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Abstract—An evolutionary algorithm based framework, a
combination of modified breeder genetic algorithms incorporating
characteristics of classic genetic algorithms, is utilized to design an
offline/online path planner for unmanned aerial vehicles (UAVs)
autonomous navigation. The path planner calculates a curved
path line with desired characteristics in a three–dimensional (3-D)
rough terrain environment, represented using B-Spline curves,
with the coordinates of its control points being the evolutionary
algorithm artificial chromosome genes.

Given a 3-D rough environment and assuming flight envelope
restrictions, two problems are solved: i) UAV navigation using an
offline planner in a known environment, and, ii) UAV navigation
using an online planner in a completely unknown environment.
The offline planner produces a single B-Spline curve that connects
the starting and target points with a predefined initial direction.
The online planner, based on the offline one, is given on-board
radar readings which gradually produces a smooth 3-D trajec-
tory aiming at reaching a predetermined target in an unknown
environment; the produced trajectory consists of smaller B-Spline
curves smoothly connected with each other. Both planners have
been tested under different scenarios, and they have been proven
effective in guiding an UAV to its final destination, providing
near-optimal curved paths quickly and efficiently.

Index Terms—3-D path planning, B-splines, evolutionary algo-
rithms, navigation, UAV.

I. INTRODUCTION

T
HIS work has been motivated by the challenge to develop

and implement a single path planner for autonomous un-

manned aerial vehicle (UAV) navigation and collision avoid-

ance in known, completely unknown, and/or partially known

3-D rough terrain environments.

The problem being solved considers UAV flight envelope

restrictions in terms of enforced maximum flight height and

minimum turning radius, obstacles being the 3-D rough ter-

rain (mountains, valleys, etc.), as well as moving ones. The

UAV is assumed to be equipped with a set of on-board sen-

sors, including radar, global positioning system (GPS), differ-

ential GPS (DGPS), inertial navigation system (INS), and gyro-

scopes, through which it can sense its surroundings and position.
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The final destination (end-point coordinates) is known and the

UAV must follow an as smooth as possible trajectory (imitating

real flight restrictions), planned and re-planned in real-time,

avoiding static (mountains), and moving obstacles given its ini-

tial position and initial flight direction. The vehicle is assumed

to be a point (its actual size is taken into account by equivalent

obstacle—ground growing). Therefore, two problems are being

solved.

1) UAV Navigation Using an Offline Planner Considering

a Known 3-D Environment: The offline planner generates col-

lision free paths in environments with known characteristics

and flight restrictions (acquired via 3-D GIS based generated

maps or otherwise). The derived path line is a single contin-

uous 3-D B-Spline curve, while the solid boundaries are inter-

preted as 3-D rough surfaces. The air vehicle course is actually

a curve with curvature continuity that cannot be modeled using

straight-line segments (which is the usual practice for ground

robots). Therefore, B-Spline curves based path representation is

utilized having the advantage of being described using a small

amount of data (the coordinates of their control points), although

possibly producing very complicated curves.

2) UAV Navigation Using an Online Planner Considering

a Completely Unknown 3-D Environment: The online planner

uses acquired information from the UAV on-board sensors (that

scan the area within a certain range from the UAV). The online

controller rapidly generates a near optimum path that will guide

the vehicle safely to an intermediate position within the sensors’

range. The process is repeated until the final position is reached.

The path line from the starting point to the final goal is a smooth,

continuous 3-D line that consists of successive B-Spline curves,

smoothly connected to each other.

The UAV path-planning problem is considered within an evo-

lutionary algorithm (EA) context, in which the path line is repre-

sented using B-Spline curves, with the coordinates of its control

points being the EAs artificial chromosome genes. The reasons

behind choosing EAs as an optimization tool for the path-plan-

ning problem are their high robustness compared to other ex-

isting directed search methods, their ease of implementation in

problems with a relatively high number of constraints, and their

high adaptability to the special characteristics of the problem

under consideration.

The paper contributions include the development of an EA

based offline/online path planner, suitable for UAV navigation

in both known and completely unknown environments and

the construction of smooth and easily followed path lines.

The path line in the online procedure is gradually constructed,

using on board sensors information. Additionally, a potential

field is utilized that drives the path line to bypass obstacles
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lying between the UAV and its final destination. Further, an

additional EA-based procedure is introduced that forces the

UAV to bypass concave obstacles and avoid local optima.

A. Related Work

There already exist methods that produce either 3-D, or 2-D

trajectories for guiding mobile robots in known, unknown, or

partially known environments. In some cases, neural network

based controllers were designed and trained to guide a robot

when unknown static obstacles were sensed [1]. In other cases,

fuzzy based controllers were used to solve the 2-D mobile robot

online navigation problem, with its parameters being optimized

in real time, through an evolutionary procedure, such as in [2].

During the past few years, it has been shown by many re-

searchers that EAs are a viable candidate to solve such prob-

lems, including the path planning problem, effectively and pro-

vide feasible solutions within a short time without demanding

excessive computer power. Traditionally, EAs have been used

for the solution of the path-finding problem in ground based or

sea surface navigation [3]. Commonly, the generated trajectory

had the form of a crooked line that guided a mobile robot or a

vehicle along a 2-D path on the earth’s surface or the sea sur-

face. The genes used, represented the path point coordinates the

vehicle changes its direction to. Other approaches took into ac-

count the time dimension by using genes that also described the

vehicle steady speed as it traversed a part of its path. When the

vehicle’s operational environment was partially known or dy-

namic, a feasible and safe trajectory was planned offline by the

EA, and the algorithm was used online whenever unexpected

obstacles were sensed [4], [5].

EAs (with binary coding) have also been used for solving the

path-finding problem in a 3-D environment for underwater ve-

hicles, assuming that the path is a sequence of cells in a 3-D grid

[6], [7]. In addition, B-Spline curves have been used for trajec-

tory representation in 2-D environments (simulated annealing

based path line optimization, combined with fuzzy logic con-

troller for path tracking) [8], and in 3-D environments (evolu-

tionary algorithm based path line optimization for a UAV over

rough terrain) [9]. A 3-D heuristics-based planner has been pre-

sented in [10] for the local trajectory planning in a partially

known environment with moving obstacles but with predefined

global path (in the form of knot points with known coordinates).

Other related work for the 2-D case, may be found in [13]–[15].

The current work implements the EAs in the demanding en-

vironment of UAV flight over a rough, completely unknown

ground surface, without considering a predefined path. Contrary

to the ground based, sea surface, or underwater vehicles, UAV

flight wrong decisions and strategies may easily result in de-

stroying the UAV. For this reason, the feasibility of the path line

is the main concern, while special procedures are used to over-

come navigation problems with concave obstacles. Neverthe-

less, the high velocities and the flight dynamics impose specific

constraints for the smoothness and the curvature of the calcu-

lated path line, leading to the adoption of the B-Spline formu-

lation. It is emphasized that the use of straight line segments,

or a sequence of cells for the construction of the path line (as

it is the practice for surface and underwater 3-D environments)

is not applicable in this case (UAV flight), due to flight enve-

lope restrictions and stability problems. For the same reasons,

gradually constructed B-Spline curves are adopted in the online

planner. The radar range provides the time needed for calcu-

lating smooth near optimal curves connected to each other, that

are naturally fitted to the UAV flight limitations.

The rest of the paper is organized as follows: Section II

summarizes EA fundamentals along with the basic features

of B-Spline curves. Specific EA features as applied to the

problem under consideration are presented. The offline planner

is presented in Section III, followed by the presentation of

the online planner in Section IV. Experimental results are

shown in Section V, followed by discussion and conclusions in

Section VI. The algorithms developed for the online planner

are included in Appendix A and the basic equations for the

construction of 3-D B-Spline curves in Appendix B. Finally, the

EA parameters selection procedure is presented in Appendix C.

II. FUNDAMENTALS OF EVOLUTIONARY ALGORITHMS

EAs are a class of search methods with remarkable balance

between exploitation of the best solutions and exploration of

the search space. They combine elements of directed and sto-

chastic search and, therefore, are more robust than existing di-

rected search methods [3]. Additionally, they may be easily tai-

lored to the specific application of interest, taking into account

the special characteristics of the problem under consideration.

The natural selection process is simulated in EAs, using a

number (population) of individuals (solutions to the problem)

to evolve through certain procedures. Each individual is rep-

resented through a string of numbers (bit strings, integers, or

floating point numbers) in a similar way with chromosomes

in nature. Each individual’s quality is represented by a fitness

function tailored to the problem to be optimized.

Classical EAs use binary coding for the representation of the

genotype [3]. However, floating point coding moves the EAs

closer to the problem space, allowing the operators to be more

problem specific. For this reason floating point coding is used

in the current work, which provides a better physical represen-

tation of the path line control points and easier control of the

space constraints. Additionally, two points that are close to the

physical space are also close in the representation space (the

genotype encoding), and vice versa. With this type of encoding

directed search techniques gain physical representation and they

are easily applicable.

The EA starts by generating, randomly, the initial chro-

mosome population with their genes taking values inside

the desired constrained space. After the evaluation of each

individual’s fitness function, operators are applied to the pop-

ulation, simulating the according natural processes. Applied

operators include various forms of selection, recombination,

and mutation, which are used in order to provide the next

generation chromosomes. The process of a new generation

evaluation and creation is successively repeated, providing

individuals with high values of fitness function. Each chro-

mosome consists of the same (fixed) number of genes (for the

problem at hand, they are the coordinates of B-Spline control

points).
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The first operator applied to the selected chromosomes is

the classical one-point crossover scheme [3]. Two randomly se-

lected chromosomes are divided in the same (random) position,

while the first part of the first one is connected to the second

part of the second one, and vice-versa. The crossover operator

is used in order to provide information exchange between dif-

ferent potential solutions to the problem.

The second operator applied to the selected chromosomes is

the classic uniform mutation scheme. This asexual operator al-

ters a randomly selected gene of a chromosome. The new gene

takes its random value from the constrained space, determined

in the beginning of the process (in the offline planner being the

borders of the physical 3-D search space). The mutation oper-

ator is used in order to introduce some extra variability into the

population.

In order to provide fine local tuning, nonuniform mutation

and heuristic crossover are used, along with the classic mutation

and crossover schemes [3]. The first operator chooses randomly,

with a predefined probability, the gene of a chromosome to be

mutated. Contrary to the uniform mutation described above, the

search space for the new gene is not fixed, but it shrinks close to

the previous value of the corresponding gene as the algorithm

converges. The search is uniform initially, but very local at later

stages.

The second operator generates a single offspring from two

parents and . If is not worse than , then is given as

(1)

where is a random number between 0 and 1. In this way

a search direction is adopted, providing fine local tuning and

search in the most promising direction (keep in mind that the

chromosome genes are physical coordinates and the direction

of search actually has a physical meaning). The two last oper-

ators (especially the heuristic crossover operator), proved to be

critical in obtaining a high convergence rate and a feasible so-

lution in a few generations (see Appendix C).

The initial population is created randomly in the constrained

space of each gene. The lower and higher constraints of each

gene may be chosen in a way that specific undesirable solutions

may be avoided, such as path lines with a higher than desired

altitude. Although the shortening of the search space reduces the

computation time, it may also lead to sub-optimal paths, due to

the lower variability between the potential solutions.

The EA discussed in this work is a modified breeder ge-

netic algorithm (BGA) incorporating some characteristics of the

classic genetic algorithms (GAs). Breeder genetic algorithms

use floating-point representation of variables and both recom-

bination and mutation operators. The truncation model is used

as the selection scheme, with the best % of initial individ-

uals to give origin to the individuals of the next generation, with

equal probability.

The selection scheme used is hybrid, a combination of the

truncation model of BGAs and the roulette procedure of tra-

ditional GAs. Starting with the truncation model, only % el-

ements, showing the best fitness, are chosen in order to give

origin to the individuals of the next generation, with parameter

Fig. 1. Artificial terrain produced using (2).

being the threshold of the procedure. Once chosen, these indi-

viduals are used for the generation of a new population through

the classic roulette wheel selection [3]. An elitist model assures

that the best individual of each generation always survives the

selection procedure and reproduces its structure in the next gen-

eration.

This scheme provides high flexibility to the evolutionary al-

gorithm. When threshold takes values close to 100% the scheme

actually serves as a classic roulette scheme. For values of

close to 10%, the scheme serves close to a classic truncation

model. The increased selective pressure that is produced with

lower values of focuses the search on the top individuals, but

the genetic diversity is lost and the procedure is trapped in local

optima. Such observations and several trial-and-error runs led to

the selection of values of between 40% and 70% in this work.

A. Solid Boundary Representation

The solid terrain under the UAV is most generally represented

by a meshed 3-D surface, produced using mathematical func-

tions of the form

(2)

where , , , , , , are constants experimentally defined,

in order to produce a surface simulating a rough terrain with

mountains and valleys (as shown in Fig. 1).

In order to generate concave terrains (as shown in Fig. 2), the

following mathematical function has been used:

if and

if or

if or

(3)
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Fig. 2. Artificial terrain produced using (3).

where , , , , , , , , , are again proper constants,

experimentally defined.

A graphical interface has been developed for the visualiza-

tion of the terrain surface, along with the path line curve as in

[9]. The corresponding interface deals with different terrains,

produced either artificially or based on real geographical data,

and provides an easy verification of the feasibility and quality

of each solution. Horizontal sections of the surface in different

heights may be plotted, visualizing the boundaries in the UAV

flight height (as presented in Fig. 6). The path-planning algo-

rithm considers the scanned surface as a group of quadratic

mesh nodes with known coordinates. The same solid boundary

representation is used for both the online and the offline method.

B. Path Line B-Spline Modeling

Straight-line segments cannot represent a flying object path

line, as usually the case with mobile robots, sea, and undersea

vessels. B-Splines are adopted to define the UAV desired path,

providing at least first order derivative continuity. B-Spline

curves are well fitted in the evolutionary procedure, as they

need a few variables (coordinates of the control points) in order

to define complicated curved paths (see Appendix B). Each

control point has a very local effect on the curve’s shape, and

small perturbations in its position produce changes in the curve

only in the neighborhood of the changing control point [11],

[12].

A valuable characteristic of the adopted B-Spline curves is

that the curve is tangential to the control polygon at the starting

and ending points. This characteristic can be used in order to

define the starting direction of the curve, by inserting an extra

fixed point after the starting one. These two points can define

the direction of the curve at the corresponding region. This is

essential for the path planning of flying vessels, as their flight

angles are continuously defined. Consequently the direction of

the designed path line in the starting position must coincide with

the current direction of flight in this position, in order to ensure

curvature continuity of the whole path line. The B-Spline curve

is discretized, using a constant step, and it is used in this form

for the calculation of its fitness.

III. OFFLINE PATH PLANNING

The offline path planner generates a B-Spline curve over

known, simulated or real, environments. The starting and

ending points of the curve are fixed. A third point close to

the starting one is also fixed, determining the initial flight

direction. Between the fixed control points, free-to-move

control points determine the shape of the curve, taking values in

the constrained space. The number of the free-to-move control

points is fixed (user-defined). Their physical coordinates are

the genes of the EA artificial chromosome, resulting in a fixed

length chromosome.

A. Fitness Function

The optimization problem to be solved minimizes a set of

four terms, connected to various constraints. The constraints are

associated with the feasibility and the length of the path line, a

safety distance from the obstacles and the UAVs flight envelope

restrictions. The fitness function is the inverse of the weighted

sum of the four different terms

(4)

where are weights and are the above mentioned terms de-

fined as follows:

Term penalizes the nonfeasible curves that pass through

the solid boundary. The penalty value is proportional to the

number of discretized curve points (not the B-Spline control

points) located inside the solid boundary. In this way nonfea-

sible curves with fewer points inside the solid boundary show

better fitness than curves with more points inside the solid

boundary. Additionally, the fitter of the nonfeasible curves

may survive the selection procedure and produce acceptable

offsprings through the heuristic crossover operation.

Term is the length of the curve (nondimensional with the

distance between the starting and destination points) used to

provide shorter paths.

Term is designed to provide flight paths with a safety dis-

tance from solid boundaries, given as

(5)

where is the number of discrete curve points,

is the number of discrete mesh points of the solid boundary,

is the distance between the corresponding nodes and curve

points, while is the minimum safety distance from the

solid boundary.

Term is designed to provide curves with a prescribed

minimum curvature radius. This characteristic is essential for

a flying vessel, as its flight envelope determines the minimum

radius of curvature. The angle (Fig. 3) that is determined by

two successive discrete segments of the curve (defined by the

dots in Fig. 3) is calculated and if less than a prescribed value,

a penalty is added to the fourth term of the fitness function.

Weights are experimentally determined, using as criterion

the almost uniform effect of the last three terms in the fitness

value. Term has a dominant role in (4) providing feasible

curves in few generations, since path feasibility is the main con-

cern.
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Fig. 3. Schematic representation of the curvature angle used for the calculation
of term f .

The maximization of Eq. (4), through the EA procedure, re-

sults in a set of B-Spline control points, which actually represent

the desired path.

B. Offline Procedure

Initially, the starting and ending points are externally de-

termined, along with the direction of flight. The limits of the

physical space, where the vehicle is allowed to fly ( , , ,

upper and lower coordinates), are also determined, along with

the ground surface (in (2) or (3), or real GIS data). The given

flight direction is used to determine the third fixed point close

to the starting one. Its position is along the flight direction and

at a pre-fixed distance from the starting point.

The EA randomly produces a number of chromosomes,

equal to the (fixed) population number. The genes of each

chromosome are the physical coordinates of the free-to-move

B-Spline control points. These coordinates take (random)

values within the limits of the constrained physical 3-D

space. Each B-Spline curve is constructed by the three fixed

control points and the free-to-move ones (provided by the

corresponding chromosome).

Each B-Spline is evaluated, using the aforementioned criteria,

and its fitness function is calculated. The EA proceeds, as de-

scribed in Section II.

IV. ONLINE PATH PLANNING

The EA used by the online path planner is based on the one

used by the offline path planner. The main modifications con-

cern the representation of the individuals, the initial population,

the optimization criteria, and the gradual segment generation of

the complete path line. The terrain is considered unknown, and

only an area near the UAV is supposed to be scanned by the on

board sensors.

A. Representation of the Individual

As the terrain is completely unknown and the radar gradually

scans the area, it is impossible to generate a feasible path that

connects the starting point with the ending one. Instead, at cer-

tain moments, the radar scans a region around the UAV, and a

path line is generated that connects a temporary starting point

with a temporary ending point. Each temporary ending point is

also the next curve starting point. Therefore, what is finally gen-

erated is a group of smooth curve segments, connected to each

other and eventually, connecting the starting point with the final

destination.

In the online problem, only four control points define each

B-Spline curve, the first two of which are fixed, determining the

direction of the current UAV path. The remaining two control

points are allowed to take any position within the scanned by the

radar known space, taking into consideration given restrictions.

Only the Cartesian coordinates of the nonfixed control points

form each individual’s genes.

When the next path segment is to be generated, only the first

control point of the B-Spline curve is known, as it is the same

with the last control point of the previous B-Spline segment. The

second control point is not random, as it is used to make sure

that at least first derivative continuity of two connected curves is

provided at the point that the two curves are connected. Hence,

the second control point of the next curve should lie on the line

defined by the last two control points of the previous curve. It

is also desirable that the second control point is near the first

one, so that the UAV may easily avoid any obstacle suddenly

sensed in front of it. This may happen because the radar scans

the environment not continuously, but at intervals.

B. Initial Population

A random number generator is used to produce floating-point

values within certain boundaries. Lower and upper boundaries

form the ground area the radar scans within which the UAV is

allowed to move. The control points that are randomly generated

are acceptable only if they are within the radar’s range distance

from the UAV. Otherwise, they are ignored and new genes are

being generated to replace them. Thus, all individuals represent

curves whose control points are within the UAVs radar range.

The initial population size is now smaller compared to the of-

fline path planner one, since the online problem calls for shorter

computation times.

C. Online Mechanism

As previously mentioned, the path-planning algorithm con-

siders the scanned surface as a group of quadratic mesh nodes.

All ground nodes are initially considered unknown. An algo-

rithm is used to distinguish between nodes visible by the radar

and nodes not visible as follows: A node is not visible by the

UAV if it is not within the radar’s range or if it is within the

radar’s range but is hidden by a ground section that lies be-

tween it and the UAV. The corresponding algorithm, simulates

the radar and checks whether the ground nodes within the radar

range are “visible” or not and consequently “known” or not.

The radar’s data are used to produce the first path line seg-

ment. As the UAV is moving along this segment and until it has

traveled about 2/3 of its length, the radar scans the surrounding

area, returning a new set of visible nodes. The online planner,

then, produces a new segment, whose first point is the last point

of the previous one and whose last point lies somewhere in the
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Fig. 4. Schematic representation of the online procedure. The curved solid
line is the generated path line, formed by 4 successive B-Spline segments (1–3,
3–5, 5–7, 7–8). Point 1 is the starting position, while point 8 is the ending
one. The dashed circles define the radar-covered area in the position where the
EA procedure starts to calculate the next B-Spline segment. The corresponding
circle centers are marked with white dots (points 1, 2, 4, 6). The ending point
of each generated B-Spline segment (points 3, 5, 7) lie close to the maximum
radius of each circle (except the final one—point 8).

newly scanned area, its position being determined by the EA on-

line procedure. The process is repeated until the ending point of

the current path line segment lies close to the final destination

(Fig. 4). The position at which the algorithm starts to generate

the next path line segment (here taken as the 2/3 of the segment

length) depends on the radar range, the UAVs velocity and the

algorithm computational demands.

D. Fitness Function

In this case, the fitness function to be maximized through the

EA is the inverse of the weighted sum of eight different terms

(6)

where are the weights and are the corresponding terms

described below.

Term is the same as term used by the offline path

planner.

The value of term depends on the value of a potential be-

tween the starting point and the final target. The potential field

between the two points is the main driving force for the gradual

development of the path line in the online procedure. The po-

tential is similar to the one between a source and a sink, given

as

(7)

where is the distance between the last point of the current

curve and the starting point, is the distance between the last

point of the current curve and the final destination, is the

distance between the starting and final destination and is a

constant.

This potential allows for selecting curved paths that bypass

obstacles lying between the starting and ending point of each

Fig. 5. Potential field of (7). The dashed lines are the equal-potential lines,
while the solid lines are the “streamlines” normal to the previous ones. The
points in the intersection of the streamlines are the starting and the final ones.
All the points that lie on an equal-potential curve have the same probability for
being chosen as a final point for each B-Spline segment (according to term f

of the online procedure).

B-Spline curve. A visualization of the corresponding potential

field is demonstrated in Fig. 5.

Term is the same as term used by the offline path planner

and is applied to each segment of the total path line. Term is

the same as term used by the offline path planner. Term is

a function of the distance between the current path’s last point

and the solid boundary, similar to term , and it penalizes a

curve that ends too close to it. The purpose of this term is to help

the UAV avoid moving too close to the ground surface. Hence,

while the UAV traverses its next partial trajectory, it does not

change its direction abruptly in order to avoid a collision with

the ground.

Term is designed to prevent the UAV from being trapped

in local optima and to force it move toward unexplored areas.

It may be possible that some segments of the path line are con-

centrated in a small area, away from the final target. In order to

help the UAV leave this area, term repels it from the points of

the path line it has already traversed. Furthermore, if the UAV

is wandering around to find a path that will guide it to its target,

the UAV will be forced to move toward areas it has not visited

before. This term has the form

(8)

where is the number of the discrete curve points pro-

duced so far and is their distance from the last point of the

current curve segment.

Term is the same as term used by the offline path

planner. If the calculated angle is less than a prescribed value

(depending on flight restrictions of the considered UAV), a

penalty is added to the seventh term of the fitness function. The

flight envelope of the UAV determines the minimum acceptable

angle.

Term represents another potential field, which is developed

in a small area around the final target. When the UAV is away

from the final target, the term is given a constant value. When

the UAV is very close to the target, the term’s value decreases

proportionally to the square of the distance between the current

curve’s last point and the target. Thus, when the UAV is near its
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target, the value of this term is quite small and prevents the UAV

from moving away.

Weights are experimentally determined, using as criterion

the almost uniform effect of all the terms, except the first one.

Term has a dominant role, in order to provide feasible

curve segments in a few generations, since path feasibility is

the main concern.

E. Local Optima Avoidance Mode of the Online Path Planner

Although term has been introduced in the fitness function

of the online procedure, the ground formation may cause the

UAV to be trapped in a local optimum area (consider a moun-

tain with a horseshoe shape as in Fig. 2 and that the UAV enters

inside its concave part, while it is not possible to overpass the

mountain). In such cases, it is difficult for the UAV to escape

from this area as it would have to move away from the obstacle

and thus away from its final target. To prevent this from hap-

pening, a second fitness function and an algorithm is derived to

predict when the UAV is about to be trapped in a local optimum

and use a second mode of the online planner to overcome it.

As already stated, every time a new segment is generated, and

the radar has scanned its environment, it checks whether there

is an “obstacle” very close (within a predefined safety distance)

to the UAV and toward its motion direction. An “obstacle” is

a group of ground nodes higher than the flight altitude that the

UAV cannot overpass, due to the constrained space in which it

is allowed to move. As term has been added to the fitness

function, (6), which does not allow the UAV to come too close

to the ground. It is reasonable to believe that the UAV will come

too close to the ground only if it is trapped in a local optimum

area. In addition, it is being checked whether there is an obstacle

close to the UAV, and on its way to the final destination. If no

obstacle is found, the fitness function, given by (6), guides the

UAV.

The goal of the second mode of the algorithm is to force the

UAV to move along the border of the obstacle that has caused

the UAV to be trapped, until that obstacle lies no longer between

the UAV and its final destination. This is achieved by identifying

the obstacle that has caused the UAV to be trapped. An algo-

rithm, presented in Appendix A, generates a map of all groups of

nodes that form obstacles that are visible by the radar. Each such

group of nodes contains nodes that lie adjacent to each other.

After this procedure terminates, each group of nodes has been

given a unique number. All the nodes of a group have been given

the same number. As the coordinates of the node that lies on

the UAVs motion direction have been stored, it is known which

group of nodes (obstacle) has caused the UAV to be trapped in

the local optimum area (see Appendix A).

Next, the borders (the corresponding nodes) of the obstacle

are located and assigned a numerical value, so that the node

with the greater value is far from the UAVs current position.

The second fitness function forces the UAV to move along the

border and toward the border node with the larger value.

When the UAV reaches its new position, the whole process

goes over again (in the same mode) and the UAV keeps moving

across the obstacle’s borders, (momentarily) ignoring its final

destination. The algorithm returns to the first mode when the

obstacle is no longer between the UAV and the final destination.

F. Second Fitness Function of the Online Procedure

The second fitness function is used within the local optima

avoidance mode of the online procedure, when the UAV is

trapped in a local optimum.

It is the inverse of the weighted sum of three different terms

(9)

where are the weights and are the corresponding terms

described below. Term is the same as the term used by the

offline path planner. The value of term penalizes curves when

their last point is far from the border node whose identification

number was given the greater value. This term is used to enforce

the curve to circle the obstacle.

Term is the nondimensional length of the current curve,

used in order to provide short and smooth paths. Weights are

experimentally determined. Term has a dominant role, in

order to provide feasible curves in a few generations, since path

feasibility is the main concern.

The second fitness function works in a different way than

term of the first fitness function. Term repels the UAV

from the points of the path line it has already traversed, in order

to explore new areas, and avoid “going around” in the local op-

timum area. The second fitness function forces the path line to

move along the border of the obstacle that has caused the UAV

to be trapped, until that obstacle no longer lies between the UAV

and its final destination.

This second fitness function is used to generate a new path

line segment if the UAV has been trapped in a local optimum

area. After the calculation of the new path line segment, using

the second fitness function, the UAV moves along this segment,

until it reaches the 2/3 of segment’s length. If the obstacle is

no longer between the current UAV position and its final des-

tination, the algorithm returns to the first mode of the online

procedure, and the fitness function defined in (6) is used. If the

obstacle is still between the UAV and the final destination, the

next path line segment will be generated with the fitness func-

tion defined in (9) (the second one), within the second mode of

the online procedure.

V. EXPERIMENTAL RESULTS

A. Offline Experiments

The offline planner has been extensively tested, using a sim-

ulation environment. All experiments have been designed in

order to search for path lines between “mountains.” For this

reason, an upper ceiling for flight height has been enforced. This

ceiling is represented in the graphical environment by the hori-

zontal section of the terrain (Fig. 6).

The (experimentally optimized) settings of the evolutionary

algorithm for the offline planner are as follows: population size

100, threshold 0.5, heuristic crossover probability 0.75,

classic crossover probability 0.25, classic mutation proba-

bility 0.05, nonuniform mutation probability 0.13. The de-

tailed procedure of the parameter selection is presented in Ap-

pendix C.
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Fig. 6. First offline test case: Four free-to-move control points were used, with
a prefixed direction at the starting position. The starting position is marked with
a circle.

Fig. 7. Second offline test case.

The algorithm was defined to terminate after 50 generations,

although feasible solutions can be reached in less than 10 itera-

tions. With 50 generations, and a population size equal to 100,

5000 evaluations of the fitness function are performed before the

algorithm stops. The calculation corresponds to 15 s computa-

tion time per generation, in a 700 MHz PC, for a chromosome

length equal to 12 (4 free-to-move control points), and a terrain

described with 53 53 nodes.

In the offline test cases presented here, the free-to-move con-

trol points were taking values between 4–6, resulting in a total

number of B-Spline control points equal to 7–9 (along with the

fixed starting and target points, and the fixed second point, used

for the determination of the initial direction). Greater number of

control points resulted in higher computation time and slower

convergence rate, without any significant profit, concerning the

fitness of the curve.

The test cases shown in Figs. 10 and 11 were designed with

the ceiling set to a low altitude which increased the path plan-

ning difficulty. The minimum distance from the mountain-like

boundaries was empirically set equal to 1/30 of the -dimen-

sion of the terrain, in all the cases, except for case 3, which is

presented in Figs. 8 and 9. In test case 3, the minimum distance

Fig. 8. Third offline test case.

Fig. 9. Early feasible solution of the third offline test case.

was set equal to the 1/15 of the terrain’s -dimension. As it is

demonstrated in Fig. 8, a higher distance from the solid bound-

aries was achieved, compared to test case 2 (Fig. 7). For the test

case 5, shown in Fig. 11, a wider terrain was used. For the test

case 6, shown in Fig. 12, a horseshoe terrain was used [produced

with (3)], demonstrating the ability of the method to deal with

U-shaped obstacles.

Relatively high values of mutation probabilities were

adopted, in order to ensure the ability of the algorithm to over-

come local optima. As it was observed, initial feasible solutions

provided by the evolutionary algorithm, were progressively

replaced by fitter ones, with a completely different structure.

Figs. 8 and 9 demonstrate the above observation.

B. Online Experiments

The same environment was used for all the test cases consid-

ered, with different starting and destination points and different
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Fig. 10. Fourth offline test case, with 4 free-to-move control points, and a very
low upper limit.

Fig. 11. Wider terrain was used for the fifth offline test case, along with 6
free-to-move control points and a very low upper limit.

initial flight directions. All the test cases presented here were

designed with a maximum flight altitude, as in the offline pro-

cedure (different for each case).

The population size was set equal to 50, while the algorithm

was defined to terminate after 25 generations, although feasible

solutions can be reached in less than ten generations for each

curve. The lower values for the population size (50) and for the

maximum number of generations (25), compared to the offline

procedure (100 and 50 respectively), were adopted in order to

minimize the computational time, which is essential for online

applications. The shorter length of the chromosomes (only six

genes—two control points) and the narrow search space (de-

fined by the radar range), compared to the offline procedure,

made possible the aforementioned reduction. For the calculation

of each segment of the path line (which needs a complete EA

Fig. 12. Different terrain was used for the sixth offline test case, demonstrating
the ability of the method in dealing with difficult obstacle shapes.

Fig. 13. Preliminary test cases for the second mode of the online procedure.
The figure demonstrates the ability of the second mode of the online procedure
in driving the UAV to by-pass an obstacle. The starting positions are on the left
side of each obstacle.

Fig. 14. First test case for the online path planner: Starting position is near the
left corner.

computation), less than five seconds per generation are needed,

in a 700 MHz PC.

In order to check the validity of the second mode of the on-

line procedure, specialized test cases were used. In these test

cases the starting and ending points of the path line were posi-

tioned in the opposite side of a “mountain,” while an upper flight
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Fig. 15. Second test case for the online path planner: Starting position is near
the left side.

Fig. 16. Third test case for the online path planner: Starting position is near
the upper corner.

ceiling was enforced. The results for two of the aforementioned

test cases are shown in Fig. 13. As demonstrated, the procedure

produces a smooth path (consisted of 2–4 successive B-Spline

curve segments), bypassing the solid obstacle and reaching ef-

fectively the final target. It is obvious that the UAVs radar cannot

“see” the final target from the starting position, and the knowl-

edge of the obstacle’s borders is gained gradually.

For the selection and optimization of the various terms (con-

stants and weights used in the first fitness function of the on-

line procedure), two initial test cases were adopted with their

results shown in Figs. 14 and 15. In test cases 3–5 (Figs. 16–18),

only the first mode of the online procedure was used. The path

lines consist of more than 6 B-Spline curve segments, which

are smoothly connected to each other. In the last test case con-

sidered (Fig. 19), the algorithm passed to the second mode, in

order to avoid an obstacle (at the second abrupt turn). As it can

be observed, the UAV surrounds the obstacle and then the first

mode of the algorithm takes over, in order to guide it to the

final destination. The abrupt turns of the path line are due to

the fact that the last point of the corresponding B-Spline curve

segments is very close to the terrain border (the first) and the

obstacle (the second), while a solution to this malfunction is

under consideration.

Fig. 17. Fourth test case for the online path planner: Starting position is near
the left corner.

Fig. 18. Fifth test case for the online path planner: Starting position is near the
left corner.

VI. DISCUSSION

An evolutionary algorithm-based offline/online path planner

for unmanned aerial vehicles (UAVs) has been presented to cal-

culate a curved path line with desired characteristics in a 3-D

rough terrain environment.

The trajectory of a UAV cannot be, adequately, represented

using line segments. Additionally, a flying vessel cannot follow

a path line formed with straight line segments, without giving
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Fig. 19. Sixth test case for the online path planner: Starting position is near
the left corner.

rise to control and stability problems. The proposed method uses

parametric curves to produce a continuous path line, which is

described by a small set of parameters—the coordinates of the

control points. The construction of the B-Splines based on con-

trol points, proved suitable for coupling with an EA. The direc-

tion of the curve can easily be prescribed at its starting position,

by inserting a second fixed point. The direction described by

these points is the initial direction of each curve and must coin-

cide with the current flight direction.

The offline planner takes into consideration the vehicle flight

capabilities in the form of a prescribed minimum curvature

angle and a maximum flight height. The resulting path is

smooth and assumed to be easily generated by autonomous

navigation controllers. The online path planner, although it

evaluates a minimum curvature angle, associated with the

flight envelope, may produce paths that exceed the vessel’s

capabilities. In real-life implementations, the tuning of the

optimization procedure is heavily based on UAVs speed and

maneuverability as much as sensor’s range and accuracy. Reac-

tive-based control methods may be useful during the collision

avoidance procedure. Such methods are proved to cooperate

well with path planners when applied to ground robots [16].

The EA proved to be effective in finding feasible path lines

(for both offline and online procedures) under the forced con-

straints and within an acceptable time period, especially for

the online planner, where the execution time is of great impor-

tance. The easy implementation of the various constraints of the

problem proved to be a valuable characteristic of EA. Neverthe-

less, a feasible solution could be reached within a small number

of iterations, while the rest of the iterations were used in order

to optimize the solution, according to the rest of the criteria.

The introduced potential field between the initial and target

position was the main driving force for the gradual develop-

ment of the path line in the online procedure. As it was demon-

strated by the several test cases presented, it proved to be effec-

tive in producing curves that bypass the solid ground obstacles

positioned between the starting and target positions, provided

that they do not have a concave shape, and do not drive the fit-

ness function in local optima. In this last case the second mode

of the online procedure governs the path planning, producing

smooth flight paths (consisting of successive B-Spline curves)

that by-pass the obstacle.

The proposed method proved capable for producing feasible

(collision-free) paths after a small number of generations (less

than 10), rendering it suitable for real-time calculations. The

latter is particularly useful in online applications, where the

global terrain geography is unknown and a local knowledge is

gained through onboard sensors.

APPENDIX A

The algorithms used for obstacle identification and enumer-

ation of border nodes are presented.

If there is a node-obstacle close to the UAV and along its mo-

tion direction, its coordinates are stored. Then, the following al-

gorithm is used to generate a map of all groups of nodes that

form obstacles and are visible by the radar. Each group (ob-

stacle) contains nodes that lie adjacent to each other.

Do the following until all segments that are visible by

the UAVs radar have been checked, starting from the upper-right

segment of the visible terrain.

If node is an obstacle then

If it is the first obstacle checked, then the variable group-

value and the variable .

Else check whether there is another node-obstacle either on its

right or up-right or upper or up-left position.

If there is, then read its groupvalue value. Set

the current node’s groupvalue value equal

to the one of the neighboring obstacle that was found

in the previous step.

Else set groupvalue , where is

the greater value that the variable groupvalue

has been given so far.

End-If

End-If

Loop

Do until all the nodes that are visible by the radar

have been checked, starting from the lower-down node of

the terrain.

If node is an obstacle then

Check whether there is another node-obstacle either on

its right or upper or up-left or up-right position.

If there is, then set the node’s groupvalue value

equal to the one of segment .

End-If

Loop

After this process has finished, each group of nodes (ob-

stacles) has been given a unique number [equal to the group-

value value of the nodes that are part of it]. All the nodes

of a group have been given the same number. As the coordinates

of the node that lies on the UAVs motion direction have been
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kept, it is known which group of nodes (obstacle) has caused

the UAV to be trapped in a local optimum area.

Next, the obstacle’s borders are located and are enumerated

so that the node with the greater number is far from the UAVs

current position. The following algorithm is used in order to

enumerate the nodes of the obstacle that are part of its border.

A. Counter-Clockwise Numeration

Give the value 0 to the variable num for the obstacle that lies

on the UAVs motion direction and whose coordinates have been

already stored.

Check whether there is another border-node of the group of

obstacles in the 8 surrounding positions, using counter clock-

wise direction and starting from the lower position.

If there is, then the variable is given the value

and the same process is repeated for the new node

. The process is repeated until there is no other border-node

adjacent to the current node for which the variable num has

not been given a value.

If the current node lies on the border of the terrain, then

clockwise numeration is needed, so as the UAV not to move

outside the terrain.

B. Clockwise Numeration

Give the value 0 to the variable num for the obstacle that lies

on the UAVs motion direction and whose coordinates have been

already kept.

Check whether there is another segment-border of the group

of obstacles, in the 8 surrounding positions, using clockwise di-

rection and starting from the upper position.

If there is, then the variable is given the value

and the same process is repeated for the new segment

. The process is repeated until there is no other segment-border

adjacent to the current segment for which the variable num

has not been given a value.

APPENDIX B

B-Spline curves are parametric curves, with their con-

struction based on blending functions [11], [12]. Their

parametric construction provides the ability to produce

nonmonotonic curves. If the number of control points

of the corresponding curve is , with coordinates

, the coordinates of the

B-Spline may be written as

(10)

(11)

(12)

Fig. 20. 2-D quadratic B-Spline curve (K = 3), with its control points and
the control polygon.

Fig. 21. Corresponding B-Spline curve with the same control points as in
Fig. 20 for K = 5.

where the blending functions of the curve and the

order of the curve, which is associated with curve’s smooth-

ness. Higher values of correspond to smoother curves, as it

is demonstrated in Figs. 20 and 21. Parameter t varies between

0 and with a constant step, providing the dis-

crete points of the B-Spline curve. The sum of the values of the

blending functions for any value of is always 1.

The blending functions are defined recursively in terms of

a set of Knot values, with the most common form being the

uniform nonperiodic one, defined as:

Knot if

Knot if

Knot if

(13)

The blending functions are defined recursively, using

the Knot values given by (13)

if Knot Knot

if
Knot Knot

and

otherwise

(14)
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TABLE I
EPERIMENTAL RESULTS FOR REURISTIC CROSSOVER PROBABILITY

TABLE II
EPERIMENTAL RESULTS FOR NON-UNIFORM MUTATION PROBABILITY

Knot

Knot Knot

Knot

Knot Knot
(15)

If the denominator of either of the fractions is zero, that frac-

tion is defined to have zero value.

APPENDIX C

In order to optimize the probabilities of the various EA oper-

ators, a simplified experimental procedure was adopted (using

a reference offline test case), which is described below. The op-

timization criteria were the value of the fitness function after

30 generations and the first generation at which a feasible solu-

tion was reached. The population number was set equal to 100

(without optimization).

Based on prior experience, from other EA applications,

an initial set of parameters was used: nonuniform mutation

probability 0.15, classic mutation probability 0.05, classic

crossover probability 0.15. The results for different values

of heuristic crossover probability are presented in Table I. The

best results correspond to a heuristic crossover probability

equal to 0.75, which was fixed for the next calculations.

The procedure was repeated for the nonuniform mutation

probability, with the results presented in Table II. The best

TABLE III
EPERIMENTAL RESULTS FOR CLASSIC CROSSOVER PROBABILITY

TABLE IV
EPERIMENTAL RESULTS FOR CLASSIC MUTATION PROBABILITY

results were obtained for a nonuniform mutation probability

equal to 0.13, which was fixed for the next calculations.

The procedure was repeated for the classic crossover prob-

ability, with the results presented in Table III. As it is demon-

strated, the best results were obtained for a classic crossover

probability equal to 0.25.

Finally, as it is demonstrated in Table IV, the corresponding

experiments resulted in a classic mutation probability equal to

0.05 (with the previous parameters taking values equal to 0.75,

0.13 and 0.25 respectively).

Fig. 22 presents the path line produced using the initial set

of probabilities (heuristic crossover probability 0.75, classic

crossover probability 0.15, nonuniform mutation probability

0.15, classic mutation probability 0.05). Fig. 23 presents

the path line produced with the final (optimized) set (for the

same test case). The higher fitness function of the optimized set

of parameters corresponds to a smoother path line in Fig. 23.

The EA convergence histories for the initial and final sets of pa-

rameters are presented in Fig. 24. The steps in the curves denote

the first generation where a feasible solution was obtained.

Fig. 25 demonstrates the influence of the various EA opera-

tors on the convergence rate of the algorithm. The same test case

was used as a reference, with a population number equal to 100

and a maximum number of generations equal to 30. The use of
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Fig. 22. Path line produced with the initial set of parameters of the EA
(heuristic crossover probability = 0.75, nonuniform mutation probability =
0.15, classic crossover probability= 0.15, classic mutation probability= 0.05,
generations = 30). The starting position is near the left corner.

Fig. 23. Path line produced with the final (optimized) set of parameters of the
EA (heuristic crossover probability= 0.75, nonuniform mutation probability=
0.13, classic crossover probability= 0.25, classic mutation probability= 0.05,
generations = 30).

Fig. 24. Convergence histories of the EA, corresponding to the initial (circles)
and optimized (triangles) set of parameters.

only the classic mutation and crossover operators proved inad-

equate to obtain a feasible solution in less than 30 generations.

Curve 1 of Fig. 25 shows the convergence rate of such an EA,

with a classic (one-point) crossover probability equal to 0.8 and

a classic mutation probability equal to 0.2.

The adoption of the heuristic crossover operator proved to be

critical for the enhancement of the convergence rate. Addition-

Fig. 25. Influence of the various EA operators in the convergence rate of the
algorithm. Curve (1) corresponds to an EA with only classic crossover and
mutation operators. Curve (2) corresponds to an EA with an additional heuristic
crossover operator, while curve (3) was obtained with the final EA (with all four
operators).

ally, a feasible solution was obtained in ten generations. Curve

2 of Fig. 25 shows the convergence rate of the corresponding

algorithm, with a heuristic crossover probability equal to 0.75,

a classic (one-point) crossover probability equal to 0.25 and a

classic mutation probability equal to 0.2.

The introduction of the nonuniform mutation operator moved

the first feasible solution to a lower generation number (gener-

ation 7), as it is demonstrated in Fig. 25 (curve 3). The value of

the fitness function is practically the same with the previous one

of curve 2, after 30 generations. The corresponding EA consists

of a heuristic crossover operator with a probability equal to 0.75,

a classic crossover operator with a probability equal to 0.25, a

nonuniform mutation probability equal to 0.13 and a classic mu-

tation probability equal to 0.05.
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