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ABSTRACT

We present the COLIBRI code for computing the evolution of stars along the TP-AGB
phase. Compared to purely synthetic TP-AGB codes, COLIBRI relaxes a significant
part of their analytic formalism in favour of a detailed physics applied to a complete
envelope model, in which the stellar structure equations are integrated from the atmo-
sphere down to the bottom of the hydrogen-burning shell. This allows to predict self-
consistently: (i) the effective temperature, and more generally the convective envelope
and atmosphere structures, correctly coupled to the changes in the surface chemical
abundances and gas opacities; (ii) the conditions under which sphericity effects may
significantly affect the atmospheres of giant stars; (iii) the core mass-luminosity rela-
tion and its possible break-down due to the occurrence of hot bottom burning (HBB)
in the most massive AGB stars, by taking properly into account the nuclear energy
generation in the H-burning shell and in the deepest layers of the convective envelope;
(iv) the HBB nucleosynthesis via the solution of a complete nuclear network (including
the pp chains, and the CNO, NeNa, MgAl cycles) coupled to a diffusive description
of mixing, suitable to follow also the synthesis of 7Li via the Cameron-Fowler beryl-
lium transport mechanism; (v) the intershell abundances left by each thermal pulse
via the solution of a complete nuclear network applied to a simple model of the pulse-
driven convective zone; (vi) the onset and quenching of the third dredge-up, with a
temperature criterion that is applied, at each thermal pulse, to the result of envelope
integrations at the stage of the post-flash luminosity peak.

At the same time COLIBRI pioneers new techniques in the treatment of the physics
of stellar interiors, not yet adopted in full TP-AGB models. It is the first evolutionary
code ever to use accurate on-the-fly computation of the equation of state for roughly
800 atoms, ions, molecules, and of the Rosseland mean opacities throughout the at-
mosphere and the deep envelope. This ensures a complete consistency, step by step,
of both EoS and opacity with the evolution of the chemical abundances caused by the
third dredge-up and HBB. Another distinguishing aspect of COLIBRI is its high com-
putational speed, that allows to generate complete grids of TP-AGB models in just
a few hours. This feature is absolutely necessary for calibrating the many uncertain
parameters and processes that characterize the TP-AGB phase.

We illustrate the many unique features of COLIBRI by means of detailed evolu-
tionary tracks computed for several choices of model parameters, including initial star
masses, chemical abundances, nuclear reaction rates, efficiency of the third dredge-up,
overshooting at the base of the pulse-driven convection zone, etc. Future papers in
this series will deal with the calibration of all these and other parameters using ob-
servational data of AGB stars in the Galaxy and in nearby systems, a step that is of
paramount importance for producing reliable stellar population synthesis models of
galaxies up to high redshift.

Key words: stars: evolution – stars: AGB and post-AGB – stars: carbon – stars:
mass-loss – stars: abundances – Physical Data and Processes: equation of state.
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1 CONTEXT AND MOTIVATION

The modelling of the Thermally Pulsing Asymptotic Giant
Branch (TP-AGB) stellar evolutionary phase plays a critical
role in many astrophysical issues, from the chemical compo-
sition of meteorites belonging to the pre-solar nebula (e.g.
Zinner et al. 2005), up to the cosmological context of galaxy
evolution in the high-redshift Universe (e.g. Maraston et al.
2006). Indeed, luminous TP-AGB stars are potentially the
dominant contribution to a galaxy’s flux, particularly at the
red wavelengths and high redshifts that are much of the
focus of modern extragalactic astronomy. In spite of its im-
portance, the TP-AGB phase is still affected by large un-
certainties which uncomfortably propagate into the field of
current population synthesis models of galaxies that, for this
reason, are strongly debated (e.g. Conroy, Gunn & White
2009; Kriek et al. 2010; Zibetti et al. 2013).

As a matter of fact, the evolution along TP-AGB phase
is determined in a crucial way by processes which are chal-
lenging to model from first principles: turbulent convection,
stellar winds, and long-period variability. Also, these pro-
cesses do not take place in a steady and smooth way during
the TP-AGB evolution, but greatly vary in both character
and efficiency over the single thermal pulse cycles (TPC)
– the 102 to 105-yr long periods that go from one He-shell
flash, through quiescent H-shell burning, up to the next He-
flash. Moreover, the rich nucleosynthesis in the intershell
convective region followed by recurrent dredge-up episodes,
and the nuclear burning at the base of the convective enve-
lope (hot-bottom burning, HBB) of the most massive TP-
AGB stars (M & 4M⊙), can dramatically change the sur-
face abundances, and hence the envelope structure, over a
timescale much shorter than a single TPC.

The result is that the modelling of the TP-AGB phase
is quite difficult, time consuming, and affected by large un-
certainties. Efforts to follow this phase with “full models”,
which solve the time-dependent equations of stellar struc-
ture with the aid of classical 1D stellar evolution codes, are
becoming increasingly successful thanks to the speeding-up
of modern processors, and to the particular care devoted
to the nucleosynthesis (e.g. Ventura, D’Antona & Mazzitelli
2002; Cristallo et al. 2009; Karakas 2010). However, full TP-
AGB models still meet three fundamental difficulties.
(1) They are affected by quite subtle and nasty numerical
uncertainties, that can greatly affect the predicted efficiency
of convective dredge-up episodes even within the same set
of models (Frost & Lattanzio 1996; Mowlavi 1999a).
(2) Full TP-AGB models need to resort to parametrized de-
scriptions of crucial processes (mass loss, convection, over-
shoot), with theoretical formulations and “efficiency param-
eters” that may largely vary from study to study, so that
to date no universally accepted set of prescriptions exists.
This intrigued situation is well exemplified by fact that, for
instance, the so-called carbon-star mystery, pointed out by
Iben (1981) in the far past, is now claimed to have been
solved by full TP-AGB models (Stancliffe, Izzard & Tout
2005; Weiss & Ferguson 2009; Cristallo et al. 2011). How-
ever, it is somewhat disturbing to recognize that the same
observable, i.e. the carbon star luminosity function of car-
bon stars in the Large Magellanic Cloud, seems to be re-
covered by different full TP-AGB models in which the third
dredge-up takes place with very different characteristics (in

this respect, see Sect. 4.1 and Fig. 4).
(3) The range of parameters to be covered, and prescriptions
to be tested, in order to obtain grids of TP-AGB models
that reproduce the wide variety of observational data for
AGB stars in resolved galaxies, is simply too large.

In this tricky context, a valuable contribution may be
provided by the so-called “synthetic models”, in which the
evolution from one thermal pulse to the next is described
with analytical relations that synthesize the results of full
models. Being very agile and hence suitable to explore wide
ranges of parameters and prescriptions, synthetic models
can help to constrain the physical domain towards which
full models should converge in order to reproduce observa-
tions of TP-AGB stars (e.g. carbon star luminosity functions
(CSLF), C/M ratios, H-R diagrams, etc.). For instance, fol-
lowing the work of Groenewegen & de Jong (1993), based
on synthetic models and focussed on the CSLF in the Large
Magellanic Cloud, it became clear that the third dredge-up
should not only be much more efficient, but also start ear-
lier, at fainter luminosities, than usually predicted by full
TP-AGB models up to that time.

On the other hand, synthetic models are often criticised
because they lack the accurate physics involved in the evo-
lution of these stars. Moreover, they are completely subordi-
nate to the relations fitting the results of full AGB model cal-
culations, which severely limits their capability of exploring
new evolutionary effects. A notable example is the effective
temperature, for which various formulas have been proposed
in the past in the usual form Teff = func(L,M,Z), involv-
ing luminosity, stellar mass and metallicity. Unfortunately,
their validity is extremely narrow as they can apply only to
oxygen-rich stars (with surface C/O< 1), hence being un-
able to account for the Hayashi limits of carbon stars. More-
over, these relations reflect the specific set of input physics
adopted in the underlying full models, e.g. mixing-length
parameter, gas opacities, equation of state, etc.

If this criticism reasonably applies to the purely analytic
TP-AGB models that rely on a mere compilation of fitting
formulas (e.g. Hurley, Pols & Tout 2000; Izzard et al. 2004,
2006; Cordier et al. 2007), it is not as well suited to the class
of hybrid models (e.g. Marigo, Bressan & Chiosi 1996, 1998;
Marigo et al. 1999; Marigo 2007; Marigo & Girardi 2007), in
which the analytic formalism is complemented with numeri-
cal integrations of the stellar structure equations, carried out
from the atmosphere down to the bottom of the convective
envelope. In the latter case both the HBB nucleosynthesis
and the basic changes in envelope structure – including ef-
fective temperature and radius – can be followed with the
same richness of detail as in full models, but still in a much
quicker and more versatile way.

It is not by accident that the crucial role of the sur-
face C/O ratio and C-rich opacities in determining the
evolution of TP-AGB stars was established just with the
aid of these “envelope-based models” (Marigo 2002, 2007;
Marigo, Girardi & Chiosi 2003; Marigo & Girardi 2007).
Although the same effect could have been assessed with
the aid of full models, the latter were fighting with so
many numerical and physical difficulties related to the oc-
currence of the third dredge-up, that the key aspect of
the C-rich opacities was ignored, and likely forgotten, for
long time in the field of AGB stellar evolution. Since
Marigo (2002), molecular opacities for C-rich mixtures have
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been progressively adopted in full TP-AGB models (e.g.
Kamath, Karakas & Wood 2012; Ventura & Marigo 2010,
2009; Weiss & Ferguson 2009; Cristallo et al. 2007).

This example tells clearly that progresses in the descrip-
tion of the TP-AGB phase do not rely only on full mod-
els, but they can come also from other complementary ap-
proaches.

With this work we go a few steps ahead in the develop-
ment of our “envelope-based TP-AGB models”. We describe
a code, called COLIBRI, that implements a number of im-
provements which, effectively, make our models to perform
much more like ”almost-full” models than ”improved syn-
thetic” ones. Among the most relevant points we mention:
i) a spherically-symmetric deep envelope model extending
from the atmosphere down to the bottom of the quiescent
H-burning shell, so that the classical core-mass luminosity
relation (CMLR) is naturally predicted and not taken as an
input prescription; ii) the first ever on-the-fly accurate cal-
culation of molecular chemistry and Rosseland mean opaci-
ties, fully consistent with the changing surface abundances,
iii) a detailed HBB nucleosynthesis coupled with a diffusive
description of convection, iv) a model for the pulse-driven
convection zone to predict the chemical composition of the
dredged-up material, and v) improved prescriptions to de-
termine the onset and quenching of the third dredge-up.

Of course, in the development of the COLIBRI code full
TP-AGB models still play a paramount role: they are taken
as a reference to check the accuracy of some basic predic-
tions, and they are used to derive quantitative information,
via fitting relations, on those aspects that the COLIBRI code
cannot, by construction, address by itself like, for example,
the evolution of the intershell convection zone during ther-
mal pulses.

In any case, all these aspects are treated fulfilling two
extremely important conditions: a robust numerical stabil-
ity which allows to follow the TP-AGB evolution until the
complete ejection of the envelope, and a high computational
speed which is kept comparable to the levels that made the
success of the very first synthetic TP-AGB models. In this
way the COLIBRI code is a tool perfectly suitable to per-
form a multi-parametric, but still accurate, calibration of
the TP-AGB phase, our final goal.

The plan of the paper is as follows. Section 2 presents an
outline of the COLIBRI code. Section 3 describes in detail all
input physics and the solution methods adopted to integrate
the deep envelope model, and to predict the nucleosynthesis
in the pulse-driven convective zone and during HBB. Section
4 summarises the analytic ingredients of COLIBRI. Accuracy
tests of COLIBRI predictions against full stellar models are
discussed in Sect. 5. The present sets of TP-AGB evolu-
tionary tracks are introduced in Sect. 6, while the whole
Sect. 7 is dedicated to illustrate several examples of possible
COLIBRI calculations. Finally, Sect. 8 closes the paper giv-
ing a résumé of COLIBRI’s features, and briefly mentioning
current and planned applications.

2 OVERVIEW OF THE COLIBRI CODE

The COLIBRI code computes the TP-AGB evolution from the
first thermal pulse up to the complete ejection of the stel-
lar mantle by stellar winds. While maintaining a few basic

features of our original TP-AGB model developed and re-
vised over the years (Marigo, Bressan & Chiosi 1996, 1998;
Marigo 1998; Marigo et al. 1999; Marigo & Girardi 2007),
we have introduced substantial improvements that notably
enhance the predictive power of our TP-AGB calculations.
The main variables of the TP-AGB model, which are also
frequently cited in the text, are operatively defined in Ta-
ble 2.

COLIBRI consists of three main components, that we
conveniently refer to as 1) the physics module, 2) the syn-

thetic module, and 3) the parameter box.

The physics module involves all detailed input physics
(equation of state, opacities, nuclear reactions rates) and dif-
ferential equations necessary to numerically integrate a sta-
tionary deep envelope model, extending from the atmosphere
down to the bottom of the H-burning shell (see Sect. 3). At
each time step, the run of mass Mr, temperature Tr, pres-
sure Pr, and luminosity Lr is determined across the deep
envelope during the quiescent interpulse periods. By adopt-
ing proper boundary conditions at the bottom of the con-
vective envelope, we obtain the effective temperature, and
the luminosity provided by the hydrogen burning shell. In
this way we are able to follow consistently the occurrence of
HBB in the most massive AGB stars, being responsible for
the break-down of the CMLR (see Sect. 5.2), as well as a
significant nucleosynthesis (see Sect. 3.5.2).

The synthetic module contains the analytic formalism
of the code, which includes both fitting formulas that syn-
thesize the results of full AGB models (e.g. the core mass-
interpulse period relation, the core mass-intershell mass re-
lation, the efficiency of the third dredge-up as a function
of stellar mass and metallicity, etc.), and other auxiliary
relations (e.g. mass-loss prescription, period-mass-radius re-
lations for variable AGB stars, etc.). It is outlined in Sect. 4.

The parameters box collects all free parameters that we
think need to be calibrated (e.g. minimum base temperature
for the occurrence of the third dredge-up, efficiency of mass
loss, dependence on mass and metallicity, overshoot at the
base of the convective envelope) in order to reproduce basic
observables. Since a fine calibration of the TP-AGB phase is
not the primary purpose of this paper, the results presented
here are obtained with a particular set of parameters, as
specified in Sect. 6.2.

These three components clearly represent a sequence of
decreasing accuracy, and increasing uncertainty. While for
most ingredients of the physics module we rely on detailed
and well-established prescriptions, in the synthetic module
we have to resort to the results of various sets of full TP-
AGB models in the literature that share a general agree-
ment, but present also unavodaible differences due to spe-
cific model details. The parameter box, instead, hides a big
deal of our ignorance about basic physical processes in AGB
stars. The coupling of these components, with very different
degrees of accuracy, is inescapable at this point. The situ-
ation resembles the one that persists in practically all full
stellar evolutionary codes to date, in which rough descrip-
tions for convective processes – such as the mixing length
theory and overshooting – are routinely adopted, and any-
how being able to produce very useful results. Although we
all know that “fake physics” is being used to some extent
in all these codes, it is also a matter of fact that, at some
stages, these approximations have opened the way for ad-
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Figure 1. Partial pressures of a subset of atomic and molecular species computed with the ÆSOPUS code (Marigo & Aringer 2009)
according to the temperature-pressure stratification of a complete envelope-atmosphere model with log(Teff ) = 3.45, log(L/L⊙) = 3.7,
Mi = 2M⊙, and solar metallicity Zi = Z⊙≃0.0152 following the revision by Caffau et al. (2011). Two values of the C/O ratio have been
considered, i.e. C/O= 0.5 (left-hand side panel) and C/O= 1.5 (left-hand side panel). Note the abrupt change in the molecular equilibria
of the O-bearing (blue) and C-bearing (red) molecules between the two cases, as well as the almost invariance of the abundance of the
highly stable CO molecule.

vancing the theory of stellar evolution on other fronts. Our
wish is that the same strategy can turn out to be useful also
for the TP-AGB phase.

3 THE PHYSICS MODULE

3.1 Equation of state

The equation of state (EoS) for temperatures in the interval
from 5× 104 K to 108 K is that of a fully-ionized gas, in the
way described by Girardi et al. (2000).

For temperatures in the range from 5×104 K to 103 K all
relevant thermodynamic quantities and their partial deriva-
tives (mass density, electron density, mean molecular weight,
entropy, specific heats, etc.) are computed on-the-fly with
the ÆSOPUS code (Marigo & Aringer 2009). We briefly re-
call that ÆSOPUS solves the EoS for atoms and molecules
in the gas phase, under the assumption of an ideal gas in
both thermodynamic equilibrium and instantaneous chemi-
cal equilibrium. We consider the ionisation stages from I to
V for all elements from C to Ni (up to VI for O and Ne), and
from I to III for heavier atoms from Cu to U. Saha equations
for ionisation and dissociation are solved for ≈ 800 species,
including ≈ 300 atoms (neutral and ionised) from H to U,
and ≈ 500 molecules.

An example of the EoS calculations across the outer-
most layers of a TP-AGB model is given in Fig. 1, that also
illustrates the dramatic change in the equilibrium molecular
chemistry as the surface C/O ratio passes from C/O < 1,
typical of M stars, to C/O > 1, characteristic of C stars.

3.2 Gas opacities

Rosseland mean gas opacities, in the whole temperature
range 8.0 6 log T 6 3.2, are computed on-the-fly, i.e. con-
temporary with the atmospheric and envelope integrations
that constitute the kernel of our TP-AGB code.

We remark that this is the first time ever that accu-
rate opacities are computed on-the-fly, just starting from
the monochromatic absorption coefficients of the opacity
sources, without interpolation in pre-exiting tables of Rosse-
land mean opacities.

This choice is motivated by the demand of accurately
describing the tight coupling of the opacity sources (mainly
in the molecular regime) with the frequent and significant
changes in the envelope chemical composition that charac-
terise the TP-AGB phase. In this way we avoid the loss
in accuracy that one must otherwise pay when performing
multi-dimensional interpolation.

To this aim we have constructed a routine which, for any
given set of chemical abundances of 92 elements from H to
U, and a specified pair of state variables (e.g. gas pressure
Pg and temperature T ), makes direct calls to one of two
opacity codes, depending on the temperature:

• The Opacity Project1 (OP) (OP; Seaton 2005;
Badnell et al. 2005) for 4.2 < log T 6 8.0;

1 We have used the OPCD 3.3 open-source package available at
the WEB page http://cdsweb.u-strasbg.fr/topbase/op.html

http://cdsweb.u-strasbg.fr/topbase/op.html
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Figure 2. Rosseland mean opacities, computed with the ÆSOPUS code (Marigo & Aringer 2009), according to the temperature-pressure
stratification of a complete envelope-atmosphere model with log(Teff ) = 3.45, log(L/L⊙) = 3.7, Mi = 2M⊙, and solar metallicity
Zi = Z⊙≃0.0152 according to Caffau et al. (2011). The C/O ratio is made to increase from 0.10 to 1.00 (left-hand side panel), and from
1.05 to 5.00 (right-hand side panel) in steps of 0.05.

• The ÆSOPUS
2 code (Marigo & Aringer 2009) for 3.2 6

log T 6 4.2.

The OP data provides the monochromatic opacities for
several atoms (H, He, C, N, O, Na, Mg, Al, Si, S, Ar, Ca, Cr,
Mn, Fe, Ni) over a wide range of values of temperature T and
electron density Ne. We have employed the routines mixv.f

and opfit.f to calculate the Rosseland mean opacities on a
pre-determined grid of OP(T, Ne) meshes and then to inter-
polate to any specified values of T and ρ. Since the original
OP version assumes a fixed mixture of elements (i.e. scaled-
solar chemical composition), we have suitably modified the
OP routines to compute the Rosseland mean for any chem-
ical composition involving the 16 species for which the OP
monochromatic opacities are available. This is an important
improvement compared to the common practice in which the
chemical parameters (besides the H or He abundances) are
limited to few metal abundances. For instance, the widely-
used OPAL web tool (Rogers, Swenson & Iglesias 1996) al-
lows the on-line computation and provides the interpolating
routines of Rosseland mean opacity tables with a fixed parti-
tion of metals, but for the abundances of two species (e.g. C
and O), which are enhanced according to a specified grid of
values. We notice that in this case, the possible depletion of
a metal, due for instance to nuclear burning, cannot be con-
sidered. At variance, the OP utility gives us an important
flexibility in this respect.

Suitably converted into an internal routine of our
COLIBRI code, for each pair of Pg and T , ÆSOPUS calcu-
lates the monochromatic true absorption and scattering

2 The ÆSOPUS tool is accessible via the web interface at
http://stev.oapd.inaf.it/aesopus

cross sections due to a number of continuum and discrete
processes, i.e. bound-free absorption due to photoionisa-
tion, free-free absorption, Rayleigh and Thomson scattering,
collision-induced absorption, atomic bound-bound absorp-
tion and molecular absorption. We note that the monochro-
matic cross sections for atoms (C, N, O, Na, Mg, Al,
Si, S, Ar, Ca, Cr, Mn, Fe, Ni) are taken from the OP
database, thus assuring a complete consistency with the
high-temperature opacities. Then, after summing up all con-
tributions, the Rosseland mean (RM) opacity is computed.

The incorporation of ÆSOPUS in the COLIBRI code allows
us to follow accurately the changes in molecular opacities
driven by any variation of the envelope composition, espe-
cially by the C/O ratio which plays the key role in deter-
mining the molecular chemistry (see e.g. Marigo & Aringer
2009). The complex behaviour of the RM opacities as a func-
tion of the C/O ratio is exemplified with the aid of Fig. 2.
It turns out that while the C/O ratio increases from 0.1 to
0.9 the opacity bump peaking at (log(T ) ≃ 3.25 − 3.35) –
mostly due to H2O – becomes more and more depressed be-
cause of the smaller availability of O atoms. Then, passing
from C/O = 0.9 up to C/O = 0.95 the H2O feature actually
disappears and κR drastically drops by more almost two or-
ders of magnitude. In fact, at this C/O value the chemistry
enters in a transition region where most of both O and C
atoms are trapped in the very stable CO molecule at the
expense of the other molecular species, belonging to both
the O- and C-bearing groups. At C/O = 1 the RM opac-
ity reaches its minimum throughout the temperature range,
3.2 . log(T ) . 3.4, while a sudden upturn is expected as
soon as C/O slightly exceeds unity, as displayed by the curve
for C/O = 1.05 of Fig. 2 (right panel). This fact reflects the
drastic change in the molecular equilibria from the O- to the

http://stev.oapd.inaf.it/aesopus
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C-dominated regime. Then, at increasing C/O the opacity
curves move upward following a more gradual trend, which
is related to the strengthening of the C-bearing molecular
absorption bands.

Note, however, that the C-rich opacity does not rise lin-
early with C/O, but less and less steeply as the C/O ratio
increases. This is mainly due to the underlying equilibrium
chemistry of the most efficient absorbers, in particular of the
CN and HCN molecules, whose abundances are conditioned
not only by the carbon excess (C-O), but also by the avail-
ability of the N atoms (having a fixed abundance in the case
under consideration). As we will see in Sect. 7.3, the non-
linear dependence of the opacity on the C/O ratio impacts
on the maximum extension of the Hayashi lines for C stars
towards lower effective temperatures.

3.3 Nuclear reactions

Our nuclear network consists of the p-p chains, the CNO tri-
cycle, and the Ne-Na, Mg-Al chains, and the most important
α-capture reactions, including explicitly Nel = 25 chemical
species: 1H, 2H, 3He, 4He, 7Li, 7Be, 12C, 13C, 14N, 15N, 16O,
17O, 18O, 19F, 20Ne, 21Ne, 22Ne, 23Na, 24Mg, 25Mg, 26Mg,
26Alm, 26Alg, 27Al, 28Si. The latter nucleus acts as the “exit
element”, which terminates the network. In total we consider
42 reaction rates, listed in Tab. 1. For all of them we adopt
analytic relations, with fitting coefficients taken from the
JINA reaclib database (Cyburt et al. 2010). The alternative
of using detailed tables of reaction rates as a function of
the temperature can be easily implemented in COLIBRI, and
may be done in future studies dedicated to nucleosynthesis
calculations.

3.4 The atmosphere model

For given chemical composition of the gas, an atmosphere
model is generally specified by three stellar parameters, e.g:
total mass M , luminosity L, and radius R. The effective
temperature derives from the Stefan-Boltzmann law L =
4πR2σT 4

eff . In our TP-AGB code the atmospheric structure
can be obtained by choosing among two different options,
namely: i) static plane-parallel atmosphere, and ii) static
spherically symmetric atmosphere.

3.4.1 Plane-parallel atmospheres

The plane-parallel grey atmosphere model is described by
a temperature stratification given by a modified Eddington
approximation for radiative transport:

T 4 =
3

4
T 4
eff [τ + q (τ )] (1)

where τ (r) is the optical depth defined by the differential
equation

dτ = −κρdr (2)

with the boundary condition τ (+∞) = 0. Here κ is the
opacity which is usually described by the Rosseland mean,
and ρ is the mass density. The quantity q(τ ) in the right-
hand side of Eq. (1) is the Hopf function.

Under the plane-parallel assumption the variations

Table 1. Nuclear reaction rates adopted in this work.

Reaction Source

p (p , β+ ν)D Cyburt et al. (2010)
p (D , γ) 3He Descouvemont et al. (2004)
3He (3He , γ)2 p +4He Angulo (1999)
4He (3He , γ) 7Be Descouvemont et al. (2004)
7Be (e− , γ) 7Li Caughlan & Fowler (1988)
7Li (p , γ)4He +4He Descouvemont et al. (2004)
7Be (p , γ) 8B Angulo (1999)
12C (p , γ) 13N Angulo (1999)
13C (p , γ) 14N Angulo (1999)
14N (p , γ) 15O Imbriani et al. (2005)
15N (p , γ)4He +12C Angulo (1999)
15N (p , γ) 16O Angulo (1999)
16O(p , γ) 17F Angulo (1999)
17O(p , γ) 4He +14N Chafa et al. (2007)
17O(p , γ) 18F Chafa et al. (2007)
18O(p , γ) 4He +15N Angulo (1999)
18O(p , γ) 19F Angulo (1999)
19F (p , γ) 4He +16O Angulo (1999)
19F (p , γ) 20Ne Angulo (1999)
20Ne (p , γ) 21Na Angulo (1999)
21Ne (p , γ) 22Na Iliadis et al. (2001)
22Ne (p , γ) 23Na Hale et al. (2002)
23Na (p , γ) 4He +20Ne Hale et al. (2004)
23Na (p , γ) 24Mg Hale et al. (2004)
24Mg (p , γ) 25Al Iliadis et al. (2001)
25Mg (p , γ) 26Alg Iliadis et al. (2001)
25Mg (p , γ) 26Alm Iliadis et al. (2001)
26Mg (p , γ) 27Al Iliadis et al. (2001)
26Alg (p , γ) 27Si Iliadis et al. (2001)
27Al (p , γ) 4He +24Mg Iliadis et al. (2001)
27Al (p , γ) 28Si Iliadis et al. (2001)
4He (2 4He , γ) 12C Fynbo et al. (2005)
12C (4He , γ) 16O Buchmann (1996)
14N (4He , γ) 18F Görres et al. (2000)
15N (4He , γ) 19F Wilmes et al. (2002)
16O(4He , γ) 20Ne Angulo (1999)
18O(4He , γ) 22Ne Dababneh et al. (2003)
20Ne (4He , γ) 24Mg Angulo (1999)
22Ne (4He , γ) 26Mg Angulo (1999)
24Mg (4He , γ) 28Si Caughlan & Fowler (1988)
13C (4He ,n) 16O Angulo (1999)
17O(4He ,n) 20Ne Angulo (1999)
18O(4He ,n) 21Ne Angulo (1999)
21Ne (4He ,n) 24Mg Angulo (1999)
22Ne (4He ,n) 25Mg Angulo (1999)
25Mg (4He ,n) 28Si Angulo (1999)

across the atmospheres of mass, radius, and luminosity can
be neglected so that we have

Mr ≈ M, r ≈ R, Lr ≈ L.

Let us denote with τ̃ the optical depth of the photo-
sphere (approximately 2/3), and rτ̃ its radial coordinate. In
the plane-parallel approximation, it defines the radius of the
star, i.e. R = rτ̃ , and the corresponding temperature Tτ̃ co-
incides with the effective temperature Teff , defined by the

Stefan-Boltzmann law Teff =
(
L/4πσR2

)1/4
.

Combining the equations of mass continuity, hydro-
static equilibrium and Eq. (2), we obtain the atmospheric
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equation for the total pressure

dτ

dP
=

κR2

GM
(3)

where P = Pgas + Prad includes the contributions from gas
and radiation and obeys the boundary condition that Pgas =
0 for τ = 0. The integration of Eq. (3) is accomplished by a
standard extrapolation-interpolation procedure, from τ = 0
to τ = τ̃ . The solution is obtained through iteration on the
total pressure P . Starting from the top of the atmosphere,
with P = Prad and τ = 0, we integrate Eq. (3) inward with a
sequence of extrapolation-interpolation steps. The adopted
scheme is a combination of a third-order Adams-Bashforth
predictor followed by a fourth-order Adams-Moulton cor-
rector (chapter XVI of “Numerical Recipes”; Press et al.
1988). In brief, for a given increment ∆P , to proceed from
the mesh-point j to mesh-point j + 1, we first extrapolate
the optical depth τ extr

j+1 with the predictor part, using the
known value τj . Then, we use the corrector to interpolate
the derivative at j + 1, and hence to obtain the value τ int

j+1.
The integration step is considered successful if the extrap-
olated τ extr

j+1 and interpolated τ int
j+1 values agree to within a

given tolerance, normally set to 10−4 for the logarithmic
optical depth. Otherwise, the integration step is repeated
halving the pressure step-width ∆P .

3.4.2 Spherically-symmetric atmospheres

We have implemented the spherical-symmetry geometry fol-
lowing the formalism described in Lucy (1976), but with
the addition that the mass above the atmosphere is not ne-
glected compared to that of the entire star. Introducing the
variable z = r/R, the temperature stratification accounts for
the geometrical dilution of the radiation field and is given
by:

T 4 =
3

4
T 4
eff

[
τ̃ +

4

3
W

]
, (4)

where

W =
1

2

(
1−

√
z2 − 1

z

)
(5)

is the dilution factor; τ̃ is the optical depth defined by the
differential equation:

dτ̃

dz
= −κρR

z2
. (6)

In this case, the radial extension of the atmosphere is
not neglected, and r = R0 refers to the maximum outer ra-
dius of the atmosphere, where by definition τ (R0) = 0 and
Pgas(R0) = 0. Since in principle these two boundary condi-
tions are met for r → +∞, we define the outer boundary
R0 of the atmosphere the radial coordinate of the point at
which Pgas = 10−4 dyne cm−2. The parameter

δR =
R0 −R

R
(7)

quantifies the geometrical extension of the atmosphere.
In an extended atmosphere an effective temperature

cannot be uniquely defined; therefore we refer to it as the
photospheric temperature obeying the relation

Teff = T (τ̃) =

(
L

4πσR2

)1/4

and τ̃ = 2/3 (8)

which is formally analogous to that of a compact atmosphere
star.

In summary, together with the auxiliary relation
Eq. (4), our extended atmosphere model requires the in-
tegration of three differential equations for the unknowns
optical depth τ , non-dimensional radial coordinate z = r/R,
and mass coordinate m, which are conveniently expressed in
the form dτ/d logP , dz/d logP , and d logm/d logP , where
the total pressure P is the independent variable.

For any given atmosphere model specified by a choice
of L, M , Teff (hence with R known from Eq. 8), and chem-
ical composition, we proceed as follows. We make an initial
guess of the ratio R0/R. Then the differential equations, re-
duced to a finite-difference form, are solved starting from the
provisional outermost point at r = R0, with the boundary
conditions

τ (R0) = 0, m(R0) = M, P (R0) = Prad, (9)

and proceeding inward by using the same extrapolation-
interpolation method already described in Sect. 3.4.1, but
this time extended to the three differential equations in the
unknowns τ , r, and m. Integration is stopped when the pho-
tosphere at τ = τ̃ is reached. In general the temperature
at the photospheric layer, Tτ̃ , will differ from Teff given by
Eq. (8), so we adopt a new value for R0/R and integrate
another atmospheric structure. The procedure is repeated
until the |log(Tτ̃ )− log(Teff)| < ε, where the tolerance ε is
normally set to 10−4.

3.5 The quiescent interpulse phases

3.5.1 The deep envelope model

In synthetic AGB models L, Teff , and the temperature at the
base of the convective envelope, Tbce, are usually obtained
with the aid of formulas that fit the results of full mod-
els calculations (e.g. Hurley, Pols & Tout 2000; Izzard et al.
2004, 2006; Cordier et al. 2007). In COLIBRI the approach is
completely different: during the quiescent interpulse periods
the four stellar structure equations (i.e. mass continuity, hy-
drostatic equilibrium, energy transport, and energy balance)
are integrated from the photosphere down to the bottom of
the quiescent H-burning shell, a region which we globally
refer to as deep envelope.

The energy balance equation reads

∂l

∂m
= εnuc + εg − εν , (10)

where the right-hand side member accounts for the energy
contributions/losses from nuclear, gravitational, and neu-
trino sources, with rates (per unit time and unit mass) εnuc,
εg, and εν , respectively.

The efficiency of nuclear energy generation is computed
as εnuc = εpp + εCNO, that is including the contributions of
the p-p chains and CNO cycles. The corresponding nuclear
reaction rates are listed in Table 1.

In our deep envelope model we assume εν = 0, which is
a safe approximation since thermal neutrinos mainly come
from the degenerate core.

The gravitational energy generation, given by

εg = −T
∂S

∂t
, (11)
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where S is the gas entropy and t denotes the time variable,
is computed in the stationary wave approximation (Weigert
1966; Iben 1977):

∂S

∂t
=

dMc

dt

∂S

∂m
(12)

where T is the local temperature, ∂S/∂m is the local deriva-
tive of entropy with respect to mass, and dMc/dt denotes
the rate at which the mass coordinate of the centre of the
hydrogen-burning shell advances outward.

The rate of displacement of the H-burning shell actually
measures the growth rate of the core mass and it is computed
with

dMc

dt
=

q

Xenv

LH (13)

where LH is the total luminosity produced by the radia-

tive portion of the hydrogen burning shell, Xenv corre-
sponds to the hydrogen abundance (in mass fraction) in
the convective envelope, and q = 1.05 × 10−11 + 0.017 ×
10−11 log(Z) [M⊙ L−1

⊙ yr−1] (Wagenhuber 1996).

Method of solution. Since we deal with a set of four stel-
lar structure equations, we need to set up four boundary
conditions to close the system.

The first pair of boundary conditions applies to the
surface, and corresponds to the photospheric values of ra-
dius and temperature, r(τ̃), and T (τ̃), provided by the at-
mosphere model (either in the plane-parallel or spherically-
symmetric assumption as described in Sect. 3.4):

T (τ̃) = Teff , (14)

r(τ̃) = R . (15)

The second pair of boundary conditions applies to the
interior. Moving inward across the deep envelope, the bot-
tom of the H-burning shell corresponds to the radiative layer
where the hydrogen abundance first goes to zero (X = 0).
We choose the mass coordinate of the corresponding mesh,
m(X = 0), to identify a key parameter of the AGB evolu-
tion, the core mass Mc.

The third boundary condition is therefore:

m(X = 0) = Mc . (16)

The fourth inner boundary condition is given by the tem-
perature Tc at the bottom of the H-burning shell:

T (X = 0) = Tc . (17)

Full stellar AGB models calculated with PARSEC show that
Tc = T (Mc, Zi) is a well-behaving, increasing function of
the core mass, with some moderate dependence on metallic-
ity. After the first sub-luminous thermal pulses, in the full-
amplitude regime Tc is found to vary within a narrow range
(i.e. log(Tc) ≈ 7.9−8.0), reflecting the thermostatic property
of the shell-hydrogen burning (mainly via the CNO cycle),
occurring at a well-defined temperature. This fact makes
the boundary condition Eq. (17) a robust choice, only little
dependent on technical and model details.

In summary, Eqs. (14), (15), (16), and (17) provide the
four boundary constraints necessary to determine the en-
tire structure of the deep envelope. The total pressure P is
chosen as the independent variable, and the four differen-
tial equations of the stellar structure are suitably expressed

in the form d logm/d logP , d log r/d logP , d log l/d logP ,
and d log T/d logP . Inward numerical integrations are car-
ried out using an Adams-Bashforth-Moulton extrapolation-
interpolation scheme, that combines a third-order predictor
with a fourth-order corrector. The procedure is formally the
same as that described in Sect. 3.4.1, but applied to the
four equations in the unknowns m, r, l, T . The integration
accuracy is usually set to 10−4 for all logarithmic variables.

We adopt a very fine mass resolution, the width of the
innermost shells (where the structural gradients become ex-
tremely steep) typically amounting to 10−7 − 10−8M⊙. The
chemical composition is assumed homogeneous throughout
the convective envelope (possible deviations for specific ele-
ments are discussed in Sect. 3.5.2). Once in the deep inte-
rior the radiative temperature gradient falls below the adi-
abatic one and the energy transport becomes radiative, a
chemical profile is built with abundances that change with
mass in direct proportion to the rate of energy generation
by the hydrogen-burning reactions, until hydrogen vanishes
The procedure is the same as that described by Iben (1977).

The integration method just illustrated is adopted to
obtain the atmosphere-envelope structure at the quiescent
stage just preceding each thermal pulse. In particular, this
yields the quiescent pre-flash luminosity maximum, LQ. To
follow the subsequent structural variations, driven by the
occurrence of thermal pulses, we proceed as follows. Let us
denote with

φ ≡ t/τip (18)

the pulse-cycle phase, where τip is the interpulse period
and t is the current time, counted from the stage of qui-
escent pre-flash luminosity maximum, such that φ = 0 at
t = 0, and φ = 1 at t = τip (and L = LQ). According
to Wood & Zarro (1981) and Wagenhuber & Groenewegen
(1998) the star luminosity as a function of the pulse-cycle
phase, L(φ), when normalized to LQ, has a very well-known
and almost universal form (f(φ) = L(φ)/LQ), independent
of Zi (Wagenhuber & Groenewegen 1998, see their equation
15). Therefore, once we determine LQ at φ = 1 by solving
the complete set of stellar equations, then the structure of
the envelope over the next thermal TPC (for each value of
the phase 0 6 φ < 1) is obtained iteratively in a similar
fashion, but this time adopting L = L(φ) = f(φ) LQ, and
fulfilling three out of four boundary conditions. While the
first pair, Eqs. (14) and (15), is the same for any value of φ,
the third boundary condition depends on phase of the pulse
cycle.

Following the thorough analysis by
Wagenhuber & Groenewegen (1998), in the initial phases of
a TPC, for 0 6 φ . 0.1, (that include the so-called “‘rapid
dip”, “rapid peak” and part of the “slow dip”, i.e. from A
to D in their figure 1), the H-shell is extinguished, while
the He-shell is on. During these very short-lived stages,
immediately after the onset of a TP, we adopt M(Rc) = Mc

(Eq. 23) as the third boundary condition for the envelope
integrations. More details can be found in Sect. 3.6. At
later stages, for 0.1 < φ 6 1 (i.e. from D to A’), when the
helium burning drops and the quiescent H-shell recovers
becoming the dominant energy source, the third boundary
condition is again given by m(X = 0) = Mc (Eq. 16).

It is worth remarking that the integration of the deep

envelope allows us to predict the integrated luminosity pro-
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vided by the quiescent H-burning shell, both in the rela-
tively simple case of low-mass TP-AGB stars (in which the
H-burning shell is completely radiative and thermally decou-
pled from the convective envelope), and in the more complex
case of intermediate-mass TP-AGB stars experiencing HBB
(in which the bottom of the convective envelope lies inside
the H-burning shell, providing an extra-luminosity ∆LHBB

contribution above the classical CMLR). Section 5 is de-
voted to compare and test our results against those from
various sets of full AGB models in the literature.

Another important implication is that our method as-
sures a correct treatment of HBB, i.e. a full consistency be-
tween energetics and associated nucleosynthesis. In other
words, the rates of variation of the surface chemical abun-
dances caused by HBB (i.e via the CNO, NeNa, and MgAl
cycles) are precisely those that correspond to the luminos-
ity contribution ∆LHBB. Despite being a basic requirement
(Marigo & Girardi 2001), the strict coupling between the
consumption of the nuclear fuel and the chemical composi-
tion changes, are in general not fulfilled by analytical ap-
proximations of HBB, often adopted in synthetic TP-AGB
models.

3.5.2 Nucleosynthesis in convective envelope layers

Besides being an important energy source for AGB
stars with Mi > 3 − 4M⊙, HBB significantly al-
ters the chemical composition of their envelopes through
the nuclear reactions (pp chains, and CNO, NeNa,
MgAl cycles) taking place in the innermost convec-
tive layers (e.g. Boothroyd, Sackmann & Wasserburg 1995;
Forestini & Charbonnel 1997; Marigo 2001; Karakas 2010;
Ventura, Carini & D’Antona 2011).

In COLIBRI the HBB nucleosynthesis is treated in detail.
Once the structure of the convective envelope is determined,
as explained in Sect. 3.5.1, nucleosynthesis occurring in the
convective envelope is treated in detail, by coupling nuclear
burning to a diffusive description of convection. In a one-
dimensional, spherically-symmetric system the conservation
equation for an arbitrary chemical species i, locally defined
at the Lagrangian coordinate mr, reads

∂Yi

∂t

∣∣∣
mr

=
1

ρr2
∂

∂r

(
r2ρD

∂Yi

∂r

)
(19)

±
∑

j

Yjλk(j) ±
∑

j>k

YjYkrjk ,

where Yi = Xi/Ai (in units of mole/mass) is the ratio be-
tween the abundance (in mass fraction) of the nucleus i and
its atomic weight Ai. The term on the left-hand side gives
the local rate of change of abundance of element i at the co-
ordinate mr, which is due to two different processes, namely:
mixing and nucleosynthesis.

On the right-hand side of Eq. (19) the first term is the
mixing contribution, that is the local abundance variation
produced by the convective motions in the gas. In our ap-
proach convection is treated as a diffusion process, with the
diffusive coefficient approximated as

D =
1

3
vconvlconv , (20)

where vconv and lconv denote the velocity and the mean-
free path of the convective eddies, respectively. Both quan-

tities are computed in the framework of the standard
mixing length theory (Böhm-Vitense 1958). The mixing
length lconv is assumed linearly proportional to the pres-
sure scale height, Hp, with the proportionality coefficient
αMLT = 1.74, as derived from a recent calibration of the
solar model (Bressan et al. 2012). The convective velocity
is obtained from the only real root of the “cubic equation”
(equation 14.82, Vol. I of “Principles of Stellar Structure”;
Cox & Giuli 1968), under the condition that the total en-
ergy flux is specified.

The second and third terms on the right-hand side of
Eq. (19) describe the abundance change due to nuclear re-
actions involving the species i, being related to single-body
decays (with rates λ) and two-body reactions (with rate r),
respectively. As usual, the negative (positive) sign is used to
denote destruction (production) of the species i.

Method of solution. The convective envelope is divided
into a number Nmesh of concentric shells, so as to ensure
smooth enough variations of the physical variables (radius,
temperature, density, etc.) between consecutive mesh points.
For instance, in the deepest zones, where nuclear burning
takes place the temperature difference of consecutive shells
is chosen δ log(T ) = 0.01 − 0.02 dex.

We deal with a system of coupled, non-linear, partial
differential equations, given by Eq. (19), for each chemical
species at all mesh points. The equations are first converted
to finite central-difference equations and the quadratic
terms, YjYk, are linearized according to Arnett & Truran
(1969). To estimate the diffusion coefficient between two
shells, Dk±1/2, we adopt the prescription proposed by
Meynet, Maeder & Mowlavi (2004):

Dk±1/2 =
Dk±1Dk

fDk±1 + (1− f)Dk
(21)

with f = 0.5, which appears to be more physically sound
than adopting a simple arithmetic mean.

Following the scheme proposed by
Sackmann, Smith & Despain (1974), we set up a ma-
trix equation A = Y b in the unknown abundances Y n+1

i,k at
the time n + 1, where i = 1, . . . , Nel denotes the element,
and k = 1, . . . , Nmesh refers to the mesh-point. A is the
(N,N) matrix of the coefficients with N = Nel × Nmesh.
Since we assume that each species is coupled to all others at
the same mesh point and to its own abundance at adjacent
mesh-points, the matrix A has a band-diagonal structure
with kl = Nel sub-diagonals and ku = Nel super-diagonals
(hence the band width is kl + ku + 1). This property is
taken into consideration to reduce the computing-time
requirement of the adopted numerical algorithm. The
(N, 1) matrix b contains the known terms, which depend on
the chemical abundances across the envelope, Y n

i,k, at the
previous time n.

Finally, the system is solved by means of a fully
implicit method that, when applied to diffusion prob-
lems, proves to yield robust results in terms of numeri-
cal stability and accuracy (see the thorough analysis in
Meynet, Maeder & Mowlavi 2004). Compared to explicit
and “Crank-Nicholson” methods the great advantages of the
implicit technique are that i) we are not forced to stick to the
“Courant condition”, that imposes short integration time
steps to assure stability, ii) in most cases it does not yield
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unphysical solution (e.g. negative abundances), and iii) the
conservation of the mass, i.e. the normalization condition of
the abundances, at each mesh-point is reasonably fulfilled,
typically not exceeding ≃ 10−5.

Fortran routines taken from the LAPACK3 software
package are employed to get the numerical solution of the
matrix equation, which is accomplished through three main
steps, namely: 1) LU decomposition4 of the matrix A, which
is conveniently stored in a compact form so as to get rid of
most of the useless null terms outside the main diagonal
band; 2) solution of the system of linear equations by par-
tial pivoting, and 3) iterative improvement of the solution.
The latter step attempts to refine the solution by reducing
the backward errors (mainly due to round-off and truncation
errors) as much as possible.

3.5.3 Time integration

To follow the time evolution along the TP-AGB phase we
proceed as follows. Each interpulse period is divided into
a suitable number, Nφ, of phase intervals, ∆φj = (tj+1 −
tj))/τip = ∆tj/τip, so as to assure a good sampling of
the complex luminosity variations driven by the pulse (see
Eq. (18) and Sect. 3.5.1). This defines a first guess of the
time step. A subsequent adjustment may be done by impos-
ing the condition that the time step does not exceed a given
limit, i.e. ζ(M−Mc)/Ṁ , where (M−Mc)/Ṁ is a measure of
the time-scale required to expel the envelope at the current
mass loss rate Ṁ . The coefficient ζ is normally set to 10−3.
This condition determines a sizable reduction of the time
step in the last evolutionary stages, when the super-wind
regime of mass loss is attained.

Once ∆tj is fixed, the increment of the core mass and
the decrease of the total mass are predicted with the explicit
Eulerian method:

Mc,j+1 = Mc,j + (qLH/Xenv)j ∆tj

Mj+1 = Mj − Ṁj ∆tj

At this point all other variables (e.g. Teff , L, Tbce, and chem-
ical abundances in case of HBB, etc.) at the time tj+1 are
obtained from envelope integrations with the new values
Mc,j+1 and Mj+1.

With the current set of prescriptions, typical values of
Nφ over one TPC range from few to several hundreds, de-
pending on stellar parameters and evolutionary status.

3.6 The thermal-pulse phases

In addition to the quiescent interpulse phases (see
Sect. 3.5.1), we carry out envelope integrations to test
whether appropriate thermodynamic conditions exist for
the occurrence of the third dredge-up. This approach re-
places the use of the parameter Mmin

c , i.e. the minimum

3 LAPACK is a freely-available copyrighted library of Fortran
90 with subroutines for solving the most commonly occurring
problems in numerical linear algebra. It can be obtained via
http://www.netlib.org/lapack/
4 In linear algebra LU decomposition factorizes a matrix as the
product of a lower (L) triangular matrix and an upper (U) trian-
gular matrix.

core mass for the third dredge-up (see Sect. 3.6.1), used
in previous models (Marigo, Bressan & Chiosi 1996, 1998;
Marigo & Girardi 2007). Also, we set up a nuclear network
to follow the synthesis of C, O, Ne, Na, and Mg in the flash-
driven convective zone, which determines the chemical com-
position of the dredged-up material. All details are given in
Sect. 3.6.2.

3.6.1 Onset and quenching of the third dredge-up

We follow the method first proposed by Wood (1981) and
later adopted by Marigo et al. (1999) to predict if and when

the third dredge-up may take place during the TP-AGB
evolution of a star of given current mass and chemical com-
position. We refer to the quoted papers for all details, and
recall here the basic scheme.

The technique makes use of suitable envelope integra-
tions at the stage of post-flash luminosity maximum, LP,
when the envelope is close to hydrostatic and thermal equi-
librium (Wood 1981). TP-AGB models show that LP is es-
sentially controlled by the core mass of the star, in anal-
ogy with the existence of the CMLR relation during the
quiescent interpulse periods for low-mass AGB stars. Fol-
lowing Wood (1981) and Boothroyd & Sackmann (1988b),
at the post-flash luminosity peak the nuclearly processed
material involved in the He-shell flash is pushed out and
cooled down to its minimum temperature over the flash-
cycle, Tmin

N , approaching a limiting characteristic value, as
the thermal pulses reach the full-amplitude regime. This
latter typically lies in the range log(Tmin

N ) ≈ 6.5 − 6.7
(Boothroyd & Sackmann 1988b; Karakas, Lattanzio & Pols
2002), being little dependent on chemical composition and
core mass. At the same time the envelope convection reaches
its maximum inward penetration (in mass fraction) and the
maximum base temperature, Tmax

bce .
Hence it is reasonable to assume that the third dredge-

up takes place if, at the stage of post-flash luminosity max-
imum, the condition Tmax

bce > Tmin
N is satisfied.

Operatively, let us denote with Tdup the parameter rep-
resenting the minimum temperature that the envelope base
must exceed to activate the third dredge-up, that is:

Tmax
bce > Tdup . (22)

In order to check it, at each thermal pulse, we integrate
our envelope model described in Sect. 3.5.1. These numeri-
cal integrations are computed under particular conditions5,
namely: i) we set εnuc = εpp + εCNO = 0, since at this stage
the H-burning shell is extinguished; ii) the two inner bound-
ary conditions Eqs. (16) and (17) are replaced with

M(Rc) = Mc . (23)

This condition means that the mass of the degenerate core
is equal to the mass contained inside the radius of a warm

white dwarf, Rc = δ × RWD. In the latter expression RWD

5 The absence of nuclear energy sources in the envelope implies
that the system of the stellar structure can be reduced from four
to three equations (following Wood (1981) the local luminosity is
reasonably constant across the envelope, l = L), so that we need
to specify three boundary conditions, i.e. two at the photosphere
Eqs. (14)-(15), and one at the core border Eq. (23).

http://www.netlib.org/lapack/
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Figure 3. Sketch of the Kippenhahn diagram showing the evolution of the inner layers of a TP-AGB star during and between two
consecutive thermal pulses. Mass boundaries and relevant quantities (e.g. the degree of overlap r and the efficiency of the third dredge-up
λ) are indicated. We refer to Table 2 for operative definitions. Note that mass and time coordinates are not on real scales, for graphical
clarity. The hatched areas over the later PDCZ correspond to the three-zone stratification of the material just before the development
of the convective pulse, containing from top to bottom: the ashes left by the H-burning shell, the products of the previous PDCZ, and
the hashes left by the He-burning shell. On the abscissa we show the lifetime of the convective pulse τPDCZ, and the quenching time τq
counted from the maximum extension of the PDCZ.

is the radius of a zero-temperature white dwarf (WD) with
mass M = Mc, while the coefficient δ > 1 accounts for the
fact that the nearly isothermal degenerate core is warm, i.e.
it has a non-zero temperature. To compute Rc we follow the
same prescriptions as in Marigo et al. (1999), and adopt the
Mc − LP relation of Wagenhuber & Groenewegen (1998).

Then, for given stellar mass, core mass, surface chemical
composition, and peak-luminosity LP, envelope integrations
are performed iterating on the effective temperature, Teff ,
until when M(Rc) = Mc. At this point, the structure of the
envelope is entirely and uniquely determined.

Since the typical values of Tmin
N may vary between differ-

ent sets of models (reflecting its dependence on the adopted
input physics and on the description of convection), we take
Tdup as a free parameter. An advantage is that with the
condition given by Eq. (22) we can also test the eventual
quenching of the third dredge-up due, for instance, to a
drastic reduction of the envelope mass, without the need for
another external assumption (see Sect. 4.1). For the present
set of TP-AGB models we have adopted the temperature
parameter log(Tdup) = 6.40.

3.6.2 Pulse-driven nucleosynthesis

We have developed a simplified model to predict the in-
tershell chemical composition produced by the flash-driven
nucleosynthesis, using an approach similar in some as-
pects to those proposed by Iben & Truran (1978), Mowlavi
(1999a,b), and Denissenkov & Herwig (2003).

The assumed scheme for the pulse-driven convection
zone (PDCZ) is sketched with the aid of a Kippenhahn di-
agram in Fig. 3, showing the time evolution of the PDCZ
borders from its appearance to its final quenching. Several
relevant variables are defined in Table 2.

At the onset of each TP the quantities ∆Mpdcz, τpdcz,
τq, T

max
pdcz, ρ

max
pdcz are preliminarily computed with the aid of

analytic relations as a function of the core mass and metal-
licity, that can be obtained as fits to full AGB models (see
Sect. 4 for more details). For the present work we use mainly
the results by Iben & Truran (1978), Wagenhuber (1996),
Karakas, Lattanzio & Pols (2002), Straniero et al. (2003).

A nuclear network is set up which includes the triple-α
reaction and the most important α-captures listed in Ta-
ble 1. Among them we consider the main reactions which
may be important as neutron sources: 13C (4He ,n) 16O ,
17O(4He ,n) 20Ne , 18O(4He ,n) 21Ne , 21Ne (4He , n) 24Mg ,
22Ne (4He ,n) 25Mg , and 25Mg (4He ,n) 28Si .

At time t = 0, just before the development of a TP,
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Table 2. Characteristic quantities of the TP-AGB model

Zi initial (zero-age-main-sequence) metallicity (mass fraction)
Yi initial (zero-age-main-sequence) helium abundance (mass fraction)
Xi initial (zero-age-main-sequence) hydrogen abundance (mass fraction)
Z current metallicity (mass fraction)
Mc current core mass ≡ mass of the H-exhausted core
Mc,1 core mass at the first thermal pulse

Mc,nodup = Mc,1 +

∫ t

0

dMc

dt′
dt′ core mass in absence of the third dredge-up, where t = 0 is the time of the first TP.

Mi initial stellar mass at the zero-age main sequence
M1 stellar mass at the first thermal pulse
M current stellar mass
Tbce temperature at the base of the convective envelope
τip interpulse period
φ ≡ t/τip (0 6 φ 6 1) pulse-cycle phase; the time t = 0 refers to the quiescent pre-flash luminosity maximum.

Quiescent interpulse evolution

∆Mc,tpc core mass growth over one interpulse period
∆Mc = Mc −Mc,1 cumulative core mass growth since the 1st TP
∆Mc,nodup = Mc,nodup −Mc,1 cumulative core mass growth in absence of the third dredge-up

Pulse-driven convective zone

MPt mass coordinate of the top of the current PDCZ at its maximum extension
M ′

Pt mass coordinate of the top of the previous PDCZ at its maximum extension
MHe mass coordinate of the He-exhausted core
MPb mass coordinate of the bottom of the current PDCZ at its maximum extension
fov parameter to mimic overshoot applied to the bottom of the PDCZ
∆Mpdcz PDCZ mass at its maximum extension
τpdcz total duration of the PDCZ
τq quenching time since maximum extension
Tmax
pdcz

maximum temperature reached in a TP at the inner border of the PDCZ

ρmax
pdcz

maximum density reached in a TP at the inner border of the PDCZ

The third dredge-up

Mmin
c minimum core mass for the occurrence of the third dredge-up

M3dup
c actual core mass at the first episode of the third dredge-up

Tmin
N minimum temperature reached by the pulse at the stage of post-flash luminosity maximum

Tdup minimum temperature at the base of the convective envelope for the occurrence of the third dredge-up
∆Mdup dredged-up mass at a given thermal pulse
∆Moverlap = M ′

Pt
−MHe overlap mass between two consecutive PDCZs

λ =
∆Mdup

∆Mc,tpc
efficiency of the third dredge-up

r =
∆Moverlap

∆Mpdcz

degree of overlap between two consecutive PDCZ

the chemical composition of the region over which the flash-
driven convection will extend, is assumed to be stratified
over three zones:

a) MPt − M ′
Pt containing the ashes, with abundances

{XHb}, left by the quiescent radiative H-shell over the
previous interpulse period;

b) M ′
Pt−MHe containing the nuclear products of the PDCZ

developed during the previous TP;

c) MHe − MPb containing the products of radiative He
burning.

For simplicity each of the three zones is assigned an average
chemical composition, though a chemical profile exists in
the a) and c) regions where nuclear burning has occurred in
radiative conditions.

Denoting with Xs the homogeneous surface abun-
dances, the composition of the hydrogen free layer left by

the H-burning shell is estimated following the indications
by Mowlavi (1999a,b), which can be summarised as follows:

• all hydrogen is burnt into helium: XHb(H) = 0;

• all available CNO isotopes are converted into 14N:
XHb(

14N) = 14×∑i=18

i=12
Xs

i /Ai (where Ai is the mass num-
ber);

• all 22Ne is burnt into 23Na by the NeNa chain:
XHb(

22Ne) = 0;

• the abundance of 23Na is computed with:
XHb(

23Na) = fNa[23/22 ×Xs(22Ne) +Xs(23Na)].

The factor fNa accounts for the possible destruction of 23Na
by proton captures at T > 6 × 107 K. Its value typically
ranges from fNa = 1 (no destruction) down to fNa = 0.2
(see figure A.3 in Mowlavi 1999a). For the present set of
calculations we have adopted fNa = 1. The effects of the Mg-
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Al chain on the resulting XHb abundances is not considered
in this work, and it will be implemented in a future study.

During each TP we follow the progressive development
of pulse convection and related nucleosynthesis, over the du-
ration τpdcz. The process is divided into two consecutive
phases:

I. from the onset of the PDCZ at time t = 0 up to
maximum extension at time t = τpdcz − τq;

II. from maximum PDCZ extension to final pulse
quenching at time t = τpdcz, with duration τq.

The PDCZ is resolved both in time and in space. The en-
tire duration τpdcz is subdivided in typically ≃ 100 time
steps, while at each time a suitable grid of mass meshes
is set up across the current PDCZ, with a maximum mass
resolution of ≃ 10−4 M⊙. The evolution of Tmax

pdcz and Tmax
rho

over τpdcz, and the temperature and density stratifications
across the PDCZ mass are described on the basis of de-
tailed calculations of thermal pulses (Wagenhuber 1996;
Wagenhuber & Groenewegen 1998, and private communica-
tions). Illustrative examples are discussed later, in Sect. 7.5.

During the phase I the evolution of the PDCZ is fol-
lowed by cycling over the sequence of steps: nucleosynthesis
→ homogenization → expansion/recession→ homogeniza-
tion. At each time step, starting from the current PDCZ
bottom (with mass coordinate mPb) up to the current PDCZ
top border (with mass coordinate mPt) the nuclear network
is solved locally in each mesh point.

A homogeneous chemical composition is assigned to the
PDCZ by mass-averaging the mesh abundances. Then, the
PDCZ is made expand i.e. inner/upper borders of the PDCZ
are shifted inward/outward, and elements of new material,
stratified according to the initial composition, are engulfed.
Eventually, a new PDCZ composition is obtained by averag-
ing the abundances with weights proportional to the masses
of the corresponding meshes.

The entire process, i.e. convective burning followed by
expansion and homogenization, is iterated until the maxi-
mum extension is reached, i.e. mPb = MPb and mPt = MPt,
and the mass contained in the PDCZ is equal to ∆Mpdcz.
At this point t = τpdcz − τq.

The quenching phase II is described by a similar scheme,
except that now the PDCZ convection retreats and the in-
ner/upper borders are shifted outward/inward until t =
τpdcz. The nuclear network is integrated over the pulse
quenching phase and a final homogeneous chemical com-
position is obtained. This sets the chemical mixture of the
material that may be brought up to the surface by the sub-
sequent third dredge-up phase.

Despite its simplicity the PDCZ model yields results
that nicely agree with those of full TP-AGB computations.
A detailed discussion of the predictions and their main de-
pendencies is given in Sect. 7.5.

4 THE SYNTHETIC MODULE

Most analytical ingredients of the COLIBRI code are formu-
las accurately fitting the results of full AGB models cov-
ering wide ranges of initial stellar mass and metallicity.
The formulas are taken either from the extensive compila-
tions by Wagenhuber (1996); Wagenhuber & Groenewegen

(1998); Karakas, Lattanzio & Pols (2002); Izzard et al.
(2004, 2006), and other sources (Straniero et al. 2003), or
they are directly derived from AGB model data sets by us-
ing standard χ2-minimization techniques. New fits can be
found in Appendix A.

Importantly, all these analytic relations include a metal-
licity dependence, and take into account the peculiar be-
haviour of the first sub-luminous pulses while approaching
the full-amplitude regime.

Among the most important prescriptions we men-
tion the flash-driven luminosity variations as a function
of the pulse-cycle phase (Wagenhuber & Groenewegen
1998), the core mass-interpulse period relation
(Wagenhuber & Groenewegen 1998), the maximum mass
of the PDCZ and its duration, the maximum tempera-
ture attained at the bottom of the PDCZ during a TP
(Karakas & Lattanzio 2007)6, the efficiency λ of the third
dredge-up (Karakas, Lattanzio & Pols 2002).

Due to their particular relevance, below we will discuss
in more detail a few analytic relations adopted in the present
version of COLIBRI.

4.1 The third dredge-up: the need for a

parametric description

It is common practice describing the third dredge-up by
means of two characteristic quantities, namely:

• Mmin
c : the minimum core mass for the onset of the third

dredge-up;

• λ =
∆Mdup

∆Mc,tpc
: the efficiency of the third dredge-up, de-

fined as the fraction of the core-mass growth over the inter-
pulse period that is dredged-up to the surface at the next
TP.

Compared to earlier computations, recent full TP-AGB
evolutionary models have allowed a wide exploration of
the third dredge-up characteristics as a function of stel-
lar mass and metallicity (e.g. Karakas, Lattanzio & Pols
2002; Herwig 2000, 2004a,b; Weiss & Ferguson 2009;
Cristallo et al. 2011). A few general trends can be extracted
from these calculations.

The efficiency λ is expected to increase with stellar mass
M , such that TP-AGB stars with initial masses M > 3M⊙

are predicted to reach λ ≃ 1, which implies no, or very
little, core mass growth. Lower metallicities favour an ear-
lier onset of the third dredge-up and a larger efficiency,
resulting in an easier formation of low-mass carbon stars.
Full TP-AGB models exist which are found to reproduce,
or at least to be reasonably consistent with, basic observ-
ables, such as the luminosity functions of carbon stars in
the Magellanic Clouds (e.g. Stancliffe, Izzard & Tout 2005;
Weiss & Ferguson 2009; Cristallo et al. 2011).

Together with these improvements, present TP-AGB
models also document that the third dredge-up is plagued
by severe theoretical uncertainties. They are due mainly to
our still deficient knowledge of convection and mixing, as

6 AGB models by Karakas & Lattanzio
(2007) are available for download at
http://www.mso.anu.edu.au/~akarakas/model_data/

http://www.mso.anu.edu.au/~akarakas/model_data/
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Figure 4. Left panel: Efficiency λ of the third dredge-up as a function of the current core mass during the TP-AGB evolution of a stellar
model with initial mass Mi = 3.0M⊙ and metallicity Zi = 0.02. Right panel: Minimum core mass Mmin

c for the third dredge-up as a
function of the stellar mass for TP-AGB models with initial metallicity Zi = 0.008. Predictions from full AGB calculations of various
authors are compared, namely: CRI11 (Cristallo et al. 2011); WEI09 (Weiss & Ferguson 2009); STA05 (Stancliffe, Izzard & Tout 2005);
STA04 (Stancliffe, Tout & Pols 2004); KAR02 (Karakas, Lattanzio & Pols 2002); HER00 (Herwig 2000); STR97 (Straniero et al. 1997).
Note the large differences from author to author both in λ and in Mmin

c .

well to a nasty sensitivity of the depth of the third dredge-
up to technical and numerical details (see Frost & Lattanzio
1996, and Mowlavi 1999b for thorough analyses).

As a consequence we still lack a robust assessment for
Mmin

c and λ, and these parameters are found to vary consid-
erably from author to author even for the same combination
(Mi,Zi) of initial stellar mass and metallicity. The theoreti-
cal dispersion is exemplified in Fig. 4. The dynamical ranges
of the parameters covered by the various sets of computa-
tions are large, amounting to almost a factor of 3 for the
maximum λ attained in a (Mi = 3.0M⊙, Zi = 0.02) model,
and more than ≃ 0.1M⊙ for Mmin

c for the (Mi = 2.0M⊙,
Zi = 0.008) case. It is clear that these variations propagate
dramatically in terms of the predicted stellar properties: sig-
nificant differences are expected in the luminosities spanned
during the C star phase, the final masses, the chemical
yields, etc. The situation appears even more unclear consid-
ering, for instance, that two independent sets of calculations,
i.e. Stancliffe, Izzard & Tout (2005) and Weiss & Ferguson
(2009), with largely different predictions for Mmin

c (see the
right-hand side panel of Fig. 4) are found by the authors to
recover the same observable, i.e. the carbon star luminos-
ity function in the LMC. This uncomfortable convergence
of the results is likely due to the combination of other crit-
ical parameters (e.g. efficiency λ, and mass loss). In fact, it
is differences in details of the chosen input physics, such as
the treatment of convective boundaries and the inclusion or
not of overshoot, that produces most of the variations seen
in full models, such as those shown in Fig. 4.

All these reasons amply justify the approach of taking
λ and Mmin

c (or, in alternative, λ and the temperature pa-
rameter Tdup; see Sect. 3.6.1), as free parameters, and to
calibrate them with the largest possible set of observations
to reduce the likely degeneracy between different factors.

4.2 Properties of the pulse-driven convection zone

In Fig. 5 we show three key quantities of the PDCZ as a
function of the core mass (starred symbols), as predicted
by Karakas, Lattanzio & Pols (2002); Karakas & Lattanzio
(2007) for five values of the initial metallicity (Zi =
0.0001, Zi = 0.004, Zi = 0.008, Zi = 0.012, andZi = 0.02).
Superimposed we plot the results obtained with the ana-
lytic relations (grey triangles) for the same stellar parame-
ters (Mi, Mc, and Zi) as in the original full computations,
The fitting relations behave well all over the core-mass range
covered by the full models. The formulas and their coeffi-
cients are given in Appendix A.

For comparison we draw two more relations taken from
literature, namely Iben & Truran (1978, black line) and
Straniero et al. (2003, magenta solid line). We have extrapo-
lated the Iben & Truran (1978) relations over the whole Mc

range, but one should consider that they were originally de-
rived from the high core mass (0.96 . Mc/M⊙ . 1.33) AGB
models of Iben (1977). We see that for Mc & 0.85M⊙ the
Iben & Truran (1978) relations for ∆Mpdcz and τpdcz are in
general agreement with the average trend predicted by the
recent AGB computations of Karakas & Lattanzio (2007).
The earlier results of Iben (1977) for Tmax

pdcz are systemati-
cally lower by up to 0.6− 0.8 dex.

The other relation proposed by Straniero et al. (2003),
on the basis of their full AGB calculations, appears to be
consistent with the Karakas & Lattanzio (2007) results in-
side its validity range, (i.e. 0.6 . Mc/M⊙ . 0.7). However,
we notice that it does not allow to describe the initial rise
of the temperature typical of the first pulses.
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Figure 5. Characteristic quantities of the pulse-driven convection
zone, i.e. maximum mass, maximum bottom temperature, and
duration, as a function of the core mass. A large set of 1658 mod-
els from Karakas & Lattanzio (2007), corresponding to various
choices of stellar mass and metallicity, is plotted (blue stars), to-
gether with our synthetic predictions (grey triangles) for the same
stellar parameters. Other fitting relations are shown for compar-
ison. The Straniero et al. (2003) relation (magenta solid line) for
Tmax
pdcz

corresponds to a model with Mi = 2.0M⊙, Zi = 0.02
and the core mass increasing from 0.60M⊙ to 0.72M⊙. The
Iben & Truran (1978) relations (black line) are strictly valid for
high core masses (0.96 . Mc/M⊙ . 1.33) (solid line portion), but
they have been extrapolated to lower Mc (dashed line portion)
for illustrative purpose only.

5 TESTS: COLIBRI VS FULL STELLAR

MODELS

5.1 Effective temperature and convective-base

temperature

As a first test we compare the effective temperatures ob-
tained with COLIBRI from envelope integrations (the method
is outlined in Sect. 3.5.1), against the predictions of full stel-
lar models computed with PARSEC (Bressan et al. 2012). A
detailed discussion is given in Appendix B.

Figure 6 quantifies the comparison in relation to the
quiescent stage just preceding the occurrence of the 1st ther-
mal pulse for several values of stellar masses and metallici-
ties. We see that the differences are in most cases quite low,
amounting to few tens of degrees, well below the typical
observational errors for Teff of AGB stars, about equal to
±(100− 200) K.

The results shown in the two panels of Fig. 6 differ in the
chemical distributions of metals assumed in COLIBRI. They
are usually expressed in terms of the ratios Xi/Z, where
Xi denotes the fractional mass of a given metal i. While
in one case (top panel) both EoS and opacities are com-
puted with the ÆSOPUS and Opacity Project codes adopting,
for each model, the actual set of surface abundances pre-
dicted by PARSEC at the 1st TP, in the other case (bottom

Figure 6. Differences in the predicted effective temperature be-
tween the envelope-integration method adopted in the COLIBRI

code and the PARSEC full evolutionary calculations. All models re-
fer to the pre-flash luminosity maximum just before the 1st TP
for several choices of the initial stellar mass and metallicity. Top
panel: The COLIBRI results are obtained with on-the-fly ÆSOPUS

and Opacity Project computations for the EoS and opacities, con-
sistently coupled to the actual chemical abundances across the
“deep” envelope. Bottom panel: The COLIBRI predictions are de-
rived adopting a distributions of metals frozen to the scaled-solar
ratios for all metallicities, i.e. Xi/Z = Xi,⊙/Z⊙, as assumed in
PARSEC.

panel) the mixtures are assumed to be all scaled-solar for
any metallicity, i.e. Xi/Z = Xi,⊙/Z⊙ for each metal i.

In principle, the former case is the correct one as it cou-
ples consistently EoS and opacities with the current metal
abundances, that may have varied with respect to the val-
ues at the zero-age main sequence, following the 1st and
second dredge-up processes. On the other hand, the latter
case, which is also adopted in the PARSEC models and, more
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Figure 7. Differences in the predicted temperature at the base of
the convective envelope between the envelope-integration method
adopted in the COLIBRI code and the PARSEC full evolutionary cal-
culations. All models refer to the pre-flash luminosity maximum
just before the 1st TP for several choices of the initial stellar
mass and metallicity. Top panel: COLIBRI models are computed
adopting the classical Schwarzschild criterion8 to define the inner
border of the convective envelope. Bottom panel: The COLIBRI

predictions are derived with convective overshoot at the base of
the envelope, extending over a distance lov = Λe × HP (where
HP is the pressure-scale height), with Λe = 0.7 as assumed in
PARSEC.

generally, by most full stellar codes, neglects the variation
of the elemental ratios, e.g. the lowering of the C/O, due to
mixing episodes prior to the TP-AGB phase.

It follows the accuracy degree of COLIBRI against
PARSEC is best represented by the temperature differences
in the bottom panel of Fig. 6, since the same metal ratios,
Xi/Z = Xi,⊙/Z⊙, are assumed in both sets of computa-
tions. In fact, passing from the top to the bottom panel of

Fig. 6 it is evident that the agreement between the COLIBRI
and PARSEC predictions improves, particularly for models of
larger masses which are most affected by the second dredge-
up. A more detailed discussion of this aspect and other re-
lated effects can be found in Appendix B1.

The temperature at the base of the convective envelope,
Tbce, provides an additional test for our envelope-integration
method, and it is particularly relevant for massive AGB
models (M > 4M⊙) as it measures the efficiency of HBB. As
analysed in Appendix B2, the results are affected by several
technical details not dealing with the envelope integration
method, such as differences in the operative definition of the
convective border, inclusion or not of convective overshoot-
ing, assumed metal partitions, adopted equation of state,
high-temperature opacities, etc. All these aspects, together
with the fact that the base of the convective envelope may
fall inside a region characterized by an extremely steep tem-
perature gradient, concur to somewhat amplify the differ-
ences in Tbce.

Figure 7 shows the temperature differences between
COLIBRI and PARSEC predictions for initial masses Mi >

2.6M⊙ and various metallicities. Two cases are considered
in the COLIBRI definition of the innermost stable mesh-point
of the convective envelope, namely: the strict application of
the Schwarzschild criterion (top panel), and the inclusion
of convective overshoot by the same amount as adopted in
PARSEC (bottom panel). In both cases the differences remain
fairly small, i.e. | log(T full

bce )− log(T env
eff )| < 0.05 dex.

In conclusion our tests indicate that:

• the agreement in effective temperatures between our
envelope integrations and full stellar modelling is extremely
good, with differences |T env

eff − T full
eff | < 40 K and in many

cases practically negligible;
• the differences T env

eff − T full
eff are always negative and

tend to systematically decrease at lower metallicity, sug-
gesting that they are likely related to the elemental abun-
dances and the way they are treated in the EoS and opac-
ity computations. Indeed cooler T env

eff compared to T full
eff are

partly explained by the differences in the assumed Xi/Z
used in the EoS and opacities, i.e. actual chemical abun-
dances in COLIBRI against frozen scaled-solar ratios adopted
by PARSEC.

• A very good agreement is found also for Tbce (within
0.05 dex), which strongly supports the ability of our
envelope-integration method to account correctly for the oc-
currence of HBB in more massive AGB models.

5.2 Quiescent luminosity on the TP-AGB

Thanks to the extension of the deep envelope model to in-
clude the H-burning shell, we can predict the luminosity
during the quiescent stages without adopting any auxil-
iary CMLR, as usually done in synthetic TP-AGB mod-
els (e.g. Hurley, Pols & Tout 2000; Izzard et al. 2004, 2006;
Cordier et al. 2007; Marigo & Girardi 2007).

Figure 8 shows the pre-flash luminosity as a function

8 According to the Schwarzschild criterion the border of a convec-
tive region is the layer at which the equality ∇rad = ∇ad holds,
where the ∇rad, ∇ad denote the radiative temperature gradient
and the adiabatic temperature gradient, respectively.
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Figure 8. Stellar luminosity as a function of the core mass at the quiescent pre-flash stage preceding each thermal pulse, for two
sets of TP-AGB models with initial metallicity Zi = 0.008. Left-hand side panel: full TP-AGB models by Karakas, Lattanzio & Pols
(2002) (empty blue circles). Right-hand side panel: predictions of our deep envelope integrations that include the H-burning shell (empty
green circles). To facilitate comparison we overplot the Karakas, Lattanzio & Pols (2002) predictions (solid blue lines). The initial
stellar masses (in M⊙) are quoted nearby the corresponding sequences. A few CMLRs from various authors are also plotted, namely:
Boothroyd & Sackmann (1988a, BS88), Blöcker (1995, BL95), Wagenhuber & Groenewegen (1998, WG98), Izzard et al. (2004, IZZ04),
Izzard et al. (2006, IZZ06). Note the effect of HBB which makes more massive TP-AGB models to deviate significantly from the CMLRs
towards higher luminosities. See text for more details.

of the core mass for two sets of TP-AGB models with ini-
tial metallicity Zi = 0.008 and a few values of the ini-
tial stellar mass, computed by Karakas, Lattanzio & Pols
(2002), and with the COLIBRI envelope-integration technique
adopting the same stellar parameters (e.g. total mass, core
mass, dredged-up mass, mixing-length parameter, and ini-
tial metallicity). Considering that the two sets of calcula-
tions differ both in technical details (e.g. solution method
of the stellar structure equations, zone-meshing, etc.) and
in the input physics (e.g. EoS, opacities, nuclear reaction
rates, etc.) the overall agreement is quite striking. We de-
rive two main implications: i) in absence of HBB, i.e. for
TP-AGB models with smaller cores (Mc . 0.75M⊙) and
less massive envelopes (Menv . 2.5M⊙), the CMLR is a ro-
bust prediction of the theory (essentially reflecting the ther-
mostatic character of the H-burning shell), ii) in our deep

envelope integrations the treatment of the H-burning ener-
getics is reliable.

In fact, in the range 0.5M⊙ . Mc . 0.7M⊙

our predictions for the pre-flash luminosity maximum
recover the Karakas, Lattanzio & Pols (2002) results re-
markably well, and more generally the classical CMLRs
(e.g. Boothroyd & Sackmann 1988a, red line). The bright-
ening of the tracks beyond the CMLR, as shown by
Karakas, Lattanzio & Pols (2002) models with Mc .

0.75M⊙ and M . 3.5M⊙, is driven by the occurrence of a
deep third dredge-up. This effect is discussed in Sect. 5.2.1.

At larger core masses, Mc & 0.75M⊙ (see the mod-
els with initial masses Mi = 4, 5, 6M⊙ in Fig. 8), HBB is
expected to produce the break-down of the CMLR: sim-
ilarly to the tracks by Karakas, Lattanzio & Pols (2002),
the COLIBRI sequences with M > 4M⊙ exhibit a steep

luminosity increase at almost constant core mass (λ ≃ 1
in these models). After reaching a maximum, the lumi-
nosity starts to decline quickly from pulse to pulse un-
til the CMLR is recovered again. The luminosity peak
and the subsequent decrease are controlled by the onset
of the super-wind phase, which determines a rapid re-
duction of the envelope mass, hence the weakening and
eventual extinction of HBB. We note that the COLIBRI

tracks with HBB reach higher luminosity maxima than the
Karakas, Lattanzio & Pols (2002) models with the same ini-
tial masses, a circumstance that confirms the sensitivity of
the HBB process on the adopted input physics and details
of the convection treatment (Ventura & D’Antona 2005).

5.2.1 The effect of deep third dredge-up

Full AGB calculation indicate that the occurrence of
deep dredge-up events make the models brighter than ex-
pected by the CMLR (Herwig, Schoenberner & Bloecker
1998; Mowlavi 1999b; Karakas, Lattanzio & Pols 2002), due
to the intervening non-linear relation between the core mass
and the core radius.

To account for this effect we have analysed a large num-
ber of full TP-AGB models from Karakas, Lattanzio & Pols
(2002). These models are characterised by a large range of
dredge-up efficiencies, from λ ≈ 0 to λ ≈ 1, depending on
stellar mass and metallicity.

We find that, in presence of dredge-up, the quiescent
pre-flash luminosity LQ of a TP-AGB model with a core
mass Mc is well recovered with our envelope-integration
method by applying the boundary condition for the core
temperature (Eq. 17) in the form Tc = T (Mfict

c ), where we
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Figure 9. Quiescent pre-flash luminosity maximum as a
function of the core mass for a few combinations of initial
masses (in M⊙) and metallicities Zi, as indicated in the middle
panel. Left panel: Results from full TP-AGB models taken from
Karakas, Lattanzio & Pols (2002); Karakas & Lattanzio (2007)
Note the steep increase of the luminosities beyond the CMLRs,
which is interpreted as an effect driven by the third dredge-
up. Middle panel: Results from deep envelope integrations de-
scribed in Sect. 3.5.1. The boundary condition Eq. (17) is used
with the temperature corresponding to the true core mass, Mc.
Right panel: Results from deep envelope integrations described in
Sect. 3.5.1, but with the boundary condition Eq. (17) evaluated
using a fictitious core mass given by Eq. (24). For comparison, the
analytic CMLR of Boothroyd & Sackmann (1988a) is plotted for
metallicities Zi = 0.02 (solid line), Zi = 0.008 (short-dashed line),
Zi = 0.004 (dotted line), and Zi = 0.0005 (long-dashed line).

introduce a fictitious core mass

Mfict
c = Mc + ξ (Mc,nodup −Mc,1) , (24)

with the multiplicative factor ξ ≃ 0.3− 0.4.
The variable Mc,nodup has been already used in past

synthetic TP-AGB models (e.g. Hurley, Pols & Tout 2000;
Izzard et al. 2004, 2006). It was introduced to account for
effects due to an increase in core degeneracy during the qui-
escent interpulse growth, so that stars with the same core
mass, but different dredge-up histories, may have different
quiescent luminosities. Since in COLIBRI the integrations of
stellar structure are performed down to the bottom of the H-
burning shell, for the electron-degenerate core beneath it we
need to resort to a parametrized description. The variable
Mc,nodup is a suitable choice for the case under considera-
tion.

The results are illustrated in Fig. 9, where the COLIBRI
tracks computed with Eq. (24) setting ξ = 0.3 (right-
hand side panel) are compared to the original sequences
Karakas, Lattanzio & Pols (2002) (left-hand side panel).
Despite the simple formulation of the corrective term in
Eq. (24), the agreement is quite satisfactory.

It is also instructive to look at the middle panel of Fig. 9
showing the COLIBRI predictions for ξ = 0, i.e. without

Figure 10. Distributions of CPU times relative to one thermal
pulse cycle, either with the COLIBRI code (purple histogram), or
with the PARSEC stellar evolution code (green histogram). In both
cases the sample consists of N = 507 complete pulse cycles.

the effect of the third dredge-up. In this case all the tracks
comply with the classical CMLR by Boothroyd & Sackmann
(1988a), and reproduce quite well the dimming of the quies-
cent luminosity at decreasing metallicity. As a matter of fact,
the TP-AGB models from which Boothroyd & Sackmann
(1988a) derived their analytic CMLR were characterised
by rather shallow, in most cases absent, convective dredge-
up events, and were mostly limited to the first few ther-
mal pulses. This fact explains why the over-luminosity ef-
fect due to the third dredge-up does not show up in the
Boothroyd & Sackmann (1988a) models.

It follows that the very nice accordance between the
CMLR of Boothroyd & Sackmann (1988a) and the COLIBRI
predictions for ξ = 0 adds a further confirmation on the
validity of our envelope-integration method in terms of the
H-burning energetics (see also Sect. 5.2).

5.3 Computational agility

A key feature of the COLIBRI code is the computational
agility, that is kept to competitive levels despite the several
numerical operations performed at each time step, i.e. it-
erative solution of the atmosphere and envelope structures,
integration of nuclear networks, on-the-fly computation of
the EoS and Rosseland mean opacities across all meshes.

Figure 10 compares the performance of the COLIBRI

and the PARSEC codes, in terms of the typical CPU time
required to compute one thermal pulse cycle, i.e. the time
interval between two consecutive pre-flash luminosity max-
ima. The two histograms correspond to the distributions of
N tot

tpc = 507 thermal pulse cycles followed over a wide range
of initial stellar masses (0.6M⊙ . Mi . 6M⊙), and metal-
licities (0.0005 6 Zi 6 0.07).

The difference in CPU time9 requirements is noticeable.
The COLIBRI distribution shows a broad peak at τtpc ∼
30 − 40 s, and a low tail extending down to 3 − 4 s. The
median of the distribution is τ̃tpc ≃ 14 s. Bins at longer τtpc
are populated by TP cycles referring to i) the last TP-AGB

9 In our discussion we refer to the CPU time taken by a typical
2.2-GHz processor.
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stages in which the high mass-loss rates impose the reduc-
tion of the evolutionary time steps, and ii) more massive
AGB stars experiencing both the third dredge-up and HBB,
with consequent intensive computing of EoS and opacities
to follow the continuous changes in the envelope chemical
abundances.

The PARSEC distribution is located over much longer
time scales, with τtpc ranging from ≈ 10 min to ≈ 200 min.
The median of the PARSEC distribution is τ̃tpc ≃ 29 min.

In any case, the gain in terms of CPU time with COLIBRI

is sizable: the integrated CPU time to compute N tot
tpc = 507

thermal pulse cycles is roughly 4 hours for COLIBRI and ≃ 21
days for PARSEC.

While we acknowledge that the continuing increase in
computing speed of modern computers enables present-
day full evolution codes to compute extended grids of
TP-AGB tracks, we should also realize that performing
a multi-parametric fine calibration of the uncertain pro-
cesses/assumptions is extremely more demanding in terms
of computational agility and numerical stability, character-
istics that do not ordinarily apply to the full approach.

Processes and assumptions that are known to dramat-
ically affect the TP-AGB evolutionary phase are, for in-
stance, mass loss, third dredge-up, nucleosynthesis, convec-
tion efficiency, overshooting, initial chemical abundances,
etc. For each of them, we could single out more than one
characteristic parameter, depending on the theoretical pic-
ture one aims investigating at. A dozen parameters may rep-
resent a reasonable estimate of the number of factors one
should take into consideration for an extensive analysis.

To get an order of magnitude of the time requirements,
let us consider our specific working case. At present we
are dealing with 14 metallicity sets (limited to the scaled-
solar compositions, other sets are planned), from very low to
super-solar Z. From the PARSEC database of models, we ex-
tract the initial conditions at the first TP for 65− 70 values
of the initial stellar mass (on average), from ≃ 0.5M⊙ to
≃ 5− 6M⊙. The fine grid in mass is important to allow for
the construction of accurate and detailed stellar isochrones.

The total number of TP-AGB tracks to be calculated
is 951. With the set of parameters adopted in this ex-
ploratory work, all the TP-AGB tracks followed by COLIBRI

cover 14293 thermal pulse cycles, for a true CPU time of
7854 s ≃ 5.2 days.

With the conservative assumption that the PARSEC code
takes a computing time ≈ 100 longer (probably more), the
whole TP-AGB tracks would be ready after ≃ 520 days, that
is ≈ 1.5 yr. These are likely optimistic estimates, considering
that the current PARSEC distribution of CPU times is biased
towards shorter values since, in general, each evolutionary
track includes the first few TPs, that usually involve a lighter
computational effort compared to the later, well-developed
TPs. Moreover, the PARSEC tracks are calculated at con-
stant mass, while the inclusion of a mass-loss prescription
would certainly impose a further reduction of the time steps,
hence an increase of the CPU time.

It is also worth noting that the computing time request
is expected to increase with the stellar mass, given that the
pace at which TPs take place correlates with the core mass,
while HBB gets stronger. In a recent study Siess (2010) re-
ported that ≈ 6 months of CPU time were required by his
full evolution code to follow the whole Super-AGB phase of

just one model with strong HBB. Of course, this may not
be the same for other full codes, but a trend of increasing
computational cost with the stellar mass is of general valid-
ity.

In any case, we emphasize here that what makes the
computational effort particularly challenging for full mod-
els is the calibration process. In fact, promptly producing
extended and dense (in mass and metallicity) sets of TP-
AGB tracks is a necessary requisite to build accurate stellar
isochrones spanning the whole relevant ranges of ages and
metallicities. In turn, the stellar isochrones are the building
blocks of population synthesis simulations of galaxies includ-
ing AGB stars, which can be readily put in direct compar-
ison with observations. Possible discrepancies between pre-
dictions and observed data will bring the work-flow back to
the theoretical side, and new sets of TP-AGB tracks with a
different set of input assumptions should be put in execu-
tion. This calibration cycle may be repeated several times
before a satisfactory match between models and observa-
tions is attained.

Even before starting the calibration loop, in this pre-
liminary and exploratory phase, we have already computed
ten complete grids, for a total of 9510 TP-AGB tracks, each
time changing a technical/physical parameter (e.g. an effi-
ciency mass-loss parameter, the mass meshing, the time-step
regulation, or a subset of nuclear reaction rates). It seems re-
alistic that many more iterations, maybe hundreds, are nec-
essary for an adequate global calibration. As a consequence,
numerical stability and computational agility are essential
conditions, both fully met by our COLIBRI code.

6 EVOLUTIONARY TRACKS

We consider 14 sets of stellar tracks covering a wide range
of the initial metallicity, namely for Zi =0.0001, 0.0005,
0.001, 0.004, 0.006, 0.008, 0.01, 0.014, 0.017, 0.02, 0.03, 0.04,
0.05, and 0.06 with initial scaled-solar abundances of met-
als. The reference solar mixture is that recently revised by
Caffau et al. (2011), corresponding to a Sun’s metallicity
Z≃0.0152.

6.1 Up to the onset of the TP-AGB

The evolution prior to the TP-AGB phase, from the pre-
main sequence to the occurrence of the first TPs, is com-
puted at constant mass with the PARSEC code, as described
in the paper by Bressan et al. (2012) to which we refer for all
details. We recall here only a few relevant points. For each
value of Zi, the initial helium abundance is determined by
the Yi = 0.2845 +1.78Zi enrichment law. The energy trans-
port in the convective regions is described according to the
mixing-length theory of Böhm-Vitense (1958). The mixing
length parameter αMLT is fixed by means of the solar model
calibration, and turns out to be αMLT = 1.74. The PARSEC
tracks include overshoot applied to the borders of both con-
vective cores and envelopes, with overshooting scales that
vary with the stellar mass as described in Bressan et al.
(2012). Envelope overshoot is discussed also in Sects. 5.1
and B2, in relation to the accuracy checks performed on
COLIBRI results.

For each PARSEC set of stellar tracks of given (Zi, Yi)
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Figure 11. Core mass as a function of the stellar mass at the stage of the pre-flash luminosity maximum, just preceding the occurrence
of the 1st thermal pulse. The data, extracted from the PARSEC database of stellar models (Bressan et al. 2012), are shown for eight
choices of the initial metallicities, as indicated. In each panel the solid line is the fit obtained with Eq. (A6), and the coefficients given
in Table A2.

combination, we extract the initial conditions at the 1st TP
for all the values of the initial stellar mass in the grid, rang-
ing from ≃ 0.5M⊙ to Mup, the latter being the maximum
mass for a star to develop an electron-degenerate C-O core.
We deal typically with 60 − 70 low- and intermediate-mass
tracks for each initial chemical composition.

The core mass at 1st thermal pulse, Mc,1, fixes a lower
limit to the mass of the remnant white dwarf, and it is closely
connected to the initial-final mass relation.

Figure 11 shows the PARSEC predictions for Mc,1, as a
function of the stellar mass for several choices of the initial
metallicity. The stellar mass, M1, is the value at the onset of
the TP-AGB phase, so that, in principle, one should correct
for the amount of mass lost by low-mass stars (Mi . 2M⊙)
during the red giant branch (RGB) phase in order to trans-
late the Mc,1 relation as a function of the initial stellar mass.

Two are the main features common to all the curves,
namely: i) the almost constancy of Mc,1 for stellar masses
lower than 1.6 − 2.0M⊙ (depending on Zi), which simply
reflects the fact that these stars develop He-cores of very
similar mass due to the electron degeneracy after the main
sequence; ii) the change of slope at stellar masses in the
range 2.5 − 3.5M⊙ (depending on Zi) and the subsequent
flattening of the Mc,1 relations. This is the fingerprint of the
occurrence of the second dredge-up during the Early-AGB of
intermediate-mass stars, that causes a significant reduction
of their core masses.

In Table A2 of Appendix A we present the fitting coeffi-
cients that we derive following the parametrization proposed
by Wagenhuber & Groenewegen (1998), for several metal-
licities. In each panel of Fig. 11 the fitting curves are over-
imposed to the PARSEC data for Mc,1. We note, however, that

our TP-AGB calculations use the true Mc,1 values, and not
those derived from the formulas.

6.2 TP-AGB evolution

For each stellar model with initial parameters (Mi, Zi) the
characteristic quantities at the 1st thermal pulse (core mass,
luminosity, effective temperature, envelope chemical com-
position), obtained from the PARSEC database, are fed as
initial conditions to the COLIBRI code, which computes the
TP-AGB evolution until when almost the entire envelope
is lost by stellar winds. Operatively the COLIBRI calcula-
tions are stopped when the mass of the residual envelope
falls below a limit of 0.002M⊙ − 0.005M⊙. At this stage
all evolutionary tracks are already evolving off the AGB to-
wards higher effective temperatures, with a luminosity that
depends mainly on the mass of the C-O core, and the phase
of the pulse cycle at which the last event of mass ejection
took place (see Fig 12).

For the present work we adopt a specific set of pre-
scriptions for the mass loss and the third dredge-up, which
we briefly outline below. These models will serve as a refer-
ence case for our ongoing TP-AGB calibration, and therefore
the current parameters may be somewhat changed in future
calculations. Anyhow, from various preliminary tests made
with the present models, we expect that they already yield
a fairly good description of the TP-AGB phase.

Mass loss. It has been included under the hypothe-
sis that it is driven by two main mechanisms, dominat-
ing at different stages. Initially, before radiation pressure
on dust grains becomes the main agent of stellar winds,
mass loss is described with the semi-empirical relation by
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Figure 13. Left-hand side panel: Evolution of temperature, density, C/O ratio, and concentrations of the most abundant molecular
species in the gas phase at the photosphere during the TP-AGB phase of a model with initial parameters Mi = 2M⊙, Zi = 0.008.
The star experiences several third dredge-up events so that it is expected to become a carbon star. Note the huge dynamical range
of the molecular concentrations, up to ≃ 25 orders of magnitude! Right-hand side panel: Evolution of the photospheric C/O ratio and
concentrations of six selected molecular species, among the most abundant ones, during the whole TP-AGB phase of a model with initial
parameters Mi = 4M⊙, Zi = 0.0005, experiencing both very deep third dredge-up and efficient HBB. Note the key role of the C/O ratio
in governing the trends of the different molecules, as well as the several crossings at C/O= 1.

Schröder & Cuntz (2005), which essentially assumes that
the stellar wind originates from magneto-acoustic waves op-
erating below the stellar chromosphere. The corresponding
mass-loss rates are indicated with Ṁpre−dust.

Later on the AGB the star enters the dust-driven
wind regime, which is treated with an approach similar to
that developed by Bedijn (1988), and recently adopted by
Girardi et al. (2010), to which the reader is referred for all
details. Briefly, assuming that the wind mechanism is the
combined effect of two processes, i.e., radial pulsation and
radiation pressure on the dust grains in the outermost atmo-
spheric layers, we adopt a formalism for the mass-loss rate
as a function of basic stellar parameters, mass M and radius

R, expressed in the form Ṁ ∝ eM
aRb

. The free parameters
a and b have been calibrated on a sample of Galactic long-
period variables with measured mass-loss rates, pulsation
periods, stellar masses, radii, and effective temperatures.
More details about the fit procedure will be given elsewhere.
We denote the corresponding mass-loss rates with Ṁdust.

The key feature of this formalism is that it predicts an
exponential increase of the mass-loss rates as the evolution
proceeds along the TP-AGB, until typical super-wind val-
ues, around 10−5 − 10−4 M⊙yr

−1, are eventually reached.

The super-wind mass loss is described in the same fash-
ion as in Vassiliadis & Wood (1993), and corresponds to a
radiation-driven wind, Ṁsw = L/c vexp, where c is the speed
of light and vexp is the terminal velocity of the wind.

At any time during the TP-AGB calculations the actual
mass-loss rate is taken as

Ṁ = max[Ṁpre−dust,min(Ṁdust, Ṁsw)]. (25)

The third dredge-up. The onset of the third dredge-up is
predicted according to the scheme described in Sect. 3.6.1.
The minimum temperature parameter is set to log(Tdup) =
6.4. This rather low value favours an early occurrence of
the third dredge-up episodes. The efficiency λ of the third
dredge-up is computed with the analytic fits provided by
Karakas, Lattanzio & Pols (2002), as a function of current
stellar mass and metallicity.

Figure 12 illustrates a few selected evolutionary tracks
of low- and intermediate-mass stars, zooming in their bright-
est portions in the H-R diagram, that include the whole
TP-AGB computed with COLIBRI and some earlier evolu-
tion calculated with PARSEC. The transition from PARSEC to
COLIBRI is not even distinguishable in most cases, except for
the higher mass models with HBB (Mi = 5.0M⊙, Zi = 0.001



22 P. Marigo et al.

Figure 12. Selected evolutionary tracks of low- and intermediate-
mass stars, zooming in their coolest and brighter parts in the H-
R diagram, for different values of the stellar mass at the onset
of the TP-AGB phase (indicated in M⊙ nearby the correspond-
ing track), and for two choices of the initial chemical composi-
tion. The plots include the entire TP-AGB tracks calculated with
COLIBRI, and a portion of the previous evolution computed with
PARSEC. Note the smooth transition from PARSEC to COLIBRI.

and Mi = 5.8M⊙, Zi = 0.01) for which COLIBRI pre-
dicts somewhat cooler effective temperature at the 1st TP
compared to PARSEC. This difference has been discussed in
Sect. 5.1, and can be partly explained in terms of the small
differences in molecular opacities adopted by the two codes
(see Fig. 6).

We also note in Fig. 12 that low-mass models (Mi =
0.6M⊙, 1.0M⊙) are characterised by quite narrow TP-AGB
tracks since at given metallicity, as long as the surface
C/O< 1, the effective temperature is mostly determined by
stellar mass and luminosity. Differently, models with larger
masses (Mi = 2.0M⊙, 3.0M⊙), which are expected to un-
dergo the transition to carbon stars, exhibit a pronounced
displacement towards lower effective temperatures, mainly
driven by the increase in molecular opacities. Finally, mod-
els with the highest masses (Mi = 5.0M⊙, 5.8M⊙) present
TP-AGB tracks with the typical bell-shape modulated by
the occurrence of HBB, and with the peak in luminosity
reached when the envelope mass starts being drastically re-
duced by stellar winds. These considerations apply in gen-
eral to both metallicity cases here considered (Zi = 0.001
and Zi = 0.01), with some systematic differences, i.e. lower
effective temperatures are expected at higher metallicities,

Figure 14. Pgas −T structure of static atmospheres correspond-
ing to stellar model with M = Mi = 1M⊙, Z = Zi = 0.008, Xi =
0.70, L = 104 L⊙, and three choices of the effective temperature,
i.e. log(Teff ) = 3.5, 3.4, 3.3. The thermodynamic stratification is
shown for both plane-parallel (dot-dashed line) and spherically
symmetric (solid line) geometries, and assuming either C/O= 0.5
(top panel), or C/O= 2.0 (bottom panel). The photospheres are
indicated by pentagons. The dotted lines correspond to the con-
densation temperatures at varying gas pressure for a few rele-
vant species, namely: corundum (Al2O3), spinel (MgAl2O4), and
forsterite (Mg2SiO4) as predicted by Lodders & Fegley (1999) for
C/O= 0.5 (top panel); graphite (C) and silicon carbide (SiC) from
Lodders & Fegley (1995) for C/O= 2.0.

again due to surface opacity effects. A more detailed analysis
of this aspect is given in Sect. 7.3.

Finally, we note that in our TP-AGB calculations no
particular convergence problem was met all the way to
the complete ejection of the envelope, whereas other stud-
ies, based on full TP-AGB calculations, report the di-
vergence of the models in the late stages of evolution
(e.g., Wood & Faulkner 1986; Wagenhuber & Weiss 1994;
Lau et al. 2012). In the latter paper the authors suggest that
the cause of the instability in the most massive TP-AGB
models may be related to a local opacity maximum of Fe at
the base of the convective envelope. At present we cannot
identify the reason for the different behaviour of COLIBRI,
this delicate point will deserve a closer look in follow-up
studies.
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Figure 15. Maps of geometrical thickness ∆R of static stellar atmospheres in the H-R diagram, for four choices of the stellar mass
and metallicity Zi = 0.008, as indicated. The radial extension, defined by Eq. (7), is referred to the outermost radius at which Pgas has

decreased to 10−4 dyne cm−2. Contour lines of constant δR (as indicated) are superimposed. The dotted regions correspond to unbound
atmospheres, i.e. in which the radiative acceleration exceeds the gravitational acceleration somewhere between R and R0, so that the
Eddington factor Γ (Eq. 26) becomes larger than unity.

7 OVERVIEW AND ANALYSIS OF THE

COLIBRI PREDICTIONS

In the following we will discuss some relevant predictions of
the COLIBRI code, with the aim of understanding a few key
dependencies of the various physical processes at work and
their complex interplay, as well as giving a general overview
of the COLIBRI predictive capability.

7.1 Molecular concentrations at the photosphere

The on-the-fly use of the ÆSOPUS code during the TP-AGB
calculations enables us to predict, for the first time, the
evolution of the abundances of ≃ 500 molecular species
in the outermost layers of the envelope. In Fig. 13 (left-
hand side panel) we show the results at the photosphere of
a Mi = 2M⊙, Zi = 0.008 model. We see clearly how the oc-
currence of thermal pulses produces large variations of the
photospheric temperature and density (top panel), which
in turn cause similar “pulses” in the concentrations of the
molecules.

As amply discussed in Sects. 3.1 and 3.2 the other crit-
ical factor determining the molecular chemistry is the sur-
face C/O ratio. The model under consideration experiences
several third dredge-up episodes, that make the C/O ra-
tio increase above unity (top panel). At the stage C/O≈ 1
we note an abrupt change in the molecular equilibria: while
the abundances of the O-bearing molecules drop (middle
panel), the C-bearing molecules suddenly start dominating
the atmospheric chemistry (bottom panel). The abundance
variations due to the increase of the C/O ratio are indeed re-
markable, and they may span many orders of magnitudes! In
this respect we also acknowledge the numerical stability of
ÆSOPUS code, which is able to handle molecular species down
to trace concentrations (e.g. SO2 drops down to ≃ 10−30 in
the last TPs). At variance with the other molecules, the
concentration of the carbon monoxide (CO) remains almost
unperturbed by the evolution of the C/O ratio (except for
a modest increment following the increase of C), due to its
extremely large bond energy.

To better appreciate the role of the C/O ratio as the
main driving factor of molecular chemistry, Fig. 13 (right-
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Figure 16. Hayashi lines on the AGB at increasing surface C/O ratio, color-coded according to the scales at the right-hand side of
each plot, i.e. shades of blue for C/O6 1, shades of red for C/O> 1. Results are shown for constant stellar mass, M = 1.0M⊙ and
M = 2.0M⊙, and two choices of the initial metallicity Zi = 0.017, and Zi = 0.0005. Contour lines from C/O= 0.2 to C/O= 10, with an
incremental step ∆(C/O)= 0.2, are superimposed to guide the eye. See the text for more details.

hand side panel) zooms in the evolution of just six molecules,
among the most abundant ones, during the TP-AGB phase
of a Mi = 5M⊙, Zi = 0.001 star. This model is predicted
to suffer significant changes in its envelope chemical com-
position due to both the third dredge-up and HBB, which
produce a complex evolution of the C/O ratio. We expect
that the surface C/O follows a sawtooth trend crossing the
critical region around unity several times, even during the
single TPs. This may happen under particular conditions
such that one dredge-up episodes brings the C/O> 1 and
later, during the interpulse period, HBB is able to burn C
into N, hence lowering C/O below unity again.

In particular we note that the during the last TPs HBB
is extinguished while the third dredge-up keeps on taking
place, so that a significant increase of the C/O ratio is pre-
dicted in the last stages, as already noted by Frost et al.
(1998). Correspondingly, the molecular species exhibit quite
drastic variations: the C-bearing molecules (CN, HCN, C2)
follow the steep increase of the C/O ratio, whereas those of
the O-bearing molecules (SiO, H2O, CO2) show a specular
behaviour. Eventually the abundances of all molecules drop
when the atmosphere starts warming up as the star evolves
off the AGB.

7.2 Extended atmospheres in the H-R diagram

Figure 14 displays the gas pressure – temperature stratifi-
cations of a few static atmosphere models (with the same
stellar mass and luminosity), under the assumption of ei-
ther plane parallel or spherically-symmetric geometry (see
Sect. 3.4). Computations were carried out for three values of
the effective temperature and two choices of the C/O ratio.

It is interesting to note that, at least for the models un-
der consideration, at given Teff and C/O, the photospheric
pressure is almost insensitive to the geometry, while the
separation between the thin and the extended atmospheres
grows wider and wider at lower pressures. On the contrary
a major effect is produced by the C/O ratio: at fixed Teff ,
the photospheric pressure is lower for C-rich than for O-rich
models. This will have a sizable impact on the inner enve-
lope structure of AGB stars with different C/O ratios, since
the photosphere sets two of the four boundary conditions
for the envelope integrations described in Sect. 3.5.1.

By comparing the atmospheric structures for the two
geometry options in Fig. 14, it is clear the relevance of the
dilution of the radiation field in the extended atmospheres
of AGB stars. For instance, for C/O= 2.0 the plane-parallel
model with Teff > 3.4 remains too cool and does not en-
ter the condensation region of SiC and graphite, while the
corresponding spherical model does it successfully. On the
other hand, almost all models with C/O= 0.5 stay outside
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the condensation area even at the lowest Teff = 3.3. Indeed,
a detailed analysis on the nucleation and growth of dust
grains in the outer envelopes of AGB stars requires aban-
doning the static approximation in favour of an expanding
envelope model. This important issue is beyond the scope of
the present work, and is addressed in a forthcoming paper
(Nanni et al. 2013).

Figure 15 illustrates the areas in the H-R diagram where
AGB and post-AGB stars (cooler than ∼ 3× 104 K) are ex-
pected to have extended atmospheres, i.e. the radial exten-
sion of the atmosphere being a non-negligible fraction of the
photospheric radius. The geometrical thickness δR is defined
according to Eq. (7).

First of all we note that, at given stellar mass, δR in-
creases at higher L and lower Teff . Giants with lower masses
have thicker atmospheres (higher ∆R), since smaller M/L
values tend to reduce the effective gravitational acceleration,
geff = (1− Γ)g, by increasing the Eddington factor

Γ =
κ

4πGc

L

M
(26)

where g = GM/R2 is the gravitational acceleration, κ
is the flux-averaged opacity, while the other constants
have their usual meanings. As shown in the top panels
of Fig. 15, these conditions are preferably met by evolved
M-type stars of low mass, a circumstance already dis-
cussed by e.g. Schmid-Burgk, Scholz & Wehrse (1981), and
Laskarides & Nikolaidis (1990).

At higher L and increasing Teff atmospheres may even
become gravitationally unbound, as the Eddington factor
rises above unity due to the increasing opacity κ in the out-
ermost layers. In fact, for temperatures log(T ) & 3.8 K, the
Rosseland mean opacity is expected to grow steeply due to
the increasing contributions of the hydrogen bound-free and
free-free absorptions (see e.g. Marigo & Aringer 2009). It
follows that this condition may apply, for instance, to post-
AGB stars with high mass (& 1M⊙) (evolved from more
massive AGB stars with HBB) on their way towards the
hotter regions of the H-R diagram (see the dotted area top-
right panel of Fig. 15).

7.3 Hayashi lines on the TP-AGB

Figure 16 displays several sequences of AGB Hayashi lines,
with the aim of illustrating their basic dependencies on
stellar mass, envelope mass, metallicity and C/O ratio.
To this aim we consider two choices of the stellar mass,
1.0M⊙ and 2.0M⊙, and two values of the initial metallicity
Zi = 0.0005, and 0.017.

The surface C/O ratio is made vary from 0.1 to 10 in
steps of ∆(C/O) = 0.2, by increasing the C abundance,
while keeping O constant (to mimic the effect of the third
dredge-up). Therefore the actual metallicity Z increases as
C/O increases.

For each value of C/O, the core mass Mc is made in-
crease from 0.5M⊙ in steps of ∆Mc = 0.1M⊙, until ei-
ther the luminosity reaches log(L/L⊙) = 4.6, or the en-
velope mass falls below 10% of the total stellar mass, i.e.
(M −Mc)/M < 0.1. While the former condition is first met
by the 2.0M⊙ sequences, the latter applies to the 1.0M⊙

tracks, that are terminated when Mc = 0.94M⊙.

Figure 17. Cooling rate, measured by the derivative
|d(log Teff )/d(C/O)|, as a function of increasing C/O ratio (in
the regime > 1) as predicted by envelope integrations referring
to a model with a mass of 2M⊙ and luminosity log(L/L⊙) = 4.
Note the pronounced sensitivity to the initial metallicity.

The effective temperature and the luminosity are de-
termined by complete integrations of envelope models (see
Sect. 3.5.1), with gas opacities calculated on-the-fly consis-
tently with the current chemical composition (and C/O ra-
tio).

We remark that these calculations are simply grids of
envelope integrations and are meant to yield an overall pic-
ture of the Hayashi lines of C stars and their critical de-
pendencies, but they cannot, by construction, be strictly
representative of the TP-AGB evolution. For instance, the
over-luminosity effect due to a deep third dredge-up is not
taken into account and the Hayashi lines in Fig. 16 are those
corresponding to a standard CMLR (for λ = 0). As a con-
sequence, at a given stellar mass, luminosity, and C/O ra-
tio the “actual” effective temperature of an evolving C star
model should be somewhat lower than that predicted in
Fig. 16. This said, the following discussion is nevertheless
instructive since the general trends remain valid.

Examining Fig. 16 several features can be noticed. As
long as C/O< 1 the Hayashi lines have a steep slope and
span a limited Teff range, which becomes narrower at de-
creasing metallicity. This interval defines the expected loca-
tion of M and S stars. The value C/O= 1 corresponds to
the warmest Hayashi line, due to a deep minimum in the
molecular opacities (nearly all C and O atoms are locked in
the CO molecule; see Marigo & Aringer 2009).

As soon as C/O overcomes unity we expect a sud-
den jump of the Hayashi lines to lower effective tempera-
tures, the amplitude of the temperature jump being more
pronounced at increasing metallicity. The cooling rate, ex-
pressed by the derivative |d(log Teff)/d(C/O)|, progressively
decreases at increasing C/O ratio, so that larger and larger
C/O ratios are required to reach lower effective tempera-
tures. This is evident by looking at the thickening of the
iso-C/O curves in Fig. 16 (dashed lines), which become grad-
ually closer one to the next.

It means that, above some critical C/O ratio, the atmo-
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spheric structure becomes less and less sensitive to a further
increase of the carbon abundance. This kind of “saturation”
effect shows up at lower C/O ratio for decreasing metallic-
ity, as can be better appreciated in Fig. 17. We notice that
at higher Zi the cooling rate is large for C/O values slightly
above 1, then it decreases until it flattens out to a nearly
constant, small value. This trend is found also at lower Zi,
but with smoother features: the initial drop of Teff becomes
less pronounced and |d(logTeff)/d(C/O)| levels off at lower
C/O ratios. Note, for instance, the extremely low cooling
rate at Zi = 0.0005 all over the C/O ratio under considera-
tion (1 6 C/O 6 10).

7.4 The core mass at the onset of the third

dredge-up

As already mentioned in Sect. 3.6.1, we can determine the
minimum core mass for the occurrence of the third dredge-
up Mmin

c , checking if and when the Tbce exceeds a critical
value Tdup at the stage of post-flash luminosity peak. The
quantity Tdup is assumed as a free parameter.

In Figure 18 the left-hand side panels display the
Mmin

c predictions for log(Tdup) = 6.2, 6.4, 6.5, 6.6, 6.7, 6.8
and three values of the initial metallicity, Zi = 0.02, Zi =
0.008, andZi = 0.004. The numerical method described
in Sect. 3.6.1 has been applied for stellar masses ranging
from 1M⊙ to 3M⊙ in steps of 0.05M⊙. In practice, once
set the minimum temperature Tdup, for each initial stel-
lar mass and chemical composition, Mmin

c is the value of
the core mass for which Tbce = Tdup is satisfied. The solu-
tion is found iteratively with envelope integrations adopting
the Brent root-finding algorithm (chapter IX of “Numerical
Recipes”; Press et al. 1988). In each case Mmin

c is taken as
the maximum between the value obtained by the envelope-
integration method and the core mass at the first thermal
pulse, Mc,1. We do not show the results for M > 3M⊙, since
for the higher masses the temperature criterion is always
satisfied since the onset of the TP-AGB, regardless of the
value Tdup. We see that all the curves share the same trend.
Starting from lower masses towards the higher ones, Mmin

c

slightly decreases, reaches a minimum and then steeply in-
creases. It is interesting to note that the minimum in Mmin

c

corresponds exactly to the critical maximum mass, MHeF,
for a star to develop a degenerate He-core and experience
the He-flash at the tip of the RGB. This reflects the same
correspondence between MHeF and the minimum of Mc,1

(see Fig. 11), already pointed out long ago by Lattanzio
(e.g. 1986).

For a given initial metallicity, at decreasing Tdup, the
sequences move downward and reach lower stellar masses,
that is Mmin

c decreases and the third dredge-up is expected
to take place in stars of lower and lower masses. We note
that for Tdup 6 6.4 the minimum core mass Mmin

c coincides
with Mc,1.

The values of the core mass, M3dup
c , when the third

dredge-up effectively occurs for the first time during the
TP-AGB evolution, are shown in the right-hand side pan-
els of Figure 18. We note that, in general, M3dup

c > Mmin
c ,

as expected. The COLIBRI results for M3dup
c , corresponding

to log(Tdup) = 6.4, show a similar trend with the stellar
mass compared to full TP-AGB models calculations. At the
same initial metallicity and stellar mass our predictions for

log(Tdup) = 6.4 are lower than Karakas, Lattanzio & Pols
(2002), but somewhat larger than Weiss & Ferguson (2009).

Clearly significant differences exist between the two sets
of full calculations, which supports the need to accurately
calibrate Mmin

c with the aid of observations of M and C
giants of different ages and metallicities. This calibration
is presently underway and will be presented in subsequent
papers.

7.5 Intershell abundances

The standard chemical composition of the intershell region,
left after the development of a thermal pulse, amounts to
roughly 20%−25% of 12C, 1%−2% of 16O, 1%−2% of 22Ne,
with 4He essentially comprising all the rest (Schönberner
1979; Boothroyd & Sackmann 1988b; Mowlavi 1999a), al-
most regardless of metallicity and core mass.

These standard values are presently debated.
Izzard et al. (2004) find a lower value for 16O, typ-
ically amounting to ≈ 0.5%, while the inclusion of
convective diffusive overshooting applied to all convective
boundaries of the PDCZ determines a substantial increase
of the 12C and 16O abundances at the expense of 4He
(Herwig et al. 1997). Herwig (2000) shows that with his
calibrated parametric scheme for overshoot, the 12C and
16O intershell abundances reach typical values of 0.45, and
0.25, respectively.

We will now discuss our predictions obtained from the
semi-analytic scheme detailed in Sect. 3.6.2. Figure 19 exem-
plifies the evolution of the main characteristics of the PDCZ
during a thermal pulse, in two models with different core
masses. Let us first analyse the results for the model with
Mc = 0.576M⊙ (left-hand side panels).

We see that while the density at the bottom of the
PDCZ is continuously dropping, the corresponding temper-
ature first rises up to the maximum value, Tmax

pdcz, and then
decreases (top panels).

Before reaching the maximum temperature, the chemi-
cal composition of the PDCZ may vary mainly due to its
growth in mass, as the ashes of the H-burning shell are
reached by the expanding convection. As a consequence the
abundances of 4He, 14N, and 23Na are expected to increase.
The sharp rise of 14N is evident in the bottom left-hand side
panel of Fig. 19. The increase of 14N is only temporary: as
soon as the PDCZ heats up nitrogen is completely destroyed
by the chain 14N(4He, γ)18F(β+ν)18O.

In the short phase around the temperature maximum
the PDCZ reaches its widest mass extension. At this point
the main α-capture reactions are turned on, leading to the
production of primary carbon via the 4He (2 4He , γ) 12C
reaction, together with some synthesis of 16O from
12C(4He , γ) 16O , and 22Ne from 18O(4He , γ) 22Ne . Corre-
spondingly the 4He abundance decreases.

Finally, when the PDCZ cools and the convection re-
cedes the chemical composition barely changes, so that the
entire intershell with mass ∆Mpdcz is assigned the final mix-
ture at φ = 1.

Basically the same analysis holds for the model with
the higher core mass (right-hand side panels), but for a few
differences that are explained mainly by the higher Tmax

pdcz,
the shorter duration τPDCZ of the PDCZ, and by the pre-
vious dredge-up history. As we discuss later, the intershell
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Figure 18. The minimum core mass for the third dredge-up as a function of the stellar mass at the onset of the TP-AGB phase, and
three values of the initial metallicity as indicated. Left-hand side panels: Predictions for Mmin

c are obtained from envelope integrations,
as detailed in Sect. 3.6.1, adopting six values of the minimum temperature for the base of the convective envelope, namely: log(Tdup) =

6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8. Right-hand side panels: The core mass at the first occurrence of the third dredge-up, M3dup
c , during the

TP-AGB evolution of models of different masses and metallicities, as indicated. We compare the results from two sets of full TP-AGB
calculations (Weiss & Ferguson 2009; Karakas, Lattanzio & Pols 2002), with the COLIBRI predictions assuming log(Tdup) = 6.4.
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Figure 19. Structural characteristics of the pulse-driven convective zone, corresponding to the 10th and 18th thermal pulse of the
M1 = 1.2M⊙, Zi = 0.017 (left panel) and M1 = 5.4M⊙, Zi = 0.017 (right panel) models, respectively. The corresponding values of the
core mass (Mc), efficiency of the third dredge-up (λ), and degree of overlap (r) are indicated on top of each plot. Quantities are presented
as a function of the phase φ = t/τpdcz, from the onset of pulse convection (φ = 0) to its disappearance (φ = 1). For each stellar model,
the panels show the evolution of temperature and density at the current PDCZ base (top panel); the evolution of the PDCZ abundances
(in mass fractions), homogenized over the current PDCZ mass (middle and bottom panels).

abundances do depend on the indirect interaction of one
pulse with the preceding one, which can be quantified by
the so-called “degree of overlap”, denoted with r. We also
note that in the model with higher Mc a higher Tmax

pdcz is
attained so that 22Ne (4He ,n) 25Mg is also activated. This
reaction is recognized as a source of neutrons for the s-
process nucleosynthesis in more massive AGB stars (e.g.
Busso, Gallino & Wasserburg 1999; Pumo et al. 2009).

Figure 20 shows the evolution of the final PDCZ abun-
dances left after each thermal pulse (bottom panels), during
the entire TP-AGB evolution of the (Mi = 2.6, Zi = 0.017)
model. The left- and right-hand side panels compare the
results in the cases the third dredge-up takes place (left-
hand side panel; λ > 0) or does not (left-hand side panel;
λ = 0). In the λ > 0 case, the efficiency of the third dredge-
up is described following the analytic relations presented
by Karakas, Lattanzio & Pols (2002) which fit the results of
their full AGB models (see also Sect. 6.2), the λ = 0 case is
simply treated setting the efficiency to zero at each thermal
pulse. This is equivalent to assume a high value for Tdup.
Several remarks can be made.

The “standard” intershell abundances. Our intershell
abundances of 4He, 12C, and 16O recover nicely the “stan-

dard” values obtained by the class of full AGB mod-
els (e.g. Schönberner 1979; Boothroyd & Sackmann 1988b;
Izzard et al. 2004; Karakas & Lattanzio 2007) in which the
borders of the PDCZ are determined by the classical
Schwarzschild criterion applied to the temperature gradi-
ents. We find typical values of ≈ 20% for 12C and ≈
0.5% − 1% for 16O (Figs. 20, 22, 24, 25). More specifi-
cally, our predictions for 16O are in closer agreement with
the lower abundances reported by Izzard et al. (2004), than
the higher values of 1% − 2% defining the “standard” in-
tershell composition (Boothroyd & Sackmann 1988b). This
difference will be discussed below, being likely related to the
efficiency of the third dredge-up.

Dependence on the degree of overlap. The degree of
overlap r is defined as the fraction of the matter contained in
a given PDCZ that is incorporated into the PDCZ produced
at the next thermal pulse. The reader may refer to Table 2
for the operative definition of r in terms of mass coordinates,
and to Fig. 3 for a graphical representation. The parameter r
was originally introduced and discussed in early studies (e.g.
Ulrich 1973; Iben 1975; Truran & Iben 1977; Iben 1977) to
highlight the importance of the overlap between successive
pulses to the slow-neutron capture nucleosynthesis of heavy
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Figure 20. Top panels: predicted intershell abundances as a function of the core mass during the entire TP-AGB phase of a (Mi =
2.6, Zi = 0.017) model. Bottom panels: Evolution of the maximum temperature Tmax reached at the bottom of the PDCZ at each TP,
efficiency λ of the third dredge-up, and degree of overlap r between two consecutive PDCZs. The results in the right-hand side panels
are obtained under the assumption that the third dredge-up does not occur (λ = 0). Note that in this case the 23Na abundance in the
PDCZ is lower than in models with dredge-up (left-hand side panel).

Figure 21. Mass of overlap, ∆Moverlap, between two consecu-
tive PDCZs, and mass difference (M ′

Pt
−Mc) between the top of

the previous PDCZ, M ′
Pt

, and the current core mass, Mc. Predic-
tions are shown as a function of the pulse number, for the same
evolutionary sequences of Fig. 20, computed with two different as-
sumptions for the efficiency third dredge-up: λ = 0 (empty blue
triangles), or λ > 0 (filled green triangles; according to the rela-
tions of Karakas, Lattanzio & Pols (2002)). Note the effect of the
third dredge-up that pushes M ′

Pt
inward.

elements, especially in relation to the synthesis of 22Ne and
its role in the release of neutrons via the 22Ne (4He ,n) 25Mg
reaction.

We also find a significant dependence of the intershell
abundances on the degree of overlap r between consecutive
PDCZs. This can be better appreciated by looking at the
bottom panels of Fig. 20. We see that the degree of overlap
tends in general to decrease from pulse to pulse, but the
occurrence of the third dredge-up (λ > 0) makes r to drop
more steeply, eventually reaching zero in the last TPs. The
smooth decline of r, expected for λ = 0, is mostly due to
the inverse correlation between ∆Mpdcz and Mc (see top
panel of Fig. 5), so that less massive PDCZs are produced
in later TPs. On the other hand, every time a dredge-up
event takes place the upper border, MPt, of the PDCZ is
shifted inward in mass coordinate, by an amount which is
larger at increasing λ. This circumstance causes a further
reduction of r. We find that for λ & 0.7 the overlap r ≃ 0,
implying that the PDCZs are almost decoupled one from the
next.

This effect is clearly shown in Fig. 21, where the mass
difference, MPt−Mc, becomes more and more negative when
the third dredge-up is active (λ > 0), at variance with the
nearly constancy, or even small increase, expected if the
process does not take place (λ = 0). Consequently, the de-
crease of the overlap mass between two consecutive PDCZs,
∆Moverlap, is steeper at increasing λ. We note that in the
TP-AGB model with λ > 0 the overlap mass gradually re-
duces to almost zero, and then it grows again in the very
last thermal pulses when the third dredge-up does not take
place anymore.

The consequences on the PDCZ nucleosynthesis are ex-
emplified in Fig. 20. While in absence of dredge-up events
(λ = 0) all intershell abundances tend to flatten out at
nearly constant values, when the third dredge-up takes place
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Figure 22. Dependence of the intershell abundances of 12C (top
panel) and 16O (bottom panel) on the degree of overlap r between
consecutive PDCZs. The bunch of lines show the predictions for
a constant value of r (indicated in the bottom panel) between
consecutive PDCZs. The sequences of triangles show the PDCZ
abundances as a function of the core mass during the evolution
of a TP-AGB star with (Mi = 2.6M⊙, Zi = 0.017) in which we
assume the third does not occur. In this test case the TP-AGB
phase is computed without mass loss to extend the calculations
up to Mc = 0.7M⊙.

this pattern is modified. In particular, as the third dredge-
up starts to occur we expect that the intershell abundance
of 16O somewhat declines levelling off in the last TPs, while
those of 22Ne and 23Na increase, steadily. These findings for
22Ne and 23Na are in full agreement with Mowlavi (1999a,b),
to which the reader should also refer for a very detailed anal-
ysis.

The increase of 22Ne, that reaches up to ≃ 2%− 3% in
the cases under consideration, is directly related to the in-
crease of primary 12C in the envelope composition caused
by the third dredge-up. The more abundant the surface
12C is, the larger amount of 14N is synthesized during the
interpulse period by the CNO-cycle operating in the ra-
diative H-burning shell. In turn, the more abundant 14N
is, the more 22Ne will be produced by the chain of reac-
tions 14N(4He, γ)18F(β+ν)18O(4He, γ)22Ne occurring inside
the PDCZ.

The increase of 23Na is related to the larger envelope
abundance of 22Ne, that we expect as a consequence of the
third dredge-up. We recall that the 23Na in the PDCZ is
not synthesized in situ during the pulse, but is it inherited
as part of the material processed by the radiative H-burning
shell, where the conversion 22Ne(p, γ)23Na took place.

The trends of the 12C and 16O intershell abundances,
mainly synthesized as primary products during the TPs, are
also affected by the third dredge-up, hence by the degree of
overlap between consecutive PDCZs.

To better investigate this aspect, we have performed a
few test calculations, assuming each time a different value
of the overlap parameter r, which is kept constant along a

Figure 23. Comparison of a few versions for the 12C(4He, γ)16O
rate, taken from the JINA reaclib database (Cyburt et al. 2010).
They correspond to Caughlan & Fowler (1988, CF88), Angulo
(1999, NACRE), Buchmann (1996, BU96), Kunz et al. (2002,
KF02). We plot the ratio of each rate relative to BU96, which

is our default choice. The hatched area corresponds to the rel-
evant range of the temperature attained at the bottom of the
PDCZ (see Fig. 5).

pre-determined sequence of thermal pulses. Given a selected
value of r̂, at each thermal pulse the mass coordinate of the
top of the previous PDCZ, M ′

pdcz, is artificially varied such
that the condition ∆Moverlap = M ′

Pt −MHe = r̂∆Mpdcz is
fulfilled (see Fig. 3). This is equivalent to suitably adjust-
ing the maximum depth of the third dredge-up, hence its
efficiency λ.

The results are presented in Fig. 22, together with a
TP-AGB sequence computed without the third dredge-up
(black triangles). From the intersections with the bunch of
lines we can read out the corresponding values of the degree
of overlap r, which is found to decrease slowly from roughly
0.8 to 0.4.

As for the PDCZ abundances, we notice that, after the
first pulses, the curves tracing the evolution of the intershell
abundances at constant r, run almost parallel at increasing
core mass. For instance, at Mc = 0.65M⊙, passing from
r = 0.8 to r = 0.0 the 12C (16O) concentration decreases
from ≃ 41% (≃ 2.7%) to ≃ 17% (≃ 0.5%). The relative
change with r appears larger for 16O (approx a factor of six)
than for 12C (approx a factor of two).

From these results we suggest that the lower 16O inter-
shell abundances (< 1%) reported by Izzard et al. (2006),
compared to the standard values (1% − 2%) found by
Boothroyd & Sackmann (1988b) reflect the larger efficiency
of the third dredge-up (i.e. higher λ hence lower r) found in
the more recent works compared to the past.

Dependence on the nuclear reaction rates. We have
investigated the robustness of the “standard” intershell com-
position against reasonable changes in two key nuclear reac-
tion rates, namely 4He(2 4He, γ)12C and 12C(4He, γ)16O. A
few versions for the latter rate are compared in Fig. 23. The
results for the PDCZ abundances of 12C and 16O are shown
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Figure 24. Dependence of the intershell abundances of 12C (top
panel) and 16O (bottom panel) on the nuclear reaction rates
4He (2 4He , γ) 12C , and 12C (4He , γ) 16O , respectively. Labels in
the top panel stand for the Caughlan & Fowler (1988, CF88) and
the Fynbo et al. (2005, FY05) rates, while labels in the bottom
panel are the same as in Fig. 23. The calculations refer to the
same TP-AGB model with (Mi = 2.6, Zi = 0.017), as in Fig. 22.

Figure 25. Predicted intershell abundances as a function of the
core mass overt the entire TP-AGB evolution for a few models
with various choices of the initial mass (1.2M⊙: empty trian-
gles; 2.0M⊙: empty circles; 2.6M⊙: stars; 3.0M⊙: empty squares;
4.0M⊙: crosses; 2.0M⊙: filled triangles. The initial metallicity is
Zi = 0.017 (top panel) and Zi = 0.001 (bottom panel).

in Fig. 24. There is an almost perfect overlap of the 12C pre-
dictions obtained with the Caughlan & Fowler (1988) and
the Fynbo et al. (2005) rates. This is not surprising since
the two versions are quite similar (with a relative difference
always below 1%) in the temperature range of interest for
the pulse nucleosynthesis, i.e. 2× 108K . T . 4× 108K.

The results for 16O exhibit a somewhat larger depen-

dence, but still modest, on the assumed 12C(4He, γ)16O.
A comparison of four rates for this reaction is dis-
played in Fig. 23. In the relevant temperature range
the largest difference reaches roughly a factor of 2 be-
tween the Caughlan & Fowler (1988) and the Fynbo et al.
(2005) rates, while the variation in the intershell abun-
dance of 16O remain quite small, ≈ 10%. The rather
low sensitivity of the 16O abundance PDCZ to significant
changes of the 12C(4He, γ)16O rate was already noticed by
Boothroyd & Sackmann (1988b) and is essentially explained
by the fact that the proper temperature conditions are kept
for too short a time to allow a sizable conversion of 12C into
16O.

Dependence on stellar mass and metallicity. Fig-
ure 25 shows the evolution of the final PDCZ abundances
left after each thermal pulse, during the entire TP-AGB evo-
lution of models with a few values of initial stellar masses
and two choices of the initial metallicity Zi = 0.017 and
Zi = 0.001. As already mentioned, our predictions are es-
sentially consistent with the recent results from full stellar
models without overshooting applied to the PDCZ (Mowlavi
1999a; Karakas, Lattanzio & Pols 2002; Izzard et al. 2004).
In particular the 12C abundance evolves towards an asymp-
totic value of ≃ 20%, independent of mass and metallicity,
while in most cases the 16O abundance settles down around
a value of ≃ 0.005 − 0.008, in any case lower than 2% re-
ported by Boothroyd & Sackmann (1988b).

The abundance of 22Ne is nearly always larger than that
of 16O, reaching up to ≈ 2%−3% in models with Zi = 0.017,
while lower values up to ≈ 1% − 2% are attained for Zi =
0.001. However we note that, relative to its value at the first
TP, the PDCZ concentration of 22Ne shows a larger increase
in lower metallicity models, while at larger metallicity the
increment is by one order of magnitude at most. This result
is likely related to the fact that at lower metallicity we expect
a more efficient enrichment of primary 12C, hence of the
total CNO abundance, in the envelope caused by the third
dredge-up. In this way the synthesis of 22Ne is favoured, as
it is the end product of a chain of α-capture reactions that
just start with 14N, the most abundant product of the CNO
cycle (after 4He) operating in the H-burning shell.

A similar trend characterizes the evolution of the 23Na
intershell abundance, which depends on the proton capture
reactions occurring in the H-burning shell during the qui-
escent interpulse periods. High-metallicity models show, in
general, higher values of 23Na ingested in the PDCZ, up to
≃ 10−3, but the relative increase over the TP-AGB evolu-
tion is larger in low-metallicity models.

Dependence on overshoot. The scheme depicted in
Fig. 3 for the PDCZ can be easily modified to account for
overshoot applied to the base of the convective pulse. As a
test case, we have considered the results obtained by Herwig
(2000), who applied an exponential diffusive overshoot at
the convective boundaries of the PDCZ. One major conse-
quence is a depletion of helium and enhancement of carbon
and oxygen in the intershell abundance distribution. Typi-
cal abundances (by mass) are 0.4 − 0.5 for 12C, 0.15 − 0.20
for 16O, and 0.30− 0.40 for 4He, obtained by Herwig (2000)
with his calibrated overshoot parameter.

We underline that in our model the physical structure of
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Figure 26. Top panel: PDCZ abundances as a function of the
core mass at each TP of a model with initial mass Mi = 3M⊙

and metallicity Zi = 0.02. Predictions are obtained with a param-
eter fov = 7 that mimics the inclusion of convective overshoot at
the base of the PDCZ. This value of fov allows to nicely repro-
duce the results of detailed calculations by Herwig (2000) for the
same (Mi, Zi) combination. Bottom panel: Mass of the PDCZ at
its maximum extension predicted with fov = 1 (empty circles),
and with fov = 7 (filled circles). The amount of helium burning
products ingested by the PDCZ, corresponding to the mass dif-
ference (MHe−MPb), multiplied by a factor of ten, is also shown.
All masses are in solar units. See the text for more explanation.

the PDCZ is described via analytic fits to the results of full
TP-AGB model (see Sect. 3.6.2), so that we cannot perform
physical tests of stability against convection at the borders
of the convective intershell. Nonetheless, we can simulate
the effect of different prescriptions with the aid of a sim-
ple parametric approach. To mimic the effect of overshoot
applied to the PDCZ boundaries, we shift inward the mass
coordinate of its bottom, adopting the parametrization:

Moversh
Pb = MHe − fov(MHe −MPb) , (27)

where fov > 1 is an adjustable factor. For fov = 1 we recover
the typical intershell chemical composition that is predicted
by full TP-AGB models when using the Schwarzschild cri-
terion, while the effect of convective overshoot is simulated
adopting fov > 1. As mentioned by Herwig (2000), there is
no noticeable effect of overshoot at the top of the PDCZ, so
that we keep the mass coordinate MPt unchanged.

The mass difference (MHe−MPb), derived from full TP-
AGB calculations as a function of the core mass, is plotted
in Fig. 26. We find that Herwig (2000) results are reasonably
well reproduced with fov ≃ 7, in terms of both PDCZ mass
and abundances (see his figures 7d and 11 for the (Mi =
3M⊙, Zi = 0.02) model).

Without pretending to investigate in more detail com-
plex aspects of the PDCZ nucleosynthesis (e.g. the forma-
tion of the 13C pocket is not considered here), we underline
that this simple parametric approach may be useful to ex-

plore the impact of the overshoot option on the formation
and evolution of carbon stars, by comparing population syn-
thesis simulations including overshoot with observations, an
important test which is still to be done to our knowledge. An
example of test calculation is discussed in the next Sect. 7.6,
and illustrated in Fig. 29.

7.6 Hot-bottom burning nucleosynthesis

Figure 27 demonstrates the importance of including a time-

dependent convective diffusion algorithm to treat the syn-
thesis of lithium in intermediate-mass AGB stars with HBB.
As thoroughly discussed by Sackmann & Boothroyd (1992),
such an approach is necessary when the usual instanta-

neous mixing 10 approximation is no longer valid. This is
the case for nuclei, like 7Li and 7Be, whose lifetimes may
become shorter or comparable to the convective timescale
in some parts of the convective envelope. The circumstance
τconv ≈ τnuc occurs in the inner regions for 7Li, and in the
external layers for 7Be (see Fig. 27, left panel). As a con-
sequence, the abundances of these species may vary con-
siderably across the convective envelope, at variance with
the concentrations of other nuclei (e.g. 3He, C, N, O) made
homogeneous by the rapid convective mixing.

In particular, the convective envelopes of intermediate-
mass AGB stars present the suitable thermodynamic condi-
tions to put the Cameron-Fowler beryllium transport mech-

anism (Cameron & Fowler 1971) at work: 7Li is efficiently
produced and sustained in the outermost layers by electron
captures on 7Be nuclei until either the reservoir of 3He (in-
volved in the reaction 4He (3He , γ) 7Be ) is exhausted, or
HBB is extinguished due to envelope ejection by stellar
winds.

The model displayed in Fig. 27 shows the envelope
structure of a TP-AGB star with Mi = 5.4, Zi = 0.008, that
may be considered as representative of the most luminous
M giants in the Large Magellanic Cloud. The structure is
taken at the maximum surface Li enrichment corresponding
to ǫ(7Li) ≃ 4.6, and Mbol ≃ −6.5, in nice agreement with
the luminosities and the highest measured values of Li in
the LMC super-rich Lithium stars (Smith & Lambert 1989,
1990; Smith et al. 1995). Note the mirror behaviours of 7Be
and 7Li abundances: towards the surface 7Li is efficiently
produced by electron captures on 7Be nuclei.

Figure 28 compares the evolution of luminosity and sur-
face 7Li abundance in TP-AGB stars with the same initial
mass of 5M⊙ but different metallicities. A few points are
worth noting. Since at decreasing Z higher temperatures
at the base of the envelope are reached, the brightening of
stars with HBB along the TP-AGB becomes steeper at lower
metallicity, so that the classical Paczyński limit11 (Paczyński

10 The instantaneous mixing approximation is based on the as-
sumption τconv ≪ τnuc, that is the convective timescale, τconv , is
much shorter than the nuclear lifetime τnuc, such that any element
produced by nucleosynthesis is immediately homogenized all over
the convective region. This brings a big simplification in nucle-
osynthesis calculations: nuclear reactions rates are mass-averaged
throughout the convective region, which can be then treated as a
single radiative zone.
11 In the old-fashion terminology the Paczyński limit, also known
as “AGB limit”, corresponds to the maximum luminosity that an
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Figure 27. Thermodynamic and abundance profiles across the deep convective envelope of an intermediate-mass TP-AGB model
experiencing HBB, with Mi = 5.4M⊙ and Zi = 0.008, taken at its maximum 7Li surface enrichment, when Mbol = −6.48 and
Mc = 0.96M⊙. Left panel: Nuclear timescales of a few relevant species against proton captures and electron captures (only for 7Be), and
convective timescale τconv . Right panel: Logarithmic profiles of abundances for a few selected species, expressed either in mass fraction
(for 3He, 12C, 14N, 16O), or with the spectroscopic notation ǫi = log[ni/n(H)]+12, where n corresponds to the number density of atoms
(for 7Li and 7Be). The temperature T6 = log(T/106K) and the diffusion coefficient log(D/R2

⊙ yr−1), defined by Eq. (20), are also shown.

1970), at Mbol ≃ −7.1, may be even exceeded, like the
Mi = 5M⊙, Zi = 0.0005 model does. In fact, because of the
break-down of the CMLR in stars with HBB, the Paczyński
limit is no longer a true upper bound to the AGB luminos-
ity (Blöcker & Schönberner 1991; Boothroyd & Sackmann
1992), so that AGB stars brighter than Mbol ≃ −7.1 could
be effectively be observed with a core mass Mc < 1.4M⊙.

At the same time, the synthesis of lithium is more ef-
ficient at lower metallicity due to the larger amounts of
7Be produced in the innermost layers of the envelope by
the 4He (3He , γ) 7Be reaction. But for very high metallic-
ities, e.g. Zi = 0.04, at which the Li production remains
quite modest (left-hand side panels of Fig. 28), in the
other cases under consideration a maximum value around
log[n(7Li)/n(H)]+12 ≃ 4−4.5 is reached, that is only mod-
erately dependent on Zi. This limiting value is in full agree-
ment with earlier computations by Sackmann & Boothroyd
(1992), and it is the result of the high temperature sensi-
tivity of τ (7Be) from one side, and of similar temperature
conditions for the maximum Li synthesis in envelope models,
on the other side.

Finally, we note that there should be a limited range of
metallicity for which we expect AGB stars to contribute to
the lithium enrichment of the interstellar medium. Compar-
ing the trends of the 7Li abundance and the current stellar
mass (bottom panels of Fig. 28), we see that for only mod-
els with Zi = 0.02 significant mass loss takes place when the
surface 7Li is high, while at higher and lower metallicities,
the ejecta are practically 7Li free. In fact at Zi = 0.04 the

AGB star, complying with the CMLR, may reach when its core
mass has grown up to the Chandrasekhar limit, Mc ≃ 1.4M⊙.
Its physical meaning has been dismissed since the prediction of
the break-down of the CMLR by hot-bottom burning in massive
AGB stars.

7Li synthesis is just a small and short-lived event, whereas
at Zi = 0.008 and Zi = 0.0005 the 7Li production is quite
efficient but confined to the earliest stages of the AGB evo-
lution, so that when the super-wind regime of mass loss is
attained, practically whole 7Li has been destroyed, follow-
ing the progressive exhaustion of the 3He reservoir. These
conclusions are drawn for a particular set of stellar models,
while a more general analysis should be extended also to
other values of the stellar mass, which will be done a future
investigation.

Figure 29 exemplifies the results of the nucleosynthesis
calculations made by COLIBRI over the entire TP-AGB evo-
lution of a Mi = 5.0, Zi = 0.001 model, corresponding to a
low-metallicity star experiencing strong HBB.

The nucleosynthesis of the CNO, NeNa and MgAl cy-
cles at low metallicities is of particular interest, in rela-
tion to the possible role of primordial AGB (and Super-
AGB) stars as polluters of the gas out of which the
old stars, presently observed in Galactic Globular Clus-
ters (GGCs), may have formed (Ventura & D’Antona 2008;
Pumo, D’Antona & Ventura 2008). In this so-called self-
enrichment scenario the HBB nucleosynthesis in metal-poor
AGB (and Super-AGB) stars could have left its signatures in
the prominent chemical anti-correlations (C-N, O-Na, Mg-
Al) currently detected in GGC stars (Carretta et al. 2009).

Indeed, our COLIBRI code may be fruitfully employed to
investigate the several debated issues about the AGB chemi-
cal yields in the low Z regime. An example is given in Fig. 29,
where we compare the results of four sets of computations
obtained with exactly the same set of parameters, but vary-
ing a few key assumptions that should sample the spread in
the predictions of current TP-AGB models. The effects on
the predicted evolution of several light elements is remark-
able. The results of our reference model, computed with the
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Figure 28. Hot-bottom burning and synthesis of lithium via the Cameron-Fowler beryllium transport mechanism in TP-AGB models
with initial mass Mi = 5M⊙ and varying metallicity. Top panel: Evolution of the luminosity during the TP-AGB phase. Note the larger
HBB over-luminosity at decreasing metallicity. Bottom panel: Evolution of the surface abundances of 7Li, 3He, and of the current stellar
mass being reduced by stellar winds.

default set of input prescriptions, are shown in panel a) of
Fig. 29.

In the first test case (panel b), we have changed the
rates of three nuclear reactions, namely 22Ne (p , γ) 23Na ,
23Na (p , γ) 4He +20Ne , and 23Na (p , γ) 24Mg , replacing
those quoted in Table 1 with the theory rates labeled “ths8”
in the JINA REACLIB database, that were calculated with
the NON-SMOKER codeWEB version 5.0w developed by T.
Rauscher12 and presented in Cyburt et al. (2010). At the
typical temperatures Tbce & 108 K, the “ths8” rates are
higher than the default ones. In particular, the “ths8” de-
struction rate 22Ne (p , γ) 23Na can be larger by up to 3 or-
ders of magnitude! The large impact is evident by comparing
the abundance trends of 22Ne, 23Na, and 24Mg in panels a)
and b).

In the second test case (panel c), we assume that no
third dredge-up takes place, i.e. λ = 0 at each TP, a condi-
tion found, for instance, in the recent models of super-AGB
stars by Siess (2010), where the absence of extra-mixing at

12 Online code NON-SMOKERWEB, version 5.0w and higher
available at http://nucastro.org/websmoker.html

the edge of the convective boundaries prevents the develop-
ment of dredge-up episodes. The evolution of the elemental
abundances in the envelope is simply regulated by the CNO,
NeNa, and MgAl cycles. A very significant depletion of 16O
is responsible for the transition to C/O> 1. At the same
time we see that, compared to the other models, the lack of
carbon enrichment in the envelope favours the attainment
of higher base temperatures Tbce.

In the third test case (panel d), we mimic the effect
of convective overshoot at the bottom of the PDCZ follow-
ing the scheme described in Sect. 7.5. As a consequence,
the intershell abundance distribution becomes carbon- and
oxygen-enhanced compared to the classical composition, re-
sembling the findings by Herwig (2000) (see Fig. 26). The
differences with respect to the standard model shown in
panel a) are sizable. The enrichment of 16O due to the third
dredge-up prevails over the its destruction by HBB, pro-
ducing a continuously increasing surface abundance of 16O.
The C/O ratio remains lower than one for most of the TP-
AGB evolution. Moreover, we note that the large increase
of the metallicity due to the very efficient third dredge-up
contributes to reach lower temperature Tbce.

http://nucastro.org/websmoker.html
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Figure 29. Evolution of the temperature at the base of the convective envelope, surface C/O ratio and elemental abundances during
the whole TP-AGB phase of a Mi = 5M⊙, Zi = 0.001 model (solid lines) computed with the COLIBRI code. The nucleosynthesis of all
species is coupled in time and in space with a diffusive description of convection. Time is counted since the first TP. We show also a
portion of the previous evolution (negative times) during the early-AGB predicted by the PARSEC stellar evolution code (dashed lines).
The arrow indicates the approximate stage at which the second dredge-up takes place. Panel a) corresponds to the reference model
computed with the default set of prescriptions, while panels b), c), and d) show the results obtained changing selected parameters. Panel
b: different rates for the nuclear reactions 22Ne (p , γ) 23Na , 23Na (p , γ) 4He +20Ne , and 23Na (p , γ) 24Mg (corresponding to the “ths8”
version of the JINA REACLIB database). Panel c: suppression of the third dredge-up (λ = 0). Panel d: carbon- and oxygen-enhanced
chemical composition of the intershell. Note that the nucleosynthesis is not computed via a post-process technique (i.e. assuming a fixed
temperature and density stratification), but in all cases the chemical and thermodynamic structure of the envelope is solved at each time
step throughout the TP-AGB phase.
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Figure 30. Sample output provided by
the COLIBRI code. The evolution of sev-
eral quantities, over the whole TP-AGB
phase, is shown for a (Mi = 5M⊙, Zi =
0.008) model, which may be taken as
representative of the most luminous M-
giants in the LMC. The entire TP-AGB
evolution, consisting of 48 thermal pulse
cycles, has been calculated in roughly 40
minutes, using a standard 2.2 GHz CPU.
Each quantity is quoted with either [n]
or [a], depending on whether it is pre-
dicted by numerical integrations of en-
velope models and/or nuclear networks,
or it is derived from analytic fitting rela-
tions. From top-left to bottom-right the
eight panels show the evolution of (i) sur-
face luminosity L [n], (ii) mass-loss rate
Ṁ [a] and effective temperature Teff [n],
(iii) fundamental and first-overtone pul-
sation periods P0, P1 [a], (iv) core mass
Mc [n] and temperature at the base of
the convective envelope Tbce [n], (v) pho-

tospheric values of pressure P [n], den-
sity ρ−10 = ρ/(10−10 gr cm−3) [n], and
Rosseland mean opacity κ−4 = κ/10−4

[n]: (vi) efficiency λ [a] of the third
dredge-up, maximum temperature Tmax

pdcz

[a] at the bottom of the pulse-driven con-
vective zone, and degree of overlap r [n]
between consecutive zones; (vii) inter-
shell abundances [n]; (viii) mass of the
pulse-driven convective zone ∆Mpdcz [a],
and dredged-up mass MDup [a] at each
thermal pulse.

8 CLOSING REMARKS

8.1 Summary of COLIBRI’s features

In this paper we have presented the main improvements and
novelties characterizing the COLIBRI code for the computa-
tion of the TP-AGB phase. They are briefly recalled below.

Compared to purely synthetic TP-AGB codes, COLIBRI
relaxes a significant part of their analytic formalism in favour
of a detailed physics which, applied to a complete envelope
model, allows to predict self-consistently:

• the effective temperature, and more generally the con-
vective envelope and atmosphere structures, suitably cou-
pled to the changes in the surface chemical abundances and
gas opacities;

• the CMLR and its possible break-down due to the oc-

currence of HBB in the most massive AGB stars, by taking
properly into account the nuclear energy generation in the
H-burning shell and in the deepest layers of the convective
envelope;

• the HBB nucleosynthesis via the solution of a complete
nuclear network coupled to a diffusive description of mix-
ing, in which the current stratifications of temperature and
density are derived from integrations of complete envelope
models;

• the intershell abundances left by each thermal pulse via

the solution of a complete nuclear network applied to a sim-
ple model of the pulse-driven convective zone;

• the onset and quenching of the third dredge-up, with a
temperature criterion that is tested, at each thermal pulse,
with the aid of envelope integrations at the stage of the
post-flash luminosity peak.

At the same time COLIBRI pioneers new techniques in
the treatment of the physics of stellar interiors, not yet
adopted in full TP-AGB models. Compared to present-day
full stellar evolutionary codes, the prerogatives of COLIBRI

are related to 1) the computation of the equation of state
and opacities, and 2) computation requirements, as below
summarized.

• COLIBRI is able to perform the first ever on-the-fly ac-
curate computation of the equation of state for roughly 800
atoms, ions, molecules, and of the Rosseland mean opaci-

ties throughout the atmosphere and the deep envelope. This
has been accomplished by incorporating the ÆSOPUS code
(Marigo & Aringer 2009) and the Opacity Project software
package (Seaton 2005) as internal routines of the COLIBRI

code. Avoiding the preliminary preparation of static tables
and their subsequent interpolations, the new approach as-
sures a complete consistency, step by step, of both EoS
and opacity with the evolution of the chemical abundances
caused by the third dredge-up and HBB. For the first time
we show the evolution of the photospheric molecular concen-
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Figure 31. The same as in Fig. 30,
but referred to chemical properties at the
photosphere. Top panels: evolution of the
surface abundances [n] of several light el-
ements, modulated by the occurrence of
the third dredge-up and HBB. For all
species HBB nucleosynthesis is followed
by coupling the nuclear network to a dif-
fusive description of convection. Bottom
panels: evolution of the photospheric con-
centrations of few molecular species [n]
(O-bearing species on the left, C-bearing
species on the right), which play a ma-
jor role in determining the spectral fea-
tures of AGB stars. Predictions are ob-
tained with on-the-fly ÆSOPUS computa-
tions for the molecular chemistry, con-
sistently coupled with the varying enve-
lope abundances. Note the abrupt change
in the molecular pattern over the very
last TPs, when the surface C/O increases
from below to above unity as a conse-
quence of the third dredge-up.

trations during the TP-AGB phase, and their modulation
driven not only by changes in the chemical compositions
but also by the periodic occurrence of the TPs.

• Flexibility and optimized computation requirements.
COLIBRI is competitive in terms of low computing-time re-
quests. Tests made with a standard 2.2 GHz CPU processor
have shown that COLIBRI, on average, computes one com-
plete pulse-cycle in 0.5− 1.0 min against the 60− 90 min
taken by full evolution codes, e.g. PARSEC (Bressan et al.
2012), with a gain factor of ≈ 100. This characteristic makes
COLIBRI an agile tool suitable to carry out extensive calcula-
tions of the TP-AGB evolutionary tracks covering large and
dense grids of stellar masses and metallicities.

Figures 30 and 31 collect a representative sample of the
most significant quantities that can be predicted by COLIBRI

throughout the entire TP-AGB evolution of a star with given
initial mass and chemical composition. The quantity of avail-
able information is indeed large, including both structural
and chemical properties. We plan to keep the same level of
richness also in the stellar isochrones we are going to con-
struct from the COLIBRI tracks.

8.2 Ongoing and planned applications

It should be mentioned that the present set of TP-AGB
models is a preliminary release, since we are currently work-
ing to a global TP-AGB calibration as a function of stellar
mass and metallicity, aimed at reproducing a large number
of AGB observables at the same time (star counts, luminos-
ity functions, C/M ratios, distributions of colors, pulsation
periods, etc.) in different star clusters and galaxies. Since the

calibration is still ongoing the current parameters (e.g. effi-
ciency of the third dredge-up and mass loss) of the TP-AGB
model may be changed in future calculations.

Anyhow, various tests indicate that the present version
of the COLIBRI models already yields a fairly good descrip-
tion of the TP-AGB phase. Compared to our previously
calibrated sets (Marigo & Girardi 2007; Marigo et al. 2008;
Girardi et al. 2010) the new TP-AGB models yield some-
what shorter, but still comparable, TP-AGB lifetimes, and
they successfully recover various observational constraints
dealing with e.g. the Galactic initial–final mass relation
(Kalirai et al., in prep.), spectro-interferometric determina-
tions of AGB stellar parameters (Klotz et al. 2013), the cor-
relation between mass-loss rates and pulsation periods, and
the trends of the effective temperature with the C/O ratio
observed in Galactic M, S and C stars.

Further important support comes from the results of
our new model for the condensation and growth of dust
grains in the outflows of AGB stars (Nanni et al. 2013),
which has been applied to the COLIBRI TP-AGB tracks.
The results are extremely encouraging as they are found
to nicely reproduce other independent sets of key observa-
tions, i.e. the correlation between expansion velocities and
mass-loss rates/pulsation periods of Galactic AGB stars.
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APPENDIX A: FITTING RELATIONS

A1 Properties of the pulse-driven convection zone

Here we present relations for characteristic quantities
of the PDCZ, based on full TP-AGB calculations by
Wagenhuber (1996); Karakas, Lattanzio & Pols (2002);
Karakas & Lattanzio (2007). All masses are expressed in so-
lar units, τpdcz is given in years, and Tmax

pdcz in Kelvin degrees,
Zi denotes the initial metallicity.

log(τpdcz) = a1 + a2Zi + (a3 + a4Zi)Mc (A1)

+10(a5 + a6Mc + a7∆Mc,nodup)

log(Tmax
pdcz) = (b1 + b2 log(Zi)) + (b3 + b4 log(Zi))Mc(A2)

−10(b5 + b6∆Mc,nodup)

log(ρmax
pdcz) = max(3.7, c1 + c2Zi + c3Mc) (A3)

log(∆Mpdcz) = d1 + d2Mc + d3M
2
c + d4 log(Zi) (A4)

−10(d5 + d6Mc + d7∆Mc,nodup)

+d8Mc log(Zi)

xq = τq/τpdcz = (e1 + e2Zi)Mc + e3Zi + e4 (A5)

−10(e5Mc,1 + e6∆Mc,nodup)

A2 The core mass at the 1st thermal pulse

We follow the parametrization proposed by
Wagenhuber & Groenewegen (1998), where M denotes
the stellar mass at the onset of the TP-AGB phase. All
masses are expressed in solar units. Coefficients are obtained
by fitting the predictions from the PARSEC sets of stellar
models (Bressan et al. 2012).

Mc,1 = [−p1(M − p2)
2 + p3]f (A6)

+(p4M + p5)(1− f) ,

f =

(
1 + exp

M−p6
p7

)−1

APPENDIX B: ACCURACY TESTS

B1 Effective temperature

A fundamental check is to compare our determination of the
effective temperatures, based on envelope integrations (T env

eff ;
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Table A1. Fitting coefficients of analytic relations for a few key properties of the pulse-driven convection zone.

Eq. (A1): PDCZ duration
a1 a2 a3 a4 a5 a6 a7

4.675 -18.56 3.793 22.65 -2.451 2.216 116.7

Eq. (A2): PDCZ maximum temperature
b1 b2 b3 b4 b5 b6

8.037 -0.06876 0.5697 0.07701 -0.8459 -22.18

Eq. (A3): PDCZ maximum density
c1 c2 c3

4.96 - 2.4 - 1.25

Eq. (A4): PDCZ maximum mass
d1 d2 d3 d4 d5 d6 d7 d8

-1.134 0.2884 -1.898 -0.08295 -2.171 1.429 -21.55 0.09189

Eq. (A5): Ratio of the quenching time over PDCZ duration
e1 e2 e3 e4 e5 e6

0.8220 0.9602 5.481 - 0.4321 -0.8632 -26.23

Table A2. Fitting coefficients of Eq. (A6) for the core mass at the 1st thermal pulse.

Zi p1 p2 p3 p4 p5 p6 p7

0.0005 9.616573E-02 1.300268E+00 5.567979E-01 9.204736E-02 5.204188E-01 1.947073E+00 1.607459E-01
0.001 1.173875E-01 1.188889E+00 5.505528E-01 9.301397E-02 5.100448E-01 1.954574E+00 1.670251E-01
0.004 1.074609E-01 1.150773E+00 5.389349E-01 9.559346E-02 4.645270E-01 2.170495E+00 1.949511E-01
0.006 9.772655E-02 1.148381E+00 5.347831E-01 9.128342E-02 4.641443E-01 2.254396E+00 2.278098E-01
0.008 9.020493E-02 1.156664E+00 5.318839E-01 8.671702E-02 4.719326E-01 2.319841E+00 2.560683E-01
0.01 7.480933E-02 1.193024E+00 5.300704E-01 9.499056E-02 4.257837E-01 2.365426E+00 2.470678E-01
0.014 7.496712E-02 1.189756E+00 5.286927E-01 9.300582E-02 4.175395E-01 2.375119E+00 2.651535E-01
0.017 6.956924E-02 1.227015E+00 5.275279E-01 8.479260E-02 4.427424E-01 2.477161E+00 2.505828E-01
0.02 6.530806E-02 1.243030E+00 5.269612E-01 8.581963E-02 4.315992E-01 2.459101E+00 2.572425E-01
0.03 5.160226E-02 1.249103E+00 5.268402E-01 7.668322E-02 4.601484E-01 2.516399E+00 2.637952E-01
0.04 4.661234E-02 1.274814E+00 5.324125E-01 7.903245E-02 4.494590E-01 2.481670E+00 2.438550E-01
0.05 5.827199E-02 1.337793E+00 5.441922E-01 8.204387E-02 4.402451E-01 2.389034E+00 2.424820E-01

the method is detailed in Sect. 3.5.1), against the results of
full stellar models (T full

eff ).

In Fig. B1 we show the results for the set of stellar evolu-
tionary tracks with initial chemical composition (Zi = 0.01,
Yi = 0.267), computed with PARSEC (Bressan et al. 2012).
In the top panel we compare directly the effective temper-
atures, T full

eff and T env
eff , relative to the quiescent pre-flash

luminosity maximum at the 1st thermal pulse. We can al-
ready see that the agreement is very good for all stellar
masses here considered. We also note that T env

eff is systemat-
ically lower than T full

eff by a small amount, which appears to
increase somewhat with the stellar mass. Considering that
part of the differences is likely due to unavoidable numer-
ical effects impossible to be disentangled, we have also in-
vestigated other possible physical causes that may explain
some systematic trends. In particular we have considered
the effects due to different descriptions of the EoS and the
opacities in the PARSEC and COLIBRI codes.

In the bottom panel of Fig. B1 we zoom in the differ-
ence T env

eff − T full
eff (in K degrees), as a function of the stellar

mass. The three sequences are obtained with three combi-
nations of the EoS and low-T opacities used in the COLIBRI

code. The lowest sequence (black empty triangles), show-
ing the largest deviations from PARSEC, corresponds to the
T env
eff predictions with the optimal configuration of all input

physics in COLIBRI. Specifically, envelope integrations have
been carried out with both the EoS and the Rosseland mean
opacities computed with ÆSOPUS on-the-fly according to the
actual chemical mixture of all elements.

This implies that the molecular chemistry is accurately
solved, exactly complying with the true surface C/O ratio
that characterizes each stellar model at the onset of the
TP-AGB phase. In fact, the surface C/O ratio may have
decreased, compared to its initial value at the main se-
quence (C/O < C/O

initial
= (C/O)⊙ ≃ 0.55 for the scaled-

solar case under consideration), as a consequence of the first
dredge-up and, in stars with M > 4M⊙, because of the
second dredge-up.

In contrast, in PARSEC the opacities are derived through
interpolations on pre-computed opacity tables as a function
of temperature, density, hydrogen abundance, and current
metallicity Z, while keeping the distribution of metals fixed
to the initial configuration, Xi/Z = Xi,⊙/Z⊙. In particular
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Figure B1. Accuracy tests on the effective temperature. Top
panel: Teff values as a function of the stellar mass at the 1st

thermal pulse for the set with (Zi = 0.01, Yi = 0.267), as
predicted by PARSEC full stellar models (T full

eff
) and by COLIBRI

envelope-integration method (T env
eff

) for different assumptions of
the abundance distribution and the EoS. Bottom panel: Differ-
ences T full

eff
− T env

eff
in Kelvin degrees.

this means that that no change in the C/O ratio is consid-
ered, i.e. C/O = (C/O)⊙ is assumed in all opacity tables.

To test the effect produced on the effective tempera-
tures by low-T opacities with a fixed chemical partition, we
have performed a second run of envelope integrations setting
the metals partition in the ÆSOPUS chemistry routine frozen
to the scaled-solar one (Xi/Z = Xi,⊙/Zi,⊙), as in PARSEC.
The differences (T env

eff − T full
eff ) are now smaller, as one can

see in Fig. B1 comparing the sequence of magenta crosses
with that of black triangles. In this case the temperature dif-
ferences are mostly comprised within 25 K, and in all cases
lower than 40 K. The fact the assumed solar C/O ratio is
higher than the actual values at the 1st TP, implies that a
smaller excess of oxygen atoms, (O-C), is available to form
the H2O molecule, the most efficient opacity source at the
atmospheric temperatures under consideration. The effect
seems to be somewhat larger at increasing stellar mass.

Finally, we have explored possible additional EoS ef-
fects. At this stage we cannot obtain a quantitative com-
parison with respect to PARSEC, in which the EoS is solved
with the FreeEOS code13, since these latter is not imple-
mented in our COLIBRI code. Anyway, to obtain an order-of-
magnitude estimate, we have carried out a third run of enve-

13 FreeEOS is a software package developed by A.W.
Irwin, and freely available under the GPL licence at
http://freeeos.sourceforge.net/

Figure B2. Accuracy tests on the temperature at the bottom
of the convective envelope. Top panel: Tbce values a as a func-
tion of the stellar mass at the 1st thermal pulse for the set
with (Zi = 0.01, Yi = 0.267), as predicted by PARSEC full stel-
lar models (Tbce

eff
) and by COLIBRI envelope-integration method

(T env
bce

) without and with convective overshooting beyond the for-
mal Schwarzschild border. Bottom panel: Logarithmic difference
log(T full

bce
)− log(T env

eff
).

lope integrations, switching the EoS option from the ÆSOPUS
routine to an older and simpler EoS description based on
Kippenhahn, Thomas & Weigert (1965). We see that now
the deviations T env

eff − T full
eff reduce further, keeping of the

order of ≈ 20K or lower. Therefore we may conclude that
the EoS treatment may also explain part of the differences
T env
eff −T full

eff , by an amount that is comparable to that driven
by the opacities.

B2 Temperature at the base of the convective

envelope

The quantity Tbce provides an additional performance test of
our envelope-integration method, and it is particularly rel-
evant for massive AGB models (M > 4M⊙) as it measures
the efficiency of hot-bottom burning.

In full stellar models calculated with PARSEC convective
overshoot is applied to the formal Schwarzschild border of
the envelope, with an efficiency parameter14 Λe = 0.05 for
M < M01 and Λe = 0.7 for M > M02. The transition
masses, with approximate values M01 ≈ 1.0 − 1.5M⊙ and
M01 ≈ 1.5 − 2.0M⊙, are operatively defined in Bressan et
al. (2012) and depend on chemical composition.

14 The radial extension of the overshooting region is given by
Λe × HP , where HP is the local pressure scale height at the
Schwarzschild border.

http://freeeos.sourceforge.net/


42 P. Marigo et al.

We apply the same scheme to our envelope integrations
and then compare the predictions for Tbce as a function of
stellar mass and metallicity. Results are shown in Fig. B2.
We have verified that variations in the EoS and opacities,
as those discussed in Sect. B1, produce almost negligible
changes in Tbce for the models under considerations, so that
we do not show the corresponding results.

The effect of convective overshoot on Tbce is illustrated
in Fig. B2 for the set with initial chemical composition
Zi = 0.01, Yi = 0.267. As a general rule models with Λe > 0
tend to have higher Tbce since the base of the convective en-
velope penetrates more deeply inward. For masses M < M01
the differences in T env

bce remain small among models with or
without overshoot, with [log T env

bce (Λe = 0.05)−log T env
bce (Λe =

0)] . 0.006, reflecting the little overshoot efficiency adopted
in since this mass range. In all cases log(T full

bce ) − log(T env
bce )

keep positive, i.e. the envelope-integration method yields
somewhat higher temperatures than full stellar models.

Larger differences in T env
bce arise instead for masses

M > M02, depending on whether we assume or not con-
vective overshoot. We see that passing from Λe = 0.7
to Λe = 0 in our envelope integrations the differences
log(T full

bce ) − log(T env
bce ) tend to become negative, i.e. the

envelope-integration method yields lower temperatures than
full stellar models. A systematic decrease of [log T env

bce (Λe =
0.7) − log T env

bce (Λe = 0)] ≃ 0.03 − 0.05 is predicted for these
models.

In general the deviations from the full stellar models
are larger than those for the effective temperatures, with
| log(T full

bce ) − log(T env
eff )| reaching up to a few hundredths

of a dex. Part of the reason likely resides in the opera-
tive definition of the convective border and the adopted
mass meshing across the envelope. In our COLIBRI code the
classical Schwarzschild border is determined by the equal-
ity between the radiative and adiabatic temperature gra-
dients, ∇rad = ∇ad, and all physical quantities are derived
from interpolation between the last convective mesh and the
first radiative one during the inward envelope integration. In
PARSEC the Schwarzschild border is assumed to coincide with
the last convective mesh, without interpolation in tempera-
ture gradients.

Limiting to the COLIBRI models with Λe > 0, we note
that larger deviations from T full

bce are found at larger stel-
lar masses (M > 4M⊙) where HBB starts to be operative.
Part of these differences are likely related to the arrange-
ment of the mesh points across the envelope; in fact the base
of the convective envelope locates inside an extremely thin
(in mass) region characterised by very steep gradients of all
thermodynamic quantities (T, P, ρ, etc.), As a consequence,
even small differences in mass resolution in this region may
produce somewhat appreciable differences in the thermody-
namic profile of the innermost layers of envelope.

We conclude that our envelope-integration method
yields a description of the deepest envelope layers which is
in satisfactory agreement with full stellar models, but un-
avoidable differences exist mainly due numerical and tech-
nical details. The size of such deviations are in any case
lower than the current differences between various sets of
AGB models, the latter reflecting the uncertainties of a still
ill-defined theory of convection in stars.
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