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T
he response of a material to external stimuli depends on
its low-energy excitations. In conventional metals, these
excitations are electrons on the Fermi surface—a contour

in momentum (k) space that encloses all of the occupied
states for non-interacting electrons. The pseudogap phase in
the copper oxide superconductors, however, is a most unusual
state of matter1. It is metallic, but part of its Fermi surface
is ‘gapped out’ (refs 2,3); low-energy electronic excitations
occupy disconnected segments known as Fermi arcs4. Two main
interpretations of its origin have been proposed: either the
pseudogap is a precursor to superconductivity5, or it arises
from another order competing with superconductivity6. Using
angle-resolved photoemission spectroscopy, we show that the
anisotropy of the pseudogap in k-space and the resulting
arcs depend only on the ratio T/T

∗(x), where T
∗(x) is the

temperature below which the pseudogap first develops at a given
hole doping x. The arcs collapse linearly with T/T

∗(x) and
extrapolate to zero extent as T → 0. This suggests that the T = 0
pseudogap state is a nodal liquid—a strange metallic state whose
gapless excitations exist only at points in k-space, just as in a
d-wave superconducting state.

In Fig. 1a,b we show data for a slightly underdoped sample of
Bi2Sr2CaCu2O8+δ (Bi2212) with a transition temperature Tc =90 K,
for the superconducting state at 40 K, and the pseudogap phase
at 140 K. The energy distribution curves (EDCs) at the Fermi
momentum kF, which have been symmetrized4 to remove the
effects of the Fermi function on the spectra. kF is determined by
the minimum separation between the peaks in the symmetrized
spectra along each momentum cut. Fifteen momentum cuts were
measured, as shown in Fig. 1e. Details of the symmetrization

procedure are explained in the Methods section. The difference
between the spectra in the two states is apparent: sharp spectral
peaks are present in the superconducting state, indicating long-
lived excitations, and the superconducting gap vanishes only at
points in the Brillouin zone, known as nodes; on the other
hand, the spectra in the pseudogap phase are much broader,
indicating short-lived excitations. Although a pseudogap is seen in
cuts 1–7, substantial parts of the Fermi surface, cuts 8–15, show
spectra peaked at the Fermi energy, indicating a Fermi arc of
gapless excitations.

The gap size can be estimated as half the peak-to-peak
separation in energy. A more quantitative estimate is obtained by
using a simple phenomenological function to describe the spectral
lineshapes7 (described in the Methods section), shown as black
lines in Fig. 1a,b. Figure 1d shows the gap size from these fits as a
function of the Fermi surface angle (defined in Fig. 1e). Note the
abrupt opening of the pseudogap (red circles) at the end of the
arc compared with the d-wave shape of the superconducting gap
(black squares). Figure 1c shows the symmetrized EDCs at kF for a
very underdoped sample with Tc =25 K, measured at 55 K (Ca-rich
Bi2212, Bi2.1Sr1.4Ca1.5Cu2O8+δ, see ref. 8). For this doping, there is a
very short Fermi arc—much shorter than the one seen in Fig. 1b,d,
for the less underdoped Tc = 90 K sample.

Figure 2a,b shows two spectral intensity maps, taken at 110 K
and 200 K, at the Fermi energy for a Tc = 70 K sample. The solid
line corresponds to a tight binding fit to the normal-state Fermi
surface9, and the red circles represent the experimental Fermi
momenta. The gapless Fermi arc (high-intensity region), which is
longer at 200 K than at 110 K, can clearly be seen. Figure 2c shows
the angular anisotropy of the gap for these two temperatures from
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Figure 1 Symmetrized EDCs for underdoped samples along the Fermi surface. a, Tc = 90 K sample in the superconducting state at T = 40 K. b, Tc = 90 K sample in the

pseudogap phase at T = 140 K. The bottom EDC is at the node, whereas the top is at the antinode, as defined in e. c, Symmetrized EDCs for a very underdoped, Tc = 25 K,

sample (corresponding to kF points 4–15), measured at 55 K in the pseudogap state. For this sample, the spectral weight is much reduced relative to higher doping values.

We therefore removed the extrinsic background19. d, Variation of the gap around the Fermi surface extracted from a and b. The uncertainty in the gap is ±4 meV for the

pseudogap, and ±2 meV for the superconducting gap. e, Location of the momentum cuts (red lines), Fermi surface (blue curves), and special points (node and antinode) in

the zone.

the fits (as in Fig. 1d). Indeed, at 200 K, the onset of the gap at
the end of the Fermi arc is steeper than at 110 K, and the arc
is longer. Note that the gap size remains roughly constant in the
straight section of the Fermi surface near the antinode. In this
region, the Fermi surface is essentially parallel to the Brillouin-zone
axis (Fig. 1e).

We now discuss our most important finding. As shown in
Figs 1 and 2, the anisotropy of the pseudogap around the Fermi
surface is temperature and doping dependent. Despite this, we find
the rather remarkable result that the momentum dependence of
the gaps from samples with different temperatures and different
doping values can be scaled by defining a reduced temperature
t = T/T∗(x) and by normalizing the gap by its value at the
antinode. To demonstrate this scaling, we show six data sets in Fig. 3

with different temperatures and doping, but which are divided
into two groups, one with t = 0.9 and the other with t = 0.45.
For comparison, we show the angular anisotropy of the d-wave
superconducting gap (blue dashed line). It is well known10 that
the magnitude of the pseudogap at the antinode tracks T∗ as a
function of x. Surprisingly, the entire momentum and temperature
dependence of the normalized pseudogap ∆(φ)/∆(0) only
depends on T/T∗(x), whereas the Tc of the sample does not
play a role. We note that scaling with T∗ has been observed for
susceptibility and transport data11–13.

However, the gap size alone does not provide a full description
of the low-energy excitations in the pseudogap state, for which we
also need to consider the temperature dependence of the intensities.
The inset of Fig. 2c shows symmetrized EDCs for a Tc = 89 K
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Figure 2 Intensity maps at the Fermi energy for an underdoped Tc = 70K

sample. a, 110 K (the red circles are measured kF values). b, 200 K. c, Angular

anisotropy of the gap along the Fermi surface from the data of a and b. The inset

shows the temperature variation of the symmetrized EDCs at the antinode for a

Tc = 89 K sample, with the EDC at 300 K in the gapless normal state above T ∗ .

film at the antinode. As the temperature increases, the gap does
not change, but rather there is a filling-in of low-energy spectral
weight1,4,7, with the pseudogap effectively disappearing for T > T∗.
We quantify the loss of spectral weight in the pseudogap region as
L(φ) = [1− I(0,φ)/I(∆,φ)], where I(0,φ) is the symmetrized
intensity at the Fermi energy and at an angle φ (defined in Fig. 1e),
and I(∆,φ) is that at the gap energy at the same angle. Figure 4a
shows L(φ) for all values of doping and temperature, as a function
of the Fermi surface angle φ. Points corresponding to L(φ)=0 have
no loss of low-energy spectral weight, and hence correspond to the
Fermi arc. L(φ) as a function of t exhibits the general trend of the
pseudogap (although we note that the temperature dependence of
the filling of the gap does depend on Tc (ref. 7)). It also permits us
to precisely determine the lengths of the Fermi arcs. We now discuss
the scaling of the Fermi arcs.

We find from Fig. 4 that the length of the Fermi arc increases
with temperature up to the straight sections of the Fermi surface
shown in Fig. 1e. As is clearly seen from Fig. 3, the Fermi surface in
the straight section is gapped for all T < T∗(x). As a consequence,
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Figure 3 Gap size (normalized to its value at the antinode) as a function of

Fermi surface angle (defined in Fig. 1d) for two particular reduced

temperatures. t= T/T ∗
= 0.45 (black) and 0.9 (red). ∆ is set to zero if the

spectrum is gapless. The data are from several samples with different doping levels,

as characterized by T ∗ . The error in T ∗ is ±10 K. The dashed lines are guides

to the eye.

as t approaches 1, the variation of the gap becomes more abrupt—
that is, the transition from the gapless Fermi arc to the pseudogap
takes place over a shorter range of momentum. In the straight
section of the Fermi surface, the gap does not close, but instead fills
in as T approaches T∗ (ref. 7). As the gap is relatively momentum
independent in the straight section, the arc seems to suddenly
expand to the full Fermi surface as T passes through T∗.

Our main conclusion is shown in Fig. 4b, where we find that
the length of the Fermi arc is a linear function of t (in the range
0 < t = T/T∗(x) < 1), and the arc extrapolates to a point node
as t → 0. Above T∗, the arc covers the full length of the Fermi
surface. As the temperature is reduced below T∗, there is an abrupt
opening of the gap over the straight part of the Fermi surface,
as discussed above. As t is lowered further, the length of the
arc decreases linearly all the way from t = 1.0 to t = 0.1. The
limit of t = 0 is currently inaccessible, because the Bi2212 samples
available are all superconducting at sufficiently low temperatures.
However, a simple extrapolation of the linear t dependence of the
arc length implies that the arcs would shrink to point nodes in a
zero-temperature pseudogap state (we emphasize that all of the data
presented in Fig. 4b are in the pseudogap state above Tc). We note
in passing that the crossing of the arc with the (0,0)–(π,π) line
does not move to (π/2,π/2) on decreasing t , so the Fermi surface
is not shrinking, but instead the arcs are gapped out.

Our results indicate that the low-temperature limit of the
momentum dependence of the pseudogap is identical to that of
a d-wave superconductor. This agrees with many aspects of the
‘nodal liquid’ model suggested by Balents et al.14, in which quantum
disorder in a d-wave superconductor leads to a state with no long-
range phase coherence, but with the same low-energy excitation
spectrum. The similarity of the zero-temperature electronic
structure of the superconducting and pseudogap states is also in
accord with thermal conductivity experiments carried out in very
underdoped YBa2Cu3O6+δ samples at milli-Kelvin temperatures15.

On the other hand, the limit of t → 1 presents a somewhat
different picture, one with a gap located only in the straight parts of
the underlying Fermi surface. This type of momentum dependence
has been suggested to be due to an instability associated with a finite
q-vector that spans the distance between the straight segments of

nature physics VOL 2 JULY 2006 www.nature.com/naturephysics 449

Nature  Publishing Group ©2006



LETTERS

Node

0.80.60.40.2

80

60

40

20

302010

0.8

0.6

0.4

0.2

0

1
–
I(

0
)/
I(

)
Fe

rm
i a

rc
 le

n
g
th

 (
%

)

100

0

T = 100 K, T * = 260 K, t = 0.38

T = 110 K, T * = 240 K, t = 0.44

T = 100 K, T * = 165 K, t = 0.6

T = 150 K, T * = 240 K, t = 0.625

T = 200 K, T * = 260 K, t = 0.76

T = 140 K, T * = 180 K, t = 0.77

T = 200 K, T * = 240 K, t = 0.833

T = 90 K, T * = 100 K, t = 0.9

T = 150 K, T * = 165 K, t = 0.91

T = 250 K, T * = 260 K, t = 0.96

T = 55 K, T * = 500 K, t = 0.11

T = 100 K, T * = 500 K, t = 0.2

 (°)

400

1.00

t = T/T *

a

b

∆

φ

Figure 4 Loss of low-energy spectral weight L(φ) and scaling of arc lengths

with T/T ∗ . a, L(φ)= [1− I(0,φ)/ I(∆,φ)], where I(∆,φ) is the symmetrized

intensity at the gap energy at the Fermi point labelled by φ, and I(0,φ) is that at the

Fermi energy at the same point. Different symbols correspond to various t. The grey

area represents the straight section of the Fermi surface. b, Variation of the arc

length with respect to the reduced temperature t= T/T ∗ . On the y axis, 0% is the

node and 100% is the antinode (see Fig. 1e). The error bars on the arc length

depend on the angular sampling density. The horizontal error bars are defined as the

angular separation between data points, and the vertical ones are given by the

errors in determining T∗ (described in Methods). The variation of the arc length

below T ∗ is linear in t. Above T ∗ , the gap in the straight section disappears, and the

full Fermi surface is recovered.

the Fermi surface16. However, as t decreases from 1, the curved parts
of the Fermi surface start to develop a gap. The green data points in
Fig. 4a show a smooth d-wave-like angular dependence, except for
the very small Fermi arc near the node. That is, the pseudogap in
the t → 0 limit simply looks like a d-wave gap.

METHODS

SAMPLES AND MEASUREMENTS

We measured six underdoped Bi2Sr2CaCu2O8+δ samples with different doping

levels (Tc between 70 and 90 K). Two of them are single crystals grown by the

floating-zone method, the other four are thin films grown by radiofrequency

magnetron sputtering. We also measured a highly underdoped single-crystal

sample8 (Bi2.1Sr1.4Ca1.5Cu2O8+δ) with a Tc of 25 K. All samples were mounted

with the (0,0) → (π,0) (that is, the bond) direction parallel to the photon

polarization, and cleaved in situ at pressures less than 2×10−11 torr.

Measurements were carried out at the Synchrotron Radiation Center in

Madison, Wisconsin on the U1 and PGM undulator beamlines, using Scienta

electron analyser models R4000, SES2002, SES200, or SES50, with energy

resolution ranging from 16 to 30 meV, and a momentum resolution of

0.01−0.02 Å−1 for a photon energy of 22 eV. The samples were in contact with

gold during the experiment for the purpose of accurately referencing the

chemical potential. We measured cuts in momentum space perpendicular to

Γ–M , in the Y quadrant of the Brillouin zone to minimize complications due

to the superlattice17. The cuts cover the region from the node to the antinode of

the d-wave superconducting gap, as shown in Fig. 1e. We have checked that our

results are independent of the incident photon energy.

DATA ANALYSIS

The first step is to accurately identify the Fermi momentum kF in the presence

of a pseudogap. We do this by finding the k-point with the minimum gap along

a given cut in the symmetrized data, I(ω) = IARPES(ω)+ IARPES(−ω), where

IARPES is the measured angle-resolved photoemission intensity. (We note that kF

cannot be determined by looking at the peak of the momentum distribution

curves in the presence of an energy gap18.) The symmetrized intensity at kF

effectively divides out the Fermi function4, and thus provides a clear view of the

gap. Although this procedure assumes that the unoccupied part of the

excitation spectrum is the same as that of the occupied part over the small

energy range of the gap, we have obtained similar results by simply dividing the

data by the resolution-broadened Fermi function. The gap may now be

obtained from one half of the peak-to-peak distance. For a more precise

determination of the gap, we fit the spectra using a simple phenomenological

self-energy7: Σ (k,ω) = −iΓ1 +∆
2/(ω+ iΓ0), where Γ1 is the single-particle

scattering rate, ∆ is the energy gap, and Γ0 is an inelastic broadening

parameter that describes the filling-in of the subgap spectral weight (Γ0 is zero

in the superconducting state). Note that the spectral intensity is proportional to

the imaginary part of G, where G−1 = ω−Σ at kF. This phenomenological

expression gives an accurate representation of the spectra for all values of kF,

temperature, and doping (as can be seen in Fig. 1).

T∗ DETERMINATION

Several different methods were used to determine the pseudogap temperature

T∗. (1) For three of the samples with lower T∗, we measured T∗ directly from

ARPES by observing the appearance of gapless excitations. (2) For those with

higher T∗, the pseudogap temperature was determined by the established

relation10 between the superconducting gap size and T∗ in Bi2212. (3) An

independent method for determining T∗ is to use the inelastic broadening

parameter Γ0(T) of the phenomenological self-energy7. It is known7 that

Γ0(T) increases linearly with T , and T∗ is determined by Γ0(T∗) =∆(φ = 0).

(4) Yet another independent way to obtain T∗ is from the T-dependence of

L(φ) = [1− I(0,φ)/I(∆φ ,φ)] at the antinode φ = 0. We find that L(φ = 0) is

a linearly decreasing function of T , and extrapolates to 0 at T = T∗. All of the

above methods give consistent values of T∗ (see the Supplementary

Information for further details).
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