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In an ideal bulk topological-insulator (TI) conducting surface states protected by time reversal
symmetry enfold an insulating crystal. However, the archetypical TI, Bi2Se3, is actually never in-
sulating; it is in fact a relatively good metal. Nevertheless, it is the most studied system among all
the TIs, mainly due to its simple band-structure and large spin-orbit gap. Recently it was shown
that copper intercalated Bi2Se3 becomes superconducting and it was suggested as a realization of
a topological superconductor (TSC). Here we use a combination of techniques that are sensitive to
the shape of the Fermi surface (FS): the Shubnikov-de Haas (SdH) effect and angle resolved photoe-
mission spectroscopy (ARPES) to study the evolution of the FS shape with carrier concentration,
n. We find that as n increases, the FS becomes 2D-like. These results are of crucial importance for
understanding the superconducting properties of CuxBi2Se3.

PACS numbers: 71.18.+y, 71.20.-b, 79.60.-i

A topological superconductor is a state of matter in
which the bulk is fully gapped, but gapless surface states
host Bogoliubov quasiparticles [1, 2]. Point-contact ex-
periments have shown the existence of Zero Bias Conduc-
tance Peaks (ZBCP) in CuxBi2Se3 [3, 4], these were in-
terpreted as a signature of Andreev surface bound states
that were theoretically predicated to exist in certain
classes of TSCs [5, 6].While the topological properties
of TIs are set by the band structure and should not de-
pend on the chemical potential [7], the properties of the
superconducting samples are sensitive to the chemical po-
tential and to the shape of the FS [5].

Bi2Se3 has carriers in the conduction band even when
carefully prepared [8]. These carriers are believed to be
the result of Se vacancies which are always present in
the material [9]. The carrier concentration can be in-
creased further by Cu intercalation [10, 11]. The band
structure of Bi2Se3 is three dimensional (3D), i.e., there
is substantial electronic dispersion in the kz direction.
On the other hand, the material is layered, cleaves eas-
ily, and its resistivity is anisotropic with ρzz/ρxx ≃ 10
[12]. Band structure calculations [7] indicate that the
ΓZ dispersion is weaker than the ΓL dispersion. Early
ARPES experiments have shown that the dispersion can
be even weaker than the LDA predictions [13]. It is there-
fore plausible that upon adding charge carriers, the FS
will grow in an anisotropic fashion, where kF along the
kz direction becomes considerably larger than kF in the
kxky-plane. The FS can therefore change from being a
closed spherical FS at low carrier densities into an open
clylinder-like FS at high carrier densities. An important
question is whether CuxBi2Se3 has a closed or open FS at
carrier densities in which the system is superconducting,

n ≃ 1020 cm−3.

The SdH effect probes extrema in the cross section of
the FS. According to the Onsager relation the frequency
of the magnetoresistance oscillation as a function of in-
verse magnetic field is F = h̄

2πeA(ǫF ) [14]. With A(ǫF )
being the maximal cross-sectional area of the FS in a
plane perpendicular to the magnetic field. By rotating
the field with respect to crystal (see Figure 2a for the
configuration used in this experiment) one can map the
full momentum dependence of the FS.

Another common method for studying the FS is
ARPES, which was found to be an ideal tool for study-
ing the topological-insulators. ARPES allows one to ob-
serve directly the surface states even in samples where
the transport is dominated by the bulk [15]. On the
other hand, the surface of a topological-insulator is a very
complicated environment for photo-emission; the ARPES
spectrum consists of contributions from the bulk-bands,
surface states and possibly from a confined 2D electron
gas [16]. One way to disentangle these contributions is to
scan the photon-energy used in the experiment. Different
photon-energies provide information about the dispersion
at different kz values and allows one to distinguish 2D-
like bands from the 3D bulk band.

In this work we use the two powerful experimental
tools: SdH and ARPES; their combination allows us to
determine the evolution of the FS as a function of carrier
concentration. Using ARPES we show that the Dirac
surface states exist throughout the carrier concentration
range under study. However, only parts of the bulk-band
FS can be clearly seen using ARPES due to the photon-
energy dependence of the matrix-elements. The SdH ef-
fect, in principle, allows a direct mapping of the entire
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FIG. 1: (color online). Transport and ARPES characteriza-
tion. (a) Longitudinal resistivity versus temperature for Cu
doped Bi2Se3 with n ≃ 1020cm−3. Metallic type behavior
as well as supercoductivity below ≃ 3K is observed. Dif-
ferent samples may exhibit various superconducting volume
fractions and Tc variations. (b) Transverse resistivity versus
magnetic field at 2K for three samples. The solid lines are
linear fits from which we extract the carrier concentration n.
Inset: The same for n ≃ 1019cm−3 . (c) Typical ARPES
data from a highly doped sample measured with 20eV pho-
ton energy. The detector image shows the dispersion along the
Γ-K direction. One can see that both the surface-state and
the bulk-band dispersion coexist. (d) Surface state dispersion
as measured using ARPES for 8 different samples with car-
rier concentrations ranging from 4x1017cm−3 (green curve) to
4x1020cm−3 (gray curve).

FS but its amplitude depends exponentially on the effec-
tive mass. Consequently, it is less sensitive to high band
mass regions on the FS. Despite the limitations of both
probes, together they bring deep insight into the shape
and properties of the FS.

For this experiment, we prepared a series of Bi2Se3
samples with different carrier concentrations. We used
two kind of samples: off-stoichiometric Bi2−xSe3+y with
low carrier density (n ≃ 1017−1019cm−3); and Cu inter-
calated Bi2Se3 with high carrier density (n ≃ 1020cm−3).
All the samples were prepared using the modified Bridge-
man method as described in Ref. [4, 17]. For trans-
port measurements flakes ∼ 1− 30 µm thick were freshly
cleaved perpendicular to the C3 axis in a nitrogen envi-
ronment. Gold contact wires were attached to the sam-

ples using silver paint. Hall measurements up to 14 T
were performed using DC technique. SdH measurements
up to 30 T were performed at the HFML using standard
Lock-in technique. The thickness of the flakes was mea-
sured in a Scanning Electron Microscope. The ARPES
data was measured at the PGM beam-line at the Syn-
chrotron Radiation Center (SRC), Stoughton WI and at
the BaDElPh beam-line at Elettra, Trieste Italy. All the
samples were cleaved at base temperature (∼20 K) in a
vacuum better than 5×10−11torr and measured at the
same temperature. Each sample was measured for no
more than 6 h; within this time we did not observe any
change in the chemical potential.
Typical resistivity versus temperature and low temper-

ature Hall measurements are shown in Figures 1a and 1b,
respectively. Typical ARPES data from a Cu interca-
lated sample with n ≃ 4 × 1020cm−3 is shown in Fig-
ure 1c. A well defined surface-state can be seen, with a
Dirac point at about 500meV below the Fermi-level. The
two linearly dispersive surface state branches enclose the
parabolic bulk-band whose FS is the subject of this let-
ter. Figure 1d shows the dispersion of the surface states
for various samples with different carrier concentrations
n. Upon changing n the Dirac dispersion remains intact
with a rigid shift of the Dirac point towards lower en-
ergies, while the Fermi velocity (i.e. the slope) remains
unchanged.
In Figure 2 we show SdH data. The resistance as

a function of magnetic field for a highly doped sample
(n ≃ 1020cm−3) is shown in Figure 2a. Clear SdH os-
cillations can be seen. The Fourier transform of these
oscillations is shown in the inset. A single, well defined
frequency is observed. The oscillations persist up to sur-
prisingly high temperature (see Figure 2b). From the
temperature dependence of the amplitude the effective
mass m∗

≃ 0.24me is extracted (see inset of Figure 2b).
In Figure 2c we show the angular dependence of the SdH
frequency for three samples. For the low carrier concen-
tration samples the oscillations persist up to a tilt angle
of 90◦ (see Figure 2c), indicative of a closed ellipsoidal FS
in. These results are in agreement with previous observa-
tions [15, 18–20]. The FS of the n ≃ 1019cm−3 is clearly
more elongated than the FS of n ≃ 1017cm−3. For the
n ≃ 1020cm−3 the oscillation amplitude decreases with
increasing angle and can not be observed beyond an angle
of 55◦. This angular dependence of the SdH frequency
follows almost perfectly F ∝

1
cos(θ) , which is the depen-

dence expected for a cylindrical FS [22].
In Figure 3 we show the FS of these samples as recon-

structed using the SdH data from Figure 2c. The first two
samples with n ≃ 1017, 1019cm−3, have an ellipsoidal FS.
For the third sample (n ≃ 1020cm−3) we fit our data to
a simplified corrugated-cylinder model (see supplemen-
tary material for more information). The resulting FS
is shown in Figures 3c and 3g. Our SdH data suggest a
transition in the shape of the FS from a closed ellipsoid
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FIG. 2: (color online). SdH data and analysis. (a) Longitudinal resistance versus magnetic field applied parallel to the C3
axis (θ = 0) at 4.2K for n ≃ 1020cm−3 (sample A). Inset: Fast Fourier transform (FFT) of these data plotted versus 1

µ0H

after subtracting a smooth polynomial background. The sharpness of the FFT peak indicates a well defined frequency. Its full
width at half maximum is used as an upper limit for the uncertainty in determining the frequency. A drawing of the sample
configuration used in this experiment is also shown. (b) Resistance versus 1

µ0H
after subtraction of a smooth polynomial

background at various temperatures (4.2K data are taken from Figure 2a). The field is applied parallel to the C3 axis. Inset:
Effective Mass is extracted by following the oscillation amplitude at high field as a function of the temperature. The solid line
is a fit to the Dingle formula [14], yielding m*≃0.24me for this sample (n ≃ 1020cm−3). (c) The frequency as determined from
the FFT versus tilt angle θ between the magnetic field and the C3 axis for three carrier concentrations. Solid lines are fits for
an ellipsoidal FS (n ≃ 1017, 1019cm−3) and for a cylindrical FS (F ∝

1
cos(θ)

) for n ≃ 1020cm−3 (sample B).
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FIG. 3: (color online). Evolution of the Fermi surface with carrier concentration. (a) and (b) Calculated ellipsoidal FS from
the SdH data in Figure 2c, for n ≃ 1017, 1019cm−3 respectively. Detailed profile view of the Fermi surfaces is shown. (c)
Calculated FS using tight binding corrugated cylinder model fit to the SdH data in Figure 2c (sample B, n ≃ 1020cm−3) (see
supplementary material for more information). (D) The Brillouin-zone momenta axes. (e)-(g) The Fermi surfaces of (a)-(c)
respectively, plotted to scale with respect to the Brillouin-zone.

to an open FS as n increases. Below we show that the
ARPES data verify this effect.

In an ARPES experiment the signal intensity allows
a direct mapping of the electronic dispersion along mo-
mentum directions which are parallel to the sample sur-
face. This is because only the in-plane momentum is
conserved. To map the dispersion along kZ , one needs

to scan the photon-energy. We used the Free-electron fi-
nal state approximation [21] to find the correspondence
between the photon-energy and kZ (see supplementary
material for more information).

In order to map the dispersion along the kz direction,
we performed ARPES measurements at normal emission
over a wide range of photon-energies in steps of 0.5 eV.
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FIG. 4: (color online). Photon energy dependence of the
ARPES data. We show normal emission data for three dif-
ferent samples: (a) n = 4× 1017cm−3, (b) n = 4× 1020cm−3

and (c) n = 2 × 1020cm−3. The white dots represent the
bottom of the bulk-band. For the low carrier-density sample
the bulk-band is seen only around 19eV (Γ point), for the the
high carrier-density samples the bulk-band is visible at the en-
tire photon-energy range measured. In panel (b) we show low
photon-energy data, believed to be more bulk-sensitive. We
find that the bulk-band is visible at the entire photon-energy
range measured, which covers a momentum range larger than
the Γ-Z separation.

This was done for various samples with different carrier
concentrations. A set of scans is shown in Figure 4a
for a n ≃ 1017cm−3 sample, and in Figure 4b and c for
two highly doped samples n ≃ 1020cm−3. One can see
in Figure 4 that, as expected, the 2D surface states are
insensitive to the photon energy used.
For the low n sample shown, the bulk band is vis-

ible only in a narrow range of photon-energies around
20eV which corresponds to the Γ point, and completely
vanishes as the photon-energy is changed. This indi-
cates that on going along the Γ-Z direction the dispersion
crosses the chemical potential and that the FS is closed.
On the other hand, for the high n samples the bulk band
remains visible for all photon energies. The maximal
width of the bulk-band is obtained at about 20 eV (Γ
point); the band then disperses upward towards a mini-
mum at both zone boundaries located at photon energies
of about 14.5 eV and 23.5 eV . This is a clear indication
of an open FS at high n.
Next, we look in more detail at the band structure of a

n ≃ 1020cm−3 sample. Around the Γ point the parabolic
bulk-band is very clear, this can be seen in Figures 5a
and 5b. By following the peaks in the momentum dis-
tribution curves (MDCs), we extract the band disper-
sion (Figure 5b). Fitting the data to a simple parabolic
dispersion model we can find kF and the effective mass
at different photon energies. The parabolic best fits are
shown as dashed lines in Figure 5a. The effective masses
resulting from these fits are shown in Figure 5c. together
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FIG. 5: (color online). Effective mass of the bulk-band. (a)
Dispersion of the bulk-band around the Γ-point, where the
dispersion of the bulk is clear and allows an accurate mea-
surement of the effective mass. The dashed line represents
the parabolic fits to the dispersion. (b) MDCs for the 19eV
photon-energy data. The red points are the maxima of the
MDCs. These maxima are used to extract the dispersion. (c)
Summary of the fit results. The red points (black circles) rep-
resent kF (effective-mass) as a function of the photon-energy.
(d) A close view of the FS calculated in Figure 3c. The color
code corresponds to the effective mass calculated for the whole
momentum range using the fit in Figure 5c. The cylindrical-
type shape has a corrugation ratio of ≃ 1.05. This corrugation
ratio together with the enhancement of the effective-mass at
the zone boundary explain the absence of a second frequency
and the amplitude attenuation at high tilt angles as detailed
in the text.

with kF . We find that when moving away from the Γ
point towards the zone-boundary kF decreases and the
effective mass increases substantially.

In Figure 5d we show the same FS shown in Figure 3c
with a color code representing the effective mass , which
is measured by ARPES (using the parabolic fit in Fig-
ure 5c) for various kz. Naively, for this type of FS one
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would expect two frequencies: the first from the maximal
cross-section, at the plane going through the Γ point, and
the second from the minimal cross-section at zone bound-
ary (the Z points). The kz dependence of the effective
mass extracted from the ARPES data suggests that the
SdH signal arising from the minimal-cross section at the
zone-boundary will be very weak, as the SdH intensity
depends exponentially on the effective mass. This, to-
gether with our finding that the area of the cross sec-
tion perpendicular to kz changes by merely 5% explain
why the second frequency is absent in our measurements.
Furthermore, as the angle θ with respect to the C3 axis
increases, the SdH is probing parts of the FS at which
the electron’s effective mass is larger, so we expect the
signal to become weaker, as observed.
The ARPES data suggests a slightly larger corruga-

tion ratio compared to the SdH results, but overall the
agreement between the ARPES and the SdH results is
impressive. The two probes yield similar values of kF for
the various samples (see supplementary materials), and
both techniques show clearly a transition from a closed
FS at low carrier concentrations to an open FS at high
carrier density. In particular, all superconducting sam-
ples have an open FS.
In order for a time reversal invariant superconductor

with odd-parity pairing to be a 3D topological supercon-
ductor, it must have a Fermi surface that encloses an
odd number of time reversal invariant (TRI) momenta
in the Brillouin Zone [5]. We show here that the FS of
CuxBi2Se3 encloses two TRI points, Γ and Z. Our results
cast doubt on Cu-doped Bi2Se3 as a possible realization
of a TRI 3D topological superconductor. Interestingly,
this material can be a realization of a 2D-like weak topo-
logical SC. Such a system is predicted to have counter-
propagating edge-states that can produce Andreev bound
states but not on the (001) surface. If this is the case,
the observed ZBCPs in recent point contact experiments
[3, 4] can be a result of tunneling into crystalline facets
exposing surfaces other than the (001) one.
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Appendix A: Supplementary Material for ”Evolution of the Fermi Surface of a Doped Topological

Insulator With Carrier Concentration”

Rigid Shift

The data presented in Figure 1d of the main text are cuts of the surface state in the ΓK direction passing through
the Γ point. The dispersion was obtained by tracking the peak in the momentum distribution curves (MDCs) in the
ARPES spectra. The energy at which we find the Dirac point and the Fermi momentum (of the surface state) for
each of these samples is plotted in Figure 6. There is a linear relation between these two quantities, which is expected
in the case of a rigid shift of the chemical potential in a linearly dispersing band, where the chemical potential is
determined by the carrier density. The scatter in the plot is a result of slight misalignment of the different samples.
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FIG. 6: The energy position of the Dirac point and the value of kF for the different samples appearing in Fig. 1d of the main
text. Error bars are 95 % confidence levels.

Inner Potential

We relate the value of kz for electrons inside the crystals to their kinetic energy after photoemission using the free-

electron final state approximation kz =
√

2m/h̄2 (Ekin + V0). The mapping of band dispersion in the kz direction is

then carried out by changing the photon energy used in the photoemission process, thus changing the value of Ekin

and obtaining a different value for kz. The constant V0 is specific to the material and is called the inner potential,
formally it is given by V0 = µ + φ, where µ is the chemical potential measured from the bottom of the band and
φ is the work function. We can determine the value of V0 experimentally from the ARPES data, similar to what
appears in Fig. 4 of the main text, by identifying the high-symmetry points in the dispersion along kz. In Figure 7
we plot the position of the high-symmetry points as a function of photon energy, and obtain a value of approximately
V0 ≃ 10.3 eV .
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FIG. 7: Finding the inner potential V0: The high symmetry points are identified from the photon energy scans, similar to what
is shown in Fig. 4 of the main text. The kz axis separation between the data points is taken to be the Γ-Z distance, and the
error bars is the uncertainty in the position. The dashed line is the equation of free-electron final state approximation (see
text) plotted with V0 = 10.3eV .

Band dispersion along kz

To make a more quantitative analysis we need to find the bottom-of-the-band for each kz cut. This is found to be a
tricky task, for some photon energies a clear parabolic dispersion is seen in the data but for other photon energies we
find a parabolic region ”filled” with almost constant intensity. We look for the energy for which the intensity drops
to half its maximal value; this criterion is used for the entire data set. The kz values were calculated using the free
electron final states assumption with an inner potential V0 = 10.3 eV .

In Figure 8, we plot the dispersion of the bulk band along kz, for a few samples with different chemical potential
values. The data for the different samples are plotted relative to the bottom-of-the-band for each sample. The
horizontal solid lines represent the chemical potential for each sample measured relative to the bottom of the band.
One can see that the band shifts rigidly with the increasing doping level; this is apparent in the way the data for
different samples coincide. The dispersion of the different samples is identical going from the Γ point toward the
upper Z point. Going from the Γ point down, the agreement is not as good. This might be a result of the way we
define the bottom-of-the-band. In addition, the free-electron final state approximation can lead to errors.

The dispersion of the sample with the low chemical potential (36 meV) crosses the Fermi-level, an indication of a
closed FS. For the other samples we do not find a crossing of the Fermi-level, an indication of an open FS. Furthermore,
for the highly doped samples we find a saturation of the occupied band width. This is again in agreement with an
open FS and the absence of a Fermi-crossing point along Γ-Z.
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FIG. 8: Dispersion of the bulk band along the kz axis. The plot contains data from five different samples with varying Fermi
energies (Noted by the horizontal dash lines) as measured from the bottom of the bulk band at the Γ point.

Lower limit for kz
F

We make a simple estimation of kF in the z direction, which does not require a measurement of the dispersion
along kz. The surface-state FS always encloses the bulk FS, even for highly doped samples. The kF we find for
the surface-state does not depend on the photon energy. We can use this value as an upper limit for the kF of the
bulk-band in the kxky-plane. Knowing the carrier density (from Hall measurements), one can calculate the Luttinger

FS volume. Assuming an ellipsoidal FS, 3π2n
k2

F

gives a lower limit for kF in the kz direction.

In Figure 9, we show the carrier density extracted from the Hall measurements as a function of the surface state
kF for various samples. The solid line is the carrier density expected for a spherical Fermi surface with a radius
corresponding to kF . The data points for samples with low carrier density lie slightly below the line, as expected,
whereas the points representing high density samples are found above the line. Furthermore, the values we get for
kF in the kz direction for the samples with n ∼ 1020 cm−3 are larger than the Γ−Z distance, indicating that the FS
crosses the top zone boundary, meaning that the FS is open.

The blue dots in Figure 9 are the kF from the SdH data, one can clearly see the good agreement between the values
obtained using ARPES and SdH.
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FIG. 9: Carrier density as a function of kF . The carrier densities are obtained from Hall measurements and they span nearly
three orders of magnitude. The kF (blue dots) was obtained from SdH data, measured with magnetic field parallel to the C3
axis. The kF (hollow white circles) is that of the surface state obtained from the ARPES data, and it represents an upper
bound on the kF of the bulk. The solid line is the expected carrier density for a spherical Fermi surface. The dashed line is
the carrier density for which the radius of the Fermi sphere equals the Γ-Z distance, that is the Fermi surface reaches the edge
of the first Brillouin zone.

Corrugated Cylinder Model

We use a simple tight-binding model to fit the SdH data. Expanding around kx ≃ ky ≃ 0, we get the equation
describing the entire Fermi surface:

1

2
t⊥

(

k2x + k2y
)

a2 + tz [1− cos (kzc)] = εF (1)

Denotation: a , c - the crystals constants in the xy plane and z axis respectively. t⊥ , tz - the transfer integrals in
the xy plane and z axis respectively, where t⊥ > tz > 0.

Applying a magnetic field directing at an angle θ relative to the z axis and due to symmetry in the xy plane (taking
φ = 0, where φ is the angle in the xy plane), the equation for the Fermi surface boundary of the cross sectional region
is:

1

2
t⊥

(

k2x + k2y
)

a2 + tz [1− cos (kxc tan θ)] = εF (2)

Measuring wavenumbers in units of a−1 and energies in units of t⊥ this equation becomes:

k2x + k2y + 2η [1− cos (kxγ tan θ)] = 2εF , (3)

η ≡
tz
t⊥

< 1, γ ≡
c

a
> 1,
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The solutions for the cross sectional curve is:

ky = ±

√

2εF − k2x − 2η [1− cos (kxγ tan θ)] (4)

Finally, we calculate the cross sectional area perpendicular to the magnetic field . Using the Onsager relation the
corresponding frequency is given by:

F (θ, η) =
h̄

2πea2

∫

kyd (kx/ cos θ) = (5)

1

cos θ

h̄

2πea2

∫

√

2 (εF − η)− k2x + 2η cos (kxγ tan θ)dkx

Expressing the Fermi energy using the zero angle frequency (where the magnetic field is perpendicular to the xy
plane):

F0 ≡ F (θ = 0, η) =
h̄εF
ea2

The final equation for the angular dependence of the SdH frequency is:

F (θ, η) =
∆ (θ, η)

cos θ
, (6)

∆ (θ, η) =
h̄

2πea2

∫

{

2
(

F0ea
2/h̄− η

)

− k2x + 2η cos (kxγ tan θ)
}1/2

dkx

Performing a numerical integration (on kx) combined with a numerical fit (frequency versus magnetic field tilt
angle), one can extract the desired parameter η (which defines the corrugation of the cylinder). Our experimental
data (the frequency F at different magnetic field tilt angles θ) enables us to perform this analysis. We note that
this simple theoretical model does not allow us to find the dependence of the cyclotron mass on kz as experimentally
determined in Figure 5 in the paper.

Additional SdH Data and Analysis

In Figures 10, 11 and 12 we present the SdH measurement of 3 different samples with various carrier concentrations
(presented in the paper itself). The measurements are at various tilt angles between the C3 axis and the magnetic
field. For these measurements we present: FFT after background substraction for each tilt angle and a fit for each
samples Fermi Surface.
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FIG. 10: (color online). Sample with n3D ≃ 1017 (a) Longitudinal resistance versus magnetic field at various tilt angles between
the C3 axis and the magnetic field . (b) Frequency versus tilt angle. The solid line is a fit for an Ellipsoidal Fermi Surface
model. Inset: FFT analysis of each tilt angle.
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FIG. 11: (color online). Sample with n3D ≃ 1019 (a) Longitudinal resistance versus magnetic field at various tilt angles. 0◦

corresponds to magnetic field parallel to the C3 axis. (b) Frequency versus tilt angle. The solid line is a fit for an Ellipsoidal
Fermi Surface model. Inset: FFT analysis of each tilt angle.
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FIG. 12: (color online). Sample with n3D ≃ 1020 (a) Longitudinal resistance versus magnetic field at various tilt angles. (b)
Frequency versus tilt angle. The solid line is a fit for a cylindrical Fermi Surface model (F ∝

1
cos(θ)

). Inset: FFT analysis for

each tilt angle.
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