed

to be met when applying TCA to one active-microwave-

based, one passive-microwave-based and one land surface

model-based soil moisture data set (Scipal et al., 2008; Gru-

ber et al., 2016b). Accordingly, uncertainties in all active and

passive products (except for SMMR, which does not tempo-

rally overlap with any of the active data sets) are estimated

as follows:

σ 2
εa

= σ 2
a −

σa,pσa,m

σp,m

σ 2
εp

= σ 2
p −

σp,aσp,m

σa,m
, (3)

where the subscripts refer to the active (a), the passive (p)

and the land surface model (m) time series; σ 2
i is the tempo-

ral variance of data set i; and σi,j is the temporal covariance

between data sets i and j with i,j ∈ [a,p,m]. Uncertainty

estimates for each active (passive) data set are obtained by

applying Eq. (3) to that data set in combination with the re-

spective passive (active) data set with the longest temporal

overlap and GLDAS Noah.

Note that the σ 2
εi

represent temporal mean data set un-

certainties. Consequently, weights derived thereof (i.e. the P

matrix in Eq. 2) are average weights for the period for which

TCA was applied, although actual retrieval uncertainties (of

individual sensors) may change over time (see Sect. 10). For

more details on TCA we refer to Gruber et al. (2016b). Note

also that, while errors of active and passive products are com-

monly assumed to be uncorrelated, significant correlations

between the errors of different passive products may occur.

Therefore, merging them into the PASSIVE product would

require estimates of these error correlations in order to prop-

erly parameterise the full error covariance matrix in Eq. (2).

Gruber et al. (2016a) proposed a modification of TCA which

potentially allows the estimation of such error correlations,

but this method has not yet been validated on a global scale
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Figure 3. Merging scheme of the ESA CCI SM v3 algorithm.

and was found to be particularly susceptible to small sample

sizes (sample sizes of products that are merged into the PAS-

SIVE product are considered small in this context). Hence,

lacking the ability to robustly estimate them, off-diagonal el-

ements in the error covariance matrix are neglected in ESA

CCI SM v3. The consequences of doing so are discussed in

the next section and in Sect. 10.

6.3 Generation of the ACTIVE and the PASSIVE

product

As in ESA CCI SM v2, the ACTIVE product is generated

by concatenating the harmonised ERS and ASCAT time se-

ries because they do not have temporally overlapping obser-

vations which would allow for statistical merging. Conse-

quently, their uncertainties, estimated from TCA, are merely

appended to the product as auxiliary information and not

used in the merging scheme.

Passive data sets are merged into the PASSIVE product

as follows. Before October 2007 (i.e. before the launch of

Coriolis, carrying WindSat), the low temporal coverage of

the available sensors was assumed to render TCA-based er-

ror variance estimates too uncertain for a robust derivation

of relative merging weights due to the susceptibility of TCA

to small sample sizes (Zwieback et al., 2012). Consequently,

SMMR, SSM/I, TMI and AMSR-E observations before Oc-

tober 2007 are concatenated in the same way as in ESA CCI

SM v2, that is, by selecting the best available sensor at a par-

ticular time and location (see Fig. 2). Note that this was a

relatively ad hoc albeit conservative assumption which has

not yet been tested thoroughly but will be for future product

versions (see Sect. 10).

All sensors available after this period (i.e. AMSR-E,

WindSat, SMOS and AMSR2) are merged by employing the

least squares estimator in Eq. (2) in the following manner:

since the data sets are already harmonised, i.e. rescaled to

a common climatology, the design matrix A is taken to be

a column vector with all values being one. The error co-

variance matrices C required to calculate P (i.e. the relative

weights for averaging the data sets) are constructed for each

grid cell and for each merging period from the TCA-based

uncertainty estimates of all sensors that are available dur-

ing that particular period (see Fig. 2). As mentioned above,

error cross-correlations are neglected. That is, off-diagonal

elements in C are held zero, which may lead to biases in

the estimated weights in case the errors of different passive

data sets are significantly correlated (see Sect. 10). However,

while this may reduce the efficiency (in uncertainty reduc-

tion) of the least squares estimator in several cases, it can-

not lead to a substantial uncertainty increase (with respect

to the individual L2 input products) because error correla-

tions only pull the weights further towards the best product.

If neglected, better products are still attributed with higher

weights.

Note that the different sensors do not provide valid re-

trievals at every time step due to their orbit geometry and

the L2 quality control (see Sect. 3). Consequently, if, dur-

ing a particular merging period (see Fig. 2), a data set with

significantly larger uncertainties has a higher temporal mea-

surement coverage than the others, simply merging all avail-

able observations at each time step might result in a signifi-

cantly larger overall uncertainty (of the merged time series)

than that of the lower-uncertainty input time series alone.

Therefore, to provide a trade-off between the best possible

Earth Syst. Sci. Data, 11, 717–739, 2019 www.earth-syst-sci-data.net/11/717/2019/



A. Gruber et al.: ESA CCI SM 725

temporal measurement density and the lowest possible (av-

erage) uncertainty in merged time series, ESA CCI SM v3

imposes a minimum threshold for the cumulative weight of

valid measurements available on a particular date, which has

to exceed 1/2N where N is the number of sensors in orbit

and operational during that merging period. If this thresh-

old is not met, no soil moisture estimate is provided for

that day. For example, assume that for merging AMSR-E,

WindSat and SMOS into the PASSIVE product, their weights

as derived from their relative SNR at a particular location

are 0.1, 0.05 and 0.85, respectively. Because N = 3, the

minimum-cumulative-weight threshold is 0.17. Therefore, if,

on a particular day, only AMSR-E and WindSat observations

are available, which have a cumulative weight of 0.15, no

soil moisture estimate is provided. For more details on the

choice and the implications of this threshold see Gruber et al.

(2017).

6.4 Harmonisation of the ACTIVE and the PASSIVE

product

As was the case with ESA CCI SM v2, in ESA CCI SM v3,

before merging the ACTIVE and the PASSIVE products,

their climatologies are harmonised by rescaling them against

GLDAS Noah soil moisture simulations.

6.5 Uncertainty estimation for the (harmonised) ACTIVE

and PASSIVE products

As mentioned in Sect. 6.2, TCA estimates represent the av-

erage retrieval uncertainties during the period in which TCA

was applied. Since the uncertainties in the ACTIVE and PAS-

SIVE products change significantly depending on which in-

put data sets are used or merged at a particular point in time,

uncertainties are estimated (from Eq. 3) separately for all pe-

riods with different sensor availabilities (see Fig. 2). In addi-

tion to TCA-based uncertainty estimates, significance levels

(p values) of the Pearson correlation between the ACTIVE

data set, the PASSIVE data set and GLDAS Noah are calcu-

lated (separately for the same periods) in order to screen for

unreliable TCA estimates (see the next section).

6.6 Generation of the COMBINED product

TCA estimates of soil moisture uncertainty are known to

have limited reliability in certain regions such as deserts, high

latitudes or areas with dense vegetation (Dorigo et al., 2010;

Al-Yaari et al., 2014). Using these estimates to parameterise

the covariance matrix in Eq. (2) could thus significantly alter

the integrity of the least squares estimator. Therefore, follow-

ing the approach of Gruber et al. (2017), p values are used to

verify the reliability of TCA estimates and to fall back on the

use of either active or passive retrievals alone, an unweighted

average of the two, or to completely mask the grid cell dur-

ing that period if uncertainty estimates and/or soil moisture

Table 2. Merging scheme based on the one-tailed p value for the

correlation between active (a), passive (p) and modelled (m) soil

moisture with a 0.05 significance level (modified from Gruber et al.,

2017).

p < 0.05? (0: no, 1: yes)
Decision

a − m p − m a − p

0 0 0 disregard pixel

0 1 0
passive only

0 1 1

1 0 0
active only

1 0 1

1 1 0
arithmetic mean

0 0 1

1 1 1 least squares

retrievals are deemed unreliable. Specifically, the decision of

whether to use the ACTIVE product alone, the PASSIVE

product alone, an unweighted average of the two, the least

squares estimate or to disregard the grid cell completely is

based on the relative p value. combination as illustrated in

Table 2. If the least squares estimator is used, a minimum-

weight threshold of 0.25 (1/2N where N = 2, i.e. ACTIVE

and PASSIVE) is again imposed on dates where only one of

the data sets (ACTIVE or PASSIVE) provides a valid obser-

vation (see Sect. 6.3). More details and an evaluation of this

classification scheme is provided in Gruber et al. (2017).

Figure 4 shows the relative weights during each merging

period (see Fig. 2) which are used for merging the ESA CCI

SM v3 ACTIVE and PASSIVE products based on the TCA

uncertainty estimates and the p-value mask. As a reference,

the weight distributions amongst the ACTIVE and PASSIVE

product in the ESA CCI SM v2 algorithm (only during the

last merging period) and average VOD conditions at each lo-

cation are given. The main apparent feature is that weight

distributions in all merging periods largely follow VOD pat-

terns. While the ESA CCI SM v2 algorithm was specifically

designed to do so, the fact that the uncertainty-based weights

in the ESA CCI SM v3 algorithm do this as well (with a

much better resolution) strengthens the evidence for the as-

sumption that active products tend to perform better in more

densely vegetated areas, whereas passive products tend to

perform better in more sparsely vegetated regions. This be-

haviour forms the basis for the improved weight derivation

in the ESA CCI SM v4 algorithm for regions where TCA

estimates are deemed unreliable, which is discussed in the

following section.
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Figure 4. Weights for merging the ACTIVE and PASSIVE products in the ESA CCI SM v3 algorithm (all sensor periods, a–h), weights for

merging the ACTIVE and PASSIVE products in the ESA CCI SM v2 algorithm (latest period, i) and average VOD derived from AMSR-E (j).

7 ESA CCI SM v4

Algorithmic changes which were implemented for generat-

ing the ESA CCI SM v4 products (Dorigo et al., 2019) tack-

led two specific issues with the way in which the uncertainty

estimates for the least squares merging are obtained in ESA

CCI SM v3. First, the two-stage merging approach caused

biases in the relative weights that are attributed to the AC-

TIVE and PASSIVE products during the different merging

periods (see Fig. 2). These biases resulted from the irregular

temporal measurement availability of the individual L2 in-

put data sets, which led to temporal uncertainty variations in

the PASSIVE product during the different merging periods

depending on which sensors have valid observations and are

merged together on a particular day. Such uncertainty varia-

tions cannot be accurately captured by the single uncertainty

estimates used to merge the ACTIVE and PASSIVE prod-

ucts together. Second, even though seemingly robust, the p-

value-based ternary decision in areas where TCA estimates

are deemed unreliable also resulted in biased (with respect

to statistically optimal) weight estimates very similar to the

biases in the ESA CCI SM v2 algorithm because it selects

weights of 0, 0.5, or 1 irrespective of the actual data set un-

certainties (see Sect. 5). The following sections will describe

the changes that have been implemented to address these is-

sues. The resulting modified ESA CCI SM v4 algorithm is

illustrated in Fig. 5.
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Figure 5. Merging scheme of the ESA CCI SM v4 algorithm.

7.1 Direct merging of L2 observations into the

COMBINED product

In ESA CCI SM v4, the COMBINED product is generated

by directly merging L2 input data sets instead of the pre-

viously merged ACTIVE and PASSIVE products (as is the

case in ESA CCI SM v2 and v3). This allows the estima-

tion of temporally dynamic relative merging weights for each

individual sensor based on which sensors provide valid ob-

servations on a particular day. For this purpose, all L2 in-

put data sets are first directly scaled against GLDAS Noah to

harmonise their climatology (as for the earlier versions, the

SSM/I climatology is first replaced with that of AMSR-E).

Uncertainties are then estimated (see below) for each indi-

vidual product and used to construct error covariance matri-

ces for all merging periods depending on the sensor avail-

ability during these periods (see Fig. 2). Finally, the data sets

are merged into the COMBINED product, again using the

minimum-weight threshold of 1/2N on dates where not all

input products available in that merging period provide valid

measurements (see Sect. 6.3).

7.2 VOD-based uncertainty estimation

As was shown in Fig. 4, uncertainty estimates and hence

merging weights largely follow VOD patterns. To obtain un-

certainty estimates in regions where TCA estimates are not

trusted, i.e. where not all three data sets used in TCA are

significantly correlated, an empirical polynomial regression

approach that predicts uncertainties from average VOD con-

ditions at a particular location was introduced. Specifically, a

polynomial function is fitted between mean VOD (estimated

from AMSR-E C-band observations between 2002 and 2011)

and TCA-based signal-to-noise ratio (SNR) estimates using

VOD and SNR tuples from all grid cells where TCA esti-

mates are assumed to be reliable, i.e. where all three data

sets are significantly (p < 0.05) correlated (see Fig. 6). Re-

gression coefficients are calculated separately for each L2 in-

put product and used to predict their SNR levels (ŜNRi) from

the mean VOD at grid cells (i) where the SNR could not be

estimated from TCA:

ŜNRi =

k
∑

j=0

aj · VOD
j
, (4)

where aj are the polynomial coefficients and k is the degree

of the polynomial function. k was chosen to be 3 for TMI and

WindSat and 2 for all other sensors, which was empirically

found to provide the best fit for the regression. Notice that re-

gression coefficients are fitted between VOD and SNRs and

not between VOD and uncertainties directly in order to ac-

count for varying signal variance across the grid cells that is

used for the regression (Gruber et al., 2016b). SNRs are then

converted into uncertainties as follows:

σ 2
εi

=
σ 2

i

1 − ŜNRi

. (5)

The overshooting in the regression curve of TMI for high-

VOD values does not impact the final data product as grid

cells with such high-VOD values are masked out by the L2

quality control process. The overshooting of WindSat for low

VOD values affects a few grid cells in very dry regions and

cannot be avoided by changing the polynomial order, as this

would lead to overshooting in the more relevant VOD re-

gions. SNR values at different grid cells and for particular

VOD ranges sometimes show a significant variability around

the corresponding estimate of the regression, which directly

translates to uncertainties in the weight estimates that are

used for the least squares merging. However, these uncer-

tainties are assumed to be, on average, lower than the bias

introduced by the p-value-based ternary decision of a weight

of either 0, 0.5 or 1 as adopted in ESA CCI SM v2 and v3.

Figure 7 shows the combined TCA and VOD regression-

based global SNR maps which are ultimately used to derive

the merging weights for Eq. (2). Patterns generally follow

common understanding. SNRs of active sensors are higher
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Figure 6. Regression functions between VOD and SNRs (in decibel units) of all L2 products. Box plots show the median, the interquartile

range and the 5 and 95 percentiles, respectively.

Figure 7. SNR (in decibel units) of all L2 input products with uncertainties estimated from TCA and the VOD regression.
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Table 3. Merging scheme based on the one-tailed p value for the

correlation between the model (m), the reference satellite (r), the

target satellite (t) and soil moisture with a 0.05 significance level.

p < 0.05? (0: no, 1: yes)
decision

m − r m − t r − t

0 0 0

disregard t1 0 0

1 0 1

0 0 1

least squares

0 1 0

0 1 1

1 1 0

1 1 1

in more densely vegetated regions, whereas SNRs of pas-

sive sensors are higher in more sparsely vegetated areas

(Dorigo et al., 2010; Liu et al., 2011, 2012; van der Schalie

et al., 2018). SNRs of passive sensors largely depend on

the microwave frequency (Liu et al., 2012; Parinussa et al.,

2011, 2012). AMSR-E and AMSR2 (both C-band) SNRs are

largely comparable and, in general, are higher than those for

the higher-frequency (Ku-band) of SSM/I. SMOS (L-band)

SNRs are, on average, relatively high and show a lower spa-

tial variability as their longer wavelength makes the observa-

tions less sensitive to variation in vegetation.

Note that, as is the case in ESA CCI SM v3, SSM/I and

TMI retrievals are never merged together or merged with

AMSR-E, i.e. SSM/I data are only used at high latitudes

where TMI data are not available, and neither of the two is

used after AMSR-E becomes available (see Sect. 6.3). Nev-

ertheless, their uncertainties are in many areas comparable

with each other and with those of the other sensors, suggest-

ing that they might add valuable information when included

in the least squares merging scheme, which will be consid-

ered for future product versions (see Sect. 10).

7.3 P -value-based quality control

In ESA CCI SM v4, for the generation of both the PASSIVE

and the COMBINED product, correlation significance levels

are used to completely mask out individual L2 input prod-

ucts that are deemed unreliable at a particular location and

during a particular merging period (in cases where more than

one product is available for merging). For this purpose, the

p-value mask that is used in the ESA CCI SM v3 product

(see Sect. 6.6) was modified as shown in Table 3. All mea-

surements from the target satellite product that is being tested

for reliability are masked out if they do not correlate signifi-

cantly with both soil moisture estimates from GLDAS Noah

and the measurements from the second satellite product used

for TCA, or if they correlate significantly with the reference

satellite product but not with the model time series.

The rationale behind the latter is that potential non-zero er-

ror correlations, arising, for example, from uncorrected veg-

etation variations (Zwieback et al., 2018), may lead to spuri-

ous correlations between the two products, even though they

do not contain useful soil moisture information. Note, how-

ever, that the decisions in the p-value mask were empirically

tuned to lead to a good performance (of the merged products)

in terms of correlation against the ERA-Land soil moisture

product. Consequently, decisions that are based on signifi-

cance levels of the correlation against GLDAS Noah may be

questionable, since the two models are most likely not fully

independent. This issue is currently under investigation and

will be addressed in future product versions (see Sect. 10).

8 Product evaluation

The previous sections provided a methodological review of

the merging algorithm behind the ESA CCI SM (and Coper-

nicus C3S) products. Even though this is not a validation

paper, this section shall provide an overview of the per-

formance evolution of the presented product versions, i.e.

ESA CCI SM v2, v3 and v4. To this end, both absolute and

anomaly time series (calculated by removing seasonal dy-

namics which are estimated by applying a 35-day moving av-

erage window) of the ACTIVE, PASSIVE and COMBINED

data sets from the latest public release of each product ver-

sion (i.e. v02.2, v03.3 and v04.4) are correlated against glob-

ally distributed in situ soil moisture observations from the

International Soil Moisture Network (ISMN; Dorigo et al.,

2011a, b). Only in situ measurements that are flagged “good”

by the ISMN internal quality control (Dorigo et al., 2013) are

used for the comparison. Unreliable ESA CCI SM soil mois-

ture estimates are masked out as described in the previous

sections. Products are evaluated from October 2007 onwards

as significant improvements are mainly expected after this

date due to the use of multiple passive satellites within the

merging scheme (see Sect. 6) and the improved temporal data

coverage of both the ESA CCI SM products and the ISMN

stations available for validation.

The majority of the ISMN stations are distributed over

large areas and most ESA CCI SM grid cells contain only

a single measuring station. Direct comparisons (i.e. rela-

tive correlation coefficients) are therefore affected by sig-

nificant upscaling errors (in addition to in situ sensor mea-

surement errors; Miralles et al., 2010; Gruber et al., 2013).

TCA potentially allows this influence to be avoided by di-

rectly estimating correlation coefficients with respect to the

unknown “true” soil moisture signal (McColl et al., 2014).

Chen et al. (2017) showed that these TCA-based correla-

tion coefficients are independent of in situ sensor and rep-

resentativeness errors. However, TCA requires the errors of

the data sets to which it is applied to be mutually indepen-

dent. Usually, any combination of in situ soil moisture mea-

surements, active-microwave-based soil moisture retrievals,
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passive-microwave-based soil moisture retrievals and mod-

elled soil moisture estimates is expected to fulfil this require-

ment (see Sect. 6.2; Gruber et al., 2016b), but since the ESA

CCI SM COMBINED product is generated by using the lat-

ter three data sources, no data triplet that meets TCA assump-

tions can be found to evaluate this product.

Here we circumvent this issue by following a Bayesian ap-

proach (Efron, 2013). To this end, we acquire prior estimates

of the ISMN sensor plus representativeness errors in terms of

their correlation with respect to the true soil moisture signal

at the satellite scale (Ri) by applying TCA to the ISMN sta-

tions together with the ESA CCI SM ACTIVE and PASSIVE

products (Chen et al., 2017):

Ri =

√

σi,aσi,p

σi,iσa,p
, (6)

where σ denotes the covariance between data sets and the

subscripts denote the ISMN stations (i) and the ACTIVE (a)

and PASSIVE (p) products. This prior information now al-

lows estimates of the correlation of the different ESA CCI

SM products against the truth (Re) to be derived from their

relative Pearson correlation against the ISMN stations (Re,i)

through Bayesian inference:

Re =
Re,i

Ri
. (7)

In other words, Eq. (7) corrects the Pearson correlation be-

tween ISMN stations and the ESA CCI SM products for the

impact of the ISMN sensor and representativeness errors. An

analytical proof of the relation in Eq. (7) can be found by

using the general definitions of the Pearson correlation coef-

ficient and the TCA-based correlation against the unknown

truth (McColl et al., 2014; Gruber et al., 2016b):

Rx,y =
σx,y

σxσy

Rx =

√

σx,yσx,z

σx,xσy,z

Ry =

√

σx,yσy,z

σy,yσx,z

. (8)

Estimates of Ri are calculated for both absolute and anomaly

time series of all ISMN stations using the maximum possi-

ble temporal overlap with the ESA CCI SM ACTIVE and

PASSIVE products. Re estimates are then calculated for ab-

solute and anomaly time series of each ESA CCI SM product

(i.e. ACTIVE, PASSIVE and COMBINED versions v02.2,

v03.3, v04.4) for each merging period after October 2007

(see Fig. 2) using only dates where all three product ver-

sions have valid measurements. Estimates are masked out at

locations where not all products are significantly correlated

(p < 0.05) or have fewer than 100 collocated measurements

(Gruber et al., 2016b). Re estimates that exceed unity (which

may occur due to statistical sampling errors; Gruber et al.,

2018) are set to one. Figure 8 shows the locations of all 1056

ISMN stations where valid Re estimates could be obtained

(in any of the four considered merging periods).

Spatial statistics of the estimated correlations (Re) are

shown in Fig. 9 and summarised in Table 4. Clear improve-

ments for increasing ESA CCI SM product version are visi-

ble for the PASSIVE and the COMBINED products in almost

all merging periods, both for absolute soil moisture time se-

ries and for anomalies. No significant anomaly correlations

and significant absolute correlations from only four sites are

available for the PASSIVE product in the merging period be-

tween October 2011 and June 2012, which is associated with

the low data coverage of WindSat and SMOS that are used

in this period, and the predominant frozen conditions during

this time of the year, which lead to further masking of most

data points. The lower quartile of anomaly correlations of the

COMBINED product in the same merging period has slightly

degraded from ESA CCI SM v3 to v4. This may be caused by

an inaccurate VOD-based weight prediction in the v4 prod-

uct as this merging period does not cover most of the summer

and autumn retrievals, while weight prediction is based on

annual-average VOD conditions. However, it may also just

be a statistical artefact given the significantly reduced data

coverage in this period and the reduced number of stations

available to calculate correlation percentiles.

Only slight, non-significant changes are visible for the AC-

TIVE product, which is expected because only a single sen-

sor is used and no statistical merging is applied that would

be affected by changes between product versions. Also, the

inclusion of MetOp-B observations as of ESA CCI SM v3 is

unlikely to influence the results as only dates where all three

ESA CCI SM product versions provide valid observations

are considered in the analysis. Therefore, apparent changes

originate mainly from differences in the L2 soil moisture re-

trieval algorithm version that has been used for ASCAT (see

Table 1), more specifically from model parameter updates

due to the time series extension.

To complement the demonstration of ESA CCI SM prod-

uct performance, Fig. 10 shows the fraction of days where the

ESA CCI SM products provide valid soil moisture estimates.

Only the PASSIVE and COMBINED products and only the

latest four merging periods are considered because these are

most affected by changes in the merging algorithm. Over-

all, there are many regions where the ESA CCI SM prod-

ucts provide valid observations almost every day. Areas with

significantly reduced data coverage are mainly those with

prolonged frozen periods, where soil moisture cannot be re-

trieved, and densely vegetated areas as well as regions with

complex topography, where soil moisture retrieval is partic-

ularly challenging.

Data coverage significantly improved from ESA CCI

SM v2 to v3 at most locations due to the introduction of the

least squares merging scheme, which allowed more than one

or two sensors to be merged on individual days. The quality

control that was introduced into this merging scheme (based
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Figure 8. Locations of the ISMN stations used for product evaluation. Colours represent different measurement networks.

Figure 9. Box plots of correlations against the unknown truth of measurements from the ACTIVE (a, d), PASSIVE (b, e) and COM-

BINED (c, f) products, both for absolute time series (a–c) and soil moisture anomalies (d–f). Box colours refer to the ESA CCI SM product

versions v02.2, v03.3 and v04.4. The x axes represent different merging periods (see Fig. 2). Boxes represent the median and IQR, and

whiskers represent the 10th and 90th percentiles of significant correlations (p < 0.05) over all stations where at least 100 collocated mea-

surements are available. The number of stations available for calculating the correlation statistics for a particular product and time period

is shown below the zero line. The number in brackets shows the average number of collocated measurements available at each station for

calculating correlation coefficients.

on p values and minimum-weight thresholds; see Sect. 6)

has caused some spatial gaps in the PASSIVE product in v3

in already data-scarce regions where data quality of the pas-

sive sensors is generally poor (see Fig. 7). These gaps could

be closed again by refining the masking scheme in v4 (see

Sect. 7). Note, however, that this revised masking also has

slightly reduced data coverage compared to v3 in some re-

gions where bad observations have been sacrificed for the

sake of overall data quality (see Fig. 9). Data coverage is ex-

pected to improve again in the upcoming product version 5.

Figure 11 furthermore shows the average fraction of valid

observations to which each individual sensor contributes dur-
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Table 4. Median correlations against the unknown truth of absolute soil moisture time series and soil moisture anomalies from the ACTIVE,

PASSIVE and COMBINED ESA CCI SM product versions v02.2, v03.3 and v04.4 in the latest four merging periods. Merging periods 1, 2,

3 and 4 refer to October 2007 to January 2010, January 2010 to October 2011, October 2011 to June 2012 and July 2012 to December 2014

(see Fig. 2).

ACTIVE PASSIVE COMBINED

Absolute

v02.2 0.74 0.77 0.74 0.78 0.77 0.78 0.47 0.75 0.78 0.78 0.76 0.78

v03.3 0.76 0.77 0.74 0.79 0.80 0.82 0.51 0.83 0.83 0.85 0.80 0.87

v04.4 0.75 0.77 0.74 0.80 0.81 0.85 0.56 0.84 0.84 0.88 0.82 0.89

Anomaly

v02.2 0.70 0.70 0.75 0.72 0.67 0.64 0.66 0.72 0.71 0.73 0.72

v03.3 0.73 0.70 0.77 0.75 0.74 0.75 0.76 0.78 0.78 0.75 0.78

v04.4 0.72 0.71 0.77 0.75 0.76 0.77 0.76 0.78 0.83 0.75 0.83

Merging period 1 2 3 4 1 2 3 4 1 2 3 4

Figure 10. Fraction of days during the latest four merging periods (October 2007 to December 2014), where the PASSIVE (a, c, e) and

COMBINED (b, d, f) product versions v02.2 (a, b), v03.3 (c, d) and v04.4 (e, f) provide valid observations.

ing each day in each merging period, either alone or merged

together (hence, the cumulative fractions of all sensors can

be above unity). Note that Fig. 11 only provides information

about the overall number of grid points to which each sen-

sor contributes and not with which weight they contribute.

Weights attributed to each sensor in product versions 2 and

3 are shown in Fig. 4. For version 4, this information can-

not be summarised meaningfully as weights change dynami-

cally each day depending on how many sensors provide valid

observations at a particular location (see Sect. 7). However,

since weights are derived from the uncertainties of the indi-

vidual L2 soil moisture products, the SNRs shown in Fig. 7

are a direct (inverse) proxy for relative merging weights.

SMOS contributions are generally low due to excessive

data masking in RFI-contaminated areas. By contrast, AS-

CAT soil moisture retrievals are not affected by RFI and they

are also not masked under high-VOD conditions (as are all

passive data sets; see Sect. 3). Therefore, ASCAT contribu-

tions are generally large. AMSR-E contributions decreased

after v2 as both WindSat and SMOS observations became

available to replace AMSR-E observations at some locations

where they are deemed unreliable. Both WindSat and SMOS

contributions further increased from v3 to v4 in most periods
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Figure 11. Fractional contribution (y axis) of the individual sensors (x axis) to valid ESA CCI SM soil moisture estimates of the PASSIVE

and COMBINED products (top to bottom) during the last four merging periods (left to right). Bar colours refer to the ESA CCI SM product

versions v02.2, v03.3 and v04.4.

because of the refined relative weighting and data set mask-

ing.

Note that it is generally difficult to pinpoint the exact ori-

gin of all apparent patterns because they are caused by both

changes in the L2 retrieval algorithms and their inherent

quality control, as well as by changes in the different sensor

masking procedures during the weight estimation within the

least squares merging (i.e. the p-value-based mask and the

applied minimum-weight threshold; see Sects. 6 and 7). For

an exhaustive summary of comprehensive, dedicated valida-

tion studies for the various ESA CCI SM product versions,

we refer the reader to Dorigo et al. (2015, 2017).

9 Data availability

The soil moisture CDRs produced within the ESA

CCI SM are freely available upon registration at

http://www.esa-soilmoisture-cci.org/ or at the Centre

for Environmental Data Analysis (CEDA) via http:

//dx.doi.org/10.5285/3729b3fbbb434930bf65d82f9b00111c

(ESA CCI SM v2; Wagner et al., 2018), http://dx.doi.

org/10.5285/b810601740bd4848b0d7965e6d83d26c

(ESA CCI SM v3; Dorigo et al., 2018) and http:

//dx.doi.org/10.5285/dce27a397eaf47e797050c220972ca0e

(ESA CCI SM v4; Dorigo et al., 2019). ISMN data are freely

available upon registration at https://ismn.geo.tuwien.ac.at/

(last access: 17 May 2019).

10 Conclusions

The European Space Agency’s Climate Change Initiative for

Soil Moisture (ESA CCI SM) algorithm generates consistent,

quality-controlled, long-term (1978–2018) soil moisture cli-

mate data records (CDRs) by harmonising and merging soil

moisture retrievals from multiple satellites into (i) an active-

microwave-based only (ACTIVE), (ii) a passive-microwave-

based only (PASSIVE) and a (iii) combined active–passive

(COMBINED) product. This paper reviews and discusses the

science behind the three major ESA CCI SM merging algo-

rithm versions:

– ESA CCI SM v2 was used for all product releases be-

tween 2012 and 2016. This algorithm merges active and

passive soil moisture retrievals by selecting either one

of them alone or by computing the unweighted average

of both based on their mutual correlation and average

vegetation optical depth (VOD) conditions at a given

location and time period.

– ESA CCI SM v3 was released in early 2017, extended at

the end of 2017 and used for the near-real-time Coperni-

cus Climate Change Service (C3S) Soil Moisture CDR

production up to version v201801. This algorithm uses

a weighted-least-squares-based merging scheme, which

is parameterised by triple collocation analysis (TCA)-

based uncertainty estimates and uses correlation signifi-

cance levels (p values) to fall back to a ternary decision

scheme (active-only, passive-only, or an unweighted av-

erage) at grid cells and/or during time periods where

TCA-based uncertainty estimates are deemed unreli-

able.

– ESA CCI SM v4 was used to generate the product re-

leases at the beginning and the end of 2018 and has

been used for the C3S Soil Moisture CDR produc-

tion since version v201812. This algorithm introduced a

VOD-based polynomial regression to obtain global un-

certainty estimates for all products (i.e. also in regions
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where TCA-based estimates are not reliable) and di-

rectly merges all active and passive L2 soil moisture re-

trievals into the COMBINED product (i.e. no longer the

previously merged ACTIVE and PASSIVE products).

Harmonising soil moisture retrievals from active and passive

microwave measurements from instruments which (i) operate

at different wavelengths, polarisations and incidence angles;

(ii) have diverging spatial, temporal and radiometric resolu-

tion; and (iii) are hardly ever well collocated in space and

time is a heavily ill-posed problem. The ESA CCI SM merg-

ing algorithm is hence subject to continuous research and

development. In the following, we summarise known issues

that are currently under investigation and highlight improve-

ments that are expected to be implemented in the next algo-

rithm version (v5), which is foreseen to be released in 2019.

– L2 data usage

– Soil moisture retrievals from SMAP (Entekhabi

et al., 2010) will be integrated into the next al-

gorithm version v5. SMAP retrievals are expected

to significantly enhance the ESA CCI SM perfor-

mance from 2015 onwards due to its long wave-

length (L-band) and remarkably high radiometric

accuracy (Chen et al., 2018).

– SSM/I and TMI data are not yet fully integrated. At

midlatitudes, SSM/I data was disregarded in favour

of TMI, and both products were cut off after the

launch of the presumed better AMSR-E, because

their low temporal coverage was assumed to ren-

der TCA-based uncertainty estimates (required for

the least squares merging scheme) too unreliable

(see Sect. 6.3). Nonetheless, their estimated uncer-

tainties (see Fig. 7) suggest potentially useful com-

plementary information even in the presence of the

more recent missions.

– In ESA CCI SM v2, WindSat is merely used for

bridging the gap between the failure of AMSR-E

and the launch of AMSR2. For this reason, Wind-

Sat data were only retrieved until mid-2012. How-

ever, due to L1 data availability issues, WindSat re-

trievals have not been extended since, even though

uncertainty estimates for WindSat (see Fig. 7) sug-

gest that more recent retrievals may benefit the

ESA CCI SM product when integrated in the least

squares merging scheme.

– All ESA CCI SM products are sampled on a 0.25◦

regular grid and incorporate only L2 retrievals from

sensors that operate at a comparable resolution.

However, high-resolution soil moisture retrievals

from synthetic aperture radar (SAR) instruments,

in particular Envisat ASAR and Sentinel-1, are ex-

pected to provide useful complementary informa-

tion either when upscaled to coarse resolution or

for downscaling the ESA CCI SM products.

– Data harmonisation

– In current and previous product versions, AMSR-E

and AMSR2 retrievals are treated as if they were

perfectly intercalibrated, that is, no harmonisation

between the two is applied. However, visual time

series inspections as well as preliminary studies

suggest that remaining biases are present, which

should be removed before merging (Parinussa et al.,

2015). The same may be the case for MetOp-A and

MetOp-B ASCAT retrievals, even though no signif-

icant discrepancies have been found yet.

– The CDF matching, which is used for harmonising

L2 product climatologies, implicitly assumes that

the considered data sets have an identical signal-

to-noise ratio, which is hardly ever the case (see

Fig. 7). Therefore, rescaling coefficients will most

certainly be biased. TCA may provide an alter-

native approach for estimating optimal (in a least

squares sense) scaling coefficients (Yilmaz and

Crow, 2013).

– For the sake of consistency, L2 soil moisture es-

timates in all ESA CCI SM product versions are

retrieved using the WARP algorithm for active mi-

crowave measurements and the LPRM algorithm

for passive microwave measurements (see Sect. 3).

The selection of these two algorithms was based

on an extensive round robin comparison between

various retrieval models (Gruber et al., 2014; Mit-

telbach et al., 2014). However, these choices may

be worth reassessing, especially due to the avail-

ability of new SMOS and SMAP products (O’Neill

et al., 2018; Fernandez-Moran et al., 2017; En-

tekhabi et al., 2010).

– Uncertainty estimation

– In the current merging scheme (v4), uncertainties,

and hence relative merging weights, are assumed to

be (locally) stationary. That is, they are held con-

stant during the entire time period for which TCA

is applied. However, given their strong link with

vegetation density, actual uncertainties are expected

to vary significantly between seasons or with land

cover change. Consequently, the estimation of non-

stationary uncertainties could provide more accu-

rate relative weightings on an intra-annual basis and

thus a more efficient uncertainty reduction upon

merging. Such time-variant uncertainty estimation,

realised by decomposing the satellite time series

into different frequency components and merging

them separately (Draper and Reichle, 2015; Su and

Ryu, 2015), is currently under investigation and

foreseen to be integrated in a future release of the

ESA CCI SM data set.
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– The statistical merging that was introduced in ESA

CCI SM v3 is a weighted least squares implemen-

tation, which neglects possible error correlations

across products. While such correlations are very

likely to exist between the errors of the passive

products they are usually not expected between er-

rors of active and passive products, although the lat-

ter may be introduced by vegetation dynamics that

are not completely removed in the retrieval (Gru-

ber et al., 2016a; Zwieback et al., 2018) or im-

posed by the non-linear nature of the CDF match-

ing (see below). However, unless the relative un-

certainties of the merged products (with correlated

errors) diverge by several orders of magnitude, non-

zero error correlations will only cause subopti-

mal and not significantly incorrect relative weight-

ing. Nonetheless, if existing error cross-correlations

could be estimated and considered in a generalized

least squares fashion (i.e. parameterising the cur-

rently neglected off-diagonal elements of the er-

ror covariance matrices), this could again lead to

a significant performance improvement of the ESA

CCI SM products. One option to do this could be

through extended collocation analysis (ECA; Gru-

ber et al., 2016a), which is currently the only poten-

tially available method for estimating error corre-

lations between large-scale soil moisture products.

However, the method has not yet been validated on

a global scale and has been found to be particularly

susceptible to small sample sizes, although this is-

sue is expected to be mitigated by the progressively

increasing data coverage of currently available mis-

sions.

– The polynomial regression for predicting uncer-

tainties from VOD, which was introduced in ESA

CCI SM v4, is based on long-term average C-band

VOD estimates retrieved from AMSR-E. However,

the functional relationship between uncertainties

and VOD may be different for the Ku-band re-

trievals from SSM/I, for the X-band retrievals from

TMI and AMSR-E and for the L-band retrievals

from SMOS and SMAP, especially when consider-

ing their intra-annual variability. Therefore, VOD-

based uncertainty predictions for individual sensors

may be more accurate when obtained from a re-

gression with VOD estimates in their respective fre-

quency band and/or in a temporally dynamic man-

ner.

– The p-value mask for excluding individual data sets

that was introduced in ESA CCI SM v4 was im-

plemented on a relatively conservative ad hoc basis

and a more thorough evaluation and refinement is

pending. For example, absolute or relative signal-

to-noise ratios and/or relative weight differences

may help to better balance temporal measurement

density and data quality.

– Model dependency

– So far, climatologies are harmonised (for the COM-

BINED product) by CDF matching individual

products against the GLDAS Noah land surface

model. This may impact long-term trend analy-

ses because, even though CDF matching generally

preserves the direction of an existing trend in a

rescaled product, it can change its magnitude (Liu

et al., 2012). That is, the rescaling against GLDAS

Noah can cause trends found in the harmonised

ESA CCI SM product to appear stronger or weaker

than they actually are. Moreover, the non-linear na-

ture of the CDF matching may introduce spurious

error correlations, which could be problematic for

TCA (see above) but also when evaluating the ESA

CCI SM data set against other land surface mod-

els such as ERA-Interim/Land or MERRA2, which

hampers a comprehensive large-scale validation of

the product. A potential alternative could be the use

of TCA-based linear rescaling, which was found to

be potentially superior to CDF matching, especially

for data merging if SNRs of different products are

not equal (Yilmaz and Crow, 2013).

– Apart from serving as a scaling reference, GLDAS

Noah is also used as a third data set to comple-

ment the data triplet used for TCA. This, per se,

would not introduce spurious correlations between

the merged ESA CCI SM product and the model be-

cause – in theory – each data set merely serves as an

independent “instrument” to isolate the individual

error variabilities from the total variabilities present

in each product (Su et al., 2014). However, this iso-

lation is realised by using the jointly observed vari-

ability from the three products as a reference for

the true soil moisture variability (hence the require-

ment of uncorrelated errors) to derive the individ-

ual error variances as deviations from this jointly

observed true soil moisture signal. Consequently,

mismatches in the spatial representation (i.e. hor-

izontal and vertical resolution) and temporal collo-

cation may cause real soil moisture signals that are

not captured by all three data sets (such as precip-

itation events not present in the model forcing) or

signals that are seen by the satellite data sets but

not represented in the land surface model (such as

irrigation; Brocca et al., 2018) to be interpreted as

representativeness errors or – looking from a dif-

ferent angle – as spurious error correlations (Mi-

ralles et al., 2010; Vogelzang and Stoffelen, 2012;

Gruber et al., 2013, 2016b). This could again lead

to biases in the estimated uncertainties and hence
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merging weights. It is therefore desirable to avoid

the use of a land surface model altogether, not only

in the harmonisation process but also in TCA, e.g.

by replacing it with a lagged version of the satellite

products (Su et al., 2014).
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et al., 2012), PBO_H2O (Larson et al., 2008), REMEDHUS

(http://campus.usal.es/~hidrus/, RISMA (http://aafc.fieldvision.ca/;

Ojo et al., 2015), RSMN (http://assimo.meteoromania.ro/,

SCAN (http://www.wcc.nrcs.usda.gov/), SMOSMANIA

(http://www.hymex.org/; Albergel et al., 2008), SNOTEL

(http://www.wcc.nrcs.usda.gov/; Leavesley et al., 2008),

SOILSCAPE (http://soilscape.usc.edu/; Moghaddam et al.,

2010), SWEX_POLAND (Marczewski et al., 2010), TERENO

(http://teodoor.icg.kfa-juelich.de/; Zacharias et al., 2011),

UDC_SMOS (http://www.geographie.uni-muenchen.de/

department/fiona/forschung/projekte/index.php?projekt_id=103;

Schlenz et al., 2012), UMBRIA (http://www.cfumbria.it/; Brocca

et al., 2011), UMSUOL (http://www.arpa.emr.it/sim/), USCRN

(http://www.ncdc.noaa.gov/crn/; Bell et al., 2013), USDA-ARS

(https://www.ars.usda.gov/; Jackson et al., 2010) and WSMN. Date

of last access for all links is 17 May 2019.
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