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Evolution of thermodynamic quantities on cosmological horizon in Λ(t) model
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The horizon of a flat Friedmann–Robertson–Walker (FRW) universe is considered to be dynamic
when the Hubble parameter H and the Hubble radius rH vary with time, unlike for de Sitter uni-
verses. To clarify the thermodynamics on a dynamic horizon, the evolution of a dynamical Kodama–
Hayward temperature and Bekenstein–Hawking entropy on the horizon of a flat FRW universe is
examined in a Λ(t) model similar to time-varying Λ(t) cosmologies. The Λ(t) model includes both a
power-law term proportional to Hα (where α is a free variable) and the equation of state parameter
w, extending a previous analysis [Phys. Rev. D 100, 123545 (2019)]. Using the present model, a
matter-dominated universe (w = 0) and a radiation-dominated universe (w = 1/3) are examined,
setting α < 2. Both universes tend to approach de Sitter universes and satisfy the maximization
of entropy in the last stage. The evolution of several parameters (such as the Bekenstein–Hawking
entropy) is similar for both w = 0 and w = 1/3, though the dynamical temperature TH is different.
In particular, TH is found to be constant when w = 1/3 with α = 1, although H and rH vary with
time. To discuss this case, the specific conditions required for constant TH are examined. Applying
the specific condition to the present model gives a cosmological model that can describe a universe
at constant TH , as if the dynamic horizon is in contact with a heat bath. The relaxation processes
for the universe are also discussed.

PACS numbers: 98.80.-k, 95.30.Tg, 98.80.Es

I. INTRODUCTION

To explain the accelerated expansion of the late Uni-
verse [1–3], various cosmological models have been pro-
posed [4–6], such as lambda cold dark matter (ΛCDM)
models, time-varying Λ(t) cosmology [7–11], bulk vis-
cous cosmology [12–16], creation of CDM models [17–
19], and thermodynamic scenarios [20–32]. Most of the
models imply that our Universe finally approaches a Λ-
dominated universe, namely a de Sitter universe. The de
Sitter universe is in thermal equilibrium from the view-
point of horizon thermodynamics [33], which is closely
related to black hole thermodynamics [34–36].

The thermodynamic scenario and thermodynamics of
the universe have been extensively examined [37–64], es-
pecially based on the holographic principle [65]. In those
works, the Gibbons–Hawking temperature [33] is widely
used as an approximate temperature on the cosmological
horizon. The Gibbons–Hawking temperature is constant
during evolution of de Sitter universes, in which the Hub-
ble radius and the Hubble parameter are also constant.
In contrast, these three quantities vary with time in the
late Universe [3]. In this sense, the horizon of the de Sit-
ter universe is static, whereas horizons of other universes
(including our Universe) are generally considered to be
dynamic.

In fact, a dynamical temperature (called the Kodama–
Hayward temperature) has been proposed to describe the
temperature on dynamic horizons of black holes and uni-
verses [66–68]. The dynamical temperature on the cos-
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mological horizon [68] is considered to be an extended
Gibbons–Hawking temperature and has been examined
from various viewpoints [69–72]. The dynamical tem-
perature should be suitable for discussing the thermody-
namics on a dynamic horizon. However, the evolution of
the dynamical temperature has not yet been sufficiently
studied in cosmological models.
We therefore examine the evolution of the dynamical

temperature TH on the horizon of a flat Friedmann–
Robertson–Walker (FRW) universe. For cosmological
models, we consider a Λ(t) model [58–61], similar to a
time-varying Λ(t) cosmology, which is a commonly used
model [62]. The Λ(t) model includes a power-law term
proportional to Hα, where H is the Hubble parameter
and α is a free parameter [58]. Although this model
has been used for a matter-dominated universe (w = 0)
[60–62], a radiation-dominated universe (w = 1/3) has
not yet been examined, where w represents the equa-
tion of state parameter. Naturally, a dynamical tem-
perature was not discussed in the earlier works. There-
fore, it is worth examining the evolution of TH in matter-
dominated and radiation-dominated universes in the Λ(t)
model. In addition, we recently found that a universe
with constant TH is related to a radiation-dominated uni-
verse in a Λ(t) model. The constant TH universe should
extend the concept of horizons at constant temperature
and may provide new insights for the discussion of hori-
zon thermodynamics.
In this context, we examine the horizon thermodynam-

ics of matter-dominated and radiation-dominated uni-
verses in the Λ(t) model by observing the dynamical tem-
perature TH and the Bekenstein–Hawking entropy. The
Λ(t) model used here includes both a power-law term and
the equation of state parameter, extending previous anal-
yses [58–62]. In addition, we study cosmological models

http://arxiv.org/abs/2306.11285v2


2

that can describe a universe at constant TH .
The remainder of the present article is organized as

follows. In Sec. II, horizon thermodynamics is reviewed.
The Bekenstein–Hawking entropy and the dynamical
temperature TH on the cosmological horizon are intro-
duced. In Sec. III, we introduce a Λ(t) model that in-
cludes both a power-law term and the equation of state
parameter. Using the present model, we examine the
evolution of the Bekenstein–Hawking entropy and the dy-
namical temperature TH . In Sec. IV, we study the spe-
cific conditions required for constant TH on dynamic hori-
zons. Based on the specific conditions and the present
model, we formulate a cosmological model that can de-
scribe a universe at constant TH . We also discuss the
properties of the universe in the formulated model. Fi-
nally, in Sec. V, the conclusions of the study are pre-
sented.
In this paper, a flat FRW universe is considered and,

therefore, the Hubble horizon is equivalent to an appar-
ent horizon. An expanding universe is assumed as well.
Inflation of the early universe and density perturbations
related to structure formations are not discussed.

II. HORIZON THERMODYNAMICS

The horizon of a universe is assumed to have an as-
sociated entropy and an approximate temperature [21],
based on the holographic principle [65]. The entropy and
the temperature are introduced in this section.
We select the Bekenstein–Hawking entropy as the as-

sociated entropy [34–36]. In general, the cosmological
horizon is examined by replacing the event horizon of a
black hole by the cosmological horizon [63, 64]. This re-
placement method has been widely accepted [20, 38–48]
and we use it here.
Based on the form of the Bekenstein–Hawking entropy,

the entropy SBH on the Hubble horizon is written as

SBH =
kBc

3

~G

AH
4
, (1)

where kB , c, G, and ~ are the Boltzmann constant, the
speed of light, the gravitational constant, and the re-
duced Planck constant, respectively. The reduced Planck
constant is defined by ~ ≡ h/(2π), where h is the Planck
constant [58, 59]. AH is the surface area of the sphere
with a Hubble horizon (radius) rH given by

rH =
c

H
, (2)

where the Hubble parameter H is defined by

H ≡
da/dt

a(t)
=
ȧ(t)

a(t)
, (3)

and a(t) is the scale factor at time t [58]. Substituting
AH = 4πr2H into Eq. (1) and applying Eq. (2) yields

SBH =
kBc

3

~G

AH
4

=

(

πkBc
5

~G

)

1

H2
=

K

H2
, (4)

where K is a positive constant given by

K =
πkBc

5

~G
. (5)

The normalized SBH is written as [61]

SBH

SBH,0
=

(

H

H0

)

−2

, (6)

where the subscript 0 represents the present time t0.
When a de Sitter universe is considered, rH and SBH

are constant during the evolution of the universe because
H is constant. In this sense, the horizon of the de Sitter
universe is considered to be static. Note that the scale
factor for the de Sitter universe varies with time [63]:

a

a0
= exp[H(t− t0)], (7)

where a0 represents the scale factor at the present time.
Next, we introduce an approximate temperature on the

Hubble horizon. Before introducing the dynamical tem-
perature, we will review the Gibbons–Hawking temper-
ature. The Gibbons–Hawking temperature TGH is given
by [33]

TGH =
~H

2πkB
. (8)

This equation indicates that TGH is proportional to H
and is constant during the evolution of de Sitter uni-
verses. In fact, TGH is obtained from field theory in the
de Sitter space [33]. However, most universes are not
pure de Sitter universes in that their horizons are dy-
namic. A similar dynamic horizon for black holes has
been examined in the works of Hayward [66] and Hay-
ward et al. [67]. Hayward suggested a dynamical tem-
perature on a black hole horizon and clarified the rela-
tionship between the surface gravity and the temperature
on a dynamic apparent horizon for the Kodama observer
[66]. (The Kodama–Hayward temperature was discussed
in, e.g., the recent work of Muhsinath et al. [72].)
Based on the works of Hayward et al., a dynamical

temperature on the cosmological horizon of an FRW uni-
verse has been proposed [68] and examined from various
viewpoints [69–72]. When a flat universe is considered,
the apparent horizon is equivalent to the Hubble horizon.
Consequently, the dynamical temperature TH for a flat
FRW universe can be written as [69, 70]

TH =
~H

2πkB

(

1 +
Ḣ

2H2

)

, (9)

where H > 0 is used for an expanding universe. For
de Sitter universes, TH reduces to TGH. That is, TH is
considered to be an extended version of TGH. For details
of TH , see, e.g., the works of Tu et al. [69, 70].
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In this study, based on Eq. (9), we consider the nor-
malized temperature:

TH
TGH,0

=
H

H0

(

1 +
Ḣ

2H2

)

, (10)

where TGH,0 is the Gibbons–Hawking temperature at the

present time, given by TGH,0 = ~H0

2πkB
. In the next section,

the normalized entropy and the normalized temperature
are examined, using a Λ(t) model.
We note that various black hole entropies have been

proposed by extending the Bekenstein–Hawking en-
tropy [73–78]. The thermodynamic consistency of non-
Gaussian black-hole entropies has been examined in Ref.
[79]. Those entropies have been applied to dynamic hori-
zons of universes, see, e.g., Refs. [28–32, 58]. While it
is worthwhile studying the thermodynamic relations be-
tween the dynamical temperature and the entropy on the
cosmological horizon, the thermodynamic relation is not
discussed here and the present study focuses on and ex-
amines evolution of thermodynamic quantities.

III. Λ(t) MODEL WITH A POWER-LAW TERM

We review the Λ(t) model with a power-law term and
study the evolution of the Bekenstein–Hawking entropy
SBH and the dynamical temperature TH . In Sec. III A,
the Λ(t) model is introduced. In Sec. III B, background
evolution of the universe for the present model are dis-
cussed. The evolution of the entropy and the tempera-
ture is examined in Secs. III C and III D, respectively. We
consider a flat FRW universe and assume an expanding
universe.

A. Cosmological equations

Based on previous works [60–63], a Λ(t) model that
includes both a power-law term and the equation of
state parameter is introduced, using a general formula-
tion of the cosmological equations. The general Fried-
mann equation for the Λ(t) model is given as

H(t)2 =
8πG

3
ρ(t) + fΛ(t), (11)

and the general acceleration equation is

ä(t)

a(t)
= −

4πG

3
(1 + 3w)ρ(t) + fΛ(t), (12)

where w represents the equation of state parameter for
a generic component of matter, w = p(t)/(ρ(t)c2). Also,
ρ(t) and p(t) are the mass density and pressure of cos-
mological fluids, respectively [60, 62, 63]. For a matter-
dominated universe, a radiation-dominated universe, and
a Λ-dominated universe, w is 0, 1/3, and−1, respectively.
In this paper, w = 0 and w = 1/3 are considered. An

extra driving term fΛ(t) is phenomenologically assumed.
Combining Eq. (11) with Eq. (12) yields [60]

Ḣ = −
3

2
(1 + w)H2 +

3

2
(1 + w)fΛ(t). (13)

Using the above equation, we have phenomenologically
formulated a Λ(t) model that includes a power-law term
based on Padmanabhan’s holographic equipartition law
[58, 60–62]. The power-law term has been investigated
in previous works [60–62]. According to these works, we
use the following power-law term:

fΛ(t) = ΨαH
2
0

(

H

H0

)α

, (14)

where α and Ψα are dimensionless constants whose values
are real numbers [58]. Also, α and Ψα are independent
free parameters, and α < 2 and 0 ≤ Ψα ≤ 1 are consid-
ered. That is, Ψα is a kind of density parameter for the
effective dark energy. For the derivation of the power-law
term, see, e.g., Ref. [58]. A similar power series for H in
Λ(t) models was examined in Ref. [10].
Substituting Eq. (14) into Eq. (13) yields

Ḣ = −
3

2
(1 + w)H2 +

3

2
(1 + w)ΨαH

2
0

(

H

H0

)α

= −
3(1 + w)

2
H2

(

1−Ψα

(

H

H0

)α−2
)

. (15)

This equation is satisfied for all α [60]. The solutions can
be categorized according to whether or not α = 2. The
solution for α = 2 is written as [60]

H

H0
=

(

a

a0

)

−
3(1+w)(1−Ψα)

2

, (16)

and the solution for α 6= 2 is written as

(

H

H0

)2−α

= (1−Ψα)

(

a

a0

)

−
3(1+w)(2−α)

2

+Ψα. (17)

The solution method is summarized in Ref. [60]. This
model has been studied for w = 0 in Refs. [60, 61] and
it was found that when w = 0, α < 2 leads to an ini-
tially decelerating and then accelerating universe (here-
after a ‘decelerating and accelerating universe’). Also,
when w = 0, the universe for α < 2 satisfies the maxi-
mization of entropy in the last stage [60, 61]. Therefore,
α < 2 is considered in this study.
Using the normalized scale factor ã, the solution for

α 6= 2 given by Eq. (17) is written as

(

H

H0

)2−α

= (1−Ψα)ã
−γ +Ψα, (18)

where ã and the parameter γ are given by

ã =
a

a0
and γ =

3(1 + w)(2 − α)

2
, . (19)
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A coefficient (1+w) is included in γ. In this paper, α < 2,
w = 0, and w = 1/3 are considered. Therefore, 2 − α,
1 + w, and γ are positive.
We note that ΛCDM models are obtained from Eq.

(18), neglecting the influence of radiation. Substituting
α = 0 and w = 0 into Eq. (19) yields γ = 3. In addition,
substituting α = 0 and γ = 3 into Eq. (18) and replacing
Ψα by ΩΛ yields [60]

(

H

H0

)2

= (1− ΩΛ)ã
−3 +ΩΛ, (20)

where ΩΛ is the density parameter for Λ and is given by
Λ/(3H2

0 ). The above equation corresponds to the ΛCDM
model in a flat FRW universe, where the influence of
radiation is neglected.

B. Deceleration parameter q

In this subsection, we examine the background evolu-
tion of the universe for the present model. To this end,
we observe the evolution of the Hubble parameter and a
deceleration parameter q, defined by

q ≡ −

(

ä

aH2

)

, (21)

where a positive or negative q represents deceleration
or acceleration, respectively [60]. Substituting ä/a =

Ḣ +H2 into Eq. (21) and substituting Eq. (15) into the
resultant equation yields

q = −
Ḣ

H2
− 1 =

3

2
(1 + w)

(

1−Ψα

(

H

H0

)α−2
)

− 1.

(22)

Substituting Eq. (18) into the above equation yields

q =
3

2
(1 + w)

(

1−
Ψα

(1−Ψα)ã−γ +Ψα

)

− 1

=
3
2 (1 + w)(1 −Ψα)ã

−γ

(1−Ψα)ã−γ +Ψα
− 1, (23)

where γ = 3(1+w)(2−α)
2 , as given by Eq. (19). Equation

(23) includes γ and a coefficient (1 + w).
Figure 1 illustrates the evolution of the Hubble param-

eter and the deceleration parameter. The dashed and
solid lines represent w = 0 and w = 1/3, respectively.
To examine typical results, α is set to 0 and 1. In addi-
tion, Ψα is set to 0.685, which is equivalent to ΩΛ for the
ΛCDM model from the Planck 2018 results [2]. That is,
the plots for [α = 0, w = 0] are equivalent to those for the
ΛCDM model. The normalized scale factor ã increases
with time because an expanding universe is considered.
Similar evolution for w = 0 has been examined in Refs.
[60–63].

a∼
q

-1.0

-0.5

0.0

0.5

1.0
(b)

0 1 2 3 4 5

H
/H

0

0

1

2

3

4
(a)(ΛCDM)

Observed data points

α = 0, w = 0
α = 1, w = 0
α = 0, w = 1/3
α = 1, w = 1/3

(ΛCDM)α = 0, w = 0
α = 1, w = 0
α = 0, w = 1/3
α = 1, w = 1/3

FIG. 1: Evolution of the universe for the present model for
Ψα = 0.685. (a) Normalized Hubble parameter H/H0. (b)
Deceleration parameter q. The dashed and solid lines rep-
resent w = 0 and w = 1/3, respectively. The red and blue
lines represent α = 0 and α = 1, respectively. In (a), the
open diamonds with error bars are observed data points taken
from Ref. [3]. To normalize the data points, H0 is set to 67.4
km/s/Mpc from Ref. [2]. Similar evolution for w = 0 has
been examined in Refs. [60–63].

As shown in Fig. 1(a), H/H0 decreases with ã and
gradually approaches a positive value that depends on α
and Ψα but not on w. The positive value is given by

H/H0 = Ψ
1/(2−α)
α , which is obtained by applying ã→ ∞

to Eq. (18) with α < 2 [63]. Before approaching the pos-
itive value, H/H0 for w = 1/3 is quantitatively different
from that for w = 0. However, the evolution of H/H0

for w = 0 and w = 1/3 is similar. We note that H/H0 is
equivalent to the normalized Gibbons–Hawking temper-
ature TGH = ~H/(2πkB), as given by Eq. (8), because
TGH is proportional to H .

Next, we observe the evolution of the deceleration pa-
rameter q. As shown in Fig. 1(b), q decreases with ã
and gradually approaches −1, although it is positive in
the early stage. Also, q is negative at ã = 1, namely at
the present time. This result indicates a decelerating and
accelerating universe, as examined in Refs. [60, 61]. In
addition, q for w = 1/3 is quantitatively different from
that for w = 0, but the evolution of q for w = 1/3 is
similar to that for w = 0.

The deceleration parameter q depends on w, α, Ψα,
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and H/H0, as shown in Eq. (22). Therefore, we discuss
an accelerating universe using the (α,Ψα) plane. The
boundary required for q = 0 can be calculated from Eq.
(22). (The boundary of q = 0 for w = 0 was discussed in
Ref. [60].) Substituting q = 0 into Eq. (22) yields

1−Ψα

(

H

H0

)α−2

=
2

3(1 + w)
. (24)

Solving this with respect to Ψα yields

Ψα =

(

1−
2

3(1 + w)

)(

H

H0

)2−α

=
1 + 3w

3(1 + w)

(

H

H0

)2−α

.

(25)

This equation is satisfied for all α. When α = 2, from
Eq. (25), the boundary (point) is given by

Ψα =
1 + 3w

3(1 + w)
(for α = 2). (26)

Also, substituting Eq. (18) into Eq. (25) yields

Ψα =
1 + 3w

3(1 + w)

[

(1−Ψα)ã
−γ +Ψα

]

, (27)

and solving Eq. (27) with respect to Ψα yields the fol-
lowing boundary of q = 0:

Ψα =
(1 + 3w)ã−γ

2 + (1 + 3w)ã−γ
, (28)

where γ = 3(1+w)(2−α)
2 from Eq. (19). The above equa-

tion includes not only γ but also a coefficient (1+3w). In
this study, 1+3w is positive because w = 0 and w = 1/3
are considered.
Using Eq. (28), the boundary of q = 0 can be plotted

in the (α,Ψα) plane. In Fig. 2, a/a0 is set to 0.5, 1, and
2, to examine typical boundaries. In an expanding uni-
verse, a/a0 increases with time. The arrow attached to
each boundary indicates an accelerating-universe-side re-
gion that satisfies q < 0. The upper side of each bound-
ary corresponds to this region. The dashed and solid
lines represent w = 0 and w = 1/3, respectively. Similar
boundaries for w = 0 have been examined in Ref. [60].
In this figure, to avoid confusion, a/a0 is used for the
normalized scale factor, instead of ã, because the symbol
ã is similar to the symbol α on the horizontal axis.
As shown in Fig. 2, the accelerating-universe-side re-

gion for both w = 0 and w = 1/3 varies with a/a0. The
region for w = 0 is similar to that for w = 1/3. For exam-
ple, in both cases, the boundaries for a/a0 = 0.5 imply
that a large-α and large-Ψα region tends to occur on the
accelerating universe side. In contrast, the boundaries
for a/a0 = 2 imply that a small-α and large-Ψα region
tends to occur on the accelerating universe side. In both
cases, a decelerating and accelerating universe is further
expected with increasing a/a0. The results are consistent
with those in Ref. [60].

�

a/a0�0.5

a/a0� 1

q < 0

a/a0� 2

-2.0 -1.0 0.0 1.0 2.0
0.0

1.0

0.8

0.6

0.4

0.2

Ψ
α

�CDM

FIG. 2: Boundary of q = 0 in the (α,Ψα) plane for various
values of a/a0. The dashed and solid lines represent w =
0 and w = 1/3, respectively. The arrow attached to each
boundary indicates an accelerating-universe-side region that
satisfies q < 0. The open circle represents (α,Ψα) = (0, 0.685)
for the ΛCDM model.

Of course, the boundaries for w = 1/3 are quanti-
tatively different from those for w = 0. That is, the
boundaries for w = 1/3 are located higher than those for
w = 0. To examine this difference, we observe the two
boundaries for a/a0 = 1, represented by the two hori-
zontal lines in Fig. 2. When a/a0 = 1, the boundary
is given by Ψα = 1+3w

3(1+w) , which is obtained by apply-

ing ã = a/a0 = 1 to Eq. (28). The obtained boundary
depends on w and is equivalent to Eq. (26).

C. Entropy SBH on the horizon

Ordinary, isolated macroscopic systems spontaneously
evolve to equilibrium states of maximum entropy consis-
tent with their constraints [80]. Previous works imply
that certain types of universe behave as ordinary macro-
scopic systems [37, 54–57, 60, 61]. In other words, the
entropy on a cosmological horizon does not decrease, i.e.,
ṠBH ≥ 0. Also, the entropy approaches a certain maxi-
mum value in the last stage, that is, the maximization of
entropy, S̈BH < 0, should be satisfied.
In this subsection, we examine the entropy SBH on

the horizon for the present model for both w = 0 and
w = 1/3. From Eq. (6), the normalized SBH is written
as

SBH

SBH,0
=

(

H

H0

)

−2

. (29)

Substituting Eq. (18) into Eq. (29) yields

SBH

SBH,0
=
[

(1 −Ψα)ã
−γ +Ψα

]
2

α−2 , (30)
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where γ is 3(1+w)(2−α)
2 given by Eq. (19), which includes a

coefficient (1+w). The case for w = 0 has been discussed
in previous works [60, 61].

The calculations of ṠBH and S̈BH are summarized in
Appendix A, extending previous analyses [60, 61]. Using
Eq. (A4) and SBH,0 = K/H2

0 , we obtain the normalized

ṠBH, which is given by

ṠBH

SBH,0H0
=

3(1 + w)(1 −Ψα)ã
−γ

[(1−Ψα)ã−γ +Ψα]
3−α

2−α

. (31)

This equation indicates that ṠBH ≥ 0 is satisfied because
w = 0, w = 1/3, and 0 ≤ Ψα ≤ 1 are considered. In

addition, from Eq. (A9), the normalized S̈BH is written
as

S̈BH

SBH,0H2
0

=
9

2
(1 + w)2(1 −Ψα)ã

−γ

×
(1−Ψα)ã

−γ + (α − 2)Ψα

[(1−Ψα)ã−γ +Ψα]
2 . (32)

Equation (32) implies that S̈BH < 0 should be satisfied in
the last stage when α < 2. The details of the calculation
are summarized in Appendix A.
We now observe the evolution of SBH and S̈BH for the

present model for both w = 0 and w = 1/3. To examine
typical results, α is set to 0 and 1, and Ψα is set to 0.685.
As shown in Fig. 3(a), SBH increases with ã. That is, the

second law of thermodynamics, ṠBH ≥ 0, is satisfied in
both cases. In addition, SBH approaches a positive value
that depends on α and Ψα but not on w. The positive

value is given by SBH/SBH,0 = Ψ
−2/(2−α)
α , which is ob-

tained by applying ã → ∞ to Eq. (30) with α < 2. In
fact, SBH rapidly increases in the early stage and gradu-
ally approaches a positive value in the last stage. Conse-
quently, S̈BH is positive in the early stage and negative
in the last stage, as shown in Fig. 3(b). These results
are consistent with those in Ref. [60]. That is, in both

cases, maximization of entropy, S̈BH < 0, should be satis-
fied in the last stage. Of course, the entropic parameters
for w = 1/3 are quantitatively different from those for
w = 0. However, the evolution of those for w = 1/3 is
similar to that for w = 0, as for the case of H/H0.
As examined above, the universe observed here ap-

proaches a kind of equilibrium state in the last stage. The
evolution of the universe is considered to be a relaxation
process. To study the relaxation process systematically,
the boundary required for S̈BH = 0 is calculated. (The

boundary of S̈BH = 0 for w = 0 was discussed in Ref.
[60].) Using Eq. (A8) and assuming Ḣ 6= 0, we obtain

the boundary of S̈BH = 0, which is given by

Ψα =
1

3− α

(

H

H0

)2−α

. (33)

When α = 2, Ψα = 1 is obtained from this equation.

a∼

(b)
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(ΛCDM)α = 0, w = 0
α = 1, w = 0
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α = 1, w = 1/3

(ΛCDM)α = 0, w = 0
α = 1, w = 0
α = 0, w = 1/3
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FIG. 3: Evolution of the normalized entropic parameters for
the present model for Ψα = 0.685. (a) SBH/SBH,0. (b)

S̈BH/(SBH,0H
2
0 ). The dashed and solid lines represent w = 0

and w = 1/3, respectively. The red and blue lines represent
α = 0 and α = 1, respectively.

When α 6= 2, substituting Eq. (18) into Eq. (33) yields

Ψα =
1

3− α

[

(1 −Ψα)ã
−γ +Ψα

]

. (34)

Solving Eq. (34) with respect to Ψα yields the following

boundary required for S̈BH = 0:

Ψα =
ã−γ

2− α+ ã−γ
, (35)

where γ = 3(1+w)(2−α)
2 from Eq. (19). The influence of

w is included in γ.
Using Eq. (35), the boundary of S̈BH = 0 for various

values of a/a0 can be plotted on the (α,Ψα) plane. In
Fig. 4, a/a0 is set to 0.5, 1, and 2, to observe typical
boundaries. In this figure, a/a0 represents the normal-
ized scale factor. The dashed and solid lines represent
w = 0 and w = 1/3, respectively. The arrow attached to
each boundary indicates the relaxation-process-side re-
gion that satisfies S̈BH < 0. For each boundary, the up-
per side corresponds to this region. For both w = 0 and
w = 1/3, this region gradually extends downward with
increasing a/a0. When a/a0 = 1, the boundary for w = 0
is the same as that for w = 1/3, where the boundary is
given by Ψα = 1/(3 − α) from Eq. (35). In both cases,
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Ψ
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FIG. 4: Boundary of S̈BH = 0 in the (α,Ψα) plane for
various values of a/a0. The dashed and solid lines repre-
sent w = 0 and w = 1/3, respectively. The arrow at-
tached to each boundary indicates the relaxation-process-side
region that satisfies S̈BH < 0. The open circle represents
(α,Ψα) = (0, 0.685) for the ΛCDM model. When a/a0 = 1,
the boundary for w = 0 is the same as that for w = 1/3,
where the boundary is given by Ψα = 1/(3− α).

a small-α and large-Ψα region tends to satisfy S̈BH < 0
at the present time. The properties of the boundary of
S̈BH = 0 for both cases are similar to each other. Note
that the boundary for w = 1/3 is quantitatively different
from that for w = 0, except when a/a0 = 1.

D. Dynamical temperature TH on the horizon

The evolution of the parameters examined, such as
H/H0, q, SBH, and S̈BH), for the present model, was
found to be similar for both w = 0 and w = 1/3. How-
ever, we expect that the evolution of the dynamical tem-
perature for w = 1/3 is different from that for w = 0.
In this subsection, we therefore examine the dynamical
temperature TH for the present model.

Substituting Eq. (15) into Eq. (10) yields

TH
TGH,0

=
H

H0

(

1 +
Ḣ

2H2

)

=
H

H0

(

1−
3(1 + w)

4

(

1−Ψα

(

H

H0

)α−2
))

,

(36)

where TGH,0 is the Gibbons–Hawking temperature at the
present time, given by ~H0/(2πkB). The normalized TH
is not negative in the present model, because w = 0, w =
1/3, 0 ≤ Ψα ≤ 1, andH > 0 are considered. Substituting
Eq. (18) into Eq. (36) and performing several calculations

yields

TH
TGH,0

=
[

(1−Ψα)ã
−γ +Ψα

]
1

2−α

×

[

1−
3(1 + w)

4

(

1−
Ψα

(1−Ψα)ã−γ +Ψα

)]

=
(1− 3w)(1 −Ψα)ã

−γ + 4Ψα

4 [(1−Ψα)ã−γ +Ψα]
1−α

2−α

,

(37)

where γ is 3(1+w)(2−α)
2 given by Eq. (19). Also, Eq. (37)

includes a coefficient (1−3w), which affects the properties
of TH . For example, substituting w = 1/3 and α = 1 into
Eq. (37) yields

TH
TGH,0

= Ψα (for w =
1

3
and α = 1). (38)

The obtained temperature does not depend on ã.
Using Eq. (37), we study two specific cases: ã = 1 and

ã→ ∞. Firstly, substituting ã = 1 into Eq. (37) yields

TH
TGH,0

=
(1 − 3w)(1−Ψα) + 4Ψα

4
(for ã = 1). (39)

Equation (39) indicates that TH does not depend on α
at the present time. For w = 0, Eq. (39) is written as
TH/TGH,0 = (1 + 3Ψα)/4. For w = 1/3, Eq. (39) is
written as TH/TGH,0 = Ψα, which is equivalent to Eq.
(38). Secondly, substituting ã → ∞ into Eq. (37) with
α < 2 yields

TH
TGH,0

= Ψ
1

2−α

α (for ã→ ∞). (40)

a∼
0 1 2 3 4 5

0

1

2

T
H
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H
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α = 1, w = 1/3

FIG. 5: Evolution of the normalized TH for the present model
for Ψα = 0.685. The dashed and solid lines represent w = 0
and w = 1/3, respectively. The red and blue lines represent
α = 0 and α = 1, respectively. The horizontal straight line
corresponds to [α = 1, w = 1/3].
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FIG. 6: Contours of the normalized TH in the (ã, α) plane for the present model for Ψα = 0.6. (a) w = 0. (b) w = 1/3. The
horizontal axis represents the normalized scale factor ã, which increases with time. In (b), the horizontal straight contour line
at α = 1 corresponds to TH/TGH,0 = Ψα = 0.6, which is given by Eq. (38). Note that, in (a) and (b), the vertical straight lines
at ã = 1 corresponds to Eq. (39).

Equation (40) indicates that TH does not depend on w
when ã→ ∞.

We now observe the evolution of the normalized TH
for the present model for both w = 0 and w = 1/3. To
examine typical results, α is set to 0 and 1, and Ψα is set
to 0.685, equivalent to ΩΛ for the ΛCDM model.

As shown in Fig. 5, when ã / 0.6, TH for w = 0
decreases with ã, whereas TH for w = 1/3 does not
decrease. The evolution of TH for w = 1/3 is differ-
ent from that for w = 0 in the very early stage. In
the last stage, TH gradually approaches a positive value,

TH/TGH,0 = Ψ
1/(2−α)
α , given by Eq. (40), that depends

on α and Ψα but not on w. In particular, TH for [α = 1,
w = 1/3] is constant during the evolution of the universe.
The universe at constant TH is not a de Sitter universe
because H/H0 for [α = 1, w = 1/3] varies with ã, as
shown in Fig. 1(a). We note that H/H0 is equivalent to
the normalized Gibbons–Hawking temperature because
TGH = ~H/(2πkB).

Figure 5 indicates that a universe at constant TH on
a dynamic horizon is obtained from the present model
for [α = 1, w = 1/3]. To observe this from a different
viewpoint, we plot contours of the normalized TH in the
(ã, α) plane. As shown in Fig. 6, the contour lines are
plotted at increments of 0.1. We set Ψα = 0.6, to make
a certain contour line for w = 1/3 clear, as discussed
below.

As shown in Fig. 6 (a), for w = 0, the normalized TH
for all α varies with ã. In contrast, for w = 1/3, the
normalized TH for α = 1 is indicated by the horizontal
straight-contour-line [Fig. 6 (b)]. The horizontal straight-
contour-line corresponds to TH/TGH,0 = Ψα = 0.6, which
is given by Eq. (38). Also, in the early stage (ã≪ 1), the
normalized TH for α > 1 is high, whereas the normalized
TH for α < 1 is low. These results indicate that α = 1 can
be considered a kind of critical value when the normalized

TH for w = 1/3 is discussed in the present model.

In this way, the evolution of the normalized TH for
w = 1/3 is different from that for w = 0. In addition, we
can obtain a universe at constant TH on a dynamic hori-
zon from the present model for [α = 1, w = 1/3]. The
obtained universe corresponds to a radiation-dominated
universe that includes an extra driving term proportional
to H . The universe is expected to be a good model for
studying relaxation processes for the universe at constant
TH because systems at constant temperature play impor-
tant roles in thermodynamics and statistical physics. In
the next section, we examine specific conditions required
for constant TH , based on the definition of the dynamical
temperature.

IV. CONSTANT TH MODEL

In this section, we examine the conditions required for
a constant TH and formulate a cosmological model that
can describe a universe at constant TH on a dynamic
horizon, and then discuss the properties of the constant
TH universe of the formulated model. The universe con-
sidered in this section should be different from the late
Universe, but should help in studying the relaxation pro-
cesses for thermodynamic quantities on a dynamic hori-
zon.

From Eq. (9), the temperature on the horizon of a flat
FRW universe is written as

TH =
~H

2πkB

(

1 +
Ḣ

2H2

)

. (41)

To examine the conditions required for constant TH , we
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consider a non-dimensional parameter ψ, written as

ψ =
H

H0

(

1 +
Ḣ

2H2

)

, (42)

where ψ is assumed to be constant. When this equation
is satisfied, TH is constant because TH can be written as

TH =
~ψH0

2πkB
(for constant TH), (43)

where Eqs. (41) and (42) are used. The above equa-
tion indicates that TH is proportional to ψ. Note that
ψ should also be related to surface gravity because TH
given by Eq. (41) is based on the relationship between
the temperature and the surface gravity [68–72].

Solving Eq. (42) with respect to Ḣ yields

Ḣ = −2H2 + 2ψH0H. (44)

We expect that Eq. (44) is related to cosmological mod-
els. Based on this expectation, we attempt to formulate
a cosmological model that satisfies Eq. (44). To this end,
we consider the present model again. From Eq. (15), the
cosmological equation for the present model is written as

Ḣ = −
3

2
(1 + w)H2 +

3

2
(1 + w)ΨαH

2
0

(

H

H0

)α

. (45)

By comparing Eqs. (44) and (45), we find

α = 1 and w =
1

3
. (46)

In fact, substituting Eq. (46) into Eq. (45) yields

Ḣ = −2H2 + 2ΨαH0H. (47)

This equation is equivalent to Eq. (44) for Ψα = ψ.
The above cosmological model, hereafter ‘the constant
TH model’, can describe a universe at constant TH on a
dynamic horizon. The constant TH model corresponds to
the present model for [α = 1, w = 1/3]. The model ob-
tained here is a viable scenario in that other models can
also satisfy Eq. (44). For example, substituting w = 0
and 3fΛ(t)/2 = −H2/2+2ψH0H into Eq. (13) can yield
Eq. (44). Even in this case, the background evolution
of the universe is equivalent to that for the constant TH
model because Eq. (44) is satisfied. In the present study,
we use the constant TH model as a viable scenario.
As mentioned above, ψ is considered to be related to

the horizon temperature and the surface gravity. Also,
Ψα is a kind of density parameter for the effective dark
energy. Therefore, Ψα = ψ may imply that the effective
dark energy is related to the temperature and the surface
gravity. In this study, we accept this relation and assume
Ψα = ψ. Consequently, from Eq. (43), the constant nor-
malized temperature is written as

TH
TGH,0

=

~ψH0

2πkB
~H0

2πkB

= ψ = Ψα, (48)
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FIG. 7: Evolution of normalized parameters for the constant
TH model for Ψα = 0.685. The parameters are replotted
and q is not normalized. The normalized H is equivalent to
the normalized TGH (see the text.). The constant TH model
corresponds to the present model for [α = 1, w = 1/3].

where TGH,0 is the Gibbons–Hawking temperature at the
present time, given by ~H0/(2πkB).
We now observe the evolution of several parameters

for the constant TH model and examine the relaxation
processes for the universe. To observe typical results, Ψα
is set to 0.685, as in previous sections.
As shown in Fig. 7, TH is constant during the evolution

of the universe. The value of the normalized TH is 0.685
from Eq. (48). The other parameters (namely H , q, SBH,

and S̈BH) gradually approach a constant value in the last
stage. The final state corresponds to a de Sitter universe
whose temperature is TH .
We note that the Gibbons–Hawking temperature

TGH = ~H/(2πkB) is proportional to H , as given by Eq.
(8). Therefore, the normalized TGH, namely TGH/TGH,0,
is H/H0 and is equivalent to the normalized H . Thus,
Fig. 7 indicates that the normalized TGH decreases with
ã and gradually approaches the normalized constant TH .
The evolution of these parameters can be interpreted

as a relaxation process at constant TH . To discuss the
relaxation process, we examine the evolution of SBH and
S̈BH for various values of Ψα. To study typical results,
Ψα is set to 0.4, 0.6, and 0.8. (Note that Ψα is equiva-
lent to the value of the normalized TH .) As shown in Fig.
8(a), the normalized SBH increases with ã and gradually
approaches a positive value that depends on Ψα. The

normalized value is given by SBH/SBH,0 = Ψ
−2/(2−α)
α =

Ψ−2
α , as considered in Sec. III C, where α = 1 is used

for the constant TH model. The evolution of SBH de-
pends on Ψα; that is, the larger Ψα is, the earlier SBH

approaches a positive value. Also, as shown in Fig. 8(b),

the normalized S̈BH is positive initially and negative fi-
nally. Accordingly, the maximization of entropy, namely
S̈BH < 0, is satisfied in the last stage.
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FIG. 8: Evolution of normalized entropic parameters for the
constant TH model for various values of Ψα. (a) SBH/SBH,0.

(b) S̈BH/(SBH,0H
2
0 ). The constant TH model corresponds to

the present model for [α = 1, w = 1/3].

In the constant TH model, the normalized TH is equiva-
lent to Ψα, as shown in Eq. (48) and hence their influence
on the model can be seen as being the same. Accordingly,
to observe the influence of TH , we examine a temporal
Ψα-region that satisfies the maximization of entropy, us-
ing contours of S̈BH in the (ã,Ψα) plane. In Fig. 9, the

arrow attached to the line S̈BH = 0 indicates a region
that satisfies the maximization of entropy, S̈BH < 0. The
line S̈BH = 0 is equivalent to the boundary calculated
from Eq. (35). As shown in Fig. 9, the normalized S̈BH

tends to be positive in the early stage and negative in
the last stage. In addition, the larger Ψα is, the earlier
S̈BH < 0 is satisfied. These results imply that the higher
TH is, the earlier the entropy should be maximized.

In this way, using the constant TH model, we can ex-
amine the relaxation processes for a universe at constant
temperature on a dynamic horizon. Of course, this model
is simply one viable scenario with a constant horizon
temperature. The obtained universe is different from
the late Universe described by ΛCDM models because
α = 1 and w = 1/3 are considered here. However,
we expect that the constant TH model will contribute
to the study of thermodynamics and statistical physics
on dynamic horizons because the horizon temperature is
constant in de Sitter universes. For example, the holo-

a∼

0.8

1.0

0.2
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0.6

0.4

Ψ
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FIG. 9: Contours of normalized S̈BH in the (ã,Ψα) plane for
the constant TH model. The vertical axis Ψα is equivalent to
the normalized TH . The arrow attached to the line of S̈BH = 0
indicates a region that satisfies S̈BH < 0. Unsatisfied regions
are displayed in gray, to make the boundary of S̈BH = 0 clear.
The contour lines are plotted at increments of 1. The color
scale bar is based on the normalized value, which is calculated
from Eq. (32), applying α = 1 and w = 1/3.

graphic equipartition law of energy [39, 42] should be
properly applied to the dynamic horizon in a constant
TH model. Based on this, the energy EH is written
as EH = NH × 1

2kBTH = 2SBHTH , where NH is the
number of degrees of freedom on the horizon, given by
NH = 4SBH/kB. Using these thermodynamic quanti-
ties, thermodynamic relations can be examined on the
dynamic horizon at constant temperature. Also, we may
discuss the relationship between holographic entangle-
ment entropy [81–84] and thermodynamic entropy on the
dynamic horizon by extending this model. Those tasks
are left for future research.

V. CONCLUSIONS

To clarify the thermodynamics on a dynamic horizon,
we examined the evolution of the dynamical tempera-
ture TH and the Bekenstein–Hawking entropy SBH on
the horizon of a flat FRW universe in a Λ(t) model.
In this study, we considered a Λ(t) model that includes
both a power-law term proportional to Hα and the equa-
tion of state parameter w. Using the present model, we
examined a matter-dominated universe (w = 0) and a
radiation-dominated universe (w = 1/3), setting α < 2.
Both universes are found to approach de Sitter universes
and satisfy maximization of the entropy in the last stage.
The evolution of several parameters (such as H/H0, q,
and SBH) is similar for w = 0 and w = 1/3. However,
the evolution of TH is different for w = 0 and w = 1/3.
In particular, TH is constant for w = 1/3 with α = 1, al-
though the Hubble parameter H and the Hubble radius
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rH vary with time, unlike for a de Sitter universe.

To discuss this particular case, we examined the spe-
cific conditions required for constant TH . By applying
the condition [α = 1, w = 1/3] to the present model,
we formulated a cosmological model that can describe a
universe with constant TH on a dynamic horizon. The
formulated constant TH model implies that the density
parameter for the effective dark energy is related to TH .
It is found that the higher TH is, the earlier the entropy
should be maximized. Using the constant TH model we
can examine the relaxation processes for a universe at
constant horizon temperature, as if the dynamic horizon
is in contact with a heat bath.

The present results may provide new insights for the
discussion of thermodynamics and statistical physics on
the cosmological horizon. Detailed studies are needed
and are left for future research.

Appendix A: ṠBH and S̈BH for the Λ(t) model with a

power-law term

In this section, we calculate ṠBH and S̈BH for a Λ(t)
model that includes both a power-law term and the equa-
tion of state parameter. For this, the present model is
given again. From Eq. (15), the differential equation is

Ḣ = −
3

2
(1 + w)H2 +

3

2
(1 + w)ΨαH

2
0

(

H

H0

)α

= −
3

2
(1 + w)H2

(

1−Ψα

(

H

H0

)α−2
)

. (A1)

The solution for α 6= 2 given by Eq. (18) is written as

(

H

H0

)2−α

= (1−Ψα)ã
−γ +Ψα, (A2)

where γ = 3(1+w)(2−α)
2 from Eq. (19).

The following calculations are based on Refs. [60, 61].
The results examined in the previous works are slightly
extended because the present model includes the equa-
tion of state parameter w.

To obtain ṠBH for the present model, we first calculate
the first derivative of SBH from Eq. (4). Differentiating
Eq. (4) with respect to t yields [58, 59]

ṠBH =
d

dt
SBH =

d

dt

(

K

H2

)

=
−2KḢ

H3
. (A3)

Substituting Eq. (A1) into Eq. (A3) and applying Eq.

(A2) yields

ṠBH =
−2KḢ

H3
=

2K

H0

(

−Ḣ

H2

)

H0

H

=
2K

H0

3

2
(1 + w)

(

1−Ψα

(

H

H0

)α−2
)

H0

H

=
3K

H0
(1 + w)

(

1−
Ψα

(1−Ψα)ã−γ +Ψα

)

×
[

(1 −Ψα)ã
−γ +Ψα

]
1

α−2

=
3K

H0

(1 + w)(1 −Ψα)ã
−γ

[(1−Ψα)ã−γ +Ψα]
3−α

2−α

. (A4)

The obtained ṠBH includes γ and a coefficient (1 + w).
Also, γ includes the coefficient (1 +w). Except for these
points, Eq. (A4) is equivalent to that examined in Refs.
[60, 61].
In this paper, 1 + w ≥ 0, 1 − Ψα ≥ 0, and Ψα ≥ 0

are satisfied because w = 0, w = 1/3, and 0 ≤ Ψα ≤ 1
are considered. Accordingly, the second law of thermo-
dynamics on the horizon, namely ṠBH ≥ 0, is satisfied in
the present model. The second law of thermodynamics
has been examined for w = 0 in Ref. [60].

Next, we calculate S̈BH. Differentiating Eq. (A3) with
respect to t yields

S̈BH =
d

dt
ṠBH =

d

dt

(

−2KḢ

H3

)

= −2K

(

Ḧ

H3
−

3Ḣ2

H4

)

= 2
K

H2

(

3Ḣ2 − ḦH

H2

)

= 2SBH

(

3Ḣ2 − ḦH

H2

)

.

(A5)

We now calculate S̈BH for the present model. For this,
we calculate 3Ḣ2− ḦH in Eq. (A5) using Eq. (A1). The
detailed calculation is summarized in Ref. [60]. Based on

the result, 3Ḣ2 − ḦH is written as

3Ḣ2 − ḦH =
3

2
(1 + w)(−Ḣ)H2

×

[

1−Ψα(3− α)

(

H

H0

)α−2
]

. (A6)

The above equation includes a coefficient (1+w). Except
for this point, Eq. (A6) is equivalent to Eq. (C7) of Ref.
[60]. Substituting Eq. (A6) into Eq. (A5) yields

S̈BH =

2SBH
3
2 (1 + w)(−Ḣ)H2

[

1−Ψα(3− α)
(

H
H0

)α−2
]

H2

= 3SBH(1 + w)(−Ḣ)

[

1−Ψα(3− α)

(

H

H0

)α−2
]

,

(A7)
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and applying SBH = K/H2 given by Eq. (4) yields

S̈BH = 3K(1 + w)

(

−Ḣ

H2

)[

1−Ψα(3 − α)

(

H

H0

)α−2
]

.

(A8)

In addition, substituting Eq. (A1) into Eq. (A8) and ap-
plying Eq. (A2) to the resultant equation yields

S̈BH = 3K(1 + w)

(

−Ḣ

H2

)[

1−Ψα(3− α)

(

H

H0

)α−2
]

= 3K(1 + w)×
3

2
(1 + w)

(

1−Ψα

(

H

H0

)α−2
)

×

[

1−Ψα(3− α)

(

H

H0

)α−2
]

=
9K

2
(1 + w)2

(

1−
Ψα

(1−Ψα)ã−γ +Ψα

)

×

[

1−
Ψα(3 − α)

(1 −Ψα)ã−γ +Ψα

]

=
9K

2
(1 + w)2(1−Ψα)ã

−γ

×
(1−Ψα)ã

−γ + (α− 2)Ψα

[(1 −Ψα)ã−γ +Ψα]
2 , (A9)

where γ = 3(1+w)(2−α)
2 from Eq. (19). Equation (A9)

includes a coefficient (1 + w)2 and γ. Also, γ includes
(1 + w). Except for these points, Eq. (A9) is equivalent
to that examined in Refs. [60, 61]. The maximization of
the entropy for w = 0 was discussed in previous works
and it was reported that S̈BH < 0 should be satisfied
in the last stage when α < 2 [60, 61]. In the previous
works, w = 0 is considered and, therefore, (1+w) is pos-
itive. In this study, similarly, (1 +w) is positive because
w = 0 and w = 1/3 are considered. Accordingly, the re-
sult reported in Refs. [60, 61] can also be applied to the

present model. That is, Eq. (A9) indicates that S̈BH < 0
should be satisfied in the last stage when α < 2. We note
that ṠBH and S̈BH for α 6= 2 reduce to those for α = 2,
respectively, when α → 2.

[1] S. Perlmutter et al., Nature (London) 391, 51 (1998); A.
G. Riess et al., Astron. J. 116, 1009 (1998).

[2] N. Aghanim et al., Astron. Astrophys. 641, A6 (2020).
[3] O. Farooq, F. R. Madiyar, S. Crandall, B. Ratra, Astro-

phys. J. 835, 26 (2017).
[4] S. Weinberg, Cosmology (Oxford University Press, New

York, 2008); G. F. R. Ellis, R. Maartens, and M. A. H.
MacCallum, Relativistic Cosmology (Cambridge Univer-
sity Press, Cambridge, England, 2012).

[5] K. Bamba, S. Capozziello, S. Nojiri, S. D. Odintsov,
Astrophys. Space Sci. 342, 155 (2012); S. Nojiri, S.
D. Odintsov, V. K. Oikonomou, Phys. Rep. 692, 1-104
(2017).

[6] S. Wang, Y. Wang, M. Li, Phys. Rep. 696, 1-57 (2017);
N. Frusciante, L. Perenon, Phys. Rep. 857, 1-63 (2020).

[7] K. Freese, F. C. Adams, J. A. Frieman, E. Mottola, Nucl.
Phys. B287, 797 (1987); J. M. Overduin, F. I. Cooper-
stock, Phys. Rev. D 58, 043506 (1998); J. Solà, J. Phys.
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