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Abstract

Recent evolutionary models have introduced “small mutation rates” as a way of refining
predictions of long-run behavior. We show that if mutation rates are allowed to vary across
states, then mutations no longer narrow the set of possible predictions. In particular, given any
model of the effect of mutations, any invariant disttibution of the “mutationless” process is close

to an invariant distribution of the process with appropriately chosen small mutation rates.



1 Introduction

A recent reformulation of some simple evolutionary dynamics has led to a surprising
result: the addition of small mutation rates leads to precise long—run predictions. Here we
re-examine the robustness of this result with respect to the specification of the mutation

process.

To motivate the discussion, consider the evolution of strategic behavior in a popula-
tion of individuals who are repeatedly matched to play some stage game. A variety of
evolutionary processes have been analyzed, but to fix ideas, suppose that these individuals
only change their actions occasionally, always changing myopically to a best response to
the current distribution of strategies in the population. Clearly, if the initial distribution of
strategies in the population is sufficiently close to a strict Nash equilibrium,? the distribution
of strategies will converge to this equilibrivm and stay there forever after. Hence any strict
Nash equilibrium is the limit point of such a process. Furthermore, there are many other
long-run possibilities — for example, the process may cycle forever — so that typically such
dynamics have at least as many possibilities for long-run behavior as there are strict Nash

equilibria for the game.

Kandori, Mailath, and Rob [1993] (henceforth KMR) and Young [1993]? have reana-
lyzed such processes, showing that the addition of small probabilities of mutations change
the picture significantly. Suppose that there is a small probability € > 0 that a given agent
changes his action for some unmodeled reason — that is, with probability ¢, he deviates in
some, perhaps random, fashion from the dynamic described above. This could be thought of
as experimentation or mutation in the biological sense. (We comment further on this below.)
If every action can be “mutated to,” then we have a Markov process which has a strictly
positive probability of moving from any one state to any other state. It is well-known that
every such process has a unique invariant distribution and that the system converges to this
distribution from any starting point. Thus the addition of noise in the form of mutations
wakes the limit of the process unique (as a function of ¢)! KMR and Young consider a
sequence of ¢’s converging to zero and analyze the limit point of the associated sequence of
invariant distributions, which they call a long-run equilibrium. They and many others have

provided characterizations of this unique long-run equilibrium for vatious classes of games.

Since the impact of adding mutations is so dramatic and the cause of mutations is

That is, a Nash equilibrium where each Player's strategy is the unique best reply to his opponents.
! See also Blume [1993], Canning [1992], Ellison (1993}, Kandori and Rob [1992], Lagunoff and Mat-

sui {1994), Noldeke and Samuelson (1993], Robson [1994), Robson and Vega-Redondo [1994], Samuelson
(forthcoming), and Young [1993].



unmodeled, one would naturally like to know how robust the analysis is to changes in the
mutation process. This paper explores the implications of allowing mutation rates to vary
with the state of the system. We show that the KMR/Young results are dishearteningly
nonrobust in the following sense. Suppose that z is a limit point (more precisely, an invariant
distribution) of the evolutionary process without mutations. Given any {continuous) model
of the way mutations affect evolution, it is always possible to introduce small mutations
in such a way that the unique invariant distribution with mutations converges to z as the
mutation rates go to zero. Thus the uniqueness created by adding mutations completely
vanishes if we relax the state independence assumption of KMR and Young. (We will make

this more precise in the following section.)

We make three assumptions on the way mutation affects evolution. First, we assume
that mutation rates affect the process continuously. That is, as mutation rates go to zero,
the transition probabilities converge “smoothly” to those of the process without mutations.
Second, when mutation rates are strictly positive, there is a unique invariant distribution
which puts positive probability on every state. This is implied by but weaker than the as-
sumption that the transition matrix with positive mutation rates is strictly positive. Finally,

mutation rates are allowed to vary across states.

The first two assumptions are standard.’ There are several reasons why mutation rates
may vary with the state of the system. For example, suppose mutation is intended to
represent experimentation. It is natural to allow experimentation rates to vary with the
payoffs being earned by and the experience of the players, both of which vary across states.
(This point is illustrated more concretely by an example in the next section.) Alternatively,
suppose mutations are viewed as mistakes — either computational errors or “trembles”. In
the case of computational error it is reasonable to suppose that players are more likely to
make computational errors in more complex situations so that mistake rates would vary
with the state. Similarly, traditional formulations of trembles (Selten [1975] and Myerson
[1978]) allow tremble rates to vary across information sets, naturally leading the “aggregate”
tremble rate to vary with the state.

There are at least two ways to interpret our results. A pessimistic view is that it is
fruitless to use small mutation rates to refine the set of long-run predictions. A more positive
assessment is that the results indicate the need for further study of the mutation process

and where these mutation rates come from. As we show in the conclusion, simple and

3 Uniqueness of the invariant distribution at positive mutation rates is the key property exploited in
this literature. Since this property arises naturally from weak and plausible assumptions on the effect of

mutations, it seems quite reasonable to maintain it. Continuity also seems reasonable and is convenient,
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plausible restrictions on the mutation rates can, in some examples, restore the uniqueness
result of KMR and Young. We emphasize, however, that in general uniqueness can only
be maintained by imposing very strong restrictions, such as state independence, on the

mutation process.

In Section 2.1, we give some motivating examples in the KMR framework which demon-
strate our results. In Section 2.2, we present the general model. Qur main result, Theorem 1,
is stated and proved in Section 3. In Section 4, we discuss some possible further restrictions

on the mutation process.
2 The Model and Motivating Examples

2.1 Examples

The insight of KMR and Young, following on Foster and Young [1990), is that adding
small probabilities of mutation to an otherwise standard evolutionary process can yield a

unique long-run prediction. To see this more concretely, consider the following game:

1 2
1{88 0,4
2 14,0 6,6

Suppose there are three agents playing this game. In each period, each player must choose
a single action which he uses when playing against each of the other two players. Suppose
the action chosen is a best reply given the actions chosen by the other two players in the

previous period.

It is not hard to see that the number of agents playing each strategy in a given period
completely determines the future evolution of the strategies chosen. Hence we can represent
this evolutionary dynamic as a Markov process with a state space given by the number of
agents playing, say, strategy 2. Since there are three agents, we let § = {0,1,2,3}. Let
7;;(s) denote the payoff in state s to a player currently playing i who switches to strategy
j, given other agents do not change their strategies. Thus, m;{(0) = 8 + 8 = 16 since all
players expect to be matched with a player choosing 1. Similarly, 712(0) =4 + 4 = 8, so, if
we are in state 0, no agent would change strategies and we would remain in state 0 forever
after (giving a transition probability from state 0 to state 0 of 1). Similar calculations apply

to the other states. In state 1, all agents change strategies, moving us to state 2.* In state

Y Instatel, #;3(1) =840 = 6§ and r12(1) = 4 + 6 = 10. Hence both agents playing action 1 will
switch to action 2. Also, x3;(1) = 8+ 8 = 16 and »73(1) = 4 + 4 = 8. Hence the agent playing action 2 also

changes action.



2, only the single agent playing action 1 switches, moving the system to state 3.® In state

3, every agent is choosing a best reply so the system remains there,

This gives the following transition matrix P describing how the system moves between

states:
Poo Por Doz Po3 1 00 0
p=|P0o Pu Pz P _ 00610
P Pn Pz P 0 0 0 1
Pao P31 Paz Pa 0 0 0 1

Here, p;; is the probability of going from state i in one period to state j in the next.

An invariant distribution is a probability distribution on 3, say g, which satisfies g = ¢P.
Such a distribution may be viewed as a “steady state” for the population. (See further
comments on this interpretation below.} For this transition matrix, the set of invariant

distributions is
{glg="0ey +(1—-0)es},

where ¢; is a vector in R* with 1 in the i*? position and 0’s elsewhere. Note that the invariant

distributions correspond to probability distributions over the two strict Nash equilibria.

Now let us introduce mutations. KMR, Young, and others assume that the probability
of a mutation is some fixed £, independent of time, the current state, or the agent. If
an agent does not mutate, he changes strategy or not according to the dynamic described
above. If he does mutate, he changes strategies with some fixed probability. For simplicity,
we assume in this example that a mutating agent chooses the opposite strategy from what
the dynamic without mutations would specify for him. Mutations are independent events
across agents and over time. Under these assumptions, the transition matrix with mutations

is:

(1-¢)? Je(1-¢)? 3e¥(1-¢) g3

e(1—-¢) 342(1-¢€)F 222(1-e)+(1-¢)® e(1-¢)?
gl Je(1-¢) 3e(l —¢)? (L-¢)p
g 3e?(1 - ¢) 3e(1—¢)? (1-¢)p

For example, the mutationless process has py2 = 1, so that if one player is choosing 2, we
move to a state where two players choose this action. With mutations, this transition occurs
if either (a) no mutation takes place (probability (1 —£)3) or (b) the player who is supposed
to switch to action 1 mutates and plays action 2 instead and one of the two who is supposed

to choose action 2 mutates to action 1 (probability 2¢2(1 — ¢)).

It is not difficult to verify that the unique invariant distribution is ¢* = (g3,47, 93, 43)

5 In this case, 71{2) = 04+ 0 = 0 and x;2{2) = 6 + 6 = 12, so the agent playing 1 switches while

*31(2) =8+ 0 =8 and 733(2) =4+ 6 = 10 30 the other agents do not.
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given by

L et
G = Zl

. 9% — 15¢* 4 6¢°
= 7

. 92 — 362% 4 69 ~ 667 + 248
4 = Z

1

. 3¢ —18¢? + 52¢3 — 83t + T0e® — 24¢"

I = Zl

where Z, is a normalization factor which makes the probabilities sum to 1. Specifically,
Zy = 3¢ - 9% 4 266% — 28¢* + 8¢°.

Therefore,
].i[.r(l] q" =1(0,0,0,1).

Suppose we relax these assumptions by letting the mutation rate vary with the state.
If mutation is intended to model experimentation by the players, then it is difficult to see
why the mutation rate in state 0 would be as large as the mutation rate in other states.
In state 0, all agents play strategy 1 and so all always earn the highest possible payoff in
the game. So why would players experiment in this state? By contrast, in state 3, players
may experiment in hopes of reaching the other (Pareto preferred)} Nash equilibrium. While
we do not wish to claim that this is a necessary property of mutation rates, a reasonable
model of mutations would surely allow this possibility, and hence it is important to explore
its implications.

In line with this intuition, suppose that the mutation rate in states 1, 2, and 3 is ¢,
while the mutation rate in state 0 is £, The interesting case is where £ < ¢, so that the
mutation rate at state 0 is much smaller than the mutation rate at other states, although

we do not impose this yet.

Except for this change, we maintain all the assumptions from above. Specifically, we
suppose that the probability that any given player mutates in a given period is dependent on
the state of the system in that period, but is independent across agents and over time. If an
agent does not mutate, his action choice is determined in the way the original evolutionary
process specified; otherwise, he chooses the opposite of the action called for by the original

process,

In this case, the transition matrix for the process with mutations is

(1-6®  3(1-¢p 3¢(1-6) &

ef(l-€) +2(1-¢)? 2%1-e)+(1-¢)p® e(l-¢)?
3 Je?(1-¢) 3¢(1 - ¢)? (1-¢)?
3 Je1-¢) 3e(1-¢)? (1-¢)?
















































