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abstract: Environmental variability and adaptive foraging behavior
have been shown to favor coexistence of specialists and generalists
on an ecological timescale. This leaves unaddressed the question of
whether such coexistence can also be expected on an evolutionary
timescale. In this article, we study the attainability, through gradual
evolution, of specialist-generalist coexistence, as well as the evolu-
tionary stability of such communities when allowing for immigration.
Our analysis shows that the potential for specialist-generalist coex-
istence is much more restricted than originally thought and strongly
depends on the trade-off structure assumed. We establish that eco-
logical coexistence is less likely for species facing a trade-off between
per capita reproduction in different habitats than when the trade-
off acts on carrying capacities alone. We also demonstrate that co-
existence is evolutionarily stable whenever it is ecologically stable but
that in most cases, such coexistence cannot be reached through grad-
ual evolution. We conclude that an evolutionarily stable community
of specialists and generalists may be created only through immigra-
tion from elsewhere or through mutations of large effect. Our results
highlight that trade-offs in fitness-determining traits can have coun-
terintuitive effects on the evolution of specialization.

Keywords: coexistence, evolution, foraging behavior, specialization,
temporal heterogeneity, trade-off structure.

One of the major challenges in ecology and evolutionary
biology is to achieve a better link between evolutionary
and ecological dynamics. Do fast selection responses add
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new properties to ecosystem dynamics? And, perhaps more
important, does ecological feedback affect selection pres-
sures in unexpected ways? The various ways through which
evolutionary and ecological dynamics interact are only be-
ginning to be explored. For example, including natural
selection in metapopulation models can lead to predictions
of selection-driven metapopulation extinction (Gyllenberg
et al. 2002; Parvinen 2002; Parvinen et al. 2003). Also,
ecological feedback is increasingly viewed as a widespread
source of frequency-dependent selection that may favor
sympatric speciation through selection for assortative mat-
ing (Dieckmann and Doebeli 1999; Doebeli and Dieck-
mann 2000, 2003; Geritz and Kisdi 2000).

A topic where such questions are particularly pertinent
is species coexistence. Here, the aim is to pinpoint con-
ditions under which n species can live together on less
than n resources, violating the principle of competitive
exclusion (Hardin 1960). On the one hand, the ecological
dynamics are well explored (e.g., Hutchinson 1961; Stewart
and Levin 1973; Koch 1974; Armstrong and McGehee
1976a; Levins 1979; Chesson and Warner 1981; Abrams
1984; Chesson 1985; Brown 1989; Huisman and Weissing
1999; Anderies and Beisner 2000; Richards et al. 2000;
Wilson and Richards 2000; review in Chesson 2000), and
the evolutionary dynamics of coexisting species have been
well studied in the context of ecological character dis-
placement (e.g., MacArthur and Levins 1967; May and
MacArthur 1972; Roughgarden 1972; Slatkin 1980; Case
1981; Taper and Case 1985, 1992a, 1992b; Drossel and
McKane 1999, 2000; Abrams and Chen 2002). On the
other hand, we do not know whether natural selection
with ecological feedback will restrict or broaden conditions
for species coexistence.

Questions concerning species coexistence have been re-
lated to specialization in resource utilization (e.g., Kotler
and Brown 1988; Wilson and Yoshimura 1994; McPeek
1996; Morris 1996). Wilson and Yoshimura (1994) studied
the ecological coexistence of one generalist and two spe-
cialists on two resources. They concluded that such co-
existence is likely, assuming some degree of optimal
foraging and environmental variability. However, evo-
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lutionary change in the strategies of specialists and gen-
eralists was not considered, leaving open the question of
whether such coexistence may occur or persist at an evo-
lutionary timescale. Specifically, evolution may restrict
conditions for coexistence of specialists and generalists for
two reasons. First, the coexistence of two specialists and
a generalist may not be evolutionarily stable, implying that
evolution would change their degree of specialization,
which may even lead to extinction of one or more species.
Second, such coexistence may not be evolutionarily at-
tainable, implying that the trimorphic state cannot be
reached through gradual evolution. To what extent these
factors restrict species coexistence is the topic of this
article.

Model Description

This section extends the model by Wilson and Yoshimura
(1994) and explains how to analyze the evolutionary at-
tainability and stability of community states involving both
generalists and specialists.

Population Dynamics

We consider the population dynamics of up to three spe-
cies in two habitats, described by the following discrete-
time Ricker equations,

2
N � N � N1j, t 2j, t 3j, tN p N exp r 1 � . (1)�i, t�1 ij, t [ ( )]e Kjp1 ij j

Here, the basic reproduction ratios of populations in each
habitat are described by an exponential function, where r
is the intrinsic growth rate (assumed to be equal for all
species), is the abundance of species i in habitat j atNij, t

time t, Kj is the carrying capacity of a species in habitat j
when maximally specialized on that habitat, and eij is the
level of specialization, or relative efficiency, of species i in
habitat j. Throughout this article, we focus on symmetric
habitats, .K p K1 2

Temporal variability among generations is introduced
by randomly varying the values of K1 and K2 symmetrically
around their mean, according to a uniform distribution.
The relative variation for habitat j is defined bynj

. Both carrying capacities are varied in-(K � K )/Kj, max j, min j

dependently among generations.

Foraging Rules

Complementing the dynamics described by equation (1),
at the start of each generation, individuals are redistributed
over the two habitats on the basis of their ideal free dis-

tribution (IFD; Fretwell and Lucas 1970). For the three
species studied here, the IFD cannot be obtained analyt-
ically and thus has to be derived numerically. Departures
from the IFD, which itself is biologically unrealistic, are
considered as follows. Wilson and Yoshimura (1994) dis-
tributed a fraction g according to the IFD, while the re-
maining fraction was distributed randomly, that is,1 � g
with a probability of entering habitat i. TheK /(K � K )i 1 2

fraction g allowed for the distribution of a consumer pop-
ulation over the two habitats to be continuously varied
between fully optimal ( ) and completely randomg p 1
( ). This rule, however, results in discontinuous for-g p 0
aging behavior; the proportion of foragers in a habitat
exhibits large jumps even if efficiencies are being varied
only gradually. To avoid such unrealistic foraging behavior,
we consider an alternative continuous foraging rule, as-
suming that foragers necessarily make some foraging er-
rors relative to the IFD. In reality, such errors will be more
pronounced when the foragers experience a smaller fitness
difference between the two habitats. According tof � f2 1

this rule, the probability p1 of using habitat 1 is

1
p p , (2)1 1 � exp [a(f � f )]2 1

where the parameter a determines the foraging accuracy.
By varying a in the range [0, ��), we can vary the dis-
tribution of consumers from random to IFD (fig. 1a).
When there is no fitness difference, foragers are randomly
distributed over the two habitats. For , an increasinga 1 0
fitness difference results in an increasing proportion of
foragers entering the habitat to which they are best
adapted.

Trade-off Structure

Specialization on one habitat is assumed to go at the ex-
pense of specialization on another. Extreme specialists have
efficiency 1 in one habitat and efficiency 0 in the other
habitat, whereas generalists have intermediate efficiencies
in both habitats. The trade-off constraining the levels of
specialization on the two habitats is given by

1/s 1/s(e ) � (e ) p 1. (3)i1 i2

The strength of the trade-off is determined by the param-
eter s (fig. 1b); the trade-off is called weak when s ! 1
(convex relation between and ) and strong whene ei1 i2

(concave relation between and ).s 1 1 e ei1 i2

In addition to varying the trade-off’s strength, different
impacts of the trade-off can be considered. Individual-
based derivations of the (population-level) Ricker model
show how r and K depend on more mechanistic param-



520 The American Naturalist

Figure 1: Functions used for specifying foraging behavior and trade-offs.
a, Continuous foraging rule (eq. [2]) for various values of foraging ac-
curacy a. The case corresponds to random foraging. b, Trade-offa p 0
function (eq. [3]) for different values of the trade-off strength s. Trade-
offs are called strong for and weak for .s 1 1 s ! 1

eters. All these derivations agree in three conclusions: r
and K are not independent, r and K are linearly related,
and K depends on mechanistic parameters not affecting r
(Royama 1992; Dieckmann and Law 2000; Van Dooren
2000; Sumpter and Broomhead 2001). Two examples are

,r p ln {r/[1 � (1/n)]} K p ln {r/[1 � (1/n)]}/{� ln [1 �
, where r is the density-independent per capita re-(1/n)]}

production and n is the population’s maximal size (Sump-
ter and Broomhead 2001), and , ,r p g K p g/s(1 � k)
where g is again density-independent per capita repro-
duction, s is the neighborhood area of one individual, and
k measures competition intensity (Royama 1992).

These dependences of the population-level parameters
r and K on individual-based traits have implications for
the trade-off structures considered in our model. When

individual traits determining density-independent repro-
duction (i.e., r or g) in the two habitats trade off, this
results—at the population level—in a trade-off affecting
both r and K equally. A trade-off in K alone (i.e., a trade-
off between K1 and K2 for habitats 1 and 2, respectively)
is also possible because K depends on parameters that do
not affect r. This trade-off structure occurs when individ-
ual traits that determine the maximum population size in
the two habitats trade off (see eq. [1]). By contrast, as-
suming a trade-off in r alone (i.e., a trade-off between r1

and r2 for habitats 1 and 2, respectively) is impossible
because any parameter affecting r will likewise affect K.

Thus, we analyze two alternative trade-off structures: a
trade-off in K as described by equation (1) and a trade-
off in both K and r as described in the following equation,

2
N � N � N1j, t 2j, t 3j, tN p N exp r e � .�i, t�1 ij, t ij[ ( )]Kjp1 j

(4)

Notice that in equation (4), both r and Kj are multiplied
with eij, whereas in equation (1), this multiplication is
applied to Kj only.

Evolutionary Analysis

For the evolutionary analysis, we use the framework of
adaptive dynamics (Dieckmann and Law 1996; Metz et al.
1996; Dieckmann 1997; Geritz et al. 1998). One of the
advantages of this approach is that it provides tools for
analyzing conditions for the buildup of polymorphisms
through gradual evolution.

Such buildup is related to processes of evolutionary
branching, through which a population under frequency-
dependent selection evolves toward a fitness minimum.
Under the resulting regime of disruptive selection, phe-
notypically similar species straddling the fitness minimum,
when they occur, are predicted to diverge. Applying such
analysis of frequency-dependent selection regimes sequen-
tially yields the conditions for evolutionarily attainable co-
existence. In a population with only a single species, evo-
lution may initially converge on the generalist strategy (fig.
2a) even though this strategy may not be evolutionarily
stable under all conditions. If evolutionary branching can
occur in that situation, two very similar generalist species
will be able to coexist around the branching point; these
generalists will gradually diverge by specializing on one of
the two habitats (fig. 2b). Subsequently, these two species
may end up at an evolutionary attractor that allows for
secondary evolutionary branching, potentially resulting in
two extreme specialists and two more generalist species
(fig. 2c). The two generalist species may then converge
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Figure 2: Sketch of the potential pathway by which coexistence of two specialists and one generalist species may be established through gradual
evolution. a, Evolution converges to the generalist strategy. b, Primary evolutionary branching may allow for the coexistence of two similar generalist
species that subsequently diverge. The white circle atop the branching point indicates that we explicitly do not deal with the detailed genetic processes
through which the two species might emerge. Secondary evolutionary branching may produce four species, all of which may coexist (c) or two of
which may converge to the generalist strategy whereby one becomes extinct (d ). Our results ascertain the specific ecological settings for which
outcomes a, b, and d occur in our model, whereas option c, coexistence of four species, is shown to occur in our model only as a transient
phenomenon.

toward each other to the extent that one of them may
become extinct, leaving the other generalist in a state of
evolutionarily stable coexistence with the two specialist
species (fig. 2d). Whereas evolutionary branching points
will lead to the adaptive radiation of asexual morphs, the
evolutionary processes that allow sexual species to differ-
entiate have been investigated elsewhere (Dieckmann and
Doebeli 1999; Doebeli and Dieckmann 2000, 2003; Geritz
and Kisdi 2000; Matessi et al. 2001). Such extension to
sexual species is beyond the scope of this article.

Complementing the analysis of evolutionary attainabil-
ity, we analyze the evolutionary stability of specialist-
generalist coexistence in two steps: first, we delineate the
conditions required for the generalist to invade a com-
munity of two extreme specialists (e.g., through immigra-
tion), and second, we check whether the ensuing gradual
evolutionary change results in the extinction of one or
more of the three species.

The evolutionary analyses are based on evaluating the
invasion fitness of rare phenotypes, defined as their long-
term per capita growth rate in a population dominated by
a given resident strategy (Metz et al. 1992). In this way,
the residents determine the environment in which the rare
phenotype under consideration either succeeds or fails. If
the rare phenotype can grow in the resident population,
its invasion fitness is positive, whereas mutants that are
deleterious in the resident’s environment have negative

invasion fitness. To calculate invasion fitness in this model,
we numerically analyze the population dynamics of rare
phenotypes; after sampling for 50,000 generations, a rare
phenotype’s invasion fitness is calculated as the logarithm
of the geometric average of its reproduction ratio over all
generations.

We use pairwise invasibility plots (PIPs) to show the
sign structure of invasion fitness for different combina-
tions of common and rare phenotypes (Matsuda 1985; Van
Tienderen and de Jong 1986; Geritz et al. 1998; see also
fig. 3 for examples). In such plots, each point represents
a combination (pair) of considered rare and common trait
values (commonly called mutant and resident trait values,
respectively) and gives the sign of the rare phenotype’s
invasion fitness. Hence, a PIP shows areas of positive and
negative invasion fitness. Along the plot’s main diagonal
(where the two considered trait values equal each other),
invasion fitness is necessarily zero; usually, there is at least
one other contour line of zero invasion fitness. Where this
line intersects the main diagonal, an evolutionarily singular
point is located, corresponding to an equilibrium of the
considered evolutionary dynamics. Whether gradual evo-
lution leads toward such a point or away from it is easily
determined from the PIP (Geritz et al. 1998); for instance,
if we start left of the singular point and invasion fitness
above the diagonal is positive, phenotypes with a value
closer to that of the singular point can invade and replace



522 The American Naturalist

Figure 3: Representative gallery of pairwise invasibility plots for the case when the trade-off acts on K only. The effects of varying trade-off strength
s (horizontal), foraging accuracy a (vertical ), and temporal variability (stacked ) thus become visible. White areas indicate positive invasion fitness;n

gray areas indicate negative invasion fitness. Other parameters are as follows: and .r p 1.3 K p K p 1001 2

the resident phenotype. Also, the evolutionary stability of
singular points is readily established from the PIP (Geritz
et al. 1998) by checking whether the vertical line through
the singular point lies within an area of negative invasion
fitness (no phenotypes can invade the singular one) or
positive invasion fitness (phenotypes on both sides can
invade a resident population with the singular phenotype).
In the latter case, the singular phenotype is an evolutionary
branching point; phenotypes narrowly straddling this
point can then invade each other, allowing them to coexist
(Geritz et al. 1998).

Coexistence in the Absence of Evolution

In this section, we analyze the potential for coexistence of
specialists and generalists on an ecological timescale on
the basis of the continuous foraging rule and considering
the two alternative trade-off structures. That is, we chart
the parameter ranges for foraging accuracy a and trade-
off strength s in which the extreme specialists can invade
a population of generalists and, vice versa, the generalist

can invade the community of two extreme specialists. The
overlap between these two ranges characterizes the con-
ditions for the ecological coexistence of specialists and
generalists in a protected polymorphism.

It turns out that the potential for ecological coexistence
strongly depends on the assumed trade-off structure. With
the trade-off in K only, such coexistence is possible under
a wide range of conditions (fig. 4a). The extreme specialists
are always able to invade a population of generalists, and,
at least under weak trade-offs, the generalist can also in-
vade the community of specialists, provided the temporal
variability in the environment is sufficiently high (n p1

). In contrast, with the trade-off in both K and r,n ≥ 0.22

the potential for coexistence is much more restricted (fig.
4b). Specifically, there are many settings (roughly, when-
ever foraging accuracy is below 1) in which the specialists
cannot invade a population of generalists.

The reason for this difference lies in the way trade-offs
involving carrying capacities and growth rates translate
into trade-offs in fitness. With the trade-off in K only,
fitness approaches negative infinity for an extreme spe-
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cialist in the habitat to which it is not adapted because a
carrying capacity approaching zero means instant death.
Accordingly, K appears in the denominator of fitness (see
appendix). Hence, for any degree of foraging accuracy, an
extreme specialist will always choose to live in the habitat
to which it is adapted. Because the generalist has a lower
carrying capacity for that habitat, the invading extreme
specialist will always attain a positive growth rate. With
the trade-off in both K and r (i.e., between reproduction
ratios in the two habitats), fitness does not reduce so dras-
tically for an extreme specialist in the unfavorable habitat
(see appendix). This results in a wide range of settings in
which an extreme specialist cannot invade a population
of generalists because (given the strength of the trade-off)
the specialist cannot forage accurately enough for the hab-
itat on which it is specialized. This large difference in
coexistence between the two trade-off structures remains
when we consider less extreme specialists, which never
experience a fitness of negative infinity; even with an ef-
ficiency of 0.1 in one habitat (instead of 0), a specialist
still has such a low fitness in that habitat that through its
foraging behavior, it concentrates completely on the hab-
itat to which it is adapted.

In their analysis, Wilson and Yoshimura (1994) consid-
ered a trade-off in K only. They found coexistence of spe-
cialists and generalists even for moderately low variation
in carrying capacities, for a wide range of efficiency of the
generalist (between 0.99 and 0.4 when variability is high),
and for moderate departures from optimal foraging (g ≥

, i.e., up to a quarter of the individuals distributed0.75
randomly across habitats). Our findings for a trade-off in
K only (fig. 4a) agree with these earlier results. We can
thus conclude that while the choice of foraging rule (dis-
continuous or continuous) is immaterial for the ecological
coexistence of specialists and generalists, the assumed
trade-off structure has a dramatic impact on the potential
for ecological coexistence.

Coexistence under Gradual Evolution

In this section, we analyze the effects of temporal vari-
ability and foraging accuracy on the evolution of special-
ization, thus establishing how the coexistence of specialists
and generalists can come about through gradual evolution.
We start by examining the baseline case with random for-
aging and without temporal variation. Taking advantage
of the resulting overview regarding the impact of the trade-
off structure, we then explore the effects of nonrandom
foraging and temporal variability.

The discontinuous foraging rule suggested by Wilson
and Yoshimura (1994) involves an unrealistic jump in for-
aging behavior; phenotypes arbitrarily close to the resident
phenotype are assumed to detect the diminutive differ-

entials in their relative fitness unfailingly and to select their
habitat accordingly. As long as the considered phenotypes
are kept sufficiently apart, this shortcoming is not critical.
Gradual evolution, however, is driven by competition be-
tween similar phenotypes and thus turns out to be struc-
turally unstable when the discontinuous foraging rule is
applied (results not shown). Because biologically mean-
ingful conclusions must never be based on structurally
unstable models, we use only the continuous foraging rule
for the evolutionary analyses.

Crucial Importance of Trade-off Structures for
the Evolution of Specialization

As a starting point for the evolutionary analysis, we con-
sider the baseline case without temporal variability
( ) and with random foraging ( ). Undern p n p 0 a p 01 2

these conditions, the model has a one-dimensional feed-
back loop (through total population size), which implies
that evolution is optimizing (Mylius and Diekmann 1995;
Meszéna et al. 2001; Meszéna and Metz 2004).

When the trade-off acts on K only, even the baseline
case offers some surprises. For rather weak trade-offs
( ), evolution converges to the generalist strategys ! s ! 11

(fig. 3, bottom left). This is just what would be expected
from classical theory (e.g., Levins 1962, 1968; Lawlor and
Maynard Smith 1976). However, for moderately weak or
moderately strong trade-offs ( ), the system be-s ! s ! s1 2

comes evolutionarily tristable (fig. 3, bottom middle); de-
pending on the initial phenotype, the population evolves
either to full specialization on either habitat or to full
generalization. When the trade-off is strengthened well
beyond the linear case ( ), the tristability disap-1 ! s ! s2

pears, giving way to the traditionally expected bistability;
there is now always selection for increased specialization
on the habitat to which the initial phenotype is best
adapted (fig. 3, bottom right), which is in line with classical
theory again.

This pattern is based on a pitchfork bifurcation occur-
ring at ; when the trade-off strength is lowered be-s p s2

yond that threshold, the generalist repeller (fig. 3, bottom
right) is replaced by a generalist attractor surrounded by
two repellers (fig. 3, bottom middle). As s is further de-
creased, these new repellers move apart until they collide
at with the boundaries of trait space. For trade-offss p s1

weaker than the latter threshold, only the generalist at-
tractor remains (fig. 3, bottom left). (When habitats are
asymmetric, , the pitchfork bifurcation atK ( K s p1 2

is replaced by a fold bifurcation, and the two evolu-s2

tionary repellers collide with the boundaries of trait space
at two different trade-off strengths, , s11.) In a fur-s p s10

ther departure from classical theory, the thresholds for the
strength of the trade-off at which the described transitions



Figure 4: Conditions for ecological and evolutionary coexistence of specialists and generalists, with the trade-off in K only (left column) or in both
K and r (right column). a, b, Critical combinations of foraging accuracy a and trade-off strength s for the generalist to invade the community of
two extreme specialists and vice versa. Coexistence of specialists and generalists is possible in the mutual invasibility areas (to the right and above
the curves indicating various levels of temporal variability: , , , ). Note that the extreme specialists can always invaden p 0.6 n p 1.0 n p 1.4 n p 1.8
the generalist population in a. c, d, Critical combinations of foraging accuracy a and trade-off strength s to result in specialization through evolutionary
branching or, alternatively, in a continuously stable generalist strategy (CSS). c, Thick curve, no variability ( ); curves below, from top to bottom,n p 0
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, , , , . d, Thick curve, no variability ( ); other curves, from top to bottom, , , ,n p 0.2 n p 0.6 n p 1.0 n p 1.4 n p 1.8 n p 0 n p 1.8 n p 1.4 n p 1.0
, . e, f, Critical combinations of foraging accuracy a and trade-off strength s for the existence of an interior pair of specialist singularn p 0.6 n p 0.2

strategies that are branching points (above the curves), leading to secondary branching and hence to the coexistence of specialists and generalists
through gradual evolution. The thick curves delineating the gray areas indicate, according to c and d, where primary evolutionary branching cannot
happen in the absence of temporal variability. Other parameter values are as in figure 3.

occur depend on the value of the intrinsic growth rate r.
In particular, the generalist strategy is always selected
against and, hence, tristability gives way to bistability when

(see appendix).s 1 s p 1/(r � 1)2

When the trade-off is in both K and r, results are more
similar to the classical theory in that there are only two
evolutionary regimes; for this trade-off structure, we have
not found any tristability. Evolution converges to the gen-
eralist when (see appendix). To satisfy thissr ! [(1/s) � 1]2
condition for positive r, s must be smaller than 1, s !

. Notice, however, that in contrast to classical theory,s ! 13

a moderately weak trade-off, , will still select fors ! s ! 13

full specialization. Also, the evolutionary outcome again
depends on the growth rate r.

Effects of Temporal Variability and Foraging Behavior
on the Evolution of Specialization

We now move to the general case, first considering for-
aging behavior and then temporal variability as well. The
analysis follows the outline in figure 2.

Our investigations show that the only attracting singular
point of single-species evolution is the generalist strategy.
It is therefore only at this point that gradual evolution can
transform the single-species community into a two-species
community. If a resident population of generalists cannot
be invaded by nearby strategies, the generalist strategy is
continuously stable (a CSS; Eshel 1983; see fig. 3, bottom
left); if, instead, such invasion is possible, the generalist
strategy is an evolutionary branching point (an EBP; see
fig. 3, top row). Investigating the evolutionary stability of
the generalist strategy with foraging behavior but without
temporal variability, we find that for both trade-off struc-
tures, the generalist strategy changes from a CSS to an
EBP when foraging accuracy is increased beyond a thresh-
old (fig. 4c, 4d; note that each point in these panels cor-
responds to a PIP as shown in fig. 3). When the trade-off
acts only on K, there is—for each value of the intrinsic
growth rate r—a linear relationship between the foraging
accuracy and the strength of the trade-off for which the
CSS-EBP transition takes place (see appendix). Also, when
the trade-off acts on both K and r, such a relationship
exists, but for this trade-off structure, the relation is non-
linear (see appendix).

Our numerical results show that the boundary of gen-

eralist evolutionary stability is only slightly affected by
considering different levels of temporal variability in the
carrying capacities ( ranging from 0.2 to 1.8).n p n1 2

Therefore, up to this stage in the analysis, temporal var-
iability hardly affects the evolutionary outcome (see, e.g.,
fig. 3). However, again there is a remarkable difference
between the two trade-off structures (fig. 4c, 4d). When
the trade-off is in both K and r, higher temporal variability
slightly increases the critical foraging accuracy (fig. 4d).
This is what we expected on the basis of the traditional
notion that higher variability favors the generalist. By con-
trast, with the trade-off in K only, the reverse is true; higher
temporal variability causes the generalist’s evolutionary
stability to be lost already at a lower foraging accuracy
(fig. 4c).

For the parameter values that allow for evolutionary
branching in a single-species community, we numerically
analyzed gradual evolution in the resulting two-species
community. For the resulting evolutionary attractors, we
again assessed whether evolutionary branching can occur.
Such secondary evolutionary branching could transform
the two-species community into a four-species community
(fig. 2c, 2d). In absence of temporal variability, evolution
always leads to two extreme specialists; transitions to
higher degrees of polymorphism are then precluded (fig.
4e, 4f ). With temporal variability, the outcome of gradual
two-species evolution is also often a pair of extreme spe-
cialists. Only when temporal variability is high and for-
aging accuracy is very high, we find singular points of two-
species evolution inside the trait space of our model; these
points always are secondary branching points (fig. 4e, 4f).

For the parameter values that allow for secondary evo-
lutionary branching, we numerically analyzed gradual evo-
lution in the resulting four-species community. For the
parameter space considered in figure 4, these four-species
communities always collapsed to three-species commu-
nities involving two extreme specialists and one generalist,
as sketched in figure 2d. That is to say that two of the
four species evolved toward extreme specialization, and
the other two species evolved toward the generalist strategy
whereby one of the latter went extinct.

In summary, gradual evolution in this model can result
in coexistence of specialists and generalists but only for
consumers whose foraging accuracy is very high and who
live in an environment affected by strong temporal vari-
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ability. In this limited parameter range, even when one,
or several, species accidentally becomes extinct, evolution
is predicted to reconstitute the coexistence of specialists
and generalists.

Coexistence under Gradual Evolution
after Generalist Immigration

Finally, we investigate the evolutionary stability of eco-
logically stable three-species communities. Evolutionary
stability of the community of specialists and generalists is
already ensured in the parameter region where we predict
secondary evolutionary branching. However, the region of
parameter space where the generalist can invade a com-
munity of two extreme specialists is larger. It is quite pos-
sible that the generalist, after invading, is also able to co-
exist stably with the two extreme specialists on an
evolutionary timescale. One possibility for such an inva-
sion scenario is that a generalist phenotype is created
through a mutation with large effect. However, genes of
large effect leading to viable phenotypes do not commonly
occur (for an exception, see de Jong et al. 2000). A more
likely possibility therefore is invasion of a generalist into
the two-specialist community by immigration from an-
other geographic location.

For the parameter region where the generalist can in-
vade a community of two extreme specialists (fig. 4a, 4b),
we numerically assessed whether this invasion leads to
selection on the specialists to become generalist. We find
that over the entire parameter space considered, invasion
of the generalist always results in stronger divergent se-
lection on the specialists (which must remain inconse-
quential because the specialists are already maximally spe-
cialized). Hence, the three-species community is indeed
always evolutionarily stable once created through invasion
of the generalist.

We can thus conclude that after immigration, the stable
coexistence of specialists and generalists can be attained
under a wider range of ecological settings than with grad-
ual evolution alone (cf. fig. 4a, 4b, 4e, 4f ), and allowing
for community construction through migration relaxes the
conditions for stable coexistence. Note that the extra pa-
rameter region allowing for coexistence is small when the
trade-off acts on both K and r (cf. fig. 4b, 4f ) because
ecological coexistence is already restricted in this case, but
it is much larger when the trade-off acts on K only (cf.
fig. 4a, 4e) because in that case, ecological coexistence is
widely possible.

Discussion

In this article, we have shown that the potential for co-
existence between specialists and generalists crucially de-

pends on the specific trade-off structure assumed (fig. 4).
Ecological coexistence is much more feasible with the
trade-off in K only than with the trade-off in K and r.
However, under gradual evolution without immigration,
conditions for the establishment of specialist-generalist co-
existence become equally restricted. Specifically, coexis-
tence of two specialists and one generalist is attainable
only through gradual evolution if foraging accuracy is very
high and if temporal variability is strong. When the gen-
eralist can invade a community of two specialists through
immigration (or through a mutation of large effect), con-
ditions for the evolutionarily stable coexistence of spe-
cialists and generalists are less restricted when the trade-
off acts on K only but not when the trade-off acts on both
K and r. Considerable environmental variation still re-
mains necessary. Overall, specialist-generalist coexistence
turns out to be less likely than a purely ecological analysis
(Wilson and Yoshimura 1994) had previously suggested.

Limitations of Our Study

This article is based on a relatively simple model; three of
the simplifications we had to make are scrutinized. First,
we have not explicitly modeled the dynamics of resources
determining the carrying capacities in the two considered
habitats. This is not critical as long as resource dynamics
occur on a shorter timescale than consumer dynamics;
resources can then be assumed to be in a quasi-steady state
depending on consumer abundances. Because the discrete-
time population dynamics investigated here would often
operate on an annual basis, within-season equilibration of
resources may indeed be likely. However, including re-
source dynamics may sometimes result in nonequilibrium
dynamics, creating internally driven temporal variability
for the consumer. This could have interesting ecological
and evolutionary implications.

Second, one may prefer to investigate trade-offs between
ecological parameters that are more mechanistic than the
intrinsic growth rates and carrying capacities considered
in this study. A wide range of specific studies will then be
required. Although the Ricker model can be derived from
individual-based descriptions, it will often be difficult to
decide on the specific trait(s) traded off between habitats.
As shown by Matessi and Gatto (1984), descriptions of r
and K can be derived from resource-consumer models
using the quasi-steady state assumption. For example,
there could be a trade-off between attack rates on one
resource and the other (or between conversion efficiencies
of resource biomass into consumer biomass); Matessi and
Gatto (1984) show that this results in a trade-off acting
on both K and r, just as described in equation (4). They
also find, for various model formulations, that K is linearly
related to r, again as described in equation (4).
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Third, we have assumed that consumers can partially
attain an ideal free distribution (limited by their foraging
accuracy) without modeling the dynamics of foraging be-
havior in detail. If foraging behavior occurs at the same
timescale as population dynamics, complex dynamics may
result (Abrams 1999). However, the Ricker model assumes
discrete time steps, whereas foraging behavior normally
takes place on a much shorter timescale. Alternatively,
consumers may use various other foraging strategies, such
as fixed preference, and ideal free foragers then do not
necessarily perform best (e.g., Fryxell 1997; Richards and
De Roos 2001). Specialists and generalists may differ in
the foraging strategy they adopt. It is at present unclear
how such a suite of different foraging strategies would
affect coexistence.

Challenges for Future Study

Our results have revealed surprising effects of the trade-
off structure on the evolution of specialization, empha-
sizing two points. First, theoretical predictions based on
a trade-off in fitness (e.g., Levins 1962, 1968) do not easily
carry over to models (or, for that matter, experimental
systems) where such a trade-off is assumed in a fitness
component such as carrying capacity. Recently, Rueffler et
al. (2004) have extended Levins’s (1962, 1968) fitness set
approach to include frequency-dependent selection, pre-
senting a framework that can deal with all possible types
of trade-offs. Their results show that the way the trade-
offs enter the fitness function (i.e., which components of
fitness are really traded off) crucially determines the evo-
lutionary dynamics and predictions—including selection
for specialists under a weak trade-off or selection for gen-
eralists under a strong trade-off. Second, we have shown
that models (or, again, experimental systems) with trade-
offs in one or several fitness components that do not lin-
early translate into a fitness trade-off can yield more com-
plex predictions for the evolution of specialization than
previously thought, including evolutionary tristability. Be-
cause it is generally very difficult to measure the fitness
of individuals in experimental systems, evolutionary bi-
ologists usually restrict their experiments to measuring one
or several components of fitness. For instance, in insect-
plant biology, these are oviposition rate, juvenile mortality
rate, juvenile body mass increase or rate of development
(i.e., traits affecting per capita reproduction rate; see, e.g.,
Futuyma and Moreno 1988; Jaenike 1990) but typically
never the maximum number of individuals a habitat can
sustain (i.e., carrying capacity).

It is an interesting open question to assess which ad-
ditional assumptions are needed to cause the loss of evo-
lutionary robustness of three-species communities com-
posed of two specialists and one generalist. One such

scenario is that the two specialist species are selected to
become less specialized to a degree where they “squeeze
out” the generalist species. We suggest that separate trade-
offs for both per capita reproduction and maximum pop-
ulation size—and thus more complex trade-offs in r and
K than we considered—might be necessary and sufficient.
Such trade-offs will translate into more complex fitness
gradients that might lead to a situation where invasion of
a generalist species may actually result in evolution of the
specialists toward generalization and the eventual extinc-
tion of the generalist. Another scenario is that the two
specialist species are selected to become increasingly spe-
cialized to a degree where they are outcompeted by the
generalist species. This scenario seems to be more likely
because the effect of the generalist species is to dampen
the variation in growth rate of the specialists (by occupying
a habitat in higher numbers if it is relatively empty and
the other habitat is relatively full). This dampening effect
favors increased specialization in our model but does not
lead to extinction. In a fully stochastic individual-based
model, extinction may occur over a wider area of param-
eter space than in our current model (where population
growth is deterministic). For instance, the generalist spe-
cies may force the two specialist species to forage only in
the habitat on which they are specialized. If the density of
a specialist species is low and carrying capacity is low for
several generations, this species may readily become ex-
tinct. When, in addition, coexistence can be restored rel-
atively easily through the immigration of specialist and
generalist species, our model predicts continuous change
in both the number of species and the degree of special-
ization in the system over time as a result of a complex
interplay of ecological and evolutionary dynamics.

Temporal variability in model systems can be internally
driven (instead of externally imposed) when the dynamics
consist of sustained cycles or deterministic chaos (May
1973), which can also promote coexistence (Armstrong
and McGehee 1976b, 1980; Adler 1990; Huisman and
Weissing 1999). In the Ricker model for one population
living on a single resource, unstable population dynamics
ensue for high values of the intrinsic growth rate r (cycles
for , chaos for ; May 1975). Choosing r inr 1 2 r 1 2.692
our model such that the generalist species would have
stable population dynamics but a specialist species would
undergo cycles (or maybe even show chaotic behavior)
promises to yield complex evolutionary dynamics. A gen-
eralist species would then create a stable environment that
may result in evolutionary branching leading to two spe-
cialized species. However, these would create an unstable
environment that subsequently allows a generalist species
to coexist if it is able to immigrate or arise from the odd
major-effect mutation. This leads to the same questions
as discussed with regard to the evolutionary robustness of
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specialist-generalist coexistence. Hence, studying the evo-
lutionary dynamics of coexistence in systems with inter-
nally driven fluctuations promises to give intriguing and
potentially counterintuitive new insights.
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APPENDIX

Evolution of Specialization in the Absence
of Temporal Variation

Because our model contains sums of exponential func-
tions, analytical expressions for the singular point(s) can-
not be obtained (except for the special case when the trade-
off is in both r and K and foraging is random, ).a p 0
However, our numerical analysis shows that the generalist
( ) always is a singular strategy. When foraginge p e p e1 2

is random and temporal variation is absent, evolution is
described by an optimization principle; the generalist is
an evolutionary attractor (convergence stable) whenever
it is at a fitness maximum (evolutionarily stable) and an
evolutionary repeller whenever it is at a fitness minimum
(Meszéna et al. 2001). Our numerical analysis also shows
that convergence stability is unaffected by foraging ac-
curacy, whereas evolutionary stability changes with for-
aging accuracy (see fig. 3 for examples). Hence, we can
assess the generalist’s convergence stability under random
and nonrandom foraging by determining its evolutionary
stability under random foraging. To determine the gen-
eralist’s evolutionary stability under random and nonran-
dom foraging, we calculate the sign of the second deriv-
ative of a rare strategy’s invasion fitness with respect to
that strategy (Geritz et al. 1998) for each of the two trade-
off structures considered. Because the efficiency in habitat
2, e2, is traded off against the efficiency in habitat 1, e1,
we express e2 in terms of e1 (given by eq. [3]) and derive
all results below in terms of the adaptive trait e1.

Trade-off in K Only

Using equation (1), the population dynamics of the gen-
eralist are described by

NtN p N exp r 1 � .t�1 t [ ( )]2eK

Hence, the generalist equilibrium population size is
.N(e) p 2eK

The invasion fitness of a rare phenotype with strategy
in a generalist resident population is given by the log-′e1

arithm of its growth rate in the resident population at
equilibrium,

N(e)
′ ′ ′f(e , e )F p ln p (e , e) exp r 1 �1 1 1 1 ′{ [ ( )]e pe pe1 2 2e K1

N(e)
′ ′[ ]� 1 � p (e , e) exp r 1 � ,1 1 ′ ′[ ( )]}2e (e )K2 1

with denoting, analogous to equation (2), the′ ′p (e , e)1 1

probability of the rare phenotype with strategy to enter′e1

habitat 1 when the generalist is resident,

1′ ′p (e , e) p .1 1 ′ ′ ′1 � exp {ar[(e/e ) � (e/e )(e )]}1 2 1

The second derivative of the invasion fitness with respect
to , evaluated at , is′ ′e e p e p e1 1 1

2 2� r 2r r �′ ′ ′f(e , e ) p � � 2 p (e , e)1 1 1 1′2 F 2 2 ′ F�e e e e �e′ ′1 e pe pe 1 e pe1 1 1

21 d e (e )2 1�
2 F2 de1 e pe1

1
2sp 2 r r � ar � 1 � .[ ( )]s

Thus, the generalist is situated at a fitness maximum if

1 1
a ! � 1 � r .[( ) ]r s

Under this condition, gradual evolution ends at the gen-
eralist evolutionary attractor. Otherwise, evolutionary



Coexistence of Specialists and Generalists 529

branching at the generalist attractor can produce two spe-
cialist populations.

We thus see that the generalist strategy is at a fitness
maximum under random foraging ( ) ifa p 0 s ! 1/(r �

; this condition also determines when the generalist is1)
an evolutionary attractor under nonrandom foraging
( ).a 1 0

Trade-off in Both K and r

Following the same line of reasoning but now using equa-
tion (4), the population dynamics of the generalist are
described by

NtN p N exp r e � .t�1 t [ ( )]2K

Hence, the generalist equilibrium population size again is
.N(e) p 2eK

The invasion fitness of a rare phenotype with strategy
in a resident population with the generalist strategy′e1

( ) ise p e p e1 2

N(e)
′ ′ ′ ′f(e , e )F p ln p (e , e) exp r e �1 1 e pe pe 1 1 11 2 { [ ( )]2K

N(e)
′ ′ ′ ′� [1 � p (e , e)] exp r e (e ) � ,1 1 2 1[ ( )]}2K

with again denoting the probability of the rare′ ′p (e , e)1 1

phenotype with strategy to enter habitat 1 when the′e1

generalist is resident,

1′ ′p (e , e) p .1 1 ′ ′ ′1 � exp {ar[e (e ) � e )]}2 1 1

The second derivative of invasion fitness with respect to
, evaluated at , is′ ′e e p e p e1 1 1

2� �′ 2 ′ ′f(e , e ) p r � 4r p (e , e)1 1 1 1′2 F ′ F
′ ′�e �ee pe pe e pe1 11 1 1

21 d e (e )2 1� r
2 F2 de e pe1 1

1
sp r r � 2ar � � 1 2 .[ ( ) ]s

Thus, the generalist is situated at a fitness maximum if

s[(1/s) � 1]2 � r
a ! .

2r

This means that the generalist strategy is at a fitness
maximum under random foraging ( ) and thus servesa p 0
as an evolutionary attractor under nonrandom foraging
( ) if .sa 1 0 r ! [(1/s) � 1]2
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