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I . INTRODUCTION 

It i s general ly accepted that the magnetic f i e ld of the so lar corona 

c o n s i s t s of flux that has emerged from the solar i n t e r i o r , and remains 

connected to the subsurface f i e l d . Thus, the evolut ion of the coronal f i e l d 

and the photospheric f i e l d are strongly coupled together . Three reasonably 

well es tabl i shed propert ies of the solar atmosphere govern the nature of this 

coupling. 

F i r s t , the iner t ia of the photospheric g a s - f i e l d system much exceeds that 

o f the coronal g a s - f i e l d system. Photospheric dynamics are general ly 

dominated by the f lu id , which i s capable of advecting the f i e l d . In the 

corona, the energy dens i ty in the f i e l d i s greater than that in the ambient 

f lu id , but i s much lower than the photospheric energy d e n s i t y . 

Second, t y p i c a l v e l o c i t i e s in the photosphere (<. 1 km s" 1 ) are much 

smaller than the coronal Alfven speed (several hundred kn s™ ) . Likewise, the 

Alfven t r a n s i t time (10 - 100 s) in a typ ica l coronal structure i s 

considerably shorter than the time s c a l e f o r photospheric motions ( e . g . , 10 

minutes for granule turnover)• 

Third, the solar atmosphere i s e s s e n t i a l l y per fec t l y conducting over the 

bas ic length s ca l e s and t ine s c a l e s of motion. The f i e ld can be treated as 

frozen into the f l u i d , except in the neighborhood of any current sheets that 

may be present . 

These three propert i e s , taken together, imply that the coronal magnetic 

f i e l d evolves qua s i s t a t i c a l l y in response to photospheric motions, so that the 

f i e l d remains nearly in equilibrium as i t adjusts to slowly changing boundary 

condi t ions . The surface condit ions are determined by the dynamics o j the 

i n t e r i o r , with n e g l i g i b l e feedback from the corona. The success ive 

equil ibrium s t a t e s that the f i e l d assumes are connected to each other by flux 
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preserving motions, and a l l have the sane magnetic topology. F ina l ly , to the 

extent that the corona i s magnetically dominated, the equilibrium s t a t e s are 

force free . 

The magnetic evolut ion problem i s of major importance in understanding 

both the s ta te of the quiet corona and eruptive phenomena such as f lares and 

coronal t rans ient s . Barker (1983) has proposed that the random motion of 

magnetic f i e ld l i n e endpoints leads to the formation of current s h e e t s , in 

which enouqh energy i s d i s s ipated to heat the corona. I t has been suggested 

by a number of authors ( e . g . , Low, 1977; Birn e t a l . , 1976) that eruptive 

events are to be ident i f i ed as points in which one parameter famil ies of 

equ i l ibr ia terminate or become s ingular . 

The problem of ca lculat ing coronal magnetic f i e ld evolut ion with the 

f i e ld l i n e endpoints s p e c i f i e d , i . e . , with invariant magnetic topology, was 

f i r s t posed by Sturrock and Woodbury (1967), who suggested that the t i e l d 

would evolve to an unstable , f lar ing s t a t e . The topological cons tra in t leads 

to a d i f f i c u l t nonlinear problem, which has been reviewed recent ly by Low 

(1982). Numerical ca l cu la t ions of evolving f i e ld structure have been 

published by Sakurai (1979, 1981). Parker (1972, 1979) has suggested that the 

conditions for equilibrium are so exceptional that they are rarely s a t i s f i e d , 

and that singular layers (or current sheets) develop in an evolving f i e l d . 

In th i s paper, we formulate the magnetic f i e ld evolution prohlem in a 

magnetic flux coordinate system. The flux coordinates embody the invariant 

magnetic f i e l d topology, making the f i e l d l i n e connect iv i ty cons tra int eas i er 

to apply than in the usual Cartesian coordinate formulation. The i-roblem i s 

s t i l l nonlinear, but we derive and solve a l inear equation that i s val id for 

long, th in magnetic flux tubes with a £*mall twi s t per unit l ength . ft 

s t a b i l i t y analys is suggests that the f i e ld becomes raagnefcohydrodynamically 
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unstable when twisted by an amount that i s small compared to the maximum twist 

that can be studied in l inear theory. Therefore, l inear theory appears 

adequate for the study of these models. 

We introduce flux coordinates , pose the equilibrium problem, and derive 

the l inear approximation in Sec. I I . In Sec. I l l , we consider one example of 

a twisted f i e l d . He so lve for the magnetic f i e l d , c a l c u l a t e the stored 

energy, and b r i e f l y d i scuss the MHtl s t a b i l i t y of the model. In Sec. IV, we 

g ive conclusions and a d i s c u s s i o n . 

I I . MAGNETIC FLtJX COORDINATES AND THE EOUILI8RIIM PROBLEM 

A) Flux Coordinate System 

Magnetic flux coordinates are widely used in fusion plasma physics 

because they have been found to s impli fy both equilibrium and s t a b i l i t y 

c a l c u l a t i o n s . Solov'ev and Shafranov (1970) and Bateman (1978) d iscuss flux 

coordinates . Boozer (1984) d i scusses magnetic f i e l d evolut ion and f lux 

coordinates . • We g ive a somewhat spec ia l i zed but phys ica l ly motivated 

development here, includinq a l l the properties of flux coordinates that are 

necessary for the ca l cu la t ions in t h i s paper. 

Consider an axisymmetric magnetic f i e l d 

B « r B r ( r , z ) + B c Bg(r,z) + zB 2 <r,z) (1) 

with B z always p o s i t i v e . Here, 9 C denotes the usual c y l i n d r i c a l angle , to be 

dist inguished from the magnetic angle 6 introduced below. The vector 

potent ia l A for B i s not uniquely def ined, because of freedom of gauge. 
+ * 

However, because B i s axisymmetric and A must be s ing le valued, the component 

Ag, which determines Bj. and B z , i s unique: 



5 * 9 1 5 , 

l e t <1> = rftg. The function <Mr,z) has two important propert i e s . F i r s t , <l> i s 

constant on magnetic f i e l d l i n e s ; B • P(J< - 0. Second, the magnetic flux 

through a c i r c l e o f radius r a t constant z i s simply 2 " * l r , z ) : 

r1 , 2 n 

j rdr I d6 B - 2T&{T,Z) c z 

The equations for the nagnetic field lines traced by the lield given in 

Eq. t1) are 

, B d« B„ 
dr r c _9_ 
dz " B ' r dz " B ' 

z z 
so the f i e ld can be written 

I = B J* ( 2 ) 
z •5? 

X H r r ( 9 ) + zz c 

where the der ivat ive i s understood to be taken along the magnetic f i e l d l i n e . 

Now consider a s e t of coordinates <l>, 9, z . The function <Mr,z) i s the 

f lux function introduced above. The variable 8 ia a proper ang le , meaning 

that the points 9 and 9 + 2u are i d e n t i f i e d , and can be writ ten 

9 = 9 - u>[r,z) 
c 



6 

The variable z i s the same as z in c y l i n d r i c a l coordinates . 

We can express the magnetic f i e l d in flux coordinates in the fallowing 

way. The gradient of any scalar function f can be written 

-» Sf I •* 8f J + o f ) + 

Taking the scalar product of Vf with V^ x V9 enables «s to so lve for 

o f / o z j ^ e : 

|f | = 7f_'l^ve) ( 3 , 

The quantity Vz • (tf<|> x V8J i s simply the Jacobian determinant which 

transforms the cy l indr ica l coordinate volume element into the flux coordinate 

volume element: 

diHGdz = rdr d© dz Vz • (Vc|> x 78) c 

In the present case 

v z • (vip x vel » - -5i » B 
' r Or z 

If we l e t f in Er. (3) be any component o f the p o s i t i o n vector X, we see chat 

Therefore, according to a t . (2) 



J QZ 

, = ^ . fax „ 8X1 9r 
J - sip l as ozJ " r "5$ 

Equation (4) shows the important fact that 9 as well as 4> i s constant on 

magnetic field l ines , we will refer to the (l>, 6, z coordinates as a magnetic 

coordinate system. 

The advantage of a magnetic coordinate system becomes apparent when we 

consider the problem of specifying the end points 0 f the magnetic field l i n e . 

Imagine an i n i t i a l l y uniform field zB in a perfectly conducting medium 

between two perfectly conducting surfaces a t z * ± L/2. Suppose that the 

field line endpoints at z • L/2 are rotated about some axis (taXen to be 

r = 0) by an angle 49(r ) and displaced radial ly by an amount 4r(r ) , where r 

i s the i n i t i a l radius. The connectivity conditions expressed in cyl indrical 

coordinates are given by the integrals along field l ines 

L/2 B (r ,z) 
M r ) - / da *. i 

° -L/2 V r < z > 

L/2 B.(r,z) 

which the magnetic field must sa t is fy . In magnetic coordinates, we can write 

*•(+,-§) - rU , - ~ ) + Art*) 
(5) 

<»(.4>. f ) - <"(+. - f ) + ASC4>> 
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because <t> and 9 are constant along the field l ine . To discover the expl ic i t 

transformation between the cylindrical and the magnetic coordinates, however, 

we must consider the equilibrium conditions. 

B) Magnetostatic Equilibria!! 

He continue to consider the problem of calculating the magnetic field 

between two plates . Suppose the pressure of the ambient medium is 

negligible. Then, tht equilibrium must be force free. I t i s well known 

(Kruskal and Kulsrud, 1958) that the equations of magnetostatic equilibrium 

can be derived from a variat ional principle by extremizing the energy of the 

system. We derive force-free equil ibr ia when the only energy i s magnetic 

The equil ibria derived by varying W depend on the imposed const ra in ts . 

If ' • B = 0 i s the only constraint , the minimum energy s ta te i s a potential 

f i e ld . If constancy of the magnetic he l ia i ty 

- t 3 + •» K = J d x A « B 

i s imposed as a constraint , Woltjer (1958) showed that the result ing minimum 

energy state has 

•» -» + 
7 x B - IB 

where a i s constant. In our problem, we wish to constrain the magnetic 
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topology by imposing the f i e l d l i n e connec t iv i ty condi t ions . This can be done 

by finding the pos i t ion vector X(4,0 ,z) which minimizes the magnetic energy 

and s a t i s f i e s the boundary condit ions a t z » ± 1/2. We therefore use Eq. (4) 

to write the magnetic energy as 

t di^Qdz r . /-or-,2 2/8111,21 

We then vary W to so lve for r and u as functions of ty and z , imposing the 

boundary condit ions <5). Once r ami <•> are knovm, we solve for B, using Bq. 

( 4 ) . This magnetic f i e ld ia the minimum energy s t a t e subject to the f i e l d 

l i n e connect iv i ty condi t ion . 

The Euler equations for r and u obtained by varying W are 

& r l + ( a r / o z ) 2 + r 2 ( a M / o z ) 2 i & (8r /6z) M + ( o r / o z ) 2 - r 2 f o i . v M 2 i 

(7a) 

Equation (7b) implies immediately that 

r BdJ/oz 

In terras o f F(4>), the Euler equation (7a) for r becomes 

. ? _ r l ± ( 9 j / 3 z ) 2 l + £ _ [ <jr/&z 1 1+ (3r /5z ) 2 j _ t? 
* 2 r f a r / ^ ) 2 - 8 z L ? W W T J +

 2 f 2 ( a r / 8 + ) 2r " 5 * ' <9> 

Equation (9) i s a nonlinear part ia l d i f f e r e n t i a l equation for r , and, as 
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such, i s d i f f i c u l t to s o l v e . We w i l l therefore der ive and so lve a l inear ized 

vers ion of Bq. (9) which aliow3 us to study the equilibrium of magnetic flux 

tubes which are thin and which have a small twi s t per uni t l ength . 

C) Small Displacements of the Field l i n e s 

We assume that r((i>,z) can be wri t ten as 

r - R + r (<l>,z) ; r « R 

* = ( ? ) 1 / 2 

( 1 0 ) 

where B i s a constant f iduc ia l f i e l d strength that we w i n suppress to save 

wri t ing . We f i r 3 t consider the function PCP) defined in Eq. (8 ) : 

/ L / 2 dZ sm | i = w ( t r i ) . „(<,, . i ) = M w , ( 1 1 ) 

—L/2 

where Br. (5) has been used, ana the integra l i s evaluated a t constant <b. TO 

lowsst order in r 1 , 

F (t|0 - £-A9(R> . (12) 
O L 

F i s s u f f i c i e n t for the purpose of ca l cu la t ing r , Bowever, we w i l l need V 

to higher order when we ca lcu la te the energy of the d i s tor ted conf igurat ion. 

We write F(<M » Fo(<!0 + F, (<M and ca lculate F by requiring that Eq. (11) be 

s a t i s f i e d , "his leads to 



£ 1 , L / 2 

-L/2 

we now l i n e a r i z e tt(. ( 9 ) . TO f i r s t order in r 1 and i t s d e r i v a t i v e s , we 

find that the l inearized Ruler equation for r 1 i s 

I S 6 r i l i ^ i _ L B F O 
R 31 R W " 2 + . 2 - 2 ~T8R 

R Oz 2R 

r 

where 

_2 

( M ) 

The - o l u t i o n of &(. (14 ) , subject to the boundary condit ions 

r,(R. - f ) -rJ- 'cR) 

^ . . i J - r J ^ C R ) 

CD A 

r ^ R . z ) = f(R) + / kdk / uau J (kR)J, ( k u ) f [ r j _ , ( u ) + rj + > ( u ) 
o o 

. T cosh kz r (-) ( + ) , , t sinh kz i , _, 

f (S) - ctR + PR" 1

 + / ds ^ £ • (*• - f ) (16) 

i s a 3urn of the homogeneous and particular so lut ions to the equation 

1 j L „ 5 1 _ I _ 1 dp 2 

R OR &R 2 ~ „ 2 O R 
R 2R 

The constants a and P are chosen to keep t. bounded as R approaches zero anr-
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i n f i n i t y . 

The m a g n e t i c f i e l d components , t o f i r s t o r d e r i n r . , a r e 

B • ^ " r Oz 

( 1 7 ) 
F 

1 & 

B • 1 - — r - Rr, Z R OR 1 

E v i d e n t l y , Bg i s o f o r d e r RA8{R)/I. r e l a t i v e to B , w h i l e B i 3 o f o r d e r 

[ 4 6 ( r ) ] ( R / L ) 3 . N o t i c e t h a t t l ie a n g l e A6 may i t s e l f b e l a r g e a s l o n g a s R / L r 

the r a t i o o f the r a d i u s o f the t w i s t e d r e g i o n t o i t s l e n q t h , i s s m a l l . N o t i c e 

a l s o t h a t the t w i s t per u n i t l e n g t h i s a p p r o x i m a t e l y c o n s t a n t . 

I t i s i n t e r e s t i n g t o s e e t h e e x t e n t t o which t h e approx imate s o l u t i o n 

(17) f o r B s a t i s f i e s t h e f o r c e - f r e e c o n d i t i o n . We f i n d t h a t 

2 
* F 0 r , A B f l OF j. B OF 

n w O l A " 0 Z O 

In order to make the radial component of V x B proportional to B r , we 

would have bo work to higher order in r . . Our primary i n t e r e s t here i s in the 

shapes of the magnetic surfaces , and in the energy of the twisted 

conf igurat ion. 

a s imilar expansion has been carried out by Sturrock and tfchida (1981 > 

for a th in , twis ted , force- free magnetic tube. Their so lut ion s a t i s f i e s B x 

(V x B ) » 0 and * > B • 0 up to terms of order R / L 2 . In our formulation, 

7 • B « 0 i s s a t i s f i e d automatical ly . 

Iwo other comments on the v a l i d i t y of the l i n e a r i z a t i o n are in order. 
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The f i r s t i s that the perturbed magnetic surfaces «rast not cross each other j 

i . e . , 

R + r <R,z) » R + 6H + r {H + 5R, Z) 

i s forbidden. To f i r s t order in fiR, the condit ion that f lux surfaces never 

cross i s 

8 r 1 
sir*- 1 

The second v a l i d i t y condit ion i s t h a t dr,j/Bz < 1 must hold. We w i l l see 

in Sec. I l l that both these condit ions l i m i t the value of A8 that can be 

studied within the l inear theory. 

I I I . A GAUSSIAN TWIST PROFILE 

A) Magnetic Geometry 

As an example of the foregoing techniques, we consider the e f f e c t of a 

pure twis t with a Gaussian dependence on radius: 

A6(R) = A6 exp[ -R 2 /2R 2 ) 
o 

r{ + ) (R) - r^'tR) - 0 

tractable and g ives re su l t s which are q u a l i t a t i v e l y s imilar to those obtained 

with other twist p r o f i l e s which are l oca l i zed to a region of s i z e R . The 

function T defined in Eq. (12) i s 
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1 
F 0 (R) - BBg - AS | - exp( -R 2 /2R 2 ) 

and 

4 2 2 
. 2_2 „2 R » -* R ,„ « -(A9)Tt r„ f * | o t „,. , . 2 f _ _ 2 1 cosh fcz ? , , 0 , 

r, (ft,.) - -*—| lR < * P ( — ) - r J dk * expf-^—J o o s h ( k L / 2 I * (18) 
4L R 0 

the integral over u in Bq. (15) can be done a n a l y t i c a l l y . 

Figure 1 i s a p lo t of the flux surface contour r(z) for several values o f 

R. The units are chosen such a t A /L * 0.05 and 6 • 12.7 n. This rather 

Large value of A6 was chosen to make the f i e l d l i n e curvature v i s i b l e . 

Several in teres t ing q u a l i t a t i v e features appear in Pig. 1. F i r s t , the 

inner part (small R) of the f i e l d i s pinched in by the t w i s t . l i e inward 

displacement of the flux surfaces i s nearly constant over most of the length 

of the f i e l d l i n e s , with most of the curvature appearing a t the ends. As 

expected, r. approaches zero as R approaches zero, and the maximum radial 

displacement of the f i e l d l i n e s occurs for R » R 0 /^2, Z = 0, and has the 

value 0.107(A6 R Q / L ) 2 R 0 . The maximum value of Bg occurs a t R « R f̂ B e m a x = 

0.61 (A9 R 0 A ) B 0 . 

For R greater than T^/^2, the amplitude of r.. decreases . B changes s ign 

from p o s i t i v e to negative near the ends of the surface a t R ~ 1.7 R 0 . For 
- 3 / 2 large B, r 1 i a o s c i l l a t o r y , with an amplitude that decreases as R ' . 

The maximum value of or^/Sz i s 3.97 I O 4 ( 4 9 ) 2 ( R O / L ) 6 in t h i s model, and 

occurs a t |z | m L/2. Thus, for the value of R a/L • 0.05 chosen here, 

|dr . , /oz | < 1 everywhere for A6 < 12.8 n. 

The maximum value of Or-/OR occurs a t R = 0, z = 0, and i s equal to 

- (A9R/3I, ) 2 . For R/L - 0.05, the flux surfaces do not cross i f A8 < 12.7 it. 
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Thus, the condit ion that flux surfaces do not cross i s about as s tr ingent as 

ths condit ion that |or . . /oz | < 1 in ensuring the v a l i d i t y of the l i n e a r i z a t i o n 

of Hj. [ 9 ) . I t i s unclear a t present whether the breakdown of the l inear 

theory has any fundamental physical s ign i f i cance in h n r e of the propert ies of 

the r e a l , nonlinear s o l u t i o n s . 

B) Stored Magnetic Energy 

We now consider the energy stored in the twisted f i e l d . Equation (6) 

must be expanded to second order in r.., and P 1 , the. correct ion to F Q given in 

Efct. (13) must be included. The r e s u l t i s 

« * i" ^ fL / 2 , r F o * r& i* r % a F ° * rM 
-a - -j J MR ; dz [i + -j f -2- (jjj- ar,) + (^-) - i r s r l -
B O -L/2 R R 

The f i r s t term of the integrand represents the unperturbed energy; w . 

The second term represents the e f f e c t of the tw i s t ; Aw_, The l a s t three tern-3 

represent the e f f e c t of radial d i s t o r t i o n ; AwRi For the Gaussian model, we 

find 

AW. - B 2 - ~ T o 8L 

Thus, the radial d i s t o r t i o n s l i g h t l y lowers the stored magnetic energy below 

what i t would be for a twisted tube with B = 0. Since (A9R0/L) must be l e s s 

than one for the l inear theory to hold, the correct ion to the energy due to 

radia l d i s tor t ion i s small compared to ths twi s t energy in th i s Gaussian 

model. 
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C) S t a b i l i t y 

We c l o s e t h i s sec t ion with a few remarks on the s t a b i l i t y of the twisted 

f i e l d s , deferring a deta i led analys i s to a future paper. There are two type3 

of i n s t a b i l i t y to consider; idea l HHD modes, which preserve the frozen flux 

condit ion, and r e s i s t i v e nodes, which break the f i e l d l i n e s . The idea l modes 

genera l ly grow much more rapidly than the r e s i s t i v e modes, but the c r i t e r i a 

for r e s i s t i v e i n s t a b i l i t y are often milder than ideal i n s t a b i l i t y c r i t e r i a . 

The theory of idea l MUD s t a b i l i t y for i n f i n i t e l y long, c y l i n d r i c a l 

pinches was developed by Newcomb (1960) in a c l a s s i c paper {see a l s o 

Freidberg, 1982). Cyl indrical pinches of f i n i t e length have been treated by 

Einaudi and van Hoven (1531). Neither ana lys i s i s s t r i c t l y appl icable to our 

problem, in which B i s nonzero and the f i e l d s depend on z . Neverthe less , 

Newcomb1 s s t a b i l i t y condit ion i s of some i n t e r e s t , because B r i s small 

compared to B 2 and i s s trongest near |z | - L/2, and we can take app, oximate 

account of the f i n i t e length of the structure by considering only ax ia l wave 

i'.umters k with kL > 27i, we have applied Newcomb1 s procedure and find that the 

f i e ld becomes unstable when A9 s l i g h t l y exceeds 21*. Thus, the i n s t a b i l i t y 

l i m i t w i l l l i e wel l ins ide the range of AG for which the l inear i zed 

equilibrium theory i s v a l i ^ The most unstable modes are m » 1 kink modes, 

where ejcp(imG) i s the angular dependence of the perturbation. On longer time 

s c a l e s , r e s i s t i v e i n s t a b i l i t i e s may a l so be important. 

The r e s u l t s of the s t a b i l i t y ana lys i s suggest that i f the f i e l d i3 

rotated beyond a c r i t i c a l angle of 23t near r • 0, the minimum energy s t a t e i s 

a nonaxisyrametric one, i n which the magnetic ax i s i s wound in to a he l ix 

instead of being s t ra igh t (Taylor, 1975, Heiman, 1980). 
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IV, DISCUSSION AND CONCLUSIONS 

We have considered the force-free equilibrium of the so lar magnetic f i e l d 

as i t evolves due to slowly changing photospheric boundary cond i t i ons . This 

problem «as f i r s t posed in the so lar context by Sturrock and Woodbury (1967), 

who pointed out the topological constraint on f i e l d l i n e connec t iv i ty t l a t 

holds in a per fec t ly copSucting medium. The nonlinaarity of the problem has 

prevented much progress toward i t s s o l u t i o n . 

We formulated the problem in a flux coordinate system, taking as the 

basic geometry an axisymmetric cyl inder which i s twis ted , d i l a t e d , or 

compressed a t i t s ends. He showed that the flux coordinate system makes i t 

pos s ib l e to express the topological cons tra int in a simpler, more natural way 

than using cy l indr ica l coordinates . The problem of solving for the force-free 

magnetic f i e ld i s equivalent to solving for the transformation between flux 

coordinates ?.nd c y l i n d r i c a l coordinates . 

The basic maqnetostatic equations are nonlinear part ia l d i f f e r e n t i a l 

equat ions . We showed that the equilibrium of long thin magnetic flux tubes 

with a small twi s t per unit length can be studied by means of a l inear ized 

equation, which can be solved a n a l y t i c a l l y up to a numerical i n t e g r a l . The 

magnetic f i e l d in the l inear theory i s divergence f ree , but force free only up 

to third order in the expansion parameter. 

We gave an example of the equilibrium which r e s u l t s when the endpoints of 

the f i e l d l i n e s are twisted according to a Gaussian p r o f i l e . The t w i s t per 

u n i t l ength i s nearly uniform, and the f i e l d near the ax i s i s pinched i n . The 

radial component of the f i e l d i s concentrated near the endpoints. The energy 

stored in the twisted f i e l d i s enhanced by an amount of order Br(A9) 2 R£/L, 

where S8 i s the maximum twis t angle, R the sca le length for the t w i s t , and L 

the separation between the boundaries. Our r e s u l t i s of the same order as 



ia 

that found by Sturrock and Uchida (1991). 

A preliminary a n a l y s i s suggests that the Gaussian tw i s t f i e l d i s unstable 

i f the tw i s t angle exceeds 21. We conjecture that the minimum energy s t a t e o f 

a f i e l d twisted beyond t h i s c r i t i c a l value i s nonaxisymmetric, and h e l i c a l in 

form. The s t a b i l i t y of the tubes to r e s i s t i v e modes i s unresolved. 

We suggest that the magnetic flux coordinate method w i l l prove useful in 

ca l cu la t ing models of coronal magnetic f i e l d evolut ion due to photospheric 

motion. Such models provide i n s i g h t in to coronal s tructure and a c t i v i t y , we 

intend to pursue the s t a b i l i t y of the so lu t ions aid the propert ies of 

nonlinear so lu t ions in future papers. 
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FIGURE CAPTION 

FIG. 1. The flux surfaces r (z) for a f i e l d with a Gaussian tw i s t p r o f i l e . 

The Gaussian sca le length r i s 0.05 h, the length of the tube, in 

th i s example, and ASR /2L » 1. Each curve i s labeled by i t s 

pos i t i on in the untwisteri conf igurat ion. 



21 

ft 

0,10 0.20 
•iOIUS Ita UmtioU/2] 

Fig. I 



BTOHML DISTRIBOTIOH IN ADOPTION TO uc-ao 

Plasm Res Lab, Austra (Jat'l Oniv, AUSTRALIA 
Or. Frark J, Paolmi, Onlw of tfollongong, WSTRALJA 
Prof. I.R, Jones, Flinders Univ., AUSTRALIA 
Prof. M.H. flrennan, iJniv Sydney, AUSTRALIA 
Prof. P. Cap, Inst Thao Phys, AUSTRIA 
Prof. Frar* Verheest, Inst theoretische, BELG&M 
Dr. o. Palumto, 03 xtr Fusion Prog, MLSIUM 
H»le Scyale ntl itairn, Lab da Phys Plasms, BffiflnM 
or. P.H. Sakanaka, Ohiv Bstadual, ERACTL 
Dr. C.H. Janes, Uhiv of Alberta, CNflDA 
Prof. J . Teiriwmn, Univ of Montreal, CMW3A 
Dr. H.M, Skarqard, Univ of Saskattfcovian, CAMDA 
Prof. S.R. Srpenivasan, University of Calgary, CANADA 
Prof. TudorW. Johnston, DRS-Qiergie, CNVUA 
Or. Harmes Barnard, Univ British ColtntaU, CAWDA 
Dr. «t.P. atdwsfci, f s Technologies, Inc., CBMM 
Chalk •River, Hull Lab, CMHDA 
Zhcnfta Li, SW Inst Physics, CHDft 
Library, Tsing Hua University, CHOW 
Librarian, Institute of Physios, CHIHA 
Drat Plasm Phys, Acadsnia siriica, CHBH 
Dr. Peter Lukac, lOananskaho Univ, c z s a c s i o w u a 
The Librarian, Culham Laboratory, aaSLAND 
Prof, Schatanan, Observatoire de Nice, F R « C E 
J. Radet, CEH-BPft, PRMCE 
AM Dupas Library, AM Dupss Library, FRANCE 
Dr. Tan Mual, Acadaiy Bibliographic, fOC KDK3 
Preprint Library, Dent Res Inst Phys, HONQwy 

• Dr. S.K. Trehan, Parrjab University, DMA 
Dr. India Mohan Lai Das, Banaras Hindu Univ, INDIA 
Dr. L.K. ChaH3a, South Gujarat Dniv, OT3IA 
Dr. S.K. Chhajlani, Vikrsn Univ. DDIA 
Dr. 9. Dasgupta, Sana Inst, DOIA 
Dr. ?. Kaw, Physical Research Lab, DCIA 
Dr. Phillip Rosenau, Israel Inst tech, ISRAH, 
Prof. S. Cupeomn, Tel Aviv University, ISRAEL 
Prof. G. Rostagni, Dniv QL Padbve, H*L¥ 
Librarian, lnt '1 Ctr Theo Phys, ITK.Y 
Miss Clelia Oe Palo, Assoc EUHSICM-Sim, HftLY 
Bibliotaca, del CNR SJRATCM, ITALY 
Dr. K. Yamato, ttaahiha Has * Dev, JAPAN 
Direo Depfc. bg. Itfonak Dev. JABO, JAPAN 
Prof. NchjtfiteL Incus, university of racyo, JAPAH 
'fesearch Info Canter, Msgcya University, JAPAN 
Prof. Kyoji Nishikaws, CJniv of Hlroshijna, JAPAN 
Prof. Sigeru«tori, JABS, JAPAN 
Library, Kyoto University, JAPAN 
Prof. Ichiro Kauokami, Nihon Univ, JWAN 
Prof. Sataehi icon, Xyushu University, JAPAN 
Dr. D.I. Choi, Mv. Inst Sci s Tech, WDPEA 
Tech Info Division, KMRI, KDRA 
aibliothseft, Eb»-Inst Vbor Plaaw, NBlHHavwcs 

Prof. B.S. Liley, Univsrsity of vbikato, NB< ZEALAND 
Prof. J.A.C Cabral, Inst aiperioc Teen, PORIU»L 
Dr. Octavian Petrus, ALI ClJZh UniweraUy, RCMANIA 
Prof. H.R. Hsllherg, University of Matal, S3 AFRICA 
Dr. Johan da Vi l l iers , Plasma Physics, NUcor, SO A?RKA 
Fusion Div. Library, JIN, SPAm 
Prof. Hans (ttlhelroon, Chalmers Dniv Tech, SWEDW 
Dr. Lemart Sbenf Is, University of tWBV, SOTDEN 
Library, Boyal Inst lech, SWH3EN 
Centre de aecherchesen, D»le Polytech Fed, SWTTZERLMO 
Dr. V.T. T b l * , "Chartov Phys Tech ms, fJSSR 
Dr. D.D. Ryutov, Siberian Acad Sci, USSR 
Dr. G.A, Eliseev, Kurchatov Institute, TBSR 
Dr. v.A, Glukhikh, Inst Electrc-Physical, USSR 
Institube Gen. Phyaics, USSR 
Prof. T.J.M, Bopl, Uhiv College 1) Kiale3r HALES 
Dr. K. Sohindler, ftihr 'Jnitmrsitat, W. GERtswy 
Njclear Res Estab, Julioh Ltd, W. GEPMANV 
Librarian, Max-t>lan*; Institut, w. GBVVWY. 
Bihliothek, Inst PlasnaCorschung, w. GESHWY 
Prof. R.K. Janev, Inst Phys, rJGCELWÎ  


