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Abstract— In this paper, we propose two evolutionary strate-
gies for the optimization of problems with actuator noise
as encountered in robust optimization, where the design or
objective parameters are subject to noise: the ROSAES and the
ROCSAES. Both algorithms use a control rule for increasing
the population size when the residual error to the optimizer
state has been reached. Theoretical analysis has previously
shown that the residual error depends among other factors
on the population size and on the variance of the noise.
Furthermore, ROSAES exploits the similarity of the mutation
term in evolutionary strategies and the additive noise term in
the case of actuator noise. The population variance is controlled
to guarantee that the realized noise level is adjusted correctly.
Simulations are carried out on test functions and the results are
analyzed with respect to the performance and the dependence
of ROSAES and ROCSAES on newly introduced exogenous
strategy parameters.

I. INTRODUCTION

Optimization in the presence of noise (robust optimization)
has received increasing attention in recent years not least due
to the factual necessity to deal with this problem for many (if
not most) practical optimization cases. That is, given a design
x, evaluating its quality f̃(x) yields stochastic quantity
values. As a result, an optimization algorithm applied to
f̃(x) must deal with these uncertain quality information and
it must use this information to calculate a robust optimum
based on an appropriate robustness measure.

Probably the most widely used measure is the expected
value of f̃(x), i.e. E[f̃ |x] [1]. If one were able to calculate
E[f̃ |x] analytically, the resulting optimization problem would
be an ordinary one, and standard (numerical) optimization
techniques could be applied. However, real-world applica-
tions will usually not allow for an analytical treatment.
Therefore, one has to rely on numerical estimates of E[f̃ |x]
using Monte Carlo simulations. Alternatively, one can use
direct search strategies capable of dealing with the noisy
information directly. This is clearly the domain of evolu-
tionary algorithms (EAs) [2]. A short review of evolutionary
algorithms applied to different classes of noisy optimization
problems can be found in [3].

In this paper, we will consider the design of Evolution
Strategies (ESs) especially tailored for the treatment of
design uncertainties. In this class, noise is added to the
object or design variables that are subject to optimization
[4]. This kind of uncertainties concerns e.g. production
tolerances and limitations, or actuator imprecision δ acting
directly on the design variables x. That is, the performance
f of a design becomes a stochastic quantity f̃ via internal
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design perturbations f̃(x) = f(x + δ), where the random
vector δ obeys a user specified distribution (often Gaussian
distribution) and E[δ] = 0.

Assuming a continuous design space, the expected value
robustness measure is given by the integral

E[f̃ |x] =
∫

RN
f(x + δ)p(δ) dNδ (1)

and the optimal design x̂ is formally obtained by

x̂ = arg optx

∫

RN
f(x + δ)p(δ) dNδ. (2)

The usual way how one tries to find approximate solutions
to (2) using EAs is to use the design uncertainties δ explicitly.
That is, given an individual design x, the perturbation δ is
added explicitly to the design x. While the EA works on the
evolution of x, the goal function in the black-box is evaluated
w.r.t. x̃ := x + δ. Since in (µ/µI , λ)-ESs considered here,
an individual offspring design is the result of a mutation
z applied to the parental centroid 〈x〉, the actually design
tested is x̃ = 〈x〉 + z + δ. Taking now another perspective,
one might interpret z+δ as a mutation in its own right. This
raises the question whether it is really necessary to artificially
add the perturbation δ in a black-box to the design x. As an
alternative one might simply use a mutation z̃ = z + δ with
a larger mutation strength instead of z. In other words, the
mutations itself may serve as robustness tester. In this paper,
we will introduce an algorithm that does exactly this.

Even though ESs are regarded as well suited for noisy
optimization, its application to robust optimization bears
some subtleties not well known: Due to selection, the ro-
bustness of a design x is not tested w.r.t. samples of the
density function p(δ). Selection prefers those designs which
are by chance well adopted to the individual realizations of
the perturbation δ. For example, when considering actuator
noise of standard deviation ε on a sphere model ‖x‖2 (to be
minimized), the actually measured standard deviation Di of
a specific component i of the parent population will usually
be smaller, i.e. Di < ε. This is so because selection singles
out all those x + δ states with large length ‖x + δ‖. That
is, shorter δ vectors are preferred resulting in a smaller
measured standard deviation. Therefore, an ES algorithm for
robust optimization must take into account this effect and
take appropriate counter measures. It is the aim of this work
to present a rule that allows for controlling the observed
parental variance in such a way that robustness is tested
correctly.

From theoretical results it is known that evolution strate-
gies can only get arbitrarily close to the optimizer state of
an optimization problem with actuator noise, in the limit



of infinite population. Thus, practically, a residual error
cannot be circumvented. This residual error decreases with
the population size (and increases with the noise strength).
Therefore, as a second concept for the robust evolutionary
strategies we introduce a rule for population control that
adaptively increases the population size when it is necessary
to get closer to the optimizer state. The higher fidelity of the
optimization results of course has to be paid for by a larger
number of function evaluations. However, this increase is
controlled. Alternatively, one might use κ times resampling,
i.e., averaging over κ repeated f -measurements, where κ is
increased over the run if need be. However, there is empirical
[5] and theoretical evidence [6], [7], [8] that increasing the
population size is usually more efficient.

After an introduction of the nomenclature in the next
section, we will outline two robust evolution strategies
ROSAES and ROCSAES using a pseudo-code description
of the algorithms. In Section V, we present and discuss
experiments on two test functions: the sphere function with
actuator noise and a function with noise induced multi-
modality. We will conclude in the last section.

II. NOTATIONAL CONVENTIONS

In order to unify and simplify the notations for the pseudo
code description of the algorithms the following conventions
will be used:

1) g is the generation (time) counter, it appears as paren-
thesized superscript on the respective quantities;

2) x ∈ RN is the N -dimensional object parameter vector.
xi ≡ (x)i its ith component.

3) N denotes the object parameter space dimension;
4) σ is the standard deviation of the normally distributed

mutations in ES;
5) µ is the parental population size. Quantities related to

parental individuals are indexed by subscript m.
6) λ is the number of offspring generated in a single

generation. Quantities related to offspring individuals
are indexed by subscript l and are denoted with a tilde.

7) ϑ is the truncation ratio, ϑ := µ
λ .

8) Normally distributed random variables/numbers y are
denoted by N (y, σ2) where y is the expected value of
y and σ its standard deviation.

9) A vector y of normally distributed random variates is
symbolized by a boldface N (y,V ), where y is the
expected value vector of y and V stands either for
the covariance matric C or – somewhat unusual – the
vector of standard deviations.

10) The subscript notation m;λ denotes quantities of the
mth-best individual, i.e., that individual being the mth-
largest (in the case of maximization) or smallest (in the
case of minimization) w.r.t. its observed (measured)
fitness f(x).

11) 〈y〉 denotes the parental population average, i.e.

〈y〉 := 1
µ

∑µ
m=1 ym. (3)

This is basically a centroid calculation.

12) Overlined symbols, e.g. xi, when used in an algorithm,
are used to denote averaging over time, i.e. usually this
is a weighted average over the generations g.

13) R is the length of the centroid state

R := ‖〈x〉‖. (4)

14) r is the length of the first N − 1 components of the
vector x

r :=
√

∑N−1
i=1 x2

i . (5)

III. ROSAES –
ROBUST-OPTIMIZATION-(µ/µI , λ)-σSA-ES

To meet the required properties an EA should fulfill
in order to qualify as a strategy for robust optimization
(optimization under actuator noise), the EA must contain:

1) a strategy for controlling the actually observed fluc-
tuation strength of the actually tested parental object
parameter sets,

2) a strategy for successively increasing the population
size in order to prevent the EA from reaching a steady
state fitness error.

The algorithm shown in Fig. 1 realizes the first item through
the Lines 18–24 and the second item through the Lines 25–
30. We will now discuss the proposed ROSAES in detail
explaining the different parts separately.

1) The (µ/µI , λ)-Core: ROSAES is built upon the stan-
dard (µ/µI , λ)-σSA-ES using log-normal mutations for the
mutation strength σ. The procreation of the λ offspring is
done in Lines 8–14, with Line 9 performing the log-normal
mutation of the recombined strategy parameter σ.1 In Line
11, the mutation of the object parameter is performed. As
usual this is done on top of the recombinant 〈x〉 (again the
intermediate recombination needs to be done only once in
Line 17), however the actual strength by which the mutation
is performed differs from “standard” ES: In order to account
for the actuator noise, the strength consists of the ES-
specific contribution σ and an actuator noise contribution
ε. Since normality of the actuator noise is assumed, the
sum of the strategy-specific mutation contribution and the
actuator noise contribution is still a normally distributed
random vector, however, with variance σ̃2

l + ε2
i for the ith

component. Performing the mutations in this way allows for
taking advantage of the ES-immanent mutation (of strength
σl) as an additional robustness tester. That is, there is no
need to decrease the ES’s mutation strength during evolution
to very small values since the mutation can take over a part
of the robustness testing itself. Whether this idea results
in a performance advantage compared to the usual robust
optimization approach2 is still an open issue and needs
further thorough (simulative) exploration.

1The intermediate recombination itself is done in Line 16, since it needs
to be calculated only once per generation.

2By “usual approach” we mean the standard evolutionary robustness test
by which the actuator noise is generated in the black-box invisible to the
EA. This approach will be taken in Section IV for the CSA-ES.



RO-(µ/µI , λ)-σSA-ES (Maximization)

g := 0; 〈σ〉 := σ(init); 〈x〉 := x(init); 1
µ := µ(init); λ := dµ/ϑe; x := 〈x〉; 2
For i := 1 To N ; x2

i := 〈x2
i 〉; End For 3

ε := ε?; 4
〈F 〉(g) := 1

µ

∑µ
m=1 f

(

x(init) +Nm(0, ε?)
)

; 5

∆F := 0; 6
Repeat 7

For l := 1 To λ 8
σ̃l := 〈σ〉 exp[τσNl(0, 1)]; 9
For i := 1 To N ; 10

(x̃l)i := 〈xi〉+
√

σ̃2
l + ε2i Nl,i(0, 1); 11

End For 12
F̃l := f(x̃l); 13

End For 14
g := g + 1; 15
〈σ〉 := 1

µ

∑µ
m=1 σ̃m;λ; 16

〈x〉 := 1
µ

∑µ
m=1 x̃m;λ; 17

For i := 1 To N 18
〈x2
i 〉 := 1

µ

∑µ
m=1(x̃m;λ)2

i ; 19

xi := (1− cx)xi + cx〈xi〉; 20
x2
i := (1− cx)x2

i + cx〈x2
i 〉; 21

Di :=

√

x2
i − xi2; 22

εi := εi exp[τεSign(ε?i −Di)]; 23
End For 24
〈F 〉(g) := 1

µ

∑µ
m=1 F̃m;λ; 25

∆F := (1− cf )∆F + cf
(

〈F 〉(g) − 〈F 〉(g−1)
)

; 26
If (Mod(g,∆g) = 0) ∧ (∆F ≤ 0) Then 27

µ := dµcµe; 28
λ := dµ/ϑe; 29

End If 30
Until Termination Condition 31

Fig. 1. Pseudocode of the RO-(µ/µI , λ)-σSA-ES (ROSAES).

The core part of ROSAES needs the fixing of an ex-
ogenous strategy parameter, the learning parameter τσ. It
is well known that the progress rate of the (µ/µI , λ)-ES
depends sensitively on τσ [9]. Therefore, we cannot expect
to find a general optimal choice. However, in order to ensure
linear convergence order on the sphere, it suffices to ensure
τσ ∝ 1/

√
N and

τσ = N−1/2 (6)

seems to be a reasonable choice.
2) The Robustness Variance Control: The actual mutation

strength acting in Line 11 depends on σ and εi. It is important
to realize that εi is not equivalent to the desired actuator noise
strength ε?i . The latter is the desired strength by which the
actually realized design instances should be tested. As we
have already argued, due to the (µ, λ)-selection, the actual
variances of the selected (i.e. parental) x̃m;λ states are usually
smaller than the desired ε?i . Therefore, εi must be controlled
in such a way that the observed (i.e. measured) standard

deviation

Di :=
√

Var [{(x̃1;λ)i, . . . , (x̃µ;λ)i}] (7)

gets close to ε?i .
In order to build a control algorithm we need basically

two ingredients:
1) a method for measuring the parental population vari-

ance or its standard deviation Di,
2) a control rule for changing the εi.

a) 1. Determining the population variance: Since ro-
bustness testing is highly noisy, calculating the parental
population variance from just one generation results in highly
fluctuating Di estimates not well suited for εi control.
Therefore, a smooth Di estimate is needed. One way of
smoothing the data is by weighted cumulation, also known
as exponential averaging. The standard deviation of xi

Di =
√

x2
i − xi2, (8)

can be obtained from the smoothed time averages of xi and
x2
i . The exponential smoothing is done in Lines 20 and 21

(Fig. 1), respectively. The population average of the squared
xi coordinates needed in Line 21 is calculated in Line 19.
The exponential averaging in Lines 20 and 21 is designed
in such a way that the xi and x2

i information fades away
exponentially fast if 〈xi〉 and 〈x2

i 〉, respectively, are zero. The
time constant of this process is controlled by the cumulation
time constant cx ∈ [0, 1]. Since the changing rates of the ES
(e.g. the progress rate on the sphere) are often of the order
1/N , it is reasonable to use

cx = N−1 (9)

as a first choice.
b) 2. How to control εi.: Given a stable estimate of

the real parental xi population standard deviation, one can
compare it with the desired actuator noise strength ε?i . That
is, the aim is to control the (observed) Di in such a way that

Di ≈ ε?i . (10)

If the ES is able to get close to the robust optimizer, then
condition (10) ensures that robustness is guaranteed for the
correct target actuator noise strength. While, in general, we
cannot be sure that the ES locates the robust optimizer (as
we will see later on), fulfilling condition (10) can be ensured
asymptotically by the control rule

εi := εi exp[τεSign(ε?i −Di)]. (11)

If Di = ε?i , (11) does not change εi. In the case Di < ε?i ,
εi is increased and if Di > ε?i , εi is decreased. Due to the
choice of the sign function, the ε change rate is independent
of the actual value of the Di − ε?i difference, i.e. e±τε .
This ensures that large differences do not result in extreme
εi changes. As an alternative one might replace the sign
function by a sigmoid function, e.g. the hyperbolic tangent.

The choice of the parameter τε, which may be interpreted
as a damping constant, must be taken with care. The dy-
namics of the Di and εi interfere with each other. As a
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Fig. 2. The effect of ε control for a (10/10I , 100)-ES. The desired actuator
noise strength is ε?i = 1.0. The top (red solid) curve represents the parental
centroid distance R = ‖〈x〉‖ to the optimizer, the middle (blue dotted)
curve displays the measured parental standard deviation D1, and the bottom
(green) curve displays the mutation strength σ = 〈σ〉.

result, such a system can exhibit instabilities, e.g. oscillatory
behavior. In order to prevent such instabilities, cx and τε
must be chosen appropriately. While there is clearly a need
for a thorough analysis, in the investigations done so far, the
choice

τε = cx/3 (12)

worked flawlessly. Figure 2 shows the impact of ε-control on
the actually realized actuator noise strength. As test function
a sphere model −‖x‖2 (maximization!) with N = 40 and
ε?i = 1.0 has been chosen. One clearly sees that the control
mechanism works well, Di stabilizes around the target value
1.0 and no strong fluctuations occur.

3) How to Control the Population Size:
a) On the behavior of EAs under noise: It is well

known that noise deteriorates the performance of the EAs.
If the function to be optimized is noisy at its global or local
optimizer, the EA cannot reach the optimizer in expectation.
That is, the parental individuals are located in the long run
(steady state behavior) in a certain (expected) distance to the
optimizer, both in the object parameter space and usually also
in the fitness space. For simple fitness models the expected
final localization error can be estimated.

The effect of noise on the behavior of an ES optimizing a
sphere model is that the parental population and its centroid
are located in a certain expected distance R∞ from the
optimum. This can be verified in Fig. 2 (red curves) where
the centroid distance R to the optimizer is displayed for a
(10/10I , 100)-ES evolving on a sphere model with actuator
noise. In [7] the asymptotically exact formula for R∞ has
been calculated. Here we only show the approximation of
R∞ for σ � ε:

R∞ ≥
Nε√

8µcµ/µ,λ

√

√

√

√

1 +

√

1 +
8µ2c2µ/µ,λ

N
. (13)

Equation (13) clearly shows that increasing the population
size (assuming a constant truncation ratio ϑ = µ/λ) reduces
the steady state residual distance to the optimizer. Therefore,

increasing the population size is a means for locating the
optimizer of the sphere with actuator noise arbitrarily precise.
While it is an open issue whether population upgrading
does always improve the final solution quality, one sees that
– at least for the sphere model – a large population size
may be desirable. However, if there is only weak noise,
using a large population might be a waste of computer
resources. Therefore, controlling the population size during
the evolution can be a means to improve the efficiency of
the EA.

b) A rule for controlling the population size.: In order
to control the population size λ, a measure is needed which
allows for a decision whether to decrease/increase λ. Assum-
ing a stationary actuator noise distribution, the dynamics of
the ES will (usually) approach a steady state behavior in a
certain vicinity of the optimizer. That is, for a certain time
period one observes on average a measurable improvement
in the observed parental fitness values. If, however, one
reaches the vicinity of the steady state, parental fitness will
start to fluctuate around an average value. Therefore, if one
observes on average no improvements of the fitness values
from generation g to g+1, it is time to increase the population
size.3 The average parental fitness change ∆F is given by

∆F = 〈F 〉(g) − 〈F 〉(g−1), (14)

where 〈F 〉 := 1
µ

∑µ
m=1 F̃m;λ. Since ∆F itself is a strongly

fluctuating quantity, an exponential smoothing should be
used again to avoid unnecessary population increase due to
random fluctuations. Algorithmically, this is done in Line 26,
Fig 1, where cf determines the time constant by which old
∆F -information vanishes exponentially fast. As a natural
choice,

cf = N−1 (15)

can be used.
The population size control is realized in the algorithm

in Fig. 1 through the Lines 25 to 30. Up to now we have
considered the Lines 25 and 26. The λ update rule is realized
in Lines 27 to 30. When considering maximization, desired
fitness changes are of the kind ∆F > 0. Therefore, if
∆F ≤ 0 the population size λ should be increased. Since
the increased population does not necessarily change the sign
of ∆F in the next generation (random fluctuations!), the
test of the update rule in Line 27 is performed every ∆g-th
generation. The λ-update itself, Line 29, is done via the µ-
increase in Line 28. The new µ is obtained from the old µ
using the change rate cµ. Considering the sphere model, one
can easily infer from (13) – assuming the equal sign in (13)
– that the µ-asymptotic becomes

R∞ '
εN3/4

√√
8cµ/µ,λ

1
√
µ
. (16)

Therefore, increasing the population size multiplicatively
results in an exponential decrease of R∞ w.r.t. generation

3Note, we only consider the case of λ increase. A rule for λ-decrease
has not been developed so far.
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Fig. 3. On the effect of population size control used in an ES with ϑ = 0.4
acting on a N = 40 sphere −‖x‖2 with actuator noise ε?i = 1 and ε-
control. The top (pink) dashed curve represents the parental centroid distance
R = ‖〈x〉‖ to the optimizer, the solid (red) staircase like curve represents
the lower R∞ expected value bound given by Eq. (13), the (blue) dotted
curve displays the measured parental standard deviation D1, and the bottom
(green) curve displays the mutation strength σ = 〈σ〉 (compare also Fig. 2).
A total of approximately 5, 000, 000 function evaluations has been used.

time interval ∆g.4

There are three new exogenous strategy parameters to be
fixed: The truncation ratio ϑ = µ/λ, the update time interval
∆g, and the µ change rate cµ. Up to now there is no theory
for choosing these strategy parameters, however, simulations
suggest that ∆g = N, cµ = 4 represents a reasonable choice
(see also Figs. 6 and 7). The truncation ratio for this setting
should be in the interval ϑ = 0.4, . . . , 0.6.

Figure 3 provides a proof of concept for the proposed
control rule used in an ES optimizing the sphere with actuator
noise. As one can clearly see, the observed R dynamics
follows closely the R∞ curve derived from (13) using µ(g)

and λ(g) from the actual ES run. This also holds for the
ES version without ε-control (the corresponding figure is not
shown).

IV. ROCSAES –
ROBUST-OPTIMIZATION-(µ/µI , λ)-CSA-ES

The cumulative step size adaptation (CSA) as well as
its non-isotropic covariance matrix adaptation (CMA) [10]
counterpart have recently been widely used in ES practice.
Therefore, it seems reasonable to search for a version of this
ES class that allows for robust optimization.

As a first step, we will consider the CSA-ES, i.e. the
case of isotropic mutations only. Due to the special way
how the mutation strength is determined in CSA-ES and
how the offspring are generated using the same mutation
strength σ for all offspring individuals, there seems to be no
direct way to transfer the idea of direct robustness testing
through mutations to the CSA-ES.5 Therefore, we fall back

4Of course, this is bought at the price of exponentially increasing fitness
evaluations per time period ∆g.

5Note, in general we have to ensure different noise levels εi for the
different coordinate directions. There is a certain hope that this could be
accomplished by a modified CMA-ES, however, this is beyond the scope
of this work.

RO-(µ/µI , λ)-CSA-ES (Maximization)

g := 0; σ := σ(init); 〈x〉(g) := x(init); 1
µ := µ(init); λ := dµ/ϑe; xa := 〈x〉; 2
For i := 1 To N ; xa2

i := 〈x2
i 〉; End For 3

ε := ε?; 4
〈F 〉(g) := 1

µ

∑µ
m=1 f

(

x(init) +Nm(0, ε?)
)

; 5

∆F := 0; 6
s := 0; 7
Repeat 8

For l := 1 To λ 9
x̃l := 〈x〉(g) + σN l(0,1); 10
x̃a
l := x̃l +N l(0, ε); 11
F̃l := f(x̃a

l ); 12
End For 13
g := g + 1; 14
〈x〉(g) := 1

µ

∑µ
m=1 x̃m;λ; 15

s := (1− cσ)s +
√

(2− cσ)cσ
√
µ

σ
(

〈x〉(g) − 〈x〉(g−1)
)

; 16

σ := σ exp
[

‖s‖2−N
2Ndσ

]

; 17

For i := 1 To N 18
〈xa
i 〉 := 1

µ

∑µ
m=1(x̃a

m;λ)i ; 19

〈xa2
i 〉 := 1

µ

∑µ
m=1(x̃a

m;λ)2
i ; 20

xa
i := (1− cx)xa

i + cx〈xa
i 〉; 21

xa2
i := (1− cx)xa2

i + cx〈xa2
i 〉; 22

Di :=

√

xa2
i − xa

i
2 ; 23

εi := εi exp[τεSign(ε?i −Di)]; 24
End For 25
〈F 〉(g) := 1

µ

∑µ
m=1 F̃m;λ; 26

∆F := (1− cf )∆F + cf
(

〈F 〉(g) − 〈F 〉(g−1)
)

; 27
If (Mod(g,∆g) = 0) ∧ (∆F ≤ 0) Then 28

µ := dµcµe; 29
λ := dµ/ϑe; 30

End If 31
Until Termination Condition 32

Fig. 4. Pseudo code of the RO-(µ/µI , λ)-CSA-ES (ROCSAES).

to the black-box approach: The CSA-ES is applied without
modifications to the function f(x) which is internally dis-
turbed by actuator noise of strength ε. Therefore, we have to
differentiate between the ES’ individual vectors x̃l, generated
in Line 10, Fig. 4, and the real actuator state x̃a

l , Line 11,
entering the f function in Line 12. The x̃a

l is invisible to the
standard CSA-ES, however, it is needed for calculating the
actually realized parental actuator fluctuations measured by
the standard deviation Di.

The CSA specific part of the algorithm, Fig. 4, is located
in Lines 16 and 17: the path cumulation and the σ update.
Note, in contrast to the original CSA-ES [10], we have used
a slightly different σ update rule proposed by Arnold in
[6]. This simplifies the algorithm since there is no need to
approximate the expected value of the χ-distribution. In order
to perform the path cumulation, the cumulation time constant
cσ must be fixed. Two different recommendations concerning
cσ can be found in literature: ∝ 1/

√
N and ∝ 1/N (see e.g.



[11], [10], [12]). From viewpoint of stability

cσ = N−1 (17)

should be chosen. According to experimental evidences [11]
and theoretical analysis [12], the damping constant dσ must
be chosen depending on cσ

dσ = c−1
σ (18)

The rest of the algorithm in Fig. 4 is directly taken from
the ROSAES, Fig. 1. The same holds for the recommended
choice of the endogenous strategy parameters cx, cf , cµ, and
ϑ.

V. EXPERIMENTS

The algorithms have been tested on various noisy test
functions. Due to space limitations we will consider only
a subset here.

A. Test functions

In the following experiments, we will use two test func-
tions. Firstly, the standard sphere function with actuator
noise, which we will denote as fasp and which is defined
as

fasp(x) := −‖x + δ‖2, where δ ∼ εN (0,1). (19)

As has been shown in [13], the robust optimizer is at x̂ = 0.
Secondly, we will run simulations on a function which

is more complex and which belongs to the class of “func-
tions with noise induced multi-modality - FNIMs”. These
functions exhibit an interesting bifurcation like behavior of
their modalities under noise and are closer related to practical
optimization problems than the sphere function, see [3], [8]
for a comprehensive discussion. The function ffnim is defined
as

ffnim(x) := a−
∑N−1
i=1 (xi + δi)2

b+ x2
N

− x2
N , (20)

b > 0, where δi ∼ εNi(0, 1).

It has been introduced in [8] as an example function
amenable to a theoretical analysis of the ES behavior. The
conditional expectation Eδ[f(x, δ)|x] can be easily obtained
from (20)

E[ffnim|x] = a− r2 + (N − 1)ε2

x2
N + b

− x2
N , (21)

where r :=
√

∑N−1
i=1 x2

i .

As has been shown in [8], given r > 0, the local optimal xN
is at (r2

t = b2 − (N − 1)ε2)

x̃N = 0, for r2 ≤ r2
t ,

x̃N = ±
√

√

r2 + (N − 1)ε2 − b, for r2 > r2
t .

}

(22)

and the global optimizer becomes (εt = b/
√
N − 1)

x̂ = 0, for ε ≤ εt,

x̂ =
(

0, . . . , 0,±
√√

N − 1 ε− b
)T

, for ε > εt.

}

(23)

B. Results on fasp

As we mentioned in the last section, EAs with actuator
noise suffer from a residual error, which increases with the
noise variance and decreases with the population size. This
clearly indicates that the adaptive population sizing of the
ROSAES and the ROCSAES should be superior to a standard
σSA-ES or to a CSA-ES. As an example we have plotted in
Fig. 5 the dynamics of the residual error of the four strategies
versus the number of function evaluations for ESs optimizing
the sphere model with actuator noise (19), N = 40, in
Fig. 5. The standard ES and CSA-ES used the maximal
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Fig. 5. Typical single run dynamics of the residual distance R to the
optimizer state versus number of function evaluations nf (displayed as
“+”). Results are shown a) for the ROSAES and b) the ROCSAES on a
sphere with actuator noise. The (blue, top curve) “∗”-data points are obtained
from standard (320/320I , 800)-ES and CSA-ES, respectively.

parental population size µ = 320 (ϑ = 0.4) finally reached
by ROSAES as basis for the comparison, i.e., they performed
standard (320/320I , 800) strategies. As one can clearly see,
increasing gradually the population size offers a performance
gain. Furthermore, as to CSA-ES we see, however, that the
standard strategy exhibits typical instabilities (the increase
of the residual distance in the final phase of the run) when
working with large population sizes.

The rule for controlling the population size in both algo-
rithms ROSAES and ROCSAES depends on two exogenous
strategy parameters ∆g and cµ and on the truncation ratio ϑ.
The performance (i.e. the residual distance to the optimizer
state) of both algorithms is plotted against these parameters
in Figs. 6 and 7. We observe that the residual distance
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Fig. 6. Performance of ROSAES with nf = 10, 000 on sphere, N = 40,
with actuator noise of strength ε = 1.0. Truncation ratio ϑ of upper figure
is ϑ = 0.4, ∆g of bottom figure is ∆g = N = 40.
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Fig. 7. Performance of ROCSAES with nf = 10, 000 on sphere, N = 40,
with actuator noise of strength ε = 1.0. Truncation ratio ϑ of upper figure
is ϑ = 0.4, ∆g of bottom figure is ∆g = N = 40.

changes relatively smoothly with the strategy parameters
and that no instabilities occur for both algorithms. At the
same time, the ROSAES performs better than the ROCSAES.
Extensive simulation studies have been carried out on various
noisy test functions indicating that the tendencies shown in
Fig. 6 seems to be generally valid for the ROSAES. As a rule
of thumb, ϑ = 0.4, cµ = 4, and ∆g = N is a reasonable
choice for the strategy parameters. However, it should be also
mentioned that ROCSAES can exhibit instabilities for very
large population sizes (µ

>∝ N2 not shown in this paper).

C. Results on ffnim

Figure 8 shows the optimization results depending on
the actuator noise strength ε for nf = 10, 000 function
evaluations using ROSAES. As one can see in Figure 8, the
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Fig. 8. Optimization results of ROSAES on the xN -coordinate of function
ffnim, N = 40, a = 5.0, b = 2.0, depending on the actuator noise strength
ε. Population update time ∆g = N = 40 and nf = 10, 000. As truncation
ratios ϑ = 0.3 (red data points), ϑ = 0.4 (black data points), and ϑ = 0.5
(green data points) have been chosen (data points are partially concealed).
The curve presents the xN value of the global optimizer (23).

ES is able to approximate the global optimizer curve (solid
curve), given by Eq. (23). There is only a small influence
of the truncation ratio ϑ. However, there remains a small
approximation error w.r.t. xN . This seems to be a finite N -
dimensionality effect which has been observed in the analysis
of the standard (µ/µI , λ)-σSA-ES, too. On the other hand, it
has been shown in [8] that the asymptotically correct formula
for the expected value of xN using the standard (µ/µI , λ)-
ES is given by

E[xN ] = ±





(

(N − 1)ε2

[

1 +
(N − 1)β
8µ2c2µ/µ,λ

])1/2

− b





1/2

,

β = 1 +

√

1 +
8µ2c2µ/µ,λ

N − 1
. (24)

As one can easily see, increasing the population size in (24)
such that 0 < ϑ = const. < 1 and λ = µ

ϑ → ∞ yields
the global optimizer of xN , Eq. (23). This is in accordance
with simulations (not shown here). Furthermore, considering
the length r, Eq. (5), of the first N − 1 components of
the solution vector, the simulations show that it decreases
monotonously with the number nf of function evaluations.6

6Recall, the global optimizer is at r = 0, Eq. (23). See also the R-
dynamics on the sphere with actuator noise in Fig. 3.



Therefore, we can conclude that using ROSAES on ffnim

yields asymptotically the global optimizer.
Considering the performance of ROCSAES in Fig. 9 we
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Fig. 9. Optimization results of ROCSAES on the xN -coordinate of function
ffnim, N = 40, a = 5.0, b = 2.0, depending on the actuator noise strength
ε. Population update time ∆g = N = 40 and nf = 10, 000. As truncation
ratios ϑ = 0.3 (red data points), ϑ = 0.4 (black data points), and ϑ = 0.5
(green data points) have been chosen (data points are partially concealed).
The curve presents the xN value of the global optimizer (23).

see larger deviations compared to ROSAES, Fig. 8. This
deviation can be slightly decreased by increasing the number
of function evaluations to nf = 50, 000. However, increasing
nf further results in instable behavior. The reason for this
disappointing observation can be clearly addressed to the
large population sizes. It is an interesting side result of
the investigations performed: CSA-ES becomes increasingly
instable (divergence or chaotic behavior of the mutation
strength σ) for large population sizes.

VI. CONCLUSION

In this paper, we have proposed two ESs for robust (noisy)
optimization that solve two problems standard ESs (as well
as other EAs) are suffering from: a) Due to selection, the ac-
tually observed actuator noise variance does usually deviate
from the target variance and b) a fixed population size results
in a final expected deviation from the real robust optimizer
no matter how long the EA runs. The solutions are actuator
noise control and population size control. Furthermore, it
might come as a surprise, but standard self-adaptive ESs (but
not CSA-ES) utilize the mutations itself as robustness tester.
From this point of view, standard σ-self-adaptive ESs are
strategies for robust optimization per se. In [14] a similar
idea has been offered in context of evolvable hardware. In
our work, we have shown that such a concept does really
work.

From viewpoint of performance, we can conclude that the
robust evolution strategies with the newly proposed control
rules outperform their standard counterparts, i.e. mutative
evolution strategy σSA-ES and cumulative step-size adap-
tation CSA-ES. Furthermore, the ROSAES is superior and
more stable compared to the ROCSAES. Although we have
not yet analyzed in depth why this might be the case, we
expect that the reason is the difficulty of the CSA-ES with
increasing population sizes.

The robust evolution strategies depend on a number of
exogenous strategy parameters that must be set manually.

Although the optimal choice of these parameters will depend
on the problem (i.e. no globally optimal set can be given),
we have shown that the performance changes smoothly with
the new strategy parameters and that no instabilities occur.

The ROSAES performs well also on more complex test
functions, like the function ffnim. The performance of the
ROCSAES is usually inferior. Therefore, from the current
results we rather recommend the use of ROSAES for prob-
lems with actuator noise. It is quite clear that the proposed
strategies will also have their drawbacks. Experiments that
have not been included in this paper show that there are
also FNIM functions where the approach to the robust
optimizer depends on the truncation ratio. Therefore, our
future research will aim at a deeper understanding of the
behavior of ROSAES and ROCSAES in robust optimization
scenarios.

REFERENCES

[1] J. Branke, Evolutionary Optimization in Dynamic Environments. Dor-
drecht: Kluwer Academic Publishers, 2002.

[2] Y. Jin and J. Branke, “Evolutionary Optimization in Uncertain Environ-
ments – A Survey,” IEEE Transactions on Evolutionary Computation,
vol. 9, no. 3, pp. 303–317, 2005.

[3] B. Sendhoff, H.-G. Beyer, and M. Olhofer, “The influence of stochastic
quality functions on evolutionary search,” in Recent Advances in Sim-
ulated Evolution and Learning, ser. Advances in Natural Computation,
K. Tan, M. Lim, X. Yao, and L. Wang, Eds. World Scientific, 2004,
pp. 152–172.

[4] S. Tsutsui, “A comparative study on the effects of adding perturbations
to phenotypic parameters in genetic algorithms with a robust solution
searching scheme,” in Proceedings of the 1999 IEEE System, Man, and
Cybernetics Conference – SMC’99, vol. 3. IEEE, 1999, pp. 585–591.

[5] J. Fitzpatrick and J. Grefenstette, “Genetic Algorithms in Noisy Envi-
ronments,” in Machine Learning: Special Issue on Genetic Algorithms,
P. Langley, Ed. Dordrecht: Kluwer Academic Publishers, 1988, vol. 3,
pp. 101–120.

[6] D. Arnold, Noisy Optimization with Evolution Strategies. Kluwer
Academic Publishers, 2002.

[7] H.-G. Beyer, M. Olhofer, and B. Sendhoff, “On the impact of system-
atic noise on the evolutionary optimization performance - a sphere
model analysis,” Genetic Programming and Evolvable Machines,
vol. 5, no. 4, pp. 327–360, 2004.

[8] H.-G. Beyer and B. Sendhoff, “Functions with Noise-Induced Multi-
Modality: A Test for Evolutionary Robust Optimization – Properties
and Performance Analysis,” IEEE Transactions on Evolutionary Com-
putation, 2005, accepted.

[9] L. Grünz and H.-G. Beyer, “Some observations on the interaction of
recombination and self-adaptation in evolution strategies,” in Congress
on Evolutionary Computation CEC. IEEE Press, 1999, pp. 639–645.

[10] N. Hansen and A. Ostermeier, “Completely Derandomized Self-
Adaptation in Evolution Strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[11] N. Hansen, “Verallgemeinerte individuelle Schrittweitenregelung in
der Evolutionsstrategie,” Doctoral thesis, Technical University of
Berlin, Berlin, 1998.

[12] D. Arnold and H.-G. Beyer, “Performance analysis of evolutionary op-
timization with cumulative step length adaptation,” IEEE Transactions
on Automatic Control, vol. 49, no. 4, pp. 617–622, 2004.

[13] H.-G. Beyer, M. Olhofer, and B. Sendhoff, “On the behavior of
(µ/µI , λ)-ES optimizing functions disturbed by generalized noise,”
in Foundations of Genetic Algorithms VII, K. de Jong, R. Poli, and
J. Rowe, Eds. Morgan Kaufmann, 2002, pp. 307–328.

[14] A. Thompson and P. Layzell, “Evolution of Robustness in an Elec-
tronics Design,” in Evolvable Systems: From Biology to Hardware,
Proceedings of the Third International Conference (ICES-2000), ser.
LNCS, J. Miller, A. Thompson, P. Thomson, and T. Fogarty, Eds., vol.
1801. Berlin: Springer Verlag, 2000, pp. 218–228.


