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1. INTRODUCTION

In this paper, we show the existence of an evolution operator for a higher order
abstract parabolic equation with variable coefficients. More precisely, we exhibit an
operator — valued function U(t, s) which solves the Cauchy problem

S AUt s) =0, (85Ut s),-s=0, k=0,..,n—2,
k=0
(071Ut 8))ims = 1.

The usefulness of evolution operators in the study of the Cauchy problem for a first
order equation is well known in the parabolic as well in the hyperbolic case.

Higher order abstract differential equations have been largely studied in the last
decade but almost always either in the constant coefficient case or for equations of
a particular type (for detailed references, see [ 1], sect.2.5.(c)). The techniques we use
are similar to Tanabe’s method, bur further technical difficulties are involved and
some new phenomena arise. The evolution operator will be seen to have the form

(L.1) U, s) = V1, s) + f "Vi(t, ©) Rz, 5) d,

s

where V;(, s) x is the solution of the constant coefficient Cauchy problem
Y A(s)u®() =0, s<t=T,
k=0

uP(s) =0, h=0,...,n—2, u"Is)=x,

while R solves a suitable Volterra integral equation.

Let us now give a plan of the paper. In section 2 we formulate our hypotheses and
we state the main result. In section 3 we define the operators ¥, and R and study
their properties. Section 4 is devoted to the integral operator appearing in (1‘1),
while in section 5 we show that (1.1) really defines an evolution operator. Finally

1y Partially supported by G.N.A.F.A. of C.N.R. Ttaly.
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in section 6 we give some applications to Cauchy problems for abstract parabolic
equations. Here we limit ourselves to situations where evolution operators are more
directly applicable, deferring to a subsequent paper the consideration of more general
Cauchy problems as well the problem of uniqueness of solutions.

2. HYPOTHESES AND THE MAIN RESULT

Let X be a complex Banach space, let r be a fixed positive integer and let T be
a fixed positive real number.

For every te[0, T] and for every ke {0,1,...,n — 1}, we are given a linear
operator Ak(t), whose domain and range are contained in X.

In the sequel we shall always suppose the following hypotheses hold true.

I) The operators A,(f) are densely defined and closed, Ve [0, T] and Vke
€{0,1,...,n — 1}; furthermore, the domain of A,() is independent of ¢ (we shall
denote it by Z(4,)) and there exist K, K, € B*, such that

K| A1) x| < [|4u(s) x| £ K| 4(1) x|, Vs, 1[0, T], VxeP(4,).
Let us set A,(t) = I,Vte[0, T], and

P(A, 1) =k§o,1k A1), reC, tef0,T].

P(4, 1) will be an operator in X with domain Z(P) = 1.,@(Ak). We shall say that
A€ C belongs to the resolvent set of the operator pent’;i_loP(A, t) (and we write Ae
€ o(P(+, 1)), if and only if the linear operator P(Z,1) has an everywhere defined
bounded inverse, which we shall denote by P~'(4, f).
II) There exist M, e R™ and 0 |n/2, n[, such that:
a) Sg={z€eC; |argz| £ 0} U {0} = o(P(-, 1)), Vte [0, T];
b) |A4(t) P7Y (4 1) = My(|]A] + 1)7%, Vie Sy, Vke{0, ..., n}, Vie[0, T].
HI) There exist M, € B" and a € 0, 1], such that:
A — A PG 9 = M — o (4 + 17,
Vie Sy, Vke{0,..,n—1}, Vs,1e[0, T].
If n = 1, Hypotheses I)—1III) above coincide with the well known assumptions

of Sobolevskii [4] and Tanabe [5], assuring the existence of an evolution operator.
The main result of this paper is the following one.

Theorem. Suppose Hypotheses I)—111) hold true. Then,¥{t,s) e 4 = {(1, 0) € R*;
0fo<t< T}, there exists a bounded linear operator U(t, s), such that:
i) Ue¥(4; 2X));
ii) Uis partially differentiable with respect to t n — 1 times in the uniform operator
topology and n times in the strong operator topology;
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i) Vxe X, dU(t,s)xe P(4,) and the functions (1,s)— AJr) 3U(t,s)x are
continuous in A, if ke {0, ..., n};
iv) Vxe X and ¥(t,s) € 4,

Y ALy dU(n,s)x =0;
k=0

v) Vke{0,...,n — 2}, ¥U(1,5) - 0, as (1, s) = (so, So), in the uniform operator
topology, while
3~ 'U(t,s) =1, as (t,s) = (S0, 5o)
strongly.
Such an operator will be called an evolution operator for the equation

n

T A u® = 0.

k=0

3. THE OPERATORS V,(t,s) AND R(z, s)

Let 0, € |n/2, 0] be fixed. We shall always denote by I' the curve in the complex
plane formed up by the two half-lines {¢ exp (£if,); ¢ = 0} and oriented in such
a way that the imaginary part of a complex number increases as it moves along I'.

Definition 3.1. Let us set:
n@gzumﬂfzwwm@-mpﬂ@ga,
- r

where p is any nonnegative integer, if (1, s) € 4, while pe {0, ..., n — 2}, if (¢, 5) € 4;
V,_o(t, 1) =L, Vte [0, T].
The following Proposition exhibits all required properties of the operators V,.

Proposition 3.2.
a) V,(t,1) =0, Vte[0,T] and Vpe{0,...,n — 2};
b) V,(t,5)e L(X), ¥(t,s)€ 4 and Vpe Z, U {0};
¢) Vit s)e L(X), ¥(t,s)e 4 and Vpe{0,...,n — 1};
d) V,e%(4: (X)), Vpe Z, v {0};
e) VpeZ, u{0} and Yk e{0, ..., n}, there exist C,, e R*, such that
HA,‘(‘E) V(t,s)| £ Cou(t — s) P71, V(t,s)ed, Vrel0,T],
I(4(z) = Au0) Volts )| < Cpult = )77z — o), V(1 5)ed,
Vr,0e[0, T];
f) V,e4(d; £(X)), ¥Vpe{0,....,n — 2};
g) V,_, is strongly continuous in 4;
h) 82Vy(t,5) = V,(t, s) in the uniform operator topology, V(t,s)e 4 and ¥peN;
if p < n — 2, the assertion holds true ¥(t, s) € 4;
i) (077 Vy(t, s) X)i=s = X, Vx € X, Vs € [0, T[;

[
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i) V(t,s)xe 2(P), VxeX, ¥(t,s)ed and VpeZ, v {0}; if p<n—2, the
assertion holds true Y(t, s) € 4;

k) the function (z, 1, 5) = A7) V,(t, s) is continuous in [0, T] x A4 in the uniform
operator topology Vke {0,1,...,n — 1} and Vpe Z, U {0}; the same assertion
holds true in [0, T] x 4 if k 2 p + 2; furthermore, the function (t,t,s) —
— A,14(7) V,(t,s) is strongly continuous in [0, T] x 4, if pe{0,...,n — 2}.

D VxeX, V.t t — s)x — x, as ¢ = 0+, uniformly on compact subsets of
1o, 7.

Proof. a) follows straightforwardly by Cauchy’s theorem, if we keep in mind the

growth estimate of P~1(4, 1).

b)—c)—d) are obvious.

e) We have:

A%) Vit s) = (2mi) ! [ 27 exp [t — )] Ax) P4, <) P4, ©) P~3(), ) dA.

o
n—1

Since P(2,7) P7Y(4,5) = Y (A1) — Als)) P"Y(4,5) + I, we get that
k=0

P{4, 1) P~(4, 5) is uniformly bounded.
If we now repeat the argument in the proof of Lemma 6 in [3], we get the first
assertion. The second one is proved quite analogously.

f) By d) we need to prove the assertion only at points (¢, t), where t e [0, T].
Let (r, o) € 4; if T = o, we have V(t, ) = 0, by a), while, if ¢ < 7, by e) we get
[Vo(z, 0)] < C,(z = 0y P71 >0, as (1, 0) = (1, 1).

g) By d), we need to prove the assertion only at points (1, t), where 1€ [0, T].
Let (r,0)e d. If 0 = 7, then V,_4(7,7)x = x, ¥xe X. If t = ¢ < 7, the proof is
the same as that in Corollary 3 in [3].

Let, finally, be ¢ < t, o # 1; if we suppose x € Z(P), we get:

V,_(t,06)x — x = (21ri)‘1J- A vexp(A(t — o)) (A"P7Y(, 0) x — x)dA =

- _(2“i)1:§:J 71 exp (A — ) P~ o) Ayfo) x dA.
Hence, by ¢) and Hypothcsisrl), |
Vot o)x = 5] £ Cofe = o) T [ Ado) o] 5
< czz1 1440 x| (r — ) = 0, as (r.0) = (1,1).

As ¥,_y(t, 6) is uniformly bounded, by e), we get V,_(t,0) x - x, as (7,0) >

- (t,1), VxeX.
h) Is an easy consequence of Hypothesis II) and of the theorem on differentiation
under the integral sign.
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i) Follows immediately from g) and h). The proof of j) is the same as that of Lemma
3in [3].

k) The assertion in [0, T] x 4 follows straightforwardly by the dominated
convergence theorem. The continuity in the uniform operator topology in [0, T] x 4
follows immediately by a) and e). If x € 2(P) and (¢, s) € 4, we have:

l4,4:(0) Vol s) x| = .
(m)ij e (8 = ) Ayes(d) P2 ) T 2 A x da” -0,

as (t,s) = (So, o), by ¢). By the uniform boundedness of A, (t) V,(t,s), the
assertion holds true Vx e X.

1) Let us first suppose that x e Z(P). Then,

Viea(t, t — &) x = -(2ni)‘lj\ A" Vexp(he) PTY(A, ¢t — E)ZA"Ak(t —g)xdd.
r

Hence, by ) |V,_y(t.t — &) x — x| < C:Z:,gwkuAk(t — &) x| < C'akgo [ 4,(0) x|,

where C, C’ are independent of ¢ and . Let now be x ¢ X and fix y e RT. Set K =

= max {1, sup |V,_4(t,5)|} and choose ye P(P)\{0}, such that. [x - y| <
4

< (3K)™' 9. Then,

[Vi-a(tt —e)x — x| = |V, 1(tt—8(x—y)||+
+ [[Va- ft~£)J’—yrl+lly—XH<23)'I+C'ZIIAA(0J)U

If e <(3C z [4£0) p|)~* #, we get |Vu_y(t,t — &) x — x| <n, so proving the
assertion. “~

A formal calculation shows that, in order the operator U(t, s) in (1.1) be an evolu-
tion operator, the integral kernel R(t, s) must solve the Volterra integral equation

(3.1) Rt,s) = Ry(t,s) + Jr Ry(t,t)R(t,s)dt, (t,s)ed,
where Ry(t,s) = —éoAk(z) Vi, s) = _:g;(Ak(t) — AS) Vil s).

Lemma 3.3. The operator Ry is continuous from A to L(X); furthermore, there
exists Ke R®™, such that

(3.2) [ R, s)| £ K(t — sy, Vi, s)ed.

Proof. The first assertion follows by Proposition 3.2.k). Furthermore, Hypothesis
IIT) and an argument quite analogous to that in Lemma 6 in [3] give (3.2).

Proposition 3.4. The integral equation (3.1) has a unique solution R which is
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continuous from A to L(X); furthermore, there exists K' € R*, such that
(3.3) [R(s)| < K'(t —s)*™ ", Y(t,s)ed.

The proof is a straightforward consequence of Lemma 3.3 and of the theory of
Volterra integral equations with weakly singular kernels (see, e.g., [2] Ch. I, 4.2).

Lemma 3.5. Let fe]0,af; then, Vt,7,0€ R such that 0 < s <t <t < T, we
have

(3.4 [Ri(t, s) = Ry(z, )] < C(t — o (x — spb 1,
IR(t,s) = R(z8)] < Cyft — ) (z — s)~P 1.
Proof. We have )

Ruft:5) = Ruf5) = = 2 (D) = 4() Hlt5) -

=T (40 = A (4(.5) = Wi ) = 1, + 1.
By Prop. 3.2 ¢), we get ||[I;]| < K,(t — t)*(t — )71,
(3.5) L] £ Ko((z = s) (£ = s) ™" + (v — 5)* 1) < Ky(z — s)* 1.
On the other hand, by Prop. 3.2. h),
I, = —:;1, -":(Ak(‘c) — Ay(s)) Viss(o, ) do.

Hence, by Prop. 3.2.¢),

A

(3.6) 2] € Ku(z = sy j:(o —5)72do S Kyt — sy 2 (t — 7).
Now, by (3.5) and (3.6),

(3.7) 1] = Ks(t = 2 {x —s)7*.

So,

(3.8) [Ry(t,s) — Ry(z, s)|| < Ke(t — )"z — s)7 L.

On the other hand, by Lemma 3.3,
(3.9) IRy(t,8) = Ry(w s)]| < [Ru(t, s)]| + [Ru(z s)]| < Ko — sy~ "

If B €70, of, by (3.8) and (3.9) we get [|Ry(t, s) — Ry(1, 5)| < K/t — 1) (v —s)*#~1.
So the first assertion is proved.
As

R(t,s) — R(1, s) = Ry(t, s) — Ry(z,5) + JtRl(t, o) R(o, s)do +

N [ :(Rl(t, 0) — Ry(1, o)) R(s, 5) dor,
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by what has already been proved and by Lemma 3.3 and Prop. 3.4, we get
IR(t,5) = R(z, s)]| < Ko(t = ) (x = s)7F7" +

+ Ko f(’ ~ o) Mo —s)" 1 do + Ky fr(f - (t—of P (o -5 do =

N S
=Y J.
k=1

Now, J, £ Kyt — o) (v — s)" ! £ Kyt — o) (v — s)"#71,  while
SKiy(t —tf (v =) P S Kyt — of (r — sy F L
So the assertion is completely proved.

T

4. THE OPERATOR [ Vy(t, 7) R(z, 5) dr

Definition 4.1. Let us set, Vpe {0, 1,.. ,n — 1},

Wt,s) = J V(L7 R s) de, i (1,5)ed,
Wy(t,1) =0.
By Props. 3.2. ¢) and 3.4, we have if (¢, s) € 4:
(4.1) A1) Vo(t, 7) R(z, s)|| < C(t — 1) P71 (z — s

hence, the integral defining W,(t, s) is absolutely convergent and W,(t, s) e £(X).

Propositien 4.2. We have:
a) V(t,s)ed, |Wit,s)| S Clt —s)" ™, p=0,..,n—1;

b) W, is continuous in 4 in the uniform operator topology, Vpe{0,...,n — 1},
Jurthermore, Wy is n — 1 times continuously partially differentiable with respect

to t in the uniform operator topology in all of A and we have
Wy(t,s) = Wy(t,s), V(t,s)ed, p=1,...,n—1;

¢) VxeX, Wi, s)xe:élg(Ak) and A1) Wt )] £ C(t — sfrre,

A

V(t,5)ed, Vpe{0,...,n — 1} and Vke{p + 1,..., n}; furthermore, the function

(t,s) > A(t) W,(t,5) is continuous in the uniform operator topology in 4, if pe
€{0,....,n —2} and k 2 p + 1, while (t, s) — A,(t) W,(t, s) is strongly continuous

in 4;

d) W, is n times strongly continuously partially differentiable with respect

totin A and we have
t

O} Wo(t, s)x = R(t,5) x + J‘ V(t,7)R(t,s)xdr, VxeX and Y¥(t,s)ed,

5

where the integral must be considered as an improper Riemann integral.
Proof. a) follows immediately by (4.1).
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b) The assertion at points in 4 follows by the estimate (4.1), which assures the
uniform convergence on the compact subsets of 4 of the integral defining W,. By a),
the assertion holds true at points (1, 1), too.

To prove c) let us first establish the following result.

Lemma 4.3. Let x € X; then the integrals
1
J. A0 V,(t, 1) R(t,s)xdt, p=0,..,n,

exist as improper Riemann integrals; furthermore, the functions (t, s) - j; Ap(t) .
. V,(t, ©) R(t, s) dz are strongly continuous in A.

Proof. If o]0, T[, set 4, = {(t.s)e 4; t — s = ¢} and, if e€]0, o/2[, x e X,
set, @ (1, 8) = [T Vi(t, T) R(z, s) xdt, k = 0,..., n.

Since A1) Vi(t, ) R(z, s)]| £ C(t — 1)7* (v — s)*~ ', then

J T A Ve, 7) Rz, $) e

s

SCet—e—s)y, V(t,s)ed,;

so it turns out that, if k < n — 1, ¢, (1, s) € 2(4,) and

A1) oty s) = J‘

s

t—

ALt Vit 1) R(t, s) x dt.

It is not difficult to prove that 4,9, is continuous in 4,, so we only have to show that
A1) ¢, (1, s) converges uniformly in 4,, as ¢ » 0+. We have:

ALD) @ty s) =

_ J ((2m)-1 J enp (i = 9) Al P ) dl) (R(z,5) x — R(t,5) x) dr +

s

+ JH ((2ni)“ Jr Aexp (At — 1)) A(t) P~ H(4, 1) dl) R(t,5) x dr +

s

+ jf—‘ ((m)w"’ A exp (it =) A:(z) (P=1(3,7)— P~!(1, 1) R(z, ) x dl) dr —
= Z Ik,j,g<t, S) .

By Prop. 3.2.¢) and Lemma 3.5, we get, if f 10, af:
(2mi)~t | Aexp (At — 7)) Af) P7(4, 1) dA(R(z, s) x — R(t, 5) x)

JI

=

<Clt ==
hence, the integral

j ' ((2ni)-1 [ % exp (A(t — ) At) P~ 1) dz) (R(x, ) x — R(t, 5) x) de,

217



which is absolutely convergent, is the uniform limit of Ii,1,. as & = O+. Since

PY(2,7) — P~1(A, 1) = P~Y(2, I)Zz;;ﬂ(Ah(z) — A,(2)) P (A 1),

(2mi)~! J exp (At — 7)) 4(t) (P~ '(4 1) — P71(A, 1)) R(z, 5) x d1) de

SOt -ty (r— syt

we get that the integral
<(2n1) J M exp (At — 7)) A1) (P~ (4, ) — P~ (A, 1) R(z, 5) x d}.) dr,

which is absolutely convergent, is the uniform limit of I 3, as &€ = 0+. Let us now
handle I, , (1, s), when k = 1. We have:

Lot s) = — JH 0, ((Zni)‘lfr F=Vexp (Ut — 1)) 4()P7'(4, 1) di) R(t,s)xdt =

s

oS

- (2m)—1f At oxp (At — $) A(t) P24 1) R(t, ) x dA —

- (2ni)! J M~ Lexp (4e) A(t) P~Y(4, 1) R(t, s) x dA..
r
Letn € R"; then, by the uniform continuity of R in 4,, there exists 4, € B ¥, such that
[R(t, s) — R(z, 0)]| < m, ¥(t,5), (1, 6) € 4,, such that |(t — 7, s — 0)| < &,
Let {S((t;, 5;), 8,) N 443 j = 1, ..., p} be a finite cover of 4, made up of relatively
open balls of radius 8,. By the density of 2(P) in X, there exist y; e 9(P), such that
[R(t;, ;) x — y;l| <m, j =1,..., p. Then we have, if k < n — 1:

—(2mi)~* J. 21 exp (Ae) A(t) PTH(A, t) R(t, s) x dA =
— —(2ni)! J 2% exp (38) A1) (A, ) (R(1, $) x — R(1), ) x) dA —
—(2ni)~ J 21 exp (de) Ai(t) P~HA, 8) (R(t;, s;) x — ;) dA —

— (2ni)" J 21 oxp (38) A(0) PH(0 1) yy d2 = 3 J1aa f1r5).
i=1
By Prop. 3.2. ¢), if j is suitably chosen, we get

V1 0e st )] < Coms [Vt 8)]| < Can

where Cy, C, are independent of ¢, s, ¢ and j. Furthermore,

J3peilts s) = —(2nmi)~* J A7 lexp (M) Ak(t) y;jdi +
r
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n—1
+ (2mi)"t Y j A1 exp (Ze) Ay(t) P~YA, £) A1) y; d =
h=0 JI
= (e =Rt A y; +
n—1
e Y, [ 2 eap () 4) P A0 3, 01
=0

Hence J; ;. , {1, s) — 0, uniformly in 4,, as ¢ — 0+, by Prop. 3.2. e). A quite ana-
logous argument shows that

—(2ni)~! J‘ A~ Vexp(de) PN (A, 1) R(t, s) x dA + R(t,s) x - 0,
r

uniformly in 4,, as ¢ - 0+.
Therefore, I, , (¢, s) converges uniformly in 4, ase— 0+, if k = 1,

On the other hand I, {f,s) = — ZI,, 2.1, 5); so, it converges uniformly in 4,,
as ¢ —» 0+, too.
The assertion is completely proved.

EndoftheproofofProp.4.2. By Lemma 4.3 we get immediately that W,(1, s) x €
€ 9(4,), VxeX, V(t,s)e 4 and Vpe{0,....n — 1} and that A4,W, is strongly
continuous in 4. The estimate if k > p, follows by (4.1). The remaining assertions in
c) follow by similar, but much simp]er arguments.

To prove d), let us use the same notations as in the proof of Lemma 4.3. It is ob-
vious that ¢, (f, s) = W,_4(t, 5) x, as ¢ - 0+, and that

OPu—1.4(t,8) = Vy_y(t, 1 — &) R(t — &,5) x + f V,(t,7) R(z,s) x dr .

Since the last integral converges uniformly in 4, to { V,(t, ) R(z, s) x dr as ¢ — 0+,
we only have to prove that V,_(f,t — &) R(t — &, s) x > R(t, 5) x, uniformly in 4,,
as ¢ - 0+. Now,

[Vi—i(t, 1 — &) R(t — &, 5) x — R(t, 5) Y x| =

S |Vioult, t — &) (R0t — &,5) x — R(1, 5) x)| +
+ |Vaoa(t:t — &) R(1, 8) x — R(t, s) x| = I, (1, 8) + I, (t, ).

By Prop. 3.2.¢) and Lemma 3.5, if €70, af, I, (1, 5) < C,0" #~'¢#, which goes
to zero uniformly in 4, as ¢ — 0+. To estimate I, ,(¢, s) let us fix y € R* and choose
a finite collection of points (1;,s;) € 4, (j = 1, ..., k) as in the proof of Lemma 4.2.
Then, .

L ft:s) < Vit t = &) (Rt 5) x = Rty 5) x)|| +

+ |

Vioa(ts t = &) R(t;,55) x — R\tp s)) x| + |R(t;, 5;) x — R{t, s) x| =

= Z JijallsS) -
k=1
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If we choose j suitably, by Prop. 3.2.¢), we get J, ;.(t,5) < Cn, J3;.(t,5) <1,
where C is independent of ¢, s and e.
On the other hand, by Prop. 3.2. l), there exists §, € R™, such that

Jodts) <n, il e€]0,6,[, Vie{l,....,1}.

Hence, if €10, 6,[, I, (¢, 5) < (C + 2)n, where C is independent of ¢, s and ¢.
So the assertion is completely proved.

5. THE EVOLUTION OPERATOR

Let us set, ¥(¢, s) € 4,
U(t, s) = Vi(t, 5) + Wylt, s).
We can now state and prove the main result of the paper.

Theorem 5.1. Suppose Assumptions I)—1I)—III) hold.
Then:
a) Ue¥%(4; 2(X));
b) U is partially differentiable with respect to t n — 1 times in the uniform operator
topology and we have d{U(t, s) = Vi(t,5) + W(t,s),V(t,s)e 4, k = 1,...,n — 1;
¢) dU(t,s) xe D(A,), Vxe X, V(t,s)ed, k=0,..,n — 1;
d) U is strongly partially differentiable with respect to t n times and we have

t
aU(t, ) x = V,(t,s) x + R(t,5) x + J. V,(t, ) R(x, 5) x dr,

Vxe X, V(1 s)eA; the integral must be considered as an improper Riemann

integral;

e) the function (t,s) — A(t) d{U(t,s)x is continuous in A, VxeX and Vke
€{0,....,n — 1};

f) VxeX, V(¢ s) e 4,

A1) U(t,5) x = 05

=
i b=

g) V(1,5) e 4, | A1) 2U(1, s)|| < C(t — s)<7 771,
Vpe{0,...,n—1} and VYke{p+1,..,n};

hence, Vsq € [0, T[, Ai(t) 7U(t, s) — 0, as (t, s) = (5o So), in the uniform operator
topology if k = p + 2; furthermore, the functions (t,s) — Ay (t) OXU(t, s) have
strong limit as (t, 5) = (5o, So) and ] 'U(t, s) — I strongly as (t, 5) = (50, So)-
Proof. a)—e) and g) follow by Props. 3.2 and 4.2.
To prove f), let us note that, by b) d) and Prop. 3.4, we have, Vx € X

=§Ak(t) Ut s) = ‘;Ak(t) Vilt, s) x + R(t, s) x +
+ J': é‘,o/lk(t) Vi(t, T) R(t, s) x dv =

= —Ry(t,s)x + R(t,s) x — J Ry(t,T) R(zr,s)xdt = 0.
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6. APPLICATIONS TO CAUCHY PROBLEM

By Theorem 5.1 we immediately get the following result.

Theorem 6.1. Suppose Assumptions I)—11)—11) hold and let x € X. Then the
Sunction v: t > U(t, 0) x is a solution of the Cauchy problem

Y A () u®(t) =0, in J0,T],
k=0
u?0)=0, h=0,...,n-2, u"Y0)=x,
in the following sense:

i) ve €"(]0, T]; X) n g Y([0, T]; X);
i) v(1)e 2(A4,), Vie]0, T], k=0,....n — 1;
iii) 4™ is continuous in J0, T], k = 0,...,n — 1;
iv) Ak+jl)(k) is continuous in [0, T], k =0,...,n — 2;
V)ZAMM“Q—OWGNT]
vi) v(") (0) =0, if k=0,...,n—2; " 1(0) = x.
The following result allows to handle nonhomogeneous equations.

Theorem 6.2. Suppose Assumptions 1)—11)—=11I) hold and let fe %([0, T]; X),
such that there exist Ce R*, f€]0, 1] so that

I£76) = f@) £ Clt = <P, ¥t ze[o, T].
Then the function w:t — [ U(t,s) f(s) ds is a solution of the Cauchy problem

LA w0 =10), in [0.T]. u®(0)=0, h=0,.,n~1,

in the following sense:
i) we ([0, T]; X);
ii) w(t) e 2(4,), Vi [0, T] and Vke{0,...,n ~ 1};
iif) A,w® is continuous in [0, T], Vke{0,...,n — 1};

iv) k:ZOAk(t) w®(t) = (1), Ve [0, T];
v) wR(0) =0, k=0,...,n— L

Proof. By Theorem 5.1, it is obvious that w efg('t~1)([0 T] X) that w(k)(t) -

= [o0,U(t,s) f(s)ds, YVt 10, T] and Vke{0,....n _ 1} and that w satisfies the
initial conditions.
If ge]0, T[, set I, = [, T] and, if £ € ]0, o/2[,

t—&

2dt) = J‘ Ut 5)f(s)ds, k< 0,..,n
0 s e
Since, by Theorem 5.1. g)

[4(0) 9FU(e SO = €t = )15
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then

< Ce'max |f]], Viel,;
[0,71

J’ T A1) (e, 5) f(5) ds

50 it turns out that . .(?) € 9(4,) and that
t—~&
A 1) = j. A1) 3U(, s) f(s)ds, if k=0,...,n—1.
4 o

Furthermore, it is obvious that Ag¥x . is continuous in I, even if k = n.
Let us prove that A,(?) 1 (t) converges uniformly in I,, as & —» 0+.
The proof is quite similar to that of Lemma 4.3, so we shall only sketch it. We have:

't~

At 1.:{t) = Jo ' A1) Vi(t, 5) f(s) ds +

-2 13

+ Jf < j 44(1) Vil 7) R(z, ) df> ) ds = Ty + Iy
0 s

Exactly as in the proof of Lemma 4.3, we can show that I, ; , converges uniformly

in], as ¢ — 0+, if we use the Holder condition satisfied by f instead of Lemma 3.5.

Furthermore, this limit is easily seen to go to zero as t — 0+.

To handle I, ; ,, we decompose the integrand as in the proof of Lemma 4.3; it is
then obvious that I, , . converges uniformly in I, as & — 04 and that this limit goes
to zero as t — 0+. So, iii) is proved.

Now, we have:

hor ) = 37Ut = &) St = o) +j

t
0

"o, ) £(s) ds .

The first term is shown to converge uniformly in I, tof(t), as¢ — 0+, by an argument
quite analogous to the one employed in the proof of Prop. 4.2. d). Hence, by what
we have already proved, x,_, ,(f) converges uniformly in [ o a8 € = 0+. Furthermore,
this limit goes to f(0) as ¢ — 0+. This completes the proof of the assertion.
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