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Zusammenfassung

Kohärente Kontrolle von Moleküldynamik befaßt sich mit der Steuerung quantenmechanischer
Systeme mittels ultrakurzer, zeitlich geeignet geformter Laserfelder. Dabei wird die Kohärenz
des Laserfeldes ausgenutzt, um durch phasenrichtige Überlagerung von Wellenfunktionen kon-
struktive Interferenz für eine definierte Ziel-Wellenfunktion zu erreichen. Das Ziel kohärenter
Kontrolle, die selektive Präparation eines Zielzustandes, ist eine der Hauptvoraussetzungen für
modenselektive Chemie.
Der auf eine spezifische Anregung hin maßgeschneiderte Laserpuls, welcher als Störung das
System vom Anfangs- in den Zielzustand treibt, kann bei komplexen Systemen in der Regel
nicht mehr vorab durch quantenmechanische Rechnungen bestimmt werden, da oftmals nicht
einmal mehr der Hamilton-Operator des Systems bekannt ist. Ein Ansatz ist, das erforderliche
Laserfeld in einer Regelschleife zu bestimmen, welche ein aus dem Experiment gewonnenes Si-
gnal als Rückkopplung benutzt. Diese Optimierungsschleife wird solange durchlaufen, bis ein
den Anforderungen genügender Puls gefunden wurde. Bisherige Experimente auf diesem Gebiet
beschränkten sich zu Beginn dieser Arbeit größtenteils auf den Wellenlängenbereich von Ti:Sa
Lasern und deren Harmonischen.
Diese Arbeit befaßt sich mit Grundlagen der rückgekoppelten Formung ultrakurzer Laserpulse
im Hinblick sowohl auf die Etablierung ihrer technischen Voraussetzungen in geeigneten Wel-
lenlängenbereichen als auch der Anwendung auf geeignete Modellsysteme. Die Rückkopplungs-
schleife wurde zunächst eingehend an einem einfachen Optimierungsexperiment mit bekann-
tem Ergebnis getestet, und erst dann wurden Kontrollexperimente mit steigender Komplexität
durchgeführt. Aus den optimierten Pulsen wurde ein physikalisches Verständnis des Optimie-
rungsvorganges abgeleitet.

Im ersten Teil dieser Arbeit wurde die erforderliche Technik so weit implementiert und standar-
disiert, daß weiterführende Kontrollexperimente auf die Module der Regelschleife ohne weiteres
zurückgreifen können. Zu den technischen Voraussetzungen gehörte unter anderem die Frequenz-
konvertierung der Ti:Sa Laserpulse bei 800 nm in einen für die zu untersuchenden Systeme geeig-
neten Wellenlängenbereich. Dazu wurden nichtkollineare optisch-parametrische Verstärkerstufen
im Rahmen dieser Arbeit in verschiedenen Ausführungen gebaut. Sie erzeugen routinemäßig im
sichtbaren Wellenlängenbereich durchstimmbare Pulse mit sub-20 fs Zeitdauer. Die erforderli-
chen Nachweismethoden zur Analyse ultrakurzer Pulse wurden ebenfalls implementiert.
Pulsformer mit zylindrischen statt sphärischen Spiegeln wurden im Rahmen dieser Arbeit zur
Modulierung ultrakurzer Pulse aufgebaut und in ihrer Funktionsweise in Theorie und Experi-
ment erklärt. Die in Zusammenarbeit mit der Arbeitsgruppe von Thomas Feurer an der Uni-
versität Jena und der Jenoptik GmbH entstandene Flüssigkristallmaske, das zentrale Element
unserer Pulsformer, welche die Erzeugung komplexerer Pulsformen als mit bisher erhältlichen
Masken erlaubt, wurde vorgestellt.
Durch Implementierung eines Pulsformers in eine nichtkollineare optisch-parametrische Verstär-
kerstufe zur Formung des Weißlichts, welches als Seed für den Verstärkungsprozeß dient, konnten
u. a. phasenkohärente Zweifarb-Doppelpulse mit einstellbaren Wellenlängen, Zeitabständen und
relativen Phasen zwischen den beiden Pulsen demonstriert werden. Es wurde nachgewiesen,
daß eine Phase, welche dem Seed aufgeprägt wird, während des Verstärkungsprozesses erhalten
bleibt. Kontrollexperimente, welche Pulse mit den obigen Eigenschaften in elektronisch ansteu-
erbarer Form benötigen, werden mit diesem Aufbau erstmals möglich.
Eine evolutionäre Strategie, welche als Optimierungsalgorithmus in der Rückkopplungsschleife
diente, wurde entwickelt und anhand eines einfachen Optimierungsexperimentes, der Pulskom-
pression durch Phasenkompensation, sowohl im Experiment als auch in der Simulation getestet.



Im zweiten Teil der Arbeit wurde als Anwendungsbeispiel für rückgekoppelte Optimierungen die
Pulskompression von breitbandigen Spektren im sub-20fs-Bereich gewählt. Dieses Experiment
diente gleichzeitig als ein weiterer Test für das Verhalten der Regelschleife im Grenzfall eines
physikalisch unerreichbaren Optimierungszieles.
Es wurde gezeigt, daß eine geeignete Abbildung zwischen den dem Algorithmus zugänglichen
Optimierungsparametern und den Steuerparametern des Pulsformers ein Instrument darstellt,
um aus den optimalen elektrischen Feldern Rückschlüsse auf die physikalischen Eigenschaften
des Systems ziehen zu können. Eine solche Parametrisierung unterstützt eine Herauspräparation
des gesuchten Effektes, der die Optimierung letztendlich bewerkstelligt, und beeinflußt Konver-
genzgeschwindigkeit und Rauschunempfindlichkeit der Optimierung.
Sogenannte ,,bright” und ,,dark pulses”, d. h. Pulse, die in einem Medium absorbiert bzw.
ungehindert transmittiert werden, wurden am Zweiphotonen-Übergang 3s→→5s in Natrium
demonstriert. Mit einer Parametrisierung der Phasenfunktion der Pulse wurden die für die Ei-
genschaften ,,bright” und ,,dark” verantwortlichen, bereits bekannten physikalischen Prozesse,
nämlich symmetrische bzw. antisymmetrische spektrale Phase, im Optimierungsprozeß imple-
mentiert, und das Konzept der Parametrisierung daran getestet.
Ein Beispiel für die modenselektive Präparation von Vibrationszuständen in einem vielatomi-
gen Molekül ist die Kontrolle der Grundzustandsdynamik in Polydiazetylen. In einem Raman-
Schritt, bei welchem der Stokes-Puls geformt wird, konnte die Besetzung der Gerüstschwin-
gungen von Polydiazetylen im Grundzustand kontrolliert werden. Dabei wurde neben dem
Anregungs- und Stokes-Puls ein Abtast-Puls eingestrahlt, der in dieser CARS-Anordnung (co-
herent anti-Stokes Raman scattering) ein Anti-Stokes-Signal erzeugte, welches frequenzaufgelöst
als Rückkopplung diente. Von drei bzw. vier innerhalb der Laserbandbreite anregbaren Moden
konnten einzelne Moden sowie Kombinationsmoden mit hoher Selektivität angeregt werden.
Auch hier halfen spezielle Parametrisierungen, einen der für die Kontrolle zuständigen Prozesse,
ein Tannor-Rice-Schema, zu identifizieren. Da sowohl die Amplituden als auch die Phasen der
einzelnen Moden beeinflußt werden konnten, ist eine Wellenpaketfokussierung zu einer vorge-
gebenen Zeit möglich, was gleichbedeutend mit der Erzeugung von Lokalmoden und somit der
Kontrolle einer unimolekularer Reaktion ist.
Ausgehend von der Kontrolle einer unimolekularen Reaktion wurden die Möglichkeiten der Kon-
trolle einer bimolekularen Reaktion diskutiert. Der als Beispiel gewählte NaH2 - Stoßkomplex
stellt ein geeignetes Objekt für zukünftige Kontrollexperimente an bimolekularen Reaktionen
und speziell konischen Durchschneidungen dar. Erste zeitaufgelöste Experimente wurden vorge-
stellt.



Summary

Coherent control of molecular dynamics deals with the steering of quantum mechanical systems
with suitably shaped ultrashort laser fields. The coherence properties of the laser field are
exploited to achieve constructive interference for a predefined target wave function via a phase-
correct superposition of wave functions. The goal of coherent control, the selective preparation
of a target state, is an important prerequisite for mode-selective chemistry.

The laser pulse tailored to drive the system from the initial to the target state as a perturbation
can in general not be determined by a quantum-mechanical calculation, since usually even the
Hamiltonian of the system is unknown. A practical alternative is to determine the required
shape of the laser field in a feedback-controlled regulation loop which uses a signal derived from
the experiment as feedback. The loop is repeated until a pulse that suits the requirements is
obtained. Experiments in this area have until recently mostly been limited to the wavelength
regime of Ti:Sa lasers and their fundamentals.

This work deals with the fundamentals of feedback-controlled shaping of ultrashort laser pulses
with respect to both establishment of its technical prerequisites and its application to suitable
model systems. The feedback loop has been tested using a simple optimization experiment with
known outcome; then it was applied to experiments of progressively increasing complexity. From
the optimized pulses, physical insight into the optimization process has been gained.

In the first part of this work, the required technology has been implemented and standardized
such that control experiments might employ it as a standard tool. One of the technical pre-
requisites was the frequency conversion of the 800 nm Ti:Sa laser pulses to a wavelength range
suited to the particular systems. To this end, non-collinear optical parametric amplifiers have
been built in different designs that routinely produce tunable sub-20 fs pulses in the visible. The
characterization techniques for ultrashort pulses have been implemented as well.

Pulse shapers with cylindrical instead of spherical mirrors have been implemented for the mod-
ulation of broadband pulses, and their functionality has been explained both theoretically and
experimentally. A new liquid crystal device, the core of our pulse shapers, has been developed in
cooperation with the group of Thomas Feurer at the Universität Jena and the Jenoptik GmbH
which allows for the generation of more complex pulse shapes than with other commercially
available devices to date.

Using a pulse shaper to modulate the white light continuum that serves as the seed for the
non-collinear optical parametric amplifier, generation of phase-locked two-color double pulses
has been achieved, with tunable wavelengths, delays, and relative carrier phases between the
single pulses. The basic principle, phase conservation during optical parametric amplification,
has been demonstrated. With this setup, control experiments which require pulses with the
above described attributes in electronically controllable form are possible for the first time.

An evolutionary strategy used as the optimization algorithm in the feedback loop has been
programmed and characterized both in simulation and experiment using a simple optimization
experiment, namely pulse recompression by phase compensation.

In the second part of this work, pulse recompression of ultra-broadband spectra in the sub-20fs
regime serves as an example of utility of feedback-controlled optimization. This experiment si-
multaneously served as a further test of the feedback loop in the limit of a physically unreachable
optimization goal.

It has been demonstrated that a suitable parameterization of the electric field, implemented by
a mapping of the optimization parameters adjusted by the algorithm to the physical parameters



controlling the liquid crystal mask affords a means of acquiring physical knowledge from the
retrieved optimal electric fields. A parameterization helps to dissect the physical processes
mediating the control process, thereby assuring fast, secure convergence and robustness against
signal noise.
So-called ”bright” and ”dark” pulses, i.e. pulses that are absorbed by a medium or transmitted,
respectively, have been demonstrated for the case of the two-photon transition Na(3s→→5s).
The physical constraints responsible for pulses being either ”bright” or ”dark”, namely a sym-
metric or anti-symmetric spectral phase, have been incorporated in the parameterization with
the purpose of testing the concept of parameterization for such studies.
An example of mode-selective preparation of vibrational states in a polyatomic molecule is the
control of the ground state dynamics in polydiacetylene. In a Raman step with a shaped Stokes
pulse, the population of the backbone vibrations of polydiacetylene in its ground state could
be controlled. A consecutive probe pulse in a CARS (coherent anti-Stokes Raman scattering)
arrangement generates an anti-Stokes signal which, once frequency-resolved, served as feedback.
Of the three or four modes, respectively, accessible within the pulse bandwidth, single modes as
well as combinations of modes could be excited with high selectivity. Again, suitable parame-
terizations helped to identify one of the processes responsible for the control as a Tannor-Rice
scheme. Since both the amplitude and the phase of each mode could be influenced, the focusing
of a wave packet at a predefined time, or, equivalently, the generation of local modes represents
the control of a unimolecular reaction.
Starting from the control of a unimolecular reaction, the possibilities of controlling a bimolecular
reaction were addressed. The NaH2 collision complex was chosen as a suitable system for the
control of bimolecular reactions generally and a conical intersection in particular. First time-
resolved experiments have been presented.
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INTRODUCTION 1

Introduction

Mode-selective control of chemical reactions has been the ambitious goal of many years of in-
vestigation. Chemistry, which can be viewed as the breaking and making of bonds, classically
attempts to influence the equilibrium in the formation of products from educts by macroscopic
parameters such as temperature, pressure, concentration, etc. Nevertheless, this macroscopic
provision of activation energy for a chemical reaction invokes the problem of selectivity since the
activation energy is equipartitioned over all bonds and not only those that must be activated.
Consequently, a chemical reaction often yields a broad variety of by-products.

With the invention of lasers, mode-selective chemistry aimed to minimize the amount of by-
products by activating only those bonds which are essential for the reaction. This goal has
been achieved only in a few small systems for two reasons: First, it is usually necessary to
excite the system to a higher vibrational state in order to overcome the activation energy. The
anharmonicity of the potential, however, impedes the excitation of more than one vibrational
transition with a narrow-band laser. Second, intramolecular vibrational energy redistribution [1]
in highly excited molecules dissipates the energy into other vibrational modes on an ultrashort
time scale.

Therefore, the ability to selectively deposit energy with lasers is not sufficient for control. Nev-
ertheless, another property of the laser field, its coherence, enables control of quantum mechan-
ical interferences. An initial wave function is transferred to a target wave function by phase-
coherently manipulating the quantum system such that constructive interference is achieved for
the target state. Thus, the dynamics of a chemical or physical process is steered towards this
predefined quantum state. Three schemes have been demonstrated to achieve quantum control
in small systems:

(1) Phase control as suggested by Brumer and Shapiro [2] uses two phase-locked cw lasers
resonant to a single transition between the states |a〉 and |b〉 by a one- and a multi-photon
excitation, respectively (Fig. 1a). These two excitation paths add coherently, and in direct
analogy with the double slit experiment, the resulting transition probability depends on the
relative phase between the two lasers. Experimentally, this has been demonstrated in atoms
and molecules [3, 4].

(2) With STIRAP (stimulated Raman scattering involving adiabatic passage), 100% population
transfer between two levels |a〉 and |b〉 can be achieved [5]. STIRAP uses an intermediate level
|c〉 and two laser fields to couple the initial and final state (Fig. 1b). The intermediate level is
coupled to the final level by a laser (Stokes) field before the intermediate level is coupled to the
initial level with the pump field, with a small temporal overlap between the pulses. With the
Stokes laser preceding the pump pulse, the system is prepared at the beginning of the interaction
in a trapped state and remains there such that the population is directly transferred from the
initial to the final state while the population of the intermediate level is negligible throughout.

(3) Time domain control has been proposed by Tannor, Kosloff, and Rice [6] and exploits the
dynamics of the system in the excited state for control (Fig. 1c). This so-called Tannor-Rice
pump-dump scheme usually incorporates two pulses with different frequencies: the first pulse
(pump) excites the system to the excited potential energy surface; the second pulse (dump) is
suitably delayed and transfers population to a target state |b〉. The one-dimensional control
parameter is the delay between pump and dump pulse. This scheme has been successfully
incorporated in controlling the fragmentation of molecules [7–9].
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Figure 1: Schemes for coherent control using one control parameter: (a) Brumer-Shapiro phase control,
(b) STIRAP as proposed by Bergmann et al., (c) Tannor-Kosloff-Rice time-domain control.

The approaches (1)-(3) have been used successfully only in small systems because they feature
relatively simple control fields with only one control parameter (time or phase) each. For larger
molecules with complex potential energy surfaces it is conceivable that more control parameters,
i.e. more complex control fields, are necessary.
From a theoretical point of view, finding the electric field which produces the desired target wave
function is feasible if the Hamiltonian of the quantum mechanical system is known. In principle
then, it remains to synthesize this particular electric field in the laboratory and to verify the
calculation. However, if the required electric fields cannot be produced with sufficient fidelity,
a comparison between experiment and theory is not really meaningful. For complex molecules,
moreover, the Hamiltonian may not be known or cannot be approximated at all. Even if the
Hamiltonian is known, the calculation of the optimal electric field may be intractable on a
quantum mechanical level.
To overcome these difficulties, Judson and Rabitz proposed that the optimal electric field be
determined recursively within a feedback-controlled experiment [10]. In their approach, an
ultrashort laser pulse excites a sample, and a signal which is characteristic of the system (e.g.
a target state) is monitored, as depicted in Fig. 2 [11, 12]. The amplitude of this probe signal
serves as feedback for the optimization algorithm, which controls a pulse shaper and proposes
a new pulse. The feedback signal of this modified pulse serves again as input for the algorithm,
which proposes yet another pulse, and so forth until some convergence criterion is met. Since no
a-priori knowledge of the physical system is necessary, this feedback scheme is applicable even if
a theoretical investigation of the system is intractable on a quantum mechanical level. From the
optimized laser field, insight into the physics of the system under investigation can be gained.
The hardware for the implementation of such a feedback loop experiment comprises a source for
ultrashort laser pulses, a computer-controlled pulse shaper and an optimization algorithm. The
temporal shaping of ultrashort pulses is realized by complex filtering of their spectrum in the
Fourier domain. Of critical importance in this concept is a reliable optimization algorithm which
efficiently spots the global optimum in a multidimensional parameter space under the influence
of experimental noise. Evolutionary algorithms have proven robust under such conditions.
Pioneering examples of such optimizations were reported by the groups of Gerber [13] and
Wilson [14], who reported control of the dissociation of a complex organometallic compound
and of the fluorescence excitation of a dye molecule, respectively. Subsequent experiments on
different types of systems followed:
(1) Applications to atoms were the excitation of Rydberg wave packets [15], two-photon transi-
tions [16] and the control of high harmonics generation [17,18].
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Figure 2: A closed-loop process for teaching a laser to control quantum systems. The loop is initiated
with either an educated initial guess or even a random field. A laser control field design is created with
a pulse shaper and then applied to the sample. The response of the system is measured and fed back
to an optimization algorithm which suggests an improved field design and so forth until the objective is
satisfactorily achieved.

(2) For molecular systems, control efforts can be divided into two main families: (a) Control
of dissociation yields, as for dissociation of CsCl [19, 20], Fe(CO)5 [21], CpFe(CO)2Cl [13,
22], CpMn(CO)3 [23], and several small carbohydrate derivates [24]. (b) Control of molecular
dynamics, such as in K2 [25,26], CO2 and SF6 [27], Li2 [28], Na2K [29], and CCl4 and methanol
[30].

This work investigates and establishes the fundamentals of feedback-controlled experiments with
respect to both technological aspects and applications to the control of complex molecules.

The task of controlling molecular dynamics in a complex system has to be broken up into several
steps. Pulse generation and pulse shaping must be provided in an appropriate wavelength range.
For the implementation of the feedback loop, an optimization algorithm must be realized, and
the reliability of the feedback loop must be tested with a simple control system. With this
tested loop in hand, a series of control experiments on model systems of increasing complexity,
from pulse compression over atomic systems to complex molecular systems, can be performed
stepwise using the acquired knowledge. The process responsible for the optimization is identified
in each experiment via the use of a parameterization in order to gain physical insight into the
control process which is, after all, the purpose of control experiments.

The thesis is divided into a more technically oriented part and an experimental part of four chap-
ters each. The first, technical, part covers the description of the fundamental prerequisites for
coherent control experiments such as ultrashort pulse sources, pulse shaping, and optimization
algorithms.

Chapter one explains the generation of ultrashort pulses in the visible via non-collinear optical
parametric amplification.

Chapter two gives an introduction to the possibilities and limitations of pulse shaping with
pixelized modulators.



4 INTRODUCTION

A broadband source and a pulse shaper can be combined to form a novel device capable of
producing high-energy pulses such as two-color phase-locked double pulses with adjustable colors,
delay, and phase. White-light shaping and its underlying principle, phase conservation during
parametric amplification, is demonstrated in chapter three.
In chapter four, the optimization algorithm steering the pulse shaper is presented. Pulse recom-
pression serves as the testing environment for the algorithm, ensuring secure convergence of the
subsequent feedback-controlled experiments. The principles and advantages of a parameteriza-
tion, which is a mapping between the optimization parameters accessible to the algorithm and
the physical steering parameters of the pulse shaper, are demonstrated.

The experimental part opens in chapter five with a description of the adaptive compression of
ultrashort pulses from a non-collinear OPA to below 20fs.
Chapter six moves from the pure control of electric fields to the control of an atomic system,
specifically the Na(3s →→ 5s) two-photon transition, for which ”bright” and ”dark” pulses,
i.e. pulses that do or do not effect a two-photon transition, are produced with the feedback
approach.
Control of a unimolecular reaction in a complex molecular system is demonstrated in chapter
seven, wherein the control of vibrational ground state dynamics in a polymer is presented. The
excitation of normal modes can be steered with high precision, which allows for wave packet
focusing into a local mode.
Chapter eight reports on a promising candidate for the control of bimolecular reactions at
the example of the NaH2 collision complex which represents the one of simplest conceivable
bimolecular reactions. Preliminary results of time-resolved experiments on the collision complex
are presented.



5

Part I

Coherent Control Technology



6 1. NON-COLLINEAR OPTICAL PARAMETRIC AMPLIFICATION

1

Non-collinear optical parametric

amplification

The technique of producing fs pulses with mode-locked fs Ti:Sa lasers has become sophisticated
over the last decade. High power output pulses are easily produced via chirped pulse amplifi-
cation in regenerative amplifiers, turn-key devices that are commercially available and contain
almost no user-serviceable parts.

Nevertheless, these devices are only capable of producing pulses at Ti:Sa wavelengths in the NIR
around 800 nm and their harmonics. This is sufficient for non-resonant experiments where only
the enormous temporary energy density (on the order of 1021 W/cm2 nowadays for high-end
laser facilities) of a femtosecond laser pulse is of interest. In most experiments, though, it is
obligatory to adapt the wavelengths to the molecule under study. Hence, the frequency of the
ultrashort pulses must usually be converted.

1.1 Frequency-Mixing

Frequency mixing occurs in nonlinear media where the principle of linear superposition of electro-
magnetic waves breaks down at sufficiently high electric fields. The reason for this is the nonlin-
earity of the electron binding forces within the atoms at high field strengths, and therefore the
nonlinear dependence of the polarization of matter on the electric field. As a result, the presence
of a strong field changes the properties of matter (such as the refractive index n) of the material
through which it travels and thereby influences the propagation of other waves coincident with
the primary field.

Frequency mixing can be viewed in two different schemes: sum frequency mixing / generation
(SFM, SFG) and difference frequency mixing / genration (DFM, DFG). In the photon picture,
SFM is equivalent to the fusion of two low-energy photons to one high-energy photon, whereas
DFG is described by the fission of a high-energy photon into two low energy photons. From this
point of view, it is immediately clear that conservation of energy

ω3 = ω1 + ω2 (1.1)

has to be met as well as the conservation of momentum, which is commonly written as ∆k = 0,
where ∆k is the so-called phase mismatch (written in its scalar form here for simplicity)

∆k = k1 + k2 − k3. (1.2)

In the case of DFG, the photon with the highest energy is the pump photon, denoted here and
further on with the index three. Photon one and two are called signal and idler photon. This
will be explained later.

In the wave picture, the interaction of these three photons is modeled by a system of partial
differential equations derived from the nonlinear wave equation (see, e.g. [31–33])
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dA1

dz
= +iκA∗

2A3 exp(−i∆kz) (1.3)

dA∗
2

dz
= −iκA1A

∗
3 exp(+i∆kz) (1.4)

dA3

dz
= +iκA2A1 exp(+i∆kz). (1.5)

Here, κ is a constant which is proportional to the corresponding element d of the susceptibility
tensor, and A =

√

n/ωE, with E being the amplitude of the field.
Several assumptions have been used in order to derive these equations, such as Kleinman’s
symmetry rule (all coefficients of the susceptibility tensor with permutated indices are equal [34]),
monochromatic, scalar waves E ∼ exp(i(kz−ωt) propagating in z-direction, no absorption, and
no changes of polarization of each individual wave during the interaction. For ultrashort pulses,
the right sides of Eqs. 1.3-1.5 are replaced by integrals [35].
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 � 
 � 	

� 	

� �

Figure 1.1: Frequency mixing scheme of the optical parametric amplification process. From here on,
the indices (1), (2), and (3) always correspond to signal, idler, and pump pulse, respectively

For the special case of optical parametric amplification, see Fig. 1.1, it can be assumed that no
depletion of the pump wave at ω3 occurs. Then 1.3-1.4 simplifies to

dA1

dz
= +iκA3(0)A

∗
2 exp(−i∆kz) (1.6)

dA∗
2

dz
= −iκA3(0)A1 exp(+i∆kz) (1.7)

For ∆k = 0, the solution of these equations is

A1(z) = A1(0)cosh(κA3(0)z) (1.8)

A∗
2(z) = −iA1(0)sinh(κA3(0)z). (1.9)

The evolution of the intensities I1,2(z) ∝ |A1,2(z)|2 is illustrated in Fig. 1.2:
It is observed that with increasing intensity of the signal wave at ω1, the intensity of a second
wave at ω2 also increases. The second wave is essential to carry away the surplus energy and
momentum in the conversion of a pump photon into a signal photon. Because this wave is usually
only an experimentally undesired, ”idle” by-product, it is called idler. The accumulation of the
idler is easily understood since signal and idler can exchange their roles via the inverse process
wherein a pump photon and an idler photon create a signal photon. Therefore, an increasing
signal creates an increasing idler, and vice versa. For this process, it is essential that signal and
idler waves interfere constructively, which requires ∆k = 0.
For ∆k �= 0, an expression for the conversion efficiency η between pump and signal wave is found
by approximating A2(z) and A3(z) = const in Eqs. 1.3 and integrating Eq. 1.3 from z = 0 to
z = L,

η ∝ d2effL2sinc2
(

∆kL

2

)

(1.10)

where L is the interaction length which is usually given by the crystal length and deff the
effective nonlinearity. Eq. 1.10 reveals two important facts:
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Figure 1.2: Evolution of signal (1) and idler (2) wave intensity vs propagation length in a collinear
optical parametric amplifier

(1) The conversion efficiency is maximized for ∆k = 0. Therefore, phase-matching is essential,
which means that after the ”splitting” of a pump photon into a signal and idler photon no net
photon momentum remains.

(2) The conversion efficiency scales with the square of the interaction length L. This means that
for high amplification gain, thick crystals should be used. However, two complications result:
For ultrashort pulses, the acceptance bandwidth described by the ”sinc” term in Eq. 1.10 may
become too small when the crystal length exceeds the spatial dimensions of the pulse in direction
of propagation. Also long crystals cause additional pulse broadening by idler walk-off, since the
idler’s group velocity is higher than that of the signal as depicted in Fig. 1.3. Since these are
undesired effects, thin crystals are commonly used in collinear OPAs. The resulting conversion
efficiency is relatively low, so typical setups comprise a multi-stage amplification wherein the
idler is split off before each amplification stage.

� � � � � �� � � � # �

Figure 1.3: Pulse broadening due to idler walk-off in a collinear beam geometry: the idler (diagonally
hatched box) pulse travels from left to right at a higher group velocity than signal (empty box) and pump
(dashed box) pulse. Snapshots are taken at three different times. The spatially advanced idler generates
signal by frequency mixing via the inverse mixing process ω2 = ω3 − ω1 (upper arrows), which in turn
again generates idler and so on. On the trailing edge of signal, idler is generated via the normal process
ω1 = ω3−ω2 (lower arrows, horizontally hatched box). Since theses waves cannot interfere constructively,
collinear DFM cannot produce significantly higher bandwidths (or shorter pulses) than the input pulses.

Phase-matching is achieved via the dependence of the refractive index n on the orientation of
polarization of the incoming wave to the crystal axis c. Beams that are polarized in the plane of
the c-axis and the beam itself are called ordinary and are subject to the ordinary refractive index
no, whereas beams polarized perpendicular to that plane experience the extraordinary refractive
index ne. A beam that is polarized at an angle θ to the c-axis experiences the refractive index

n(θ) =

(

cos2(θ)

n2
o

+
sin2(θ)

n2
e

)− 1
2

(1.11)

The wavelength dependence of ne and no can be approximated by Sellmeier’s equation (e.g. for
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BBO [36,37]):

n2
o = 2.7405 +

0.0184

λ2 − 0.0179 − 0.0155λ2 (1.12)

n2
e = 2.3730 +

0.0128

λ2 − 0.0156 − 0.0044λ2 (1.13)

where λ must be inserted in units of µm. With the crystal angle θ, it is possible to match the
indices of refraction of signal and pump or to match the phases.

For the operation of this scheme, different polarizations of the pump, seed and idler have to be
used. These classify the different types of phase-matching, as shown in Tab. 1.1.

Type Signal Idler Pump

I o o e
IIa o e e
IIb e o e

Table 1.1: Different types of phase-matching, ”o” and ”e” refer to ordinary and extraordinary polarization,
respectively.

c

k1 k3o
k3e

k1

k2

k3

θ

k1+k2

Figure 1.4: Phase matching (type I, ooe) in a negative uniaxial crystal, i.e. no > ne, via the polarization
dependent refractive index. θ denotes the angle between pump polarization (extraordinary) and crystal
axis c.

For a plane light wave propagating in a uniaxial crystal, the wave vector �k only matches the
Poynting vector in the special cases θ = 0 and θ = π/2. The direction of the Poynting vector,
which is the direction of energy flux, is given by the normal to the tangent that touches the n(θ)-
curve at its intersection with the �k-vector. The angular difference between these two directions
is denoted as the walk-off angle and is given for a negative uniaxial crystal [35]

tan ρ =

(

no
ne

)2

tan θ − θ (1.14)

Technically, optical parametric amplification [38–44] is performed by producing a broad seed
continuum, i.e. by white light continuum (WLC) generation via focusing of ultrashort pulses
in a medium, and subsequent amplification in a frequency mixing process. Phase-matching is
achieved for the desired output wavelength by the choice of the angle θ between the pump
polarization and the crystal axis c, see Fig.1.4. The angle θ is thus the means of wavelength
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selection used in common collinear OPA design. Because of the effects arising from the different
group velocities of signal and idler as described in Fig. 1.3, the necessarily thin crystals require
a complicated multi-pass amplification setup.

1.2 Non-collinear frequency mixing

To generate pulses significantly shorter than the input pulses, it is necessary to increase their
spectral width. Therefore, the amplification process via frequency mixing has to be chosen such
that the amplification bandwidth encompasses a wide spectrum. As discussed, the limitation
of collinear setups is the group velocity mismatch between signal and idler. Since in a collinear
beam geometry the number of free parameters (crystal orientation) is not sufficient to ensure
both phase-matching and group velocity matching, a second parameter has to be introduced.
This second parameter may be the angle between pump and seed beam. This non-collinear
beam geometry approach for ultrabroadband-phasematching is sketched in Fig. 1.5 and has
been proposed first by Hache and coworkers [45].

��

� $ � %

� &

Figure 1.5: Arrangement of seed, pump, and idler wave vector in the non-collinear setup.

In order to account for the non-collinear beam geometry, the phase-matching condition has to
be rewritten in vectorial notation,

∆�k = �k1 + �k2 − �k3 (1.15)

Mathematically speaking, broadband operation means that the phase-matching condition ∆�k =
0 is not only satisfied for one seed wavelength λ = λ0

1, but for a wavelength range around

λ0
1 [38, 42]. Writing ∆

�k = ∆�k(λ1) as a Taylor series around λ
0
1,

∆�k(λ1) = ∆�k0 +
∂∆�k

∂λ1
∆λ1 +

1

2

∂2∆�k

∂λ2
1

(∆λ1)
2 + · · · (1.16)

with ∆�k0 = ∆�k(λ
0
1) and ∆λ1 = λ

0
1−λ1, a first approximation for broadband amplification leads

not only to ∆�k0 vanishing, but also its first derivative with respect to the seed wavelength at
the center wavelength of the seed:

∂∆�k

∂λ1

∣

∣

∣

∣

∣

λ1=λ0
1

= 0 (1.17)

Decomposed into the components parallel and perpendicular to the wave vector of the seed,
compare Fig. 1.5 and [42],

∆k⊥ = k2 sinΩ− k3 sinΨ (1.18)

∆k‖ = k1 + k2 cosΩ− k3 cosΨ, (1.19)

Eq. 1.17 reads
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∂∆k⊥
∂λ1

=
∂k2
∂λ1

sinΩ + k2
∂Ω

∂λ1
cosΩ = 0 (1.20)

∂∆k‖

∂λ1
=
∂k1
∂λ1

+
∂k2
∂λ1

cosΩ− k2
∂Ω

∂λ1
sinΩ = 0, (1.21)

since k3 �= k3(λ1). Adding Eqs. 1.20 and 1.21 after multiplication by sinΩ and cosΩ, respectively,
yields an expression that is Eq. 1.17

∂k2
∂λ1

+
∂k1
∂λ1

cosΩ = 0. (1.22)

The partial derivatives can be transformed to

∂k1
∂λ1

=
∂k1
∂ω1

∂ω1

∂λ1
=

1

vg1

(

−2πc
λ2

1

)

(1.23)

∂k2
∂λ1

=
∂k2
∂λ2

∂λ2

∂λ1
=
∂k2
∂ω2

∂ω2

∂λ2

∂λ2

∂λ1
=

1

vg2

(

−2πc
λ2

1

) (

−λ
2
2

λ2
1

)

. (1.24)

Finally, these expressions are inserted into Eq. 1.22 to yield the so-called projection condition

[38, 42]

vg1 = vg2 cosΩ. (1.25)

The projection of the group velocity of the idler in the direction of the seed pulse equals the
group velocity of the seed. The physical consequence of this is illustrated in Fig. 1.6. The idler
does not overtake the signal pulse, and, hence, no pulse broadening occurs. The important
benefit from this is that long crystals can be used which ensure high conversion efficiency.

� � � � � �� � � � # �

Figure 1.6: With a non-collinear beam geometry, the idler vertically travels away from the signal,
assuring group velocity matching in the crystal. Since the non-collinear angle Ω is much smaller than
shown here (Ω ≈ 4◦), only a slight elongation of the beam profile in this direction is observed.

A further issue must be addressed regarding non-collinear phase-matching in the crystal. Except
in collinear phase-matching, two solutions exist for the direction of �k1 [46], namely (θ − ψ) and
(θ + ψ), as shown in Fig. 1.7. Here, θ is defined as the angle between the c-axis and the pump
wave vector �k3. The advantage of the (θ − ψ)-solution is that phase-matching is achieved for a
larger variety of angles since a circle drawn around the end point of �k1 follows the �k3(θ) curve.
Nevertheless, the non-tangential phase-matching solution (θ + ψ) has the advantage that in a
negative uniaxial crystal the Poynting vector propagates in a direction ρ > θ, as can be easily
verified from Fig. 1.7. If BBO is chosen as the noncollinear crystal, the walkoff-angle is very
close to the noncollinear angle, which ensures highly efficient conversion.
In the experiments, no significant difference has been found between these two setups.

1.3 Generation of ultrashort pulses

Experimentally, fulfilling the non-collinear phase-matching geometry requires the computation
of the non-collinear angles in order to obtain an educated guess for the initial alignment. This
is performed in several steps as indicated here.
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Figure 1.7: Type I phase-matching with and without fulfilling the tangential condition.

1. Choose λ3 (pump) and λ1 (center wavelength to be amplified)

2. Compute λ2 (idler) via Eq. 1.1

3. Compute k1 = ko(λ1) and k2 = ko(λ2) via Sellmeier Eqs. 1.12, 1.13

4. Compute vg1(λ1) and vg2(λ2)

5. Compute Ω by the projection condition 1.25

6. Compute |�k3| and ψ from k1, k2, and Ω

7. Compute the phase-matching angle θ3 between �k3 and the crystal axis �c via n3 = (λ3/2π)k3
and Eq. 1.11

8. Compute external angles by Snell’s law

These angles are conveniently measured by the position of the spots of seed and pump reflected
by the crystal onto the base plate.
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1.4 Experimental realization

The experimental setup is depicted in Fig. 1.8 for a one-stage, single-color non-collinear optical
parametric amplifier (OPA) and in Fig. 1.9 for a two-color version which fits onto the same
footprint as the single color setup. A small, sub-20fs pump-probe spectrometer can therefore be
placed in a box of about 80cm × 40cm × 15cm in size.
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Figure 1.8: Setup of a non-collinear single OPA. The continuum (seed) is produced in a 1mm thick
sapphire plate from a small fraction of the fundamental pulses (800nm, 100fs, 1kHz) supplied by the Ti:Sa
regenerative amplifier system. A pinhole and the waveplate / polarizer combination serve to attenuate
the pulse energy to a suitable level for the build-up of a single filament of WLC. The main part of the
fundamental pulse is frequency-doubled (BBO, 2mm) and focused with a f=250mm spherical mirror (HR
400/0◦ coated). The focus is placed 30-40 mm in front of the parametric crystal which is cut at θ=26◦.
The output pulses are compressed with a fused silica (FS) prism compressor setup.
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Figure 1.9: Setup of a non-collinear dual OPA. The two different pulses leave the setup almost con-
currently, obviating long compensation lines. The setup of each stage is basically comparable to that of
Fig. 1.8. The attenuation of the WLC generation pulses is performed with a ND1.0 filter.

When the amplification stage is run without a seed, a rainbow of colors is emitted in a cone
around the pump beam. This so-called parametric super-fluorescence [47–49] originates from the
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spontaneous fission of a pump photon into a seed and an idler photon via the amplification from
photon noise. It has been demonstrated [47] that this so-called self phase-matching occurs in the
direction of minimal group velocity mismatch (GVM) between signal and idler, which is equiv-
alent to Eq. 1.25. Hence the direction of the cone indicates the noncollinear angle for the seed
beam. Turning on the seed light again, with good adjustment of the noncollinear beam setup,
leads to a decrease in brightness of the superfluorescence cone, indicating an effective conversion
from seed to signal energy which consumes the energy otherwise available for superfluorescence.
The output spectrum of the OPA can be tuned by adjusting the delay between pump and seed,
as shown in Fig. 1.10. This is due to the fact that the WLC is strongly chirped, i.e. different
colors occur at different temporal positions within the pulse envelope. By changing the delay
between pump and seed, only the spectral portion of seed which temporally overlaps with the
pump is amplified. In order to obtain output spectra with a spectral width comparable to that
of the WLC, two schemes are conceivable:
(1) Precompression of the WLC as developed by the groups of De Silvestri [50] and Kobayashi [51]
(2) Lengthening of the pump pulse by means of a glass rod as proposed by the group of
Riedle [52]. A thick SHG crystal for the generation of the pump pulses [38] may equally well be
used.
With a further slight adjustment of the crystal angle, it is possible to extend the wavelength
range down to 500nm. It is also possible to amplify the NIR wavelengths of the WLC, as
demonstrated in [42].
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Figure 1.10: The spectrum of a non-collinear OPA can easily be tuned by changing the delay between
pump and seed.

The spectra shown in Fig. 1.10 are routinely compressed to below 20 fs with a pair of FS prisms,
as shown in Fig. 1.11. Here, the autocorrelation measurement was performed using a 10µm
BBO crystal as nonlinear element.
For comparison, an autocorrelation trace using a silicon carbide (SiC) diode [53] is shown in
Fig. 1.12. This method has the advantage that effects arising from the limited conversion
bandwidth of SHG crystals do not occur. Again, a sub-20fs pulse is obtained at a central
wavelength of 620nm.
The measurements above suffer from the fact that the autocorrelator used only one beam splitter
and so technically measured not an autocorrelation, but rather a crosscorrelation between the
reflected pulse and the transmitted pulse which experienced additional GVD from the 1mm FS
beam splitter substrate.
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Figure 1.11: With a FS prism compressor, pulse durations below 20fs are routinely achieved using
autocorrelation measurements with a 10µm BBO.
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Figure 1.12: Autocorrelation trace measured with a SiC two-photon diode.
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2

Femtosecond pulse shaping

Tailoring of ultrashort pulses, originally introduced by Heritage and coworkers [54] is the crucial
prerequisite for all experiments presented in this thesis. Therefore, its basic principles and
techniques are described in detail below.
A broad variety of approaches for pulse shaping has been proposed and realized so far. Most of
them rely on spatial filtering of the dispersed spectrum. By working in the frequency domain,
waveform generation – which is sequential in time – is transferred to a modulation parallel in
space.
Chapter 2 focuses on the theory of pulse shaping using spatial light modulators (SLM), which
affords computer-controlled waveform synthesis. Theoretical predictions are compared to exper-
imental data. An overview of the different approaches for fs pulse shaping is given. Some parts
of this section closely follow references [55] and [56]. For more details, the reader is referred to
these articles and [57].

2.1 Filtering in the time and frequency domain

The most intuitive approach for generating shaped laser pulses is to operate directly in the time
domain by using an ultrafast optical ”shutter” to slice out the desired shape of the laser pulse.
The limitation of this approach is that the shortest temporal features that can be controlled are
on the order of 1ns (electro-optical shutters). This is four to five orders of magnitude too long
for the goal of tailoring pulses with structures as fine as several tens of femtoseconds.
The solution is to modulate the electric field in the frequency domain rather than in the time
domain. The femtosecond pulse shaping approach described here is based on the linear, time-
invariant filter. Linear filtering is commonly used to process signals in a broad frequency range
and is applied here to generate specially shaped optical waveforms on the femtosecond time scale.
A description of linear filtering can be formulated either in the time domain, as mentioned above,
or in the frequency domain.
In the frequency domain, a filter is characterized by its frequency response function H̃(ω). The
output of the linear filter, Eout(ω), is the product of the input signal, Ein(ω), and the frequency
response, H̃(ω),

Ẽout(ω) = Ẽin(ω)H̃(ω). (2.1)

In the time domain, the filter is characterized by an impulse response function H(t). As a trivial
consequence of Fourier transform relations, the output of the filter, Eout(t), in response to an
input pulse, Ein(t), is given by the convolution of Ein(t) and H(t)

Eout(t) = Ein(t) ⋆ H(t) =

∫

Ein(t
′)H(t− t′)dt′, (2.2)

where ⋆ denotes convolution. Ein(t), Eout(t), and H(t) are related to Ẽin(ω), Ẽout(ω), and
H̃(ω), respectively, by Fourier transformation, as for example
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H̃(ω) = F[H(t)] ≡
∞

∫

−∞

H(t) exp(−iωt)dt (2.3)

and

H(t) = F
−1[H̃(ω)] ≡ 1

2π

∞
∫

−∞

H̃(ω) exp(iωt)dω. (2.4)

If the input, Ein(t), is a delta function, the output is simply H(t). Therefore, for a sufficiently
short input pulse, the problem of generating a specific output pulse shape is equivalent to the
task of determining a linear filter with the desired impulse response. For a delta function input
pulse, the input spectrum Ẽin(ω) is equal to unity, and the output spectrum is equal to the
frequency response of the filter. Therefore, generation of a desired output waveform can be
accomplished by implementing a filter with the required frequency response.

With frequency domain filtering, no ultrafast modulators are necessary because the filter function
is static. The smallest temporal features of the tailored waveforms are within the regime of the
FWHM of the input pulse.

2.2 4f-configuration

Figure 2.1 shows the basic pulse shaping apparatus, which consists of a pair of diffraction gratings
and lenses, arranged in a configuration known as a ”zero dispersion pulse compressor”, and a
pulse shaping mask [58]. The individual frequency components of the incident ultrashort pulse
are angularly dispersed by the first diffraction grating, and then imaged by the first lens, spatially
separating the frequency components along one dimension. Essentially, the first lens performs a
Fourier transform. Spatially patterned amplitude and phase masks or a SLM are placed in this
plane in order to manipulate the amplitude and phase of the frequency components. All the
frequencies are then recombined into a single collimated beam by means of a second lens and
grating. The shape of the output pulse is determined by the Fourier transform of the pattern
transferred by the masks onto the spectrum.

The shaper is properly aligned if the output pulses are identical to the input pulses as long
as no shaping pattern is applied. This is the case if and only if the lenses are arranged at 2f
distance, with the gratings located at the outside focal planes of the telescope. Then the first
lens performs a spatial Fourier transform from the plane of the first grating onto the Fourier
plane, while the second lens performs an inverse Fourier transform from the masking plane onto
the plane of the second grating. Note that the term ”inverse” refers to the type of mathematical
operation and not to the question whether the second Fourier transform compensates the first.
If and only if the lenses and gratings of the 4f-configuration are set exactly at the focal distances,
maintaining the direction of the optical axis which is influenced by the angular orientation of
lenses and gratings, the first Fourier transform will be exactly inverse to the second Fourier
transform. The total effect of these two consecutive transforms is then that the input pulse is
unchanged if no pulse shaping mask is present.

The absence of dispersion can be achieved only if several approximations are valid, as for instance
that the lenses are thin and aberration-free, that chromatic dispersion caused by the lenses or
other elements in the pulse shaper is small, and that the gratings have a flat spectral response.
Distortion-free propagation through the ”zero dispersion compressor” in the configuration of
Fig. 2.1 has been observed with pulses down to roughly 70 fs [58–60]. For substantially shorter
pulses, especially in the sub-20 fs range, more care must be taken to satisfy these approximations.
Replacing the lenses by spherical or cylindrical mirrors, as demonstrated in section 2.5 as well
as in chapter 5, avoids these problems and ensures dispersion-free operation [61–65].

Phase-only filters which have the advantage of being inherently loss-free are used in many pulse
shaping experiments. However, phase-only filtering restricts the degrees of freedom. This can
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Figure 2.1: Basic 4f-configuration of a frequency domain pulse shaper. A SLM is positioned at the
Fourier plane.

be seen from Eqs. 2.3 and 2.4 where the filter function is in general complex, which means that
for each frequency component, two degrees of freedom, amplitude and phase, must be given. In
general, phase-only shaping is sufficient only when the target time-domain waveform is not fully
specified. Furthermore, no analytical method exists to compute the impulse response function
for a desired output waveform. As a consequence, several authors have employed simulated
annealing algorithms to design either binary [66] or gray-level [67–69] phase-only filters, which
were tested in pulse shaping experiments using either binary phase masks or liquid crystal
modulators, respectively. A more promising approach than generating the phase mask patterns
by simulated annealing seems to be a method by Hacker et al. [70] which uses an iterative
projection scheme to generate the phase mask corresponding to a given response function.

2.3 Theoretical model of a pulse shaper

A quantitative description of the shaped output waveform Eout(t) is essential for a deeper under-
standing of the shaping process. The general statement of the previous section which connects
the output waveform and the mask pattern via a Fourier transform is valid only in a first-order
approximation since it neglects effects arising from diffraction at the mask pattern and spatio-
temporal shaping effects, as will be explained in the forthcoming paragraphs. This section also
addresses the effects due to pixelation of the mask.

2.3.1 Dependence of focal spot size on filter function

First, it is necessary to obtain a relation between the linear filtering function H̃(ω) and the
actual physical masking function with complex transmittance M(x) in terms of the linear filter
formalism, Eqs. 2.1 and 2.2.

This relation is independent of the filtering process itself and can be calculated from the optical
properties of the grating and the lenses alone.
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To this end, the mapping between frequency and position in the Fourier plane is calculated from
the diffraction equation of a grating as

x(ω) ≈ f ∂θd
∂ω

∣

∣

∣

∣

ω=ω0

(ω − ω0) = − 2πcf

ω2d cos(θd)
(ω − ω0) ≡ α(ω − ω0), (2.5)

where diffraction into first order has been assumed: d is the grating period, f is the lens focal
length, and θd is the diffracted angle from the first grating. This linearization may break down
for ultrashort pulses below 20fs or high grating dispersions such that the assumption that each
pixel covers the same frequency range is no longer justified. For simplicity, it is assumed that
the mapping between pixel and frequency is linear.
The field immediately behind the mask as a function of the frequency ω and spatial coordinate
x can be written as the product of the input electric field Ẽin(ω), the mask filter functionM(x),
and a factor which accounts for a smearing out of the mask function due to the finite focal spot
size at the mask (see [55,56,71] for details)

Ẽm(x, ω) = TM(x)Ẽin(ω) exp

[

− [x+ α(ω − ω0)]
2

w2
0

]

(2.6)

with the spatial dispersion in units of cm (rad/s)−1 as defined by Eq. 2.5 and the radius of the
focused beam at the masking plane for any single frequency component,

w0 =
cos(θin)

cos(θd)

2cf

ωwin
. (2.7)

Here win is the input beam radius before the first grating, c is the speed of light, θin is the input
angle from the first grating and T describes the losses in the shaper. For θd, the value of the
center frequency ω0 is used.
At first glance, the simultaneous appearance of x and ω in Eq. 2.6 is somewhat confusing since
x(ω) has been just calculated. This formulation of Eq. 2.6 is imperative because, in the exp
argument, x and ω are mutually independent. This can be seen as follows: For an individual
frequency ω, the finite size of the focus causes this particular frequency to appear not only at
x = α(ω−ω0), but also in a Gaussian distribution around this location. Conversely, a Gaussian
distribution of frequencies is present at each location x. One extreme case is α→ −∞, which is
equivalent to infinitely high dispersion, for which Ẽm ≡ Ẽm(ω) and the blurring may be ignored.
The opposite extreme is α = 0, i.e. infinitely low dispersion (mirror instead of grating), which
means that only blurring occurs and all frequencies overlap at a Gaussian spot at x = 0. Here,
Ẽm ≡ Ẽm(x).
For realistic dispersions, Eq. 2.6 is a non-separable function of space x and frequency ω. This
implies that the spatial profiles of the focused spectral components can be altered by the mask
– e.g., some spectral components may impinge on abrupt amplitude or phase steps on the
mask, while others may not. This leads to different amounts of diffraction for different spectral
components and results in an output field which may be a coupled function of space and time
and thus may exhibit a complex mode structure. This space-time coupling has been analyzed
by several authors [72–74] and will be presented in section 2.3.3.
Of course, one is usually interested in generating a spatially uniform output beam with a single
desired temporal profile. In order to obtain an output field which is a function of frequency (and
therefore time) only, one must perform an appropriate spatial filtering operation. This can be
be done coarsely by placing an iris after the pulse shaping setup. Including these spatial effects
in the calculations, the filter function H̃(ω) can then be approximated by [57,75]

H̃(ω) =

(

2

πw2
0

) 1
2
∫

M(x) exp

[

−(x− αω)
2

w2
0

]

dx (2.8)

Equation 2.8 shows that the effective filter in the frequency domain is the mask function M(x)
convoluted with the intensity profile of the beam. The main effect of this convolution is to limit
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the FWHM spectral resolution δω of the pulse shaper to δω ≈
√
ln 2w0/α. Physical features on

the mask smaller than ∼ w0 are smeared out by the convolution, and this determines the finest
features which can be transferred onto the filtered spectrum. One consequence of this picture is
that wavelength components impinging onto mask features which vary too fast for the available
spectral resolution are in part diffracted out of the main beam and eliminated by the spatial
filter. This can result in phase-to-amplitude conversion in the pulse shaping process [75, 76].

Conversely, in the limit w0 ≈ 0, the apparatus provides perfect spectral resolution, and the
effective filter is just a scaled version of the mask. Eq. 2.8 provides an appropriate theoretical
description, including the effect of diffraction losses due to mask features, provided that a suitable
spatial filter is employed following the pulse shaping apparatus.

The effect of finite spectral resolution can be exemplified in the time domain by noting that the
output pulse Eout(t) will be the convolution of the input pulse Ein(t) with the impulse response
H(t) of the shaper. The impulse response in turn is obtained from the Fourier transform of Eq.
2.8 and can be written as the product

H(t) = m(t)g(t) (2.9)

where

m(t) = F
−1[M(αω)] =

1

2π

∫

M(αω) exp(iωt)dω (2.10)

and

g(t) = exp

[

−w
2
0t

2

8α2

]

. (2.11)

Thus, the impulse response is the product of two factors. m(t) is the Fourier transform of the
mask (appropriately scaled) and corresponds to the infinite-resolution impulse response. The
second factor, g(t), is an envelope function which restricts the time window in which the tailored
output pulse can accurately reflect the response of the infinite-resolution mask. The FWHM of
this time window (in terms of intensity) is given by

T =
4α

√
ln 2

w0
=
2
√
ln 2win λ

c d cos(θin)
. (2.12)

The time window is proportional to the number of grating lines illuminated by the input beam,
multiplied by the period of an optical cycle. A larger time window can only be obtained by
expanding the input beam diameter. The shortest feature in the output shaped pulse is, of
course, governed by the available optical bandwidth.

These results impose limits on the complexity of shaped pulses. The shortest temporal feature
which can be realized, δt , is inversely related to the total bandwidth B : (Bδt > 0.44), and the
maximum temporal window T is inversely related to the finest achievable spectral feature δf :
(δfT > 0.44). Assuming Gaussian-shaped spectra and pulses, T , δt , B, and δf all represent
their respective FWHM.

2.3.2 Effects due to pixelation of the SLM

The pixelation of phase or phase-and-amplitude liquid crystal (LC) SLMs entails one significant
limitation: the LC SLM can only produce a staircase approximation even when a smooth spectral
profile is desired. The requirement that the actual spectral modulation should approximate a
smooth function despite the fixed, finite size of the individual modulator elements, limits the
temporal range over which pulse shaping can be successfully achieved. Essentially, this is a
sampling limitation: the spectrum must vary sufficiently slowly that it is adequately sampled
by the discrete modulator elements. For the case of pulse position modulation, for example,
we require |δΦ| < π, where δΦ the phase change per pixel. The effect of pixelation for pulse
shaping in general has been analyzed in [55]. Since the physical consequences of the discretized
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mask pixels are essential for the understanding of everyday work with SLMs, the corresponding
mathematics as described in [55] is outlined here.
Mathematically, the mask can be described as the convolution of a comb structure (the array of
pixels) with a set of rectangular structures (pixels and gaps) multiplied by the (complex) filter
coefficient Bn or Bg of the pixel or the pixel gap, respectively. These filter coefficients will be
explained in detail in section 2.4; here, it is only important that the phase and amplitude of the
frequency components at each pixel can be influenced by Bn. The mask function M(x) is thus

M(x) = δ(x− x0) ⋆

N/2−1
∑

n=−N/2

Bnδ(x− nw) ⋆ rect(x/rw)

+ Bgδ(x− (n+ 1/2)w) ⋆ rect(x/(1− r)w) (2.13)

Here, w is the distance between two pixels, x0 is the displacement of the center pixel (corre-
sponding to n = 0) from the central frequency ω0, r = wp/(wp + wg) with wp and wg being
the pixel width and the gap width, respectively, and N is the total number of pixels. The rect
function is here defined symmetrically as

rect(x) =

{

1 : |x| ≤ 1/2
0 : |x| > 1/2 (2.14)

To obtain the shaped field with a mask function given byBn, the corresponding response function
in time (Eq. 2.9) must be computed. This entails discrete Fourier transformation of Eq. 2.13 to
obtain M(k):

M(k) = exp(ikx0)

×
[

sin rkw

πk

{

∞
∑

n=−∞

An/[N ]
δ

(

k − 2πn

Nw

)

+Bg
sin (1− r)kw

πk

}

×
∞

∑

n=−∞

(−1)nδ
(

k − 2πn

Nw

)

]

(2.15)

Here, n/[N ] refers to the remainder of n/N , and An is the discrete Fourier transform of Bn.
Combining this expression with the response function 2.10, affords a superposition of equally
spaced input pulses which are weighted by coefficients Cn,

Eout(t) =
∑

n

CnEin(t− nτ) (2.16)

with

Cn = exp

(

2πix0n

Nw

)

exp

(

−1
2

[πw0n

Nw

]2
)

×
{

rAn/[N ]
sinc

(rπn

N

)

+ (1− r)Bg(−1)n/Nδ0,n/[N ]sinc

(

(1− r)πn
N

)}

(2.17)

and

τ = 2πα/Nw. (2.18)

Since it is assumed that the full spectrum is passed through the mask, τ , which may be regarded
as a temporal ”unit” and which reflects the physical properties of the shaper itself, must be
smaller than the FWHM of the incident pulse. The two sinc terms of Eq. 2.17 describe diffraction
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at the discrete pixels and gaps. The leakage through the transmitting gaps, as described by the
second sinc term, always produces a small pulse appearing at time zero. This ”time zero feature”
has indeed been observed experimentally [60]. The first exp factor in Eq. 2.17 describes the
phase shift due to a possible offset between the center pixel of the mask and the central frequency.
The second exp factor expresses a smearing out of the mask pattern by the finite size of the
focal spot and is equivalent to Eq.2.11, as can be easily seen by inserting Eq. 2.18 into Eq. 2.11.
For negligible gaps (r = 1) and centered mask (x0 = 0), eq. 2.17 simplifies to

Cn = An/[N ]
sinc

(πn

N

)

exp

(

−1
2

[πw0n

Nw

]2
)

. (2.19)

Eq. 2.16 is sufficient to describe any waveform as long as its smallest features are not shorter
than the input pulse width. It should be noted, though, that only N of the Cn are independent
so that the pulse shape can be uniquely determined only for a time interval

−Nτ/2 ≤ t < Nτ/2 (2.20)

Outside this temporal window, copies (so-called replica) of the waveform generated within the
time window are produced. These appear with a temporal spacing of Nτ and are weighted
by the sinc functions (second term in Eq. 2.19). The full result is weighted by a temporal
window function (third term in Eq. 2.19) which fortunately removes most of the replica provided
that the focal spot size is suitably chosen. For an infinitely small focus, the exponential drop
of the Gaussian window would be non-existent and all the replica would remain intact. In
experiments, the focused spot size at the masking plane can be approximately adapted to the
pixel size. In this case the spectral filter function from Eq. 2.8 is a smoothed version of the
spatial profile corresponding to the pixelated SLM. The corresponding Gaussian time window
function significantly reduces the replica pulses predicted by Eq. 2.16. Thus, by increasing the
focused spot size, the experimentalist can sacrifice some spectral resolution for the purpose of
smoothing and eliminating replica pulses.
To produce a particular output shape, the output has to be written in terms of Eq. 2.19. Solving
Eq. 2.19 with respect to the coefficients An yields the mask coefficients Bn by inverse Fourier
transformation. Nevertheless, as a first-order approximation, Cn ≡ An/[N ]

can be assumed. If,
for instance, we wish to create a double pulse at delays 4τ and −6τ with amplitudes 1 and phases
0 and π/2, respectively, the coefficients C4 and C−6 in cartesian coordinates are set to 1 + 0i
and 1/

√
2 + 1/

√
2i, respectively. The coefficients Bn (see Eq. 2.31-2.33) are then calculated

by inverse Fourier transformation of Cn = An. The experiments show good agreement between
measured and calculated output pulses [60].
Due to the effects just discussed, LC SLMs with more than the 128 pixels used in current pulse
shaping experiments would be desirable. A new LC device has been developed in cooperation
with Jenoptik GmbH and will be presented in section 2.5.

2.3.3 Spatiotemporal shaping effects

In the derivation above, higher orders of diffraction of the focused frequency components at the
mask were neglected. If they are carried along, it turns out that these higher orders cannot be
simply removed by a spatial filter since the output pulses show a spatial shift along the x axis
which linearly depends on the temporal shift [73].
Eq. 2.17 then changes to

Eout(x, t) =
∑

n

CnEin(t− nτ) exp
[

−
(

x− nχ
w0

)2
]

(2.21)

with
χ = δλf/Nw. (2.22)
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Figure 2.2: Visualization of Eq. 2.17. (a) Desired pulse shape. (b) The first sinc term produces copies
outside the temporal window as given by Eq. 2.20. (c) The second sinc term (transmitting gaps) produces
a time-zero feature. (d) The Gaussian blurring (second exp factor) mostly eliminates the replica.

As before, Eq. 2.21 shows the output pulse as a sequence of equally spaced input pulses, but now
each individual pulse is additionally transversely displaced. The dependence between temporal
and spatial shift is linear with the slope

∂x

∂t
= −χ

τ
= −cd cos(θi)

λ
(2.23)

Typical values for ∂x/∂t are 0.15mm/ps. The maximum shift that can be produced is about
1.6mm for 128 pixels, so that this effect is in general not altogether negligible. The spatially
shifted pulses are again weighted by a Gaussian envelope function so that substantially shifted
structures are comparatively weak.

2.4 Pulse shaping with LC-SLMs

Liquid crystal modulator arrays have primarily been configured for either phase-only or phase-
and-amplitude operation in pulse shaping applications. The LC array allows continuously vari-
able phase control of each separate pixel and programmable control of the pulse shape on a
millisecond time scale.
Figure 2.3 shows a schematic of a lateral cut through one pixel of an electronically addressed LC
SLM. A thin layer of a nematic liquid crystal is sandwiched between two glass plates which are
etched horizontally, i.e. along the x-direction. In order to apply the required electric field, the
inside surface of each piece of glass is coated with a thin, transparent, electrically conducting
film of indium tin oxide. One piece is patterned into a number of separate electrodes (or pixels)
with the corresponding electrical connections. In the absence of an electric field, the thin, rod-
like molecules of the nematic liquid crystal are aligned with their long axes along the furrows
of the glass plates, i.e. the x direction. If an electric field Estat = U/d is applied (in the z
direction, which is the direction of propagation of the light, U being the voltage applied to the
electrodes, d their separation), the liquid crystal molecules tilt along z, which causes a change
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Figure 2.3: Side view of a single nematic crystal pixel. a) Without electric field, the rod-like crystals align
themselves along the furrows etched into the substrate. b) An external field, applied by the transparent
ITO electrodes, aligns the molecules along the direction of the field.

in the refractive index ∆n(U) = ne − no for x-polarized light, but not for light polarized in y
direction (orthogonal to the LC axis). The difference in phase retardance ∆Φ for light polarized
in the x- and y-direction is

∆Φ =
2π∆n(U)

λ
(2.24)

A maximum phase change of at least 2π is required for complete phase control since larger phase
shifts can be wrapped into the interval [0, 2π] due to the Fourier shifting theorem.
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Figure 2.4: Schematic of the LC SLM, model SLM-256 by CRI Inc. The upper graph shows the front
view. The direction of propagation is perpendicular to the plane of the sketch. 128 pixels of 97µm width
and 2mm height form a total aperture of 12.8 × 2mm. The lower graph shows a lateral cut through one
pixel.

Current commercially available LC SLMS have 128 pixels with 100 µm center-to-center pixel
spacing and a 12.8 mm aperture. Figure 2.4 shows a schematic of a phase-and amplitude LC
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SLM [71] that has been used in most experiments of this work. The two arrays are attached
permanently with their pixels aligned and angular orientations fixed. The dual LC-SLM unit is
often mounted between a pair of sheet polarizers which pass light polarized along the spectral
dispersion direction (horizontal) in Fig. 2.5, denoted x. The modulator array is controlled by
a special drive circuit which generates 256 separate, variable amplitude signals with 12 bit
resolution to achieve independent phase and amplitude control of all 128 modulator elements.
Each drive signal is supplied as a bipolar square wave of variable amplitude, typically at 2-10kHz
or above, rather than as a variable amplitude dc level. The use of an ac drive signal is mandatory
to prevent electromigration effects in the liquid crystal. The use of a square wave as opposed
to a dc level does not change the operation of the modulator, since the rotation of the liquid
crystal molecules cannot follow the modulation and thus depend only on the amplitude (not the
sign) of the applied voltage.

Phase shaping. In the simplest configuration of a SLM, the LC molecules are prealigned in
the x-direction, which is identical to the polarization direction of the incoming light. Then the
filter function Bn for each pixel n is

Bn = exp [i∆Φ(Un)] , (2.25)

Un being the voltage applied to pixel n. The mask acts as a phase retarder (i.e. a pure phase
mask) where the relative phase between the frequencies on the pixels can be adjusted.

Exclusive phase control as achieved with the simple, single-layer LC setup can still be used to
accomplish a number of pulse shaping tasks. For example, using the modulator array to impart
a linear phase sweep onto the spectrum effects a temporal shift in the time domain. This relies
on the fact that if F (t) and F̃ (ω) are a Fourier transform pair, then the delayed signal f(t− τ)
is the Fourier transform of F̃ (ω) exp(2iωτ). The delay τ is given by the relation

τ = − δΦ

2πδf
(2.26)

where δΦ and δf are, respectively, the imposed phase change per pixel and the change in optical
frequency from one pixel to the next. As pixelated LC arrays can be programmed to provide
the desired phase function modulo 2π, large phase sweeps can be achieved even though the
maximum phase change can be as small as 2π. However, in the case of any smoothly varying
target phase function, as here, the phase change from one pixel to the next should remain small,
such that the staircase phase pattern, generated by the discretely structured LC, represents a
reasonably good approximation of the desired phase function.

Phase-only control can also be used to achieve programmable compression of chirped optical
pulses [63, 65, 71, 77–79]. The shaper can be used to apply a spectral phase function which is
equal and opposite to the residual phase variation of the pulse to be compressed (see chapter
5 Pulse compression). Pulse shapers with LC arrays have e.g. been used for compensation of
residual dispersion in chirped pulse amplifier systems [62, 80] and for adaptive compression of
chirped pulses.

Amplitude shaping In another possible setup the LC axis is prealigned at 45◦ with respect
to the polarization. For x-polarized incoming light, the filter function for pixel n then becomes

Bn = exp

[

i
∆Φ(Un)

2

]{

êx cos

[

∆Φ(Un)

2

]

+ iêy sin

[

∆Φ(Un)

2

]}

. (2.27)

The LC filter now creates elliptically polarized light. With an additional polarizer behind the
pixels which is crossed to the polarization of the incident light, an amplitude modulation results:

T (Un) = |Bn|2 (2.28)
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with

Bn = exp

[

i
∆Φ(Un)

2

] {

sin

[

∆Φ(Un)

2

]}

. (2.29)

With this setup, an accurate phase versus voltage calibration can be obtained which is manda-
tory if an LC SLM is used for phase control. The array is used as an amplitude modulator
for a continuous-wave (cw) laser. The laser is focused onto a single pixel of the multi-element
modulator. Phase calibration is then obtained by measuring the voltage dependence of the
transmission through the second crossed polarizer. Equation 2.29 shows that amplitude opera-
tion of a single SLM always involves an attenuation-dependent phase variation. Amplitude and
phase modulation are not mutually independent which is obvious since of the two parameters to
adjust for each pixel (phase and attenuation), only one (voltage Un) is accessible. Independent
phase and amplitude modulation thus presupposes two LC SLMs.
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Figure 2.5: Setup for a dual LC-SLM

Phase and amplitude shaping Independent phase and amplitude modulation is achieved
by combining two LC arrays into a single device, as shown in Figs. 2.4 and 2.5 [55]. With the
propagation direction denoted z and the second transverse direction denoted y, the long axes
of the liquid crystal molecules in the two SLMs are aligned at ± 45◦ with respect to the x axis.
When a voltage is applied to one pixel in one of the two SLM layers, the liquid crystal molecules
are rotated toward z, which results in a phase modulation for the component of light parallel to
the liquid crystal axis in that SLM layer. For x-polarized light incident on a particular pixel n,
the filter function is given by
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[
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Figure 2.6: Cross-correlation measurements of a four-pulse sequence as generated by amplitude-and
phase shaping. The amplitude of the third pulse at delay ≈ 600fs is scanned while the other pulses are
kept unaltered. A good agreement between experiment (open circles) and theory (solid line) is observed.
The time-zero feature as well as one replica is clearly visible. From [60].

where ∆Φ1
n(U

1
n) and ∆Φ

2
n(U

2
n) are the voltage dependent birefringences of respective LC array

layers, respectively. If the output polarizer is oriented along x, the output phase and attenuation
can be set independently by controlling ∆Φ1

n +∆Φ
2
n and ∆Φ

1
n −∆Φ2

n, respectively:
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(2.31)

In this case neither mask acts as a phase or amplitude mask alone, but rather the two combined
masks act together. Two parameters (T, φ) can be controlled for each pixel, since two parameters,
U1 and U2 are accessible. The relation between these quantities is given by

Tn(U
1
n, U

2
n) = |Bn|2 = cos2

[

1

2
(∆Φ1

n(U
1
n)−∆Φ2

n(U
2
n))

]

(2.32)

φ(U1
n, U

2
n) = argBn =

1

2
(∆Φ1

n(U
1
n) + ∆Φ

2
n(U

2
n)) (2.33)

Pure phase shaping can now be obtained by setting (U1
n, U

2
n) such that ∆Φ

1
n(U

1
n)−∆Φ2

n(U
2
n) = 1.

Pure amplitude shaping is effected by setting (U1
n, U

2
n) such that ∆Φ

1
n(U

1
n)+∆Φ

2
n(U

2
n) = 0. Note

that each LC array in the dual SLM must be calibrated by measuring its amplitude modulation
response as a function of voltage, with the other LC array held at constant voltage. Fig. 2.6
shows the generation of a four-pulse sequence as obtained by amplitude and phase shaping with
a 2× 128 SLM. The transmission and phase coefficients for each pixel were chosen as described
at the end of section 2.3.2 with a simplified version of Eq. 2.19.
Pulse shaping using an optically addressed LC SLM has recently been reported [81]. This
approach avoids pixelation of the SLM, and thus circumvents the side-effects described in section
2.3.2. Another promising extension of pulse shaping is femtosecond polarization pulse shaping
[82].



28 2. FEMTOSECOND PULSE SHAPING

2.5 The high resolution femtosecond pulse shaping device

As shown in section 2, the complexity of the shaped pulses depends on the number of pixels of
the LC mask. In order to increase the shaping complexity, a novel liquid crystal display with
640 stripes has been successfully implemented. In contrast to previously used devices, the large
active area allows for operation in high power laser systems. In this section, the new shaping
apparatus is presented and its implementation for femtosecond pulse shaping is described [83].
With the increased number of pixels the manifold of accessible pulse modulations exceeds that
of previous devices, which is especially important for sub-20 fs pulses [65].

2.5.1 Advantages of a SLM with 640 pixels

Section 2.3.2 reveals the fact that possible modulations are limited by LC-SLMs consisting of
discrete stripes parallel to each other. A number of recent applications have shown that the
128 pixels used by most standard devices are not sufficient. In this section, a novel LC-SLM
that has 640 stripes and a 12 bit resolution is reported. Combined with an all-reflective zero
dispersion compressor it overcomes two major problems of standard devices. First, due to the
large active area it is suitable for shaping high power laser pulses. Second, it allows for the first
time the generation of waveforms that were not accessible before using LCDs, but are required
by optimal control theory in order to control quantum systems. The experimental setup of this
device is discussed, the capabilities are demonstrated, and the limits of the device are explored.

2.5.2 Experimental setup

The main components of the experimental apparatus are shown in Fig. 2.7. A Ti:Sa laser system
(Coherent Vitesse / Quantronix / Positive Light ODIN) operated at a repetition rate of 1 kHz
and a center wavelength of 804 nm serves as source for the ultrashort pulses. The pulse energy is
1 mJ, the spectral FWHM 24 nm, and the temporal FWHM 50 fs (assuming a Gaussian intensity
profile). The pulses traverse a zero dispersion compressor and are subsequently characterized by
a multi-shot FROG [84], see also appendix B, based on second harmonic generation. The SHG
spectra are recorded by a CCD array having a 16 bit resolution. The design of the reflective
zero dispersion compressor has been optimized (using ZEMAX 9.0) for minimum phase-front
distortion of the output pulses.

The novel LCD (SLM-S 640/12) has 640 individual stripes (pixels), the area of each single stripe
is 97 µm×10 mm and the gap between two stripes is 3 µm. At a wavelength of 800 nm the
thickness of the liquid crystal cell allows a maximum phase shift of 6π (zero voltage). The average
aligning time of the liquid crystals in the operating range between 0.25π and 2.25π is about
25 ms. The liquid crystals are aligned such that spectral components polarized perpendicular
to the stripes may be retarded. Therefore, the LCD is perfectly matched to the high reflection
efficiency for p-polarized light of the gratings in the visible and NIR spectral region. The two
outer surfaces of the LCD have an antireflection coating and the LCD has a transmission of
95% in the wavelength range from 450 to 1500 nm. The damage threshold was measured to be
300 GW/cm2 ( 800 nm, 45 fs). At higher energies the structured polyimide layer of the LCD is
damaged. The phase retardance at three different wavelengths of the LCD has been carefully
measured and is shown in figure 2.8.

The two cylindrical mirrors have a focal length of 300 mm. Two 1800 lines/mm silver coated
gratings offer the possibility to shape a spectral range of 96 nm at 810 nm with an average
spectral resolution of 0.15 nm/pixel. Even for a pulse energy of 1 mJ the intensity impinging
on the LCD mask in this pulse shaping setup is only about 5 MW/cm2 and, therefore, well
below the damage threshold. The pulse width impinging on one pixel was approximated by a
Gaussian pulse having a spectral FWHM of 0.15 nm. The relatively low intensity per pixel is
a direct consequence of the large area which is covered by the dispersed spectrum. The overall
transmission through the pulse shaper was measured to be 60% and is mainly determined by
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Figure 2.7: Sketch of the fs pulse shaping apparatus: (a) top view, (b) side view. The spectral phase of
a laser pulse is manipulated in a 4-f arrangement with the novel LC-SLM in the Fourier plane. The 4f-
arrangement presented here is a further development from that of section 5 which features the advantages
of the dispersion-free all-reflective setup and concurrently avoids its disadvantage of imaging aberrations
caused by the off-axis operation of the focusing mirrors, as depicted in Fig. 5.1. G: silver coated gratings
(1800 lines/mm); F: cylindrical mirror f = 300 mm; LC: SLM-S 640/12), M: folding mirrors.

the reflectivity of the gratings. Since no polarization filters are used the device is operated as a
phase-only shaper.

2.5.3 Results and discussion

Since phase-only linear spectral filtering is used, the electric field of the emerging pulse is

Eout(ω) = Ein(ω) exp[−iΦ(ω)] (2.34)

where the phase Φ(ω) has a constant value between 0 and 2π in the range [ωj , ωj + ∆ω] and
j ε [1 . . . 640]. The frequency range ∆ω that is covered by one pixel is related to the spectral
resolution of the gratings, the focal length of the focusing optics, and the beam diameter. The
discrete nature of the phase modulation is inherent to the LCD mask and limits the accessible
phase modulations where the limit is set by Nyquist’s theorem [85]. In other words, the steepest
slope of any applied phase function must not exceed π across one pixel (∆ω). For exactly this
reason it is desirable to have as many pixels on the LCD as possible. On the other hand, the
possibility of wrapping the phase increases the dynamical range [81], since it allows application
of phase patterns modulo 2π. Technical restrictions have until now limited the number of pixels
to 128. With the new LCD described here it is possible to access phase modulations with a
widely increased variability. In order to test the novel mask and to demonstrate the enhanced
performance we have performed a number of pulse shaping experiments. In each experiment a
specific type of modulation up to the corresponding Nyquist limit was applied to the mask in
order to define the maximum working range of the device.

First, a FROG trace of the unshaped laser pulse was recorded. A reconstruction of the electric
field shows that the pulse has no second but some residual third order phase. Applying a linearly
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Figure 2.8: Phase retardance of the LCD as a function of the applied voltage for three different wave-
lengths.

increasing or decreasing phase allows one to shift the original pulse in time. For a spectral
resolution of ∆λ = 0.15 nm/pixel the Nyquist limit for a purely linear phase is Φ1 = ±7187 fs:

Φ1 =
λ2

0

2c∆λ
(2.35)

where c is the speed of light and λ0 the center wavelength of the laser pulse. As expected, for
even larger linear phase modulations the original pulse structure is heavily distorted indicating
that the Nyquist theorem is violated. Nevertheless, the accessible delay range is about 14 ps
with a resolution of 7 fs. This makes the pulse shaper a valuable delay generator for pump-probe
experiments with all the additional features of simultaneous pulse shaping.
Next, a purely quadratic phase modulation was applied to the LCD. The theoretical Nyquist
limit amounts to Φ2 = ±102766 fs2:

Φ2 =
λ4

0

Nπc2∆λ2
(2.36)

where N is the number of pixels. For this value the phase jump at the outer two pixels exceeds
π. In order to produce a measurable effect, however, the Nyquist limit becomes important
only at much higher quadratic phase modulations since it must be violated in a region of the
LCD where the spectral intensity is non-zero. If the Nyquist limit is violated the temporal
width of the pulses remains almost constant although the second order phase modulation is
further increased. The experimental findings were in excellent agreement with the theoretical
predictions [86]. Assuming a bandwidth limited input pulse with a spectral width of 24 nm, the
present pulse shaping device allows one to stretch the original pulse from 51 fs to about 7 ps
without any measurable distortions.
The last series of experiments deals with the generation of pulse trains by applying a sinusoidal
phase pattern to the LCD. The periodicity of the pattern has been varied and the emerging pulses
were again analyzed by the FROG setup. Figs. 2.9 show a series of FROG traces for different
sinusoidal phase patterns. Note that in all cases the true replica of the original pulse (Fig. 2.9a)
remain bandwidth limited. In the case of a low frequency (Fig. 2.9b) it is clearly evident that
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the phase-only shaper shifts different portions of the spectrum in time corresponding to the
applied spectral phase. If the frequency approaches the Nyquist limit, ghost replica appear in
the FROG trace. As the frequency is further increased (Fig. 2.9d and e) the ghosts become
more and more pronounced and move in the opposite direction as compared to the true pulse
replica.
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Figure 2.9: Sinusoidal phase modulations with variable spectral periodicity demonstrating the large dy-
namical range of the LCD: a) bandwidth limited input pulse, b) 250 PHz−1, c) 500 PHz−1, d) 6000 PHz−1,
e) 8000 PHz−1.

Due to the nonlinear dispersion of the grating the spectral resolution is a function of the pixel
position on the LCD and must not be assumed to be constant [87]. This effect becomes even
more pronounced as the active area and the number of pixels of the LCD increases. Fig. 2.10
shows two FROG traces where a sinusoidal phase modulation with a period of 1000 PHz−1 was
applied to the LCD. Calculating the proper position of each wavelength on the LCD leads to pre-
and post-pulses which are true replica of the original pulse (Fig. 2.10a). However, the replica
become artificially phase-modulated (Fig. 2.10) if the spectral resolution is fixed to the average
value of 0.15 nm/pixel. A fixed spectral resolution results in a sinusoidal phase modulation with
the periodicity being a function of the wavelength (pixel position). Therefore, the periodicity in
time is no longer constant for all wavelengths, a fact that is readily observed in Fig. 2.10b). As
a consequence, the pulse replica broaden in time with increasing delay time.

2.6 Alternative pulse shaping methods

2.6.1 Pulse shaping with AOMs

Programmable pulse shaping based on the use of an acousto-optic modulator has been developed
by Warren and co-workers [88–91]. The apparatus is depicted in Fig. 2.11. The AOM crystal,
typically TeO2, is driven by a rf voltage signal, which induces a traveling acoustic wave in
a piezoelectric transducer. The density wave travels across the modulator with velocity vac,
giving rise to a refractive index grating via the photoelastic effect. The grating period Λ is
given by vac/ν, where ν is the rf drive frequency. The grating may induce phase, amplitude,
or frequency modulation through the use of a correspondingly modulated rf drive waveform.
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Figure 2.10: Influence of the nonlinear grating dispersion on the modulated output pulse: a) Sinusoidal
phase modulation with spectral periodicity of 1000 PHz−1 taking into account the nonlinear grating
dispersion and b) assuming an equally spaced wavelength pattern of 0.15 nm/pixel.

When the spatially dispersed frequency components diffract off the grating, the spectrum is
modified according to the grating spatial modulation function. This results in the desired Fourier
transform pulse shaping operation. Ideally the spatial grating s(x) is related to the input voltage
v(t) through s(x) ∼ v(x/vac). In practice there are a number of mechanisms which impair this
ideal relationship.

In the following some of the typical operating characteristics of AOMs used for pulse shaping
are briefly described. Further details are given in Refs. [88] and [90].

• The time for the acoustic wave to move across the modulator aperture la is to = la/vac.
This aperture time determines how fast a specific spatial pattern can be loaded into the
device. For TeO2 the aperture time is between 1.2 and 10 µs [88, 89].

• The acoustic grating pattern propagates across the modulator. Although the grating
appears frozen during readout by a single femtosecond or picosecond pulse, the pattern
can shift significantly during the time elapsed between consecutive pulses. Therefore,
the AOM technique cannot in general be used in conjunction with high repetition rate
laser sources, since the pulse shape would change from pulse to pulse. This limitation is
irrelevant for amplified ultrafast laser systems, which usually have a pulse repetition rate
slower than the acoustic aperture time: This allows the acoustic pattern to be refreshed
before, and synchronized to, each amplifier pulse. Hence, AOM pulse shaping is usually
restricted to applications involving femtosecond amplifier systems.

• The number of independent acoustic features which can be stored within the full aperture
of the AOM provides an upper limit to the pulse shaping complexity. The number of
independent ”pixels” of resolution available is proportional to Neff ∆νto = ∆νla/vac,
where ∆ν is the modulation bandwidth of the AOM, and ∆νto the AOM time-bandwidth
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Figure 2.11: AOM pulse shaper.

product. An appropriate AOM is able to imprint up to nearly a thousand independent
features onto the spectrum, provided that the 4f-configuration has sufficient resolution.

2.6.2 Pulse shaping with deformable mirrors

An intuitive technique to produce shaped pulses makes use of micro-machined membrane de-
formable mirrors (MMDMs) in a grating compressor. Basically, the design is comparable to that
of Fig. 2.1, the only difference being that only one grating and one lens (or focusing mirror)
is used. A highly reflective coated membrane which is supported by an ensemble of 10 to 20
piezo-electric actuators is placed in the Fourier plane. This mirror reflects all frequency compo-
nents back onto the grating, and the output pulse is identical to the input pulse as long as the
membrane is planar. When the actuators enforce a slight curvature of the membrane, the rela-
tive phase of each frequency component is changed proportionally to the path length difference
induced by the deformation of the membrane. MMDMs can also be used in a prism compressor.
The phase induced by the MMDM then adds to the chirp induced by the compressor.

Obviously, these devices can only be used for phase modulation. The operating wavelength
range is limited only by the availability of gratings and reflective coatings for the particular
region. The modulation depth is given by the maximal translation of the actuators which is
on the order of several µm, or, equivalently, several π phase modulations. Since the phase
modulation is inherently smooth – the membrane itself acts as a smoothing element due to its
stiffness – pixelation effects are absent. Nevertheless, this also means the phase function cannot
be wrapped into the interval [0, 2π] so that, in contrast to SLMs, the total modulation depth
over the complete aperture amounts to only several π. Thus, merely a residual phase can be
removed with MMDMs, which is the main application of these devices [64, 92–94].

2.6.3 Comparison of LC, AOM, and MMDM

Table 2.1 compiles the crucial characteristics of LC, AOM, and MMDM pulse shaping technology
(for LC technology, the specifications of the CRI mask are used here). Each of the pulse shaping
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approaches has its own specific merits, and an intelligent choice for a specific experiment must
balance a number of trade-offs depending on its most important requirements.

LCM AOM MMDM

Pulse width Tested down to 13 fs.
No obvious factors lim-
iting the extension to
shorter pulses.

Studied most exten-
sively on the 100 fs time
scale. Several factors
are expected to make
the AOM approach
more difficult for much
shorter pulses.

Tested down to 7fs. No
obvious factors limiting
the extension to shorter
pulses.

Programming

time

Determined by the liq-
uid crystal medium re-
sponse, typically on the
order of several 10 ms.

Determined by the
acoustic aperture time,
which is on the order of
µs.

Determined by the me-
chanical response of the
membrane. On the or-
der of several ms.

Pulse repeti-

tion rate

Any repetition rate. Pulse repetition rates
must be slower than the
acoustic aperture time.
Not applicable to mode-
locked systems.

Any repetition rate.

Modulation

format

Independent, gray-level
spectral amplitude and
phase control.

Independent, gray-level
spectral amplitude and
phase control.

Continuous spectral
phase control.

Pulse shap-

ing complex-

ity

Limited by the number
of pixels. Current LC
arrays: 128 and 640 pix-
els.

Of order 1000 with com-
mercially available de-
vices

Limited by the low
number of actuators
(10-20).

Efficiency Transmissions ap-
proaching 100%.

10-15%, limited to low
diffraction efficiency by
acoustic nonlinearities.

Reflections approaching
100%.

Fidelity Pixelated nature of the
modulator can lead to
temporal sidelobes for
spectral patterns which
vary too rapidly from
one pixel to the next.

Under appropriate con-
ditions very high qual-
ity waveforms have been
demonstrated.

High quality waveforms
because of inherently
smooth phase functions.

Damage

threshold

Low when built-in sheet
polarizers are used.
Medium without sheet
polarizers.

High High

Table 2.1: Comparison of LCMs, AOMs, and MMDMs. Pulse shaping complexity is usually defined as
the number of independent features which may be placed onto the spectrum.
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Amplification of tailored white light

continuum

For the achievement of further progress in controlling quantum phenomena, the development of
techniques to produce high intensity shaped pulses in wavelength regimes other than those of
Ti:Sa lasers will be crucial. Control of vibrationally mediated chemical reactions, for example,
which proceed on the ground state potential energy surface (PES), may be achieved with shaped
infrared (2-10µm) wavelength pulses. Control of photochemical reactions, which in contrast oc-
cur on the excited PES, typically requires shaped UV pulses. Shaped pulses in these wavelength
regimes have been produced recently [95–98]. Many biomolecules, which are prime candidates
for coherent control studies [99] possess a broad absorption spectrum in the visible (VIS). In
this wavelength regime, shaped pulses have been obtained mainly via the conventional approach
of frequency conversion followed by pulse shaping [65]. Nevertheless, the power losses induced
by frequency conversion combined with the limited efficiency of pulse shapers often precludes
experiments which require high power ultrashort pulses. One obvious solution to this restriction
is to carry out amplification after the shaping process [100, 101]. The crucial point is whether
the characteristics of the shaped pulses survive the amplification process. We show that this
is indeed the case and that, with our apparatus, pulse features which have been previously
challenging can be generated easily [100,102].

These results directly impact the realization of experiments which have been suggested by results
of optimal control theory (OCT) [103]. For the control of various molecular systems, OCT
predicts ultrashort broadband electrical fields following the Tannor-Rice pump-dump scheme [6]
which typically incorporates two pulses with different frequencies: the first pulse (pump) excites
the system to an excited state, the second pulse (dump) is suitably delayed to exploit the
temporal evolution in the excited state and transfers population to a target state. Numerical
simulations reveal that for selected systems not only the delay, but also the relative carrier phase
difference influences the degree of control [104].

Electric fields with these attributes cannot be produced easily with the conventional approach
of two independent laser sources, since path length fluctuations make it difficult to maintain a
fixed phase between the pulses. Phase-locked double pulses of identical wavelength have been
obtained with a pulse shaper [16,55,105] or a stabilized Michelson interferometer [106]. It should
be noted that with the Michelson setup, the phase is controlled via the delay; therefore, delay
and relative carrier phase cannot be set independently. Phase synchronization of two Ti:Sa
oscillators of several nJ pulse energy has been reported recently [107]. Nevertheless, the most
feasible approach to date for obtaining two-color pulses in the VIS with µJ energies is amplitude
and phase shaping of frequency-converted amplified Ti:Sa pulses. Since amplitude modulation
involves significant losses, a second amplification stage must follow the shaping.

As an extension of the results presented in Ref. [100], wherein we reported amplitude and phase
transfer during an optical parametric amplification process in a mixing crystal and demonstrated
inherently phase-locked two-colour double pulses, we here show that chirp can be imposed on the
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sub-pulses and that even more complex pulse structures can be generated. The scheme based
on the broadband amplification of a shaped white light continuum (WLC) in a non-collinear
beam geometry [38] is presented in detail.

3.1 Experiment

Fig. 3.1 shows the experimental setup. The WLC is produced in a 2mm sapphire plate from a
small fraction of the fundamental pulse of a commercial Ti:Sa laser system (812nm, 100fs, 300
µJ, 1kHz). The pulse shaper to modify the WLC is based on a standard 4f-setup [56, 65] with
f=150mm cylindrical mirrors [62] and 1/d=600/mm gratings. The liquid crystal (LC) mask
(CRI SLM 256) consists of a stack of two arrays of N = 128 pixels mounted between two sheet
polarizers which can independently influence attenuation and phase of the incident spectrum.
The accepted bandwidth of this shaper is ≈ 110nm which is below the bandwidth of the WLC
and the amplification bandwidth of the noncollinear mixing process. The grating dispersion has
been chosen to achieve a good compromise between spectral resolution and bandwidth. Raising
the bandwidth with a smaller dispersion would reduce the spectral resolution and thus sacrifice
modulation fidelity. An LC mask with more stripes can avoid this bottleneck [83]. The pulses
are characterized with a multishot SHG FROG (BBO, 10µm). The beam splitters used in
the FROG setup are Cr coated 1mm fused silica (FS) wedges which assure a constant (30/30)
splitting ratio over the entire wavelength range between 300nm and 1100nm. The voltages
applied to each pixel are corrected for the wavelength dependence of the phase shift. This
correction is crucial for minimizing the leakage of the WLC through the LCM pixels which
would give rise to the amplification of undesired spectral components.
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Figure 3.1: (a) WLC generation, (b) pulse shaper, 1/d=600/mm gratings, f=150mm cylindrical mirrors,
CRI phase and amplitude mask with 2×128 pixels (c) amplification unit, BBO1: SHG 800nm → 400nm,
BBO2: frequency mixing, FS: 15mm fused silica rod, (d) prism compressor. FROG: frequency-resolved
optical gating.

To achieve the large amplification bandwidth vital for the effective transfer of all components of
the tailored WLC, a non-collinear mixing process is used [108]. The shapedWLC is amplified in a
2mm BBO crystal pumped by the frequency-doubled Ti:Sa pulses. The angle between pump and
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shaped seed is set to satisfy the condition for ultrabroad amplification bandwidth [38,108–110].
The pump pulses are temporally stretched with a 15mm fused silica rod to ensure temporal
overlap with the shaped, elongated seed pulses. This method obviates mechanical readjustments
of the delay during operation. A fused silica prism compressor behind the amplification stage
cancels the linear chirp of the WLC produced in the sapphire plate. It is adjusted for minimum
output pulse length at a wavelength corresponding to the central mask wavelength. Tuning
the transmitted center frequency either to the red or the blue results in a pulse lengthening in
either direction owing to the imperfect phase elimination by the prism compressor over the entire
tuning range. In principle, the shaper could be adjusted to produce a negatively pre-chirped
WLC, which would make the prism compressor unnecessary.
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Figure 3.2: Amplitude (solid curve) and phase (dashed line) functions for the special case K = 2 in
eq. 3.2 imposed onto the WLC. The phase functions are defined within each transmission window.

Spectral and temporal properties of the output pulses are controlled by applying suitable am-
plitude and phase functions to the LC mask. Our approach to control the spectrum of the
output pulses rests upon use of the mask transmission function T (i) (i being the pixel number),
which consists of K Gaussian windows with a FWHM of wk centered at pixels ik. The center
of the window ik and its width wk determine the frequency components that are subsequently
amplified. The mask phase function Φk(i) for each amplitude window is represented by a second
order polynomial. Its linear term, for example, corresponds to a time shift and controls the
delay between the individual output pulses:

T (i) =
K

∑

k=1

exp

[

−
(

i− ik
wk

)2
]

(3.1)

Φk(i) = ck(i− ik)2 +mk(i− ik) + φk (3.2)

The polynomials Φk(i) are defined within intervals between the arithmetic mean values (ik−1 +
ik)/2 and (ik + ik+1)/2 of two adjacent centers of amplitude windows k and k + 1 with i0 = 0
and iK+1 = N = 128. A graphical illustration of Eq. 3.2 is given in Fig. 3.2.
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Figure 3.3: (a) Single spectra produced by scanning the center ik of a single transmission window
(i1 = 10, 30, . . . , 110, from bottom to top). (b) Triple spectra generated by three windows, scanning
the middle window (i2 = 40, 60, 80, from bottom to top, corresponding to peak wavelengths of 595nm,
612nm, and 627nm).

3.2 Phase and amplitude transfer

Spectra

Fig. 3.3a shows the output spectra after amplification for different centers i1 (K = 1 in Eq. 3.2)
of a single transmission window. The expected direct dependence of the observed central wave-
length on the center pixel of the transmission window is obvious. For amplified wavelengths
corresponding to values of i1 near 0 or 128, residual signal is observed which is due to leakage
through the transmitting gaps of the mask and the limited contrast of the sheet polarizers.
In Fig. 3.3b triple peak spectra using three amplitude windows (K = 3) have been generated
where the middle window has been scanned, showing that the spectral shape of the white light
is transferred. The adjustment of the output central wavelength via amplitude filtering has the
advantage that undesired frequency components are mostly suppressed already in the WLC, i.e.
before amplification, resulting in output pulses which are smooth by construction. The spectral
width of the output can be easily tuned via the parameter wk, which is useful for experiments
that require simultaneous temporal and spectral resolution. Amplitude shaping of the WLC is
also possible with a slit in the Fourier plane instead of the liquid crystal mask; this technique is
already useful for the wavelength tuning of non-collinear optical parametric amplifiers.

Two-color double pulses

The temporal properties of the output pulses are influenced via the phase. A dual pulse spec-
trum which peaks at 588nm and 647nm is generated with two amplitude windows (K = 2 in
Eq. 3.2). A temporal delay between these two frequency components is introduced by applying
linear phase functions with differing slopes mi. Fig 3.4 explains the formation of the particular
form of these FROG traces. Fig. 3.5 shows the corresponding FROG traces and the retrieved
temporal intensities (below 40fs FWHM for each sub-pulse in all cases) for slope differences
(Eq. 3.2) |m1 −m2| = 0 (a), 0.3 (b), and 0.75 (c) rad/pixel. A beating period of 20fs (Fig. 3.5a)
is in good agreement with the theoretically expected value for a spectral interference at the
above mentioned wavelengths. The observed temporal separation is 82fs (Fig. 3.5b) and 145fs
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(Fig. 3.5c), respectively.

��

��
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1
�
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Figure 3.4: Formation of the FROG traces as observed in Fig. 3.5. A two-colour double pulse with, for
instance, a red (ω1) and a green (ω2) sub-pulse and a mutual delay τ is assumed. In the FROG setup,
two replica of the double pulse are produced and correlated with a delay t in the crystal. For a delay of
t = −τ of these replica, only the red part of the first pulse and the green part of the second pulse overlap
and thus are correlated, leading to a signal at frequency ω1 + ω2 as can be observed in the FROG traces
for negative delays. For a delay t = 0, each color of the double pulse is mixed with its corresponding
counterpart, leading to a double peak signal at 2ω1 and 2ω2. For t = +τ , the green part of the first pulse
and the red part of the second pulse again produce a signal at ω1 + ω2.

The maximum delay achievable with this setup amounts to about 160fs and is limited by the
temporal overlap between seed and pump. This delay time may be extended by further stretch-
ing the pump pulse. The ultimate limit is given by the maximal linear phase function which
can be produced by the mask without violating the Nyquist theorem [55, 65, 83] (≈1ps). The
generalization to pulse sequences with three or more pulses is straightforward.
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Figure 3.5: Experimental FROG traces (upper) and retrieved temporal intensities (lower) for two-color
pulses (588nm, 647nm) and |m1 −m2| = 0 (a,d), 0.3 (b,e), and 0.75 (c,f) rad/pixel in eq. 3.2.
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Control of phase transfer
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(a) (�) Reconstructed spectral phase (a) and in-
tensity (b) for a π phase step (φ1 = 0, φ2 = π in
eq.2) introduced onto one part of the spectrum .
(�) reference pulse with φ1 = φ2 = 0.
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(b) Reconstructed temporal field. The beating
structure shifts by π as a π phase jump is imposed
onto one part of the spectrum.

Figure 3.6: Transfer of phase functions during the amplification process: π phase jump

The phase intentionally imposed onto the WLC in the shaper adds to the linear chirp carried
over from the WLC generation process. Since the prism compressor mainly cancels the linear
chirp produced by the optical components in the beam path, the phase function introduced by
the shaper remains. The conservation of the phase function of the WLC during the amplification
process is thus crucial for the generation of modulated pulses and provides control of the relative
phase between the single pulses. This has been verified by generating a two-color double pulse
(588nm, 647nm) with a temporal overlap between both sub-pulses. Fig. 3.6(a) shows the spectral
amplitude and phase retrieved from FROG traces taken with and without a π phase shift between
the two spectral components. This phase shift has no effect on the spectrum. A phase step of
∆φ ≈ 3.34 was retrieved, in good agreement with the expected value, showing that the phase
between the two pulses is locked and can indeed be controlled. This result is further evidenced
in Fig. 3.6(b), which shows a shift of π in the beating structure when the π phase step is imposed
onto one part of the spectrum.

An important application of amplified chirped pulses involves experiments following the Tannor-
Rice scheme, wherein specific excitation of the system or the focusing of a wave packet within the
molecular system is achieved via the chirp. To investigate the chirp transfer during amplification,
a double peak spectrum with temporal overlap of the sub-pulses was again generated. A slight
chirp (c1 = +0.01 in Eq. 3.2) was imposed onto the red part of the spectrum. Phase conservation
as demonstrated above should then permit chirped output pulses. This should cause a temporal
elongation of the red sub-pulse as observed in Fig. 3.7(a) (without the chirp, both subpulses have
approximately equal duration). Furthermore, the frequency of the SFM signal (red sub-spectrum
plus blue sub-spectrum) should vary in time. Indeed, this is observed in Fig. 3.7(a) in the
frequency curvature of the interference structure. The interference period of the reconstructed
temporal intensity steadily decreases from ≈35fs to ≈20fs as seen in Fig. 3.7(b), which is again
the expected behavior. If the sign of the chirp is opposite to that chosen in Fig. 3.7(a), the
direction of the curvature of the SFM interference structure changes as expected, i.e. instead of
pointing downwards, the curvature is directed upwards in the FROG trace. This demonstration
of phase and, more significantly, chirp transfer during a parametric amplification process offers
a means of cancelling high order chirps while avoiding shaping losses.

As a last example, Fig. 3.8(a) illustrates the generation of complex pulse structures. Here, a
sinosoidal phase pattern Φ(i) = sin(c i), i being the pixel number, was imposed onto the WLC,
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(a) FROG trace of a double pulse with one chirped
sub-pulse. A quadratic phase function (c1 =
+0.01 in Eq. 3.2) was imposed onto the red part
of the spectrum.
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(b) Reconstructed temporal field. The beating pe-
riod steadily decreases from ≈35fs to ≈20fs.

Figure 3.7: Transfer of phase functions during the amplification process: Linear chirp
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(a) FROG trace of a complex multiple pulse struc-
ture
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(b) Reconstructed temporal field

Figure 3.8: Generation of complex modulated pulses with sinosoidal phase functions.

giving rise to a spectrally modulated multiple pulse structure as shown in Fig. 3.8(b).

3.3 Summary

Amplification of a shaped white light continuum permits the generation of complex spectra
over a broad tuning range of 75nm owing to the wide amplification bandwidth of the non-
collinear mixing process. Two-color phase-locked fs double pulses with adjustable delay, central
frequency and carrier phase have been demonstrated. The transfer of chirp, as well as the
controlled generation of highly complex multiple pulse structures, was demonstrated.
The suppression of undesired frequencies in the WLC facilitates the generation of smooth and
stable spectra and prevents energy flow into unwanted spectral components, in particular the
residual fundamental of the WLC. Since shaping takes place prior to amplification, phase and am-
plitude shaped pulses of several µJ are obtained. The scheme is especially suitable for feedback-
controlled coherent control studies [10, 111] because the pulse characteristics are tuned purely
electronically within a few milliseconds.
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4

Evolutionary algorithms for coherent

control

Of critical importance in the concept of feedback controlled experiments is a reliable optimization
algorithm which searches for the global optimum in a multidimensional parameter space. The
algorithms typically used for these experiments are termed evolutionary as they mimic the
process of biological evolution [112, 113]. Minimizing the data acquisition time in complicated
control experiments, which may be running stably for only a short time, is essential. Therefore,
an efficient algorithm is highly desirable.
This last section of the technical part closes the feedback loop. It explains the implementation
of evolutionary strategies for femtosecond pulse shaping and studies their performance (i.e.
finding the global optimum, fast convergence) under different optimization conditions. The
convergence behavior of an evolutionary strategy with respect to the number of free variables,
steering parameters of the algorithm, and noise is exemplified in the subsequent section. The
maximization of the second harmonic (SH) signal of ultrashort pulses [63,65,79] serves as a test
environment. A numerical simulation of this experiment is feasible and allows for comparison of
the simulations with experimental data. In the concluding section of this chapter the influence of
different parameterizations of the shaped pulses on the optimization result is discussed. Several
experiments serve to show that a restriction of the parameter space, i.e. the reduction of the
number of independent variables, facilitates a grasp of the underlying principles of the physical
process which has been optimized, without deteriorating the optimization result [111].

4.1 Evolutionary algorithms

Optimization

Many problems encountered today in science or technology require an optimization of some
merit or objective function, which depends on many variables. It is the purpose of this chapter
to clarify the terminology of this field which will be introduced in an abstract form.
Imagine a situation wherein one must decide between two possibilities (a) and (b), each with
different outcomes. Naturally, one chooses the option which better serves one’s needs, which
means that one optimizes between the two choices. This, obviously, requires a classification of
the solutions, i.e. a scale to judge whether the first or the second solution, (a) or (b), is best.
This scale clearly depends on the choice (a) or (b). In other words, one requires an objective

function or merit function which depends on a set of parameters, in this case only one parameter
x with either x = a or x = b. Because the number of possible outcomes in this example is finite,
a finite number of evaluations of the merit function is sufficient for finding the global optimal
solution.
Optimization entails picking the most expedient of many alternatives. The required scale which
ranks these alternatives is called the objective function or merit function and must depend on a
set of parameters or variables which label the alternatives.
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In particular, optimization of a function f = f(x1, . . . , xN ) involves determination of those
values of the variables x1, . . . , xN for which f assumes its extremum. As long as the number
of permitted values for the variables is finite and still small, it is conceivable to evaluate the
objective function f for every set of the variables and thereby find its global optimum. Usually,
however, this number is large or even infinite which makes the use of this ”brute force attack”
impossible. If f can be expressed analytically, differential calculus can be used to identify the
optimum, provided that the equations to be solved are tractable and have an analytical solution.
If neither of these schemes is applicable, optimization algorithms are generally used. Basically, all
such procedures build on the same ground: Given an arbitrary point (x1, . . . , xN ) in parameter
space, the task is to propose a new point (x′1, . . . , x

′
N ) which produces a result closer to the

optimum. For the special case of N = 2, the merit function may be plotted as a surface versus
the parameter space spanned by the two variables x1, x2. Two generic types of merit functions
are depicted in Fig. 4.1.

Figure 4.1: Simple (left) and complex (right) prototypes of a merit function for the case of minimization.

A distinction is made between one- and multidimensional optimization inasmuch as for a one-
dimensional optimization a recursive bracketing of the optimum is possible. For more than one
parameter, this approach is only feasible in the special case when all variables are decoupled.
As a further complication in the optimization process, the simultaneous optimization of several
objective functions can occur. Beyond that, optimization processes may have to meet constraints
as well.
For all optimization algorithms, the procedure in finding, e.g., the minimum of an objective
function f , starting from a randomly chosen initial point in parameter space, is to try to reach
the bottom of the valley along a path of suitably chosen parameters. Given an arbitrary point
in parameter space, the task of any optimization algorithm is thus to propose a new point which
produces a result closer the optimum, which means to generate and propose a search direction in
parameter space. A diagram which classifies several optimization algorithms according to their
search strategy is shown in Fig. 4.2.
Based on the means of generating the new points in parameter space, all optimization algo-
rithms developed so far can be classified as either deterministic or indeterministic. Determin-
istic schemes operate on the basis of a set of static rules. Starting from some fixed point in
parameter space, they will always follow the same path and eventually arrive at the same re-
sult. Out of the vast number of deterministic methods we will mention only two, the simplex
method [114] and gradient methods [85]. The simplex method calculates a new search point in
an N -dimensional parameter space from a set of (N+1) previously given points (the ”simplex”)
by linear combination of these search points. This method is easy to implement, but rather
slow in terms of number of function calls. Gradient methods (”steepest descent”), as the most
intuitive approach, offer the advantage of enhanced optimization speed under proper conditions,
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Figure 4.2: Different types of optimization strategies, classified by their search direction generators.

but entail two complications: a) they require the computation of directional differentials which
is reasonable only for objective functions which can be expressed analytically. If the objective
function is only known pointwise the calculation of those derivatives becomes time-consuming
and unstable. b) The objective function may have a complex structure with many locally (but
not globally) optimal solutions (see right side of Fig. 4.1), and a steepest-descent method is
very likely to terminate in a sub-optimal solution. To decide whether a global optimum has
been retrieved usually requires starting from various, randomly chosen initial points and ob-
serving whether the algorithm always returns the same final point in parameter space. This
situation is aggravated once noise is added to the merit function [115]. A further problem is
that computation time usually scales nonlinearly with an increasing number of variables to be
optimized.

In the late 1960’s, indeterministic algorithms were proposed which invoked chance in their
search generators. Typical representatives are evolutionary strategies [112] and genetic algo-
rithms [113] as well as simulated annealing methods like the metropolis algorithm [85,116, 117]
or the threshold accepting method [118]. These algorithms are robust against noise [119, 120],
local sub-optimal solutions, and inaccuracy of input and output parameters [121]. Many more
techniques relying on stochastic schemes have also been proposed [122, 123]. In the following,
we will focus on evolutionary strategies.

Concept and implementation

A prototype for an optimization strategy can be found in the evolution of species, through which
organisms have adapted to their environment over the course of millions of years. The picture of
evolution and genetics presented here is grossly simplified and seen rather as a practical working
hypothesis than as the prototype of optimization which is to be duplicated most faithfully.

It is observed that individuals in nature generate more offspring than necessary to ensure the sur-
vival of the species. Descendants and parents differ in certain aspects. Only those descendants
that have adapted to their environment by developing suitable attributes will survive and re-
produce. This process is called selection. A fundamental question now is why descendants differ
from their parents. A major advancement towards an understanding came from the pioneering
work of Watson and Crick who, in 1953, proposed the double helix structure of DNA [124].
The information on the attributes of live beings is represented by the DNA molecule. DNA is
composed of four basic molecules (nucleotides) which are identical except for the nitrogen base
(adenosine and guanine, cytosine and thymine). A triplet of three successive nucleic acids codes
an amino acid, and several amino acids form a protein which is the basic building module of all
live beings. A gene is defined as a section of the DNA which is in charge of coding a protein.
The genetic composition of an individual is called a genotype, whereas the physical appearance
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is called a phenotype.

With this rather coarse toolkit of molecular genetics, the mechanisms which are responsible for
the differences between descendants and their ancestors are identified as changes of the genotype
on a molecular basis, specifically mutation and recombination. Mutation means random changes
in the sequence of nucleic acids, whereas recombination refers to exchange of sections between
two different parent DNA molecules.

0 Initialization;

1 Generate initial population;

2 Repeat

3 Determine fitness of each individual;

4 Select parents;

5 Generate offspring by

6 mutation;

7 recombination;

8 cloning;

9 Construct new population;

10 Until truncation criterion met;

11 Dump results;

12 End.

Table 4.1: Pseudocode for an evolutionary algorithm.

The basic idea of evolutionary algorithms is the attempt to imitate the classical picture of
evolution in a computer code which simulates selection, mutation and recombination within a
feedback-controlled regulation loop. The parameters are stored in a way comparable to the
DNA since, up to a certain degree, the nucleic acids can be regarded as the biological analog
of computer bits. A pseudo-code for a numerical implementation of such a loop which still
uses biological notation is presented in table 4.1. The correspondence between biological and
numerical terms is compiled in table 4.2.

Biology Numeric

Gene Number (float, binary)
DNA, genotype Vector of numbers (Search point in parameter space)
Individual, phenotype Physical consequence of a vector, here: electric field
Population Set of vectors
Fitness Objective function
Selection Choice of vectors for creating new vectors
Generation One loop pass
Mutation Random changes of vector elements
Recombination Exchange of elements between two vectors
Cloning Duplication of a complete vector

Table 4.2: Analogies between biology and evolutionary algorithms

An initial set of vectors is generated either by an educated guess or at random. Each vector
represents one search point in parameter space where the objective function is to be sampled.
In analogy to evolution in nature, each search point is called an individual; the whole set of
candidates is one population. The number of individuals in one population is kept constant.
Algorithms which simulate a varying population size have been proposed [113] but have not
been implemented in our procedures.

At the onset of each iteration loop, the objective function for each search point in parameter



4.1. EVOLUTIONARY ALGORITHMS 47

space is determined, either by numerical calculation or experimentally. In biological terms,
each individual is rated according to its fitness. A merit function which is derived from some
experimental signal need not necessarily depend linearly on this particular signal. An intelligent
(nonlinear) mapping may serve to alter the structure of the merit function such that the search
proceeds in a desired predefined direction.
Selection determines those vectors which will serve as a basis for the next loop iteration. This
process can either be stochastic or deterministic. We apply a deterministic selection rule where
the m vectors which showed best merit values are chosen from the total number P of vectors
while all others are discarded. According to [112], the ratio of m over P should be m/P ≈ 1/7.
The essential step within each iteration is replication, i.e., to generate new search points in
parameter space by means of operators which mirror biological recombination and mutation

processes. Numerical representations of recombination operators combine two parent vectors to
create a new child vector. This pair is picked randomly from those selected in the preceding
step. The vector elements of these parents are mixed following one of the schemes depicted in
Fig. 4.3 and described below. For the sake of clarity, we introduce mathematical notation. A
search point in parameter space is described by an N -dimensional vector x of numbers

xi ∈ R, i = 1, . . . , N. (4.1)

Then one population is a set of P vectors

xj ∈ RN , j = 1, . . . , P. (4.2)

Let M = {x1, . . . ,xm} be the set of vectors with the m best values of the objective function,
the so-called mating pool.
Recombination: Two parent vectors xj′ ,xj′′ ∈ M are chosen with j′ �= j′′. The recombination
schemes are then classified as follows:

a) Single point cross over: Randomly choose an index i′ with 1 ≤ i′ ≤ N . The child vector y
is then

yi =

{

(xj′)i, i ≤ i′
(xj′′)i, i > i′

. (4.3)

b) Two point cross over: Randomly choose indices i′, i′′ with 1 ≤ i′ < i′′ ≤ N . The child
vector y is then

yi =







(xj′)i, 1 ≤ i ≤ i′
(xj′′)i, i′ < i < i′′

(xj′)i, i′′ ≤ i ≤ N
. (4.4)

c) Multiple cross over: Define a random sequence r, ri ∈ {0, 1}, i = 1, . . . , N of length
N with equal probability for 0 and 1: P (0) = P (1) = 0.5. The child vector y is then
constructed by

yi =

{

(xj′)i, ri = 0
(xj′′)i, ri = 1

. (4.5)

d) Intermediate recombination creates a child vector by averaging of two parent vectors:

y =
xj′ + xj′′

2
. (4.6)

Cloning: It is also possible to carry the best vectors of the old generation over to the new one,
which is termed cloning.
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Mutation: The mutation operator stands for a random change of the value of a vector element,
the probability of this change being Pmut. Construct a random sequence r of length N , ri ∈
{0, 1}, i = 1, . . . , N with the probabilities P (1) = Pmut and P (0) = 1− Pmut. The new vector y
is created from its precursor by

yi =

{

xi + σ ·mi, ri = 1
xi, ri = 0

(4.7)

which means that the vector element is changed by a random amount if and only if a ”1” appears
in the random sequence r. This assures that on average the fraction of changed vector elements
is Pmut. Two factors, σ and mi, control the extent of change. Each mi is a random number
with a Gaussian probability distribution centered around zero and of width 1,

P (mi) =
1√
2π
e

−m2
i

2 (4.8)

while σ is the so-called step length which determines the amount of change due to a mutation.
A large σ will lead to new search points which are widely scattered in parameter space. The
proper choice of σ is crucial for convergence speed and final convergence value. One suggestion
is to tie σ to the number of successful applications of the mutation operator in some previous
generation [112]. If, at a given step length σt in generation t, many mutations produce better
fitness values than the vectors from which they have been generated, the algorithm is searching
in a region of parameter space where changes very likely produce better fitness values. If,
on the other hand, many mutated genes fail to produce improvement of the fitness value, the
algorithm is searching in a region of parameter space where changes (at this given step length)
are ineffective. This could indicate that an optimum of the objective has been approached. To
achieve convergence in the former case, the step length may be increased, while in the latter it
must be decreased. Mathematically, this may be expressed as follows: Let

η =
nsuc
ntot

≤ 1 (4.9)

be the ratio of successful individuals created by mutation in generation t − 1, nsuc, to their
overall number, ntot. The step length σt of generation t is then set to be

σt =

{

σt−1 · q η ≤ ηc
σt−1/q, η > ηc,

(4.10)

where 0 ≤ ηc ≤ 1 is a threshold value which determines whether the step length must be
increased or decreased and 0 < q < 1 is a constant, which we call the contraction factor. With
a value for ηc near 1, the algorithm will very likely get trapped in a possible sub-optimal (local)
extremum as the step length tends to steadily decrease. If ηc is small, the step length will
stay wide or even steadily increase. The algorithm may then fail to converge towards good
solutions. Hence, there exists an ”ideal” value for ηc which induces good convergence behavior.
Monitoring the evolution of the step length versus generation seems a convenient criterion to
indicate a contraction of the search in parameter space. The new vectors are assembled to form
a new population which is tested in the next iteration of the loop.
The two classes of evolutionary algorithms, genetic algorithms [113,125] and evolutionary strate-
gies [112], basically differ in their search operators. While the former mainly use recombination
operators, the latter primarily rely on mutation, although algorithms which employ both oper-
ators have been commonly used lately.

4.2 The role of steering parameters

The maximization of the time-integrated SH generation of the output pulses delivered by a
Ti:Sa pumped optical parametric amplifier (OPA) serves to demonstrate the performance of
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Figure 4.3: Different types of operators for generating new vectors. Recombination: (a) multiple cross
over, (b) single-point cross-over, (c) two-point cross over, (d) intermediary recombination. Mutation: (e)

the algorithm under different conditions. SH optimization has been extensively studied [63,
65, 78, 79, 126, 127] and is attractive for several reasons: (a) the experimental realization is
straightforward, (b) it is stable since there are no major noise sources other than the laser, (c)
the physical process is well-understood and can be simulated fairly easily, which facilitates a
comparison between experiment and theory, (d) since only the residual phase function of the
pulses has to be compensated, it is sufficient to apply pure phase shaping.

4.2.1 Experiment

The experiment is sketched in Fig. 4.4. The Ti:Sa fs laser system pumps a collinear-type OPA
which generates pulses at 600nm, ≈ 100fs and ≈ 5µJ. This output is intentionally chirped in
a prism compressor, resulting in a roughly 2-fold pulse length broadening. The pulse shaper
features two 1/d=1800/mm gratings blazed in the VIS and two f=150mm cylindrical lenses. The
overall accepted bandwidth is (d/f)·128·100µm= 47nm and thus exceeds the spectral bandwidth
of the OPA. The CRI phase and amplitude mask is used as liquid crystal device. As the voltages
applied to each pixel to control the phase and transmission can be digitally adjusted between 0
and 4095, the parameter space contains 40962·128 ≈ 10925 points. The 4096 voltages cover a phase
shift range of ≈ 10π. Because a range of only 2π is needed, only about 1000 different voltages
are ultimately required which reduces the parameter space to about 10768 points. Though our
mask may influence both phase and attenuation of the pulses, we used phase-only filtering in this
particular experiment, thereby reducing the number of independent variables by a factor of 2.
Phase filtering does not affect the energy of the pulses passing the shaper. A high SH intensity
corresponds to a high average power density which indicates short pulses. For linear chirps it
can be easily shown analytically that maximum SH intensity unambiguously corresponds to a
Fourier limited pulse.
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Figure 4.4: Setup for the computer-controlled pulse compression.

The frequency-doubled (BBO, 100µm) output pulses are recorded by a photomultiplier tube
(Hamamatsu 1P28) which is protected by a filter (UG-11, 1mm) to block the fundamental.
The PMT signal is integrated by a boxcar system and digitized to serve as feedback for the
algorithm which controls the pixel voltages. The number of generations served as the truncation
criterion. The experiments involved may run stably for only a limited duration of time, on the
order of a few hours. To verify the optimization result, several runs have to be performed and
the algorithm must reach the optimum each time within this period. Therefore, every run was
terminated after 50 generations which took about seven minutes. Each data point represents
one optimization run. After a successful optimization run, the SH intensity typically increased
by a factor of 2.5. The pulse duration (FWHM) decreased by a factor of 2 with respect to the
values observed when all pixels were switched off, as determined with frequency resolved optical
gating (FROG).

4.2.2 Simulation

To simulate the above-described experiment, the SH signal had to be computed. To this end, a
discrete spectrum with a Gaussian amplitude

Ẽ(ωj) = Ã(ωj) exp[iφ̃
ini(ωj)], j = 0, . . . , 127 (4.11)

and a quadratic phase function
φ̃ini(ωj) = c · ω2

j (4.12)

was used to model the input pulse for the shaper. The width of the spectrum was chosen to be
similar to that impinging on the mask pixels in the experiment. Great care was taken that the
chirp parameter c corresponded to experimental observation. The phase function φ̃prop proposed
by the algorithm was applied to yield the output spectrum

Ẽ′(ωj) = Ã(ωj) exp[i(φ̃
ini(ωj) + φ̃

prop(ωj))]. (4.13)
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The temporal profile was reconstructed by discrete inverse Fourier transformation,

E′(tj) = F
−1[Ẽ′(ωj)] = A

′(tj) exp[iφ
′(tj)]. (4.14)

The SH value was calculated assuming the absence of saturation effects and an instantaneous
SH intensity, ISH(tj), proportional to the square of the fundamental intensity. Therefore,

ISH(tj) ∝ I2(tj) ∝
(

∣

∣E′(tj)
∣

∣

2
)2
=

(

A′(tj)
)4
. (4.15)

Since the photomultiplier measures the time integrated SH intensity, the merit function f =
f(φprop) is

f =
127
∑

j=0

(

A′(tj)
)4
. (4.16)

In the simulations, the increase in SH signal and corresponding decrease of the pulse duration
with respect to the Fourier limited pulse (c = 0 in equation 4.12) were comparable to those
observed in the experiments.

4.2.3 Performance of evolutionary strategies

An evolutionary strategy with an adaptive step length control has been implemented in a
LabViewTM (National Instruments) programming environment. The particular algorithm uses
48 individuals per generation which is enforced by the technical setup of the mask controller
cache memory. The eight individuals corresponding to the best fitness values serve as the starting
point for the next generation. Cloning has not been incorporated. We observed that it strongly
privileges locally optimal solutions in early generations and tends to contract the search volume
before the global optimum can be attained. With unimodal objective functions, though, cloning
can effect faster convergence. Experiment and simulations made use of the identical algorithm.
In many publications dealing with feedback-controlled pulse shaping, the LCD voltages are the
optimization variables. This means that the number of independent variables is fixed to the
number of pixels of the mask. We used a mapping between voltages and phases. In order
to be able to change the number of independent variables, the phase function to be imposed
onto the spectrum was parameterized by defining a number J of interpolation points xj , j =
1, . . . , J which were connected by linear interpolation. Additionally, the phase values at these
interpolation points were discretized, i.e. only values of the form i · 2π/K, i = 0, · · · ,K − 1
with K ∈ N were allowed. Other interpolation schemes for the phases and/or amplitudes are
conceivable as well, e.g. a cubic spline interpolation or an interpolation with a polynomial of
order J .
The optimization was run repeatedly for different sets of steering parameters. Out of the en-
semble of these parameters (such as mutation rate, the number of descendants by mutation,
recombination, and cloning, the number of phases, the number of independent variables, and
the parameters which steer the step length control, q and ηc) only two were tuned while all
others were kept fixed.
In each scan, a standard parameter set was used for those parameters which were kept fixed.
Each parent vector created four descendants by mutation and two by recombination. The
mutation probability Pmut was set to 0.1, and 64 independent variables with 64 possible phase
values were optimized. The step length adjustment parameters (see eq. 4.10) were set to q = 0.9
and ηc = 0.6. Additionally, a 1% noise was assumed in the simulations to account for the
inevitable noise in the experiments (see end of section 4.2.3 for the implementation of noise in
the simulations).
In each optimization run, the best, the worst, and the average SH values were stored for each
pass of the loop, i.e. for one set of 48 parameters to monitor the evolution of the SH signal
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Figure 4.5: Evaluation of the optimization data. The average (•), the best (△) and the worst (◦)
fitness values are recorded for each generation n of an optimization run. An exponential rise f(n) =
a+b·exp(−c·n) with the fit parameters a, b, and c is fitted to the average fitness values. The dimensionless
parameter c provides a measure of the convergence speed.

versus the generation n. The convergence data of every scan were normalized with respect to
the SH signal of the original OPA output. An exponential rise f(n) = a + b · exp(−c · n) was
fitted to the normalized mean SH values (see Fig. 4.5, n is the generation or loop index, a, b,
and c are the fit parameters). The constant of the exponential rise, c, may be regarded as a
measure of convergence speed. The terminal SH value was calculated by averaging the median
SH value over the last 5 generations.

As in the experiments, each simulated optimization was aborted after 50 generations to allow
comparisons. The convergence data (final value or convergence speed) were averaged over 50
optimization runs for each single point. Though in the simulations the different parameters were
scanned with a much higher resolution, only those data points which were also measured in the
experiments are shown, for the sake of clarity.

Replication

In experiments and simulations, each generation contained 48 individuals. The eight individuals
which achieved the highest fitness values were chosen as parents for the next generation. None
of the parents were adopted by the next generation. Hence, each parent vector must generate
48/8 = 6 descendants, created either by mutation or recombination. Optimization runs have
been performed for 2, 3, 4, and 5 descendants by mutation out of these 6 generated. Figs. 4.6 b
and 4.7 b show that, in the experiment, the fewer descendants created by mutation, the better
and faster the convergence.

The simulations show the same behavior for the convergence speed (Fig. 4.6 a), which again
peaks for the smallest number of mutants. The maximum terminal SH value is achieved for
three to four (Fig. 4.7 a) descendants by mutation, which indicates that the fast convergence in
the case of many descendants by recombination prematurely ended in a sub-optimal solution.
Experiments and simulations likewise reveal that a suitable mutation probability is ≈ 0.1 where
the final SH value finds its maximum. Since a premature convergence is detrimental, four
individuals have been generated by mutation during all other optimizations. Furthermore, the
investigation of the step length control, which only influences mutation, requires generation of
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Figure 4.6: Influence of the replication process on convergence speed, (a) simulation, (b) experiment.
The number of descendants created by mutation is scanned versus the mutation rate. The values for q
and ηc were set to 0.9 and 0.6, respectively. 64 independent variables with 64 possible phase values have
been optimized.
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Figure 4.7: Influence of the replication process on final SH value. (a) simulations, (b) experiment. The
remaining optimization parameters are specified in Fig. 4.6

as many descendants by mutation as acceptable in order to discern any effect.

Size of parameter space

Our mapping of the phase uses interpolated phase functions and discrete phase values which
easily allows for the alteration of the number of points in parameter space. Two questions arise:
(a) how does the convergence respond to a change in the number of possible configurations in
parameter space, and, (b) how does a decrease of the size in parameter space (and, therefore,
shaping capability) affect the quality of the optimization result?

To study the dependence of convergence behavior on the size of parameter space, the number
of interpolation points was scanned from 16 to 128 in increments of 16. For each number of
interpolation points, the scan range for the number of phases ran from 32 to 128 in steps of 32.
Fig. 4.8 reveals that the convergence speed, as should be expected, decreases with increasing
number of parameters, both in experiments and simulations. The terminal SH value drops with
growing number of parameters. This seems counterintuitive since a finer grid allows better
shaping and thus a better SH value should be attainable. The explanation is that the sagging
convergence speed eventually precludes the final value being reached within the permitted 50
generations.

The phase discretization is found to be noncritical. A resolution of 2π/32 = π/16 is sufficient. It
should be noted, though, that the phases at pixels which do not coincide with an interpolation
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Figure 4.8: Influence of discretization of parameters and phases on convergence speed, (a) simulation,
(b) experiment. The number of independent variables is scanned versus the number of possible phase
values. Four descendants are created by mutation, two by recombination. The values for q and ηc were
set to 0.9 and 0.6, respectively. The mutation rate is set to 0.1.

point are not restricted to the discretized phase values and can have any (interpolated) value.
Because the phase functions generated by this parameterization are smooth by construction,
they fulfill the physical constraint that efficiently shaped pulses require phase functions which
are smooth at least on segments. This is much more important for the quality of the optimization
result than a high phase resolution at the interpolation points.

Step length control

The step length control scheme uses two control parameters (see eq. 4.10). The threshold value
ηc and the contraction factor q were scanned over the range ηc = 0.3, 0.4, . . . , 0.9 and q = 0.8,
0.85, 0.9, and 0.95. For each set of (ηc, q), 16, 32, 64 and 128 independent variables have been
optimized.
For all numbers of parameters the scans in Figs. 4.9 and 4.10 show that, except for high threshold
values, the contraction factor is not very critical for convergence speed and final SH value. This
is clear from the fact that this factor does not really bias any regulation loop. For ηc values
near 1, the contraction factor becomes important for both convergence speed and final SH value.
With high ηc, the step length will most likely be monotonically decreased. Convergence speed
and final SH value then largely depend on a proper choice of the contraction factor. This is
a well-known problem in simulated annealing methods, where usually no step length control is
implemented but rather a monotonic step length decrease (”annealing schedule”).
Comparison of the simulated final convergence values (Fig. 4.9 a to d) indicates that the range of
threshold values for which the maximum final value is reached shifts from ≈0.8 (16 parameters)
to ≈0.5 (128 parameters). Concurrently, at these threshold values the convergence speed is low
(compare Fig. 4.10 a to d). Figs. 4.9 and 4.10 both show good agreement with experimental
data reproduced in the respective figs. 4.9 e to h and 4.10 e to h.
A low threshold value corresponds to a high step length during the optimization, which means
that in each generation the new search points are widely spread in parameter space. For high
numbers of parameters the optimal final SH value is achieved with low threshold values. Ac-
cordingly, for many independent variables a more widespread search has to be launched. This
conclusion is quite obvious and intuitive. The real message of this is that, with ηc, the exper-
imentalist is given a means of adapting to the complexity of the search space to assure secure
convergence.
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Figure 4.9: Influence of the adaptive step length control on final SH value for 16 (a,e), 32 (b,f), 64 (c,g),
and 128 (d,h) independent variables. The threshold value ηc is scanned versus the contraction factor
q (see eq. 4.10). Left column: simulation, right column: experiment. Four descendants are created by
mutation, two by recombination. The mutation probability is set to 0.1.
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Figure 4.10: Influence of the adaptive step length control on convergence speed for 16 (a,e), 32 (b,f),
64 (c,g), and 128 (d,h) independent variables. Left column: simulation, right column: experiment. The
remaining optimization parameters are specified in Fig. 4.9
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Noise

The influence of noise was investigated only in simulations. Noise was implemented as a
Gaussian-distributed fluctuation in the pulse energy. Its width was one of the scan parame-
ters and is specified relative to the pulse energy. For each scan, the full width at half maximum
(FWHM) of the pulse was calculated and normalized with respect to the FWHM of the Fourier
limited pulse. These simulations were performed for 16, 32, 64, and 128 parameters. The values
for ηc were those which produced the optimal SH values for 16, 32, 64 and 128 parameters
(ηc =0.8, 0.7, 0.6 and 0.5) as determined in section 4.2.3.
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Figure 4.11: Noise values acceptable for an optimization run: The FWHM of the optimized pulse
is normalized to the FWHM of the Fourier limited pulse. The noise, which is implemented as energy
fluctuations of the pulses, is scanned from 0 to 30% for 16, 32, 64, and 128 parameters.

The FWHM values for all numbers of parameters are shown in Fig. 4.11. As long as it is
acceptable to approach the optimal relative FWHM value with an accuracy of 10%, the threshold
for noise is approximately 14%, 9%, and 3% for 16, 32, and 64 parameters, respectively. For
128 parameters, convergence is clearly missed within 50 loop iterations even for the lowest noise
rates. This again indicates that a reduction in the number of parameters to be optimized greatly
improves the robustness of the optimization process.

4.3 The role of parameterization

A mapping between optimization parameters and experimental parameters which reflects the
physical properties of the system [120] is useful in optimization experiments. If, for example, the
resulting phase functions to be imposed on the pulses are expected to be chirps of various orders,
it is appropriate to express the phase function as a Taylor series and to optimize the pertinent
coefficients. Here, a small change in the curvature of the phase function, which is represented
by one variable in this parameterization, is equivalent to changes in all phase values, possibly
by large amounts, in the free parameterization to effect the same result. With an intelligent
parameterization, the desired optimization effect can be dissected more efficiently from undesired
side effects. By investigating how a particular experiment responds to optimization runs with
different parameterizations of the electric field, further insight into the physical process under
study may be gained. This can be regarded as the inversion of an optimization. A positive side
effect is a reduction in the number of parameters which improves convergence.
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In this section, we will discuss several parameterizations with respect to experiments which
benefited from their implementation.

Free parameterization

The above-described linear interpolation of the phase (and amplitude) is a universal approach for
a parameterization of the electric field and includes any field which can be physically generated by
a pulse shaper. Because this does not presuppose any knowledge about the optimization process
except that the phase (and amplitude) functions are smooth by construction, this mapping may
be denoted as ”free parameterization”. It is useful for the uncovering of unintuitive solutions
or for the verification of a solution found by another parameterization. In the latter case, a
comparison between the retrieved phase and amplitude functions of both optimizations can
reveal which pecularities of the pulse structure are relevant for the optimization process. The
free parameterization has been used to this end in virtually all optimizations of the second part
of this work.

Polynomial phase functions

The compensation of the residual phase of ultrashort pulses, which consists of chirps of various
orders, calls for restriction of the algorithm to a search for polynomial phase functions. The
corresponding representation of the phase function is written as

Φn =
K

∑

k=2

ck

(

n−N0

N

)k

n = 0, · · · , N − 1 = 127 (4.17)

with quadratic terms as the lowest polynomial order k since constant (k = 0) or linear (k = 1)
phase terms only produce a phase or time shift, respectively. The Taylor coefficients ck and the
offset N0 are to be optimized by the algorithm.

Adaptive pulse compression uses this parameterization of the phase [65]. The reduction in the
number of independent variables results in a rapid convergence. A detailed description of these
experiments is given in chapter 5.

Chirps can be used for focusing of a wave packet in molecules. The anharmonicity of the potential
causes a dephasing of the wave packet which can be compensated with chirped excitation pulses,
as has been demonstrated for the example of K2 [25, 26].

Periodic phase functions

For physical systems which are sensitive to symmetry properties in the phase functions, a periodic
phase function

Φn = a · cos(b · n+ c) n = 0, . . . , 127 (4.18)

n being the pixel number, is one appropriate parameterization. The parameters a, b, and c are
optimized by the algorithm.

Non-resonant two-photon transitions are sensitive to symmetry properties of the phase [128,129].
In the experiment described in chapter 6, the two photon transition in Na(3s →→ 5s) has been
chosen to demonstrate the feedback-controlled maximization and minimization of population
transfer [12, 16]. The parameterization in eq. 4.18 is sufficiently general to include both the
generation of dark and bright pulses.

Multiple pulse structures

Several experiments [8,19] and theoretical investigations [130] have followed the scheme of Tannor
and Rice [6] wherein control has been achieved by the delay between a pump and a dump pulse.



4.4. SUMMARY 59

Hence it is intuitive to use a parameterization in the time domain where the interpulse delay is
adjusted by the algorithm.
With a mask capable of influencing both phase and amplitude it is possible to produce a train
of pulses which can be expressed as (see Eq. 2.16)

Eout(t) =
∞

∑

n=−∞

cn · Ein(t+ n · τ) (4.19)

with the input pulse Ein(t), complex coefficients cn for amplitude and relative phase for each
pulse and the minimum interpulse delay τ which depends on the physical properties of the mask
and the input pulse. Only pulses at positions n · τ, −N/2 ≤ n < N/2, can be independently
influenced (see section 2.3.2, Eq. 2.20, or [73]) where N is the number of pixels of the LC mask.
This concept has been successfully applied in a study of the wavepacket dynamics in the proto-
type molecule K2. The algorithm adjusted the index and value of a predefined small number of
coefficients cn. All other coefficients were set to zero. The algorithm thereby generated phase-
related multiple pulses to manipulate the excitation of either the ground (X) or excited (A) state
in potassium dimers [25,26].

Combined phase and amplitude functions

Experiments may require both the temporal shifting of wavelengths into a particular temporal
window, which can be described by chirps, and the selection of a wavelength range, which
can be performed using a Gaussian amplitude window. This combined phase and amplitude
parameterization proved useful in the optimization of ground state dynamics of polydiacetylene
in chapter 7.

4.4 Summary

Evolutionary strategies have proven to be versatile and are ideally suited to find global optima in
coherent control studies. The optimization speed and final result strongly depend on the number
of free parameters and/or a suitably chosen parameterization. The steering parameters which
control the optimization behavior of the algorithm are non-critical if chosen within reasonable
limits. It has been shown that in the presence of noise, the noise level acceptable for a satisfactory
final convergence scales inversely with the number of free parameters. The parameterizations can
account for physical (or chemical) a-priori knowledge, and help to gain insight into underlying
process under study.
With the optimization algorithm, the pulse shaper, and the broadband coherent source, the
technical fundamentals for coherent control studies are in hand. The accurate and proper func-
tioning of each component has been demonstrated, and thus a solid foundation has been laid
for the control experiments that follow in the second part.
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Part II

Coherent Control Experiments
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5

Adaptive broadband pulse

compression

In the first experiment of this section, the adaptive compression of pulses from a noncollinear
OPA [38, 51, 108–110] and a hollow fiber in a feedback loop is demonstrated. The advantages
and limits of adaptive shaping, in particular with special respect to the optimization algorithm
are discussed [65].

The optimization of the second harmonic (SH) of the ultrashort pulses serves as feedback sig-
nal [63,78,79,126]. Pulse durations below 16fs are achieved after compression of the non-collinear
OPA.

The compression of broadband spectra, produced by optical parametric amplifiers with non-
collinear type phase-matching, to pulse durations below 20fs has commonly been achieved by
prisms, gratings and chirped mirrors. For compensation of phases of order higher than two,
a combination of these elements has to be used [51, 109], which involves tedious and lengthy
adjustment efforts. The task which remains, however, is that of maintaining quality while
delivering the short pulses to the experiment. This calls for compensation of the group velocity
dispersion (GVD) of second and higher orders introduced by dispersive elements installed in
the beam path behind the compressor, such as cell windows, wave plates, cuvettes filled with
solvents, etc.

An extended version of adaptive compression by phase compensation is presented in the second
experiment of this chapter wherein fundamental pulses which are spectrally broadened in an
inert-gas filled hollow fiber are compressed close to the Fourier limit by combined phase and
amplitude shaping. Since the spectral modulation and phase of the output pulses depend on
the length of the hollow fiber and the gas pressure, the tedious task, adjustment of these two
parameters such that a quadratic phase and the smoothest possible spectra are obtained, is
avoided by the adaptive approach because any spectral amplitude and phase modulation can be
compensated.

The main advantages of this setup are the swiftness of the automated compression procedure
(typically less than five minutes) and the capability to compensate phase distortions of arbitrary
appearance.

5.1 Compression of pulses from a non-collinear OPA

A noncollinear OPA as described in chapter 1 is used as the source for ultrashort pulses. The
adaptive approach employs a pulse shaper for the compression of the strongly chirped output
pulses. Because of the width of the spectra, imaging distortion by chromatic aberration must
be avoided in the shaper as has been discussed in section 2.3. The shaper therefore uses all-
reflective optics, as shown in Fig. 5.1 [61, 62]. Cylindrical optics are used to reduce the power
density impinging on the LC mask and thus prevent damage. The off-axis angles are kept as
small as possible (< 12◦ in the present case) to alleviate imaging aberrations introduced by the



62 5. ADAPTIVE BROADBAND PULSE COMPRESSION

focusing mirrors. The overall accepted bandwidth of this shaper is (d/f) ·N · 100µm ≈ 140nm
which is above that of the pulses generated by the OPA (see Fig. 1.10).

The uncompressed output pulses from the OPA centered around 620nm are fed into the properly
aligned shaper. The shaped output is focused by a spherical mirror (f=200mm), frequency
doubled (BBO, 10µm) and recorded by a photomultiplier tube (PMT). A spectral filter (UG-
11) in front of the PMT transmits only the wavelength of the doubled pulses. The PMT signal
serves as feedback for the evolutionary algorithm (Fig. 5.1) [63, 78, 79, 126]. Other observables
such as the spectral blue-shift of the focused pulses [80] have also been used in iterative pulse
compression schemes.

Because we applied phase-only filtering, the energy of the pulses leaving the shaper is constant,
and therefore high SH intensity is indicative of short pulses. Pulse compression down to 11fs by
SH optimization has been demonstrated recently [63].

/ � 0

� � �

� � 1 � � �

, � � � � � 6 � � � , �
� 1 � , � � � � �

� � � 	 � � � �


 "� / 


! "
� �

Figure 5.1: Setup of the computer-controlled compressing unit. A flipping mirror (FM) steers the pulses
either to the BBO crystal or to the autocorrelator (AC). The shaper features 1/d=600/mm gratings,
f=150mm cylindrical mirrors, and the CRI phase and amplitude mask.

The uncompressed output pulses of a non-collinear OPA are known to be mostly linearly chirped.
Hence it is advisable to restrict the algorithm mainly to a search for polynomial phase functions.
We thus chose a polynomial representation of the phase function (see section 4.3, Eq. 4.17),

Φn =

K
∑

k=2

ck

(

n−N0

N

)k

n = 0, · · · , N − 1 = 127 (5.1)

with quadratic terms as lowest polynomial order k since constant (k = 0) or linear (k = 1) phase
terms only produce a phase or time shift, respectively. The parameters ck and N0 are optimized
by the algorithm. Because the spectrum of the OPA is widely tunable, N0 has been included
as a parameter to ensure that the offset of the phase function coincides with the center of the
spectrum after the optimization has been accomplished.

Alternative concepts of parameterization such as linear approximation or cubic splines were
tested as well but resulted in many more loops of the algorithm while eventually achieving
comparable pulse durations.
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Results

As illustrated in Fig. 5.2, the shaping apparatus compressed the OPA pulses from about 260
fs to below 16fs. The optimization procedure was confined to the search quadratic and cubic
order phases, i.e. K=3 in Eq.( 5.1). Fig. 5.3 shows that the terminal value of the SH signal was
approached after about 25 generations. At a pulse repetition rate of 1kHz and with averaging
of 50 pulses, the adaptive compressor thus compensates the chirp and produces short output
pulses in less than five minutes. This figure should be further reducible with a biased initial
population that takes advantage of a-priori physical knowledge such as the supposed sign of the
chirp to be compensated.
A major problem in experiments which use ultrashort pulses is the faithful delivery of the pulses
to the sample, especially when the ultrafast dynamics of molecules in liquid solvents is to be
investigated. Usually, a collection of dispersive elements (cell windows, wave plates, polarizers,
solvent-filled cuvettes, etc.) causing phase distortions of second and higher order is installed
between the compressor exit and the position where the pulses are required to be short. We
have mimicked this situation by installing an ethanol-filled 1mm path length cuvette between
shaper exit and SH crystal, thus broadening the output pulses. We then reapplied the algorithm
and again obtained a pulse duration below 16fs (see Fig. 5.4). An analogous experiment with
a polarizer in the beam path, which introduced a considerable chirp, resulted only in sub-20fs
pulses (see Fig. 5.5) as will be discussed below. As before, the optimization in both experiments
was confined to the search for second and third order phases.
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Figure 5.2: a) Autocorrelation trace behind shaper after phase optimization. b) Phase values calculated
from the coefficients retrieved by the algorithm. The phase was taken modulo 2π since this has no effect
on the output pulse. c) Comparison between uncompressed (•) and compressed (◦) pulses.
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Figure 5.3: Evolution of the averaged (•) and best (◦) SH signal of each generation (equivalent to 48
trials) during the optimization process. A normalized value of 1 corresponds to the SH intensity when
no additional phase is introduced by the mask, i.e. when all LC voltages are turned off.
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Figure 5.4: a) Autocorrelation trace after phase optimization with an ethanol-filled cuvette placed
between shaper exit and SH crystal. b) Phase function retrieved by the algorithm.
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Figure 5.5: a) Autocorrelation trace after phase optimization with a Glan-Thompson polarizer placed
between shaper exit and SH crystal. b) Phase function retrieved by the algorithm.
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Limits of adaptive phase compensation

The question arises why pulse restoration partly failed when a polarizer was moved into the beam
path (Fig. 5.5), i.e. when a large amount of chirp had to be compensated. Two conceivable
arguments come to mind: a) shapers with a discrete phase filter cannot synthesize any arbitrary
amount of chirp and, b) the algorithm may have missed the globally optimal solution.
The pixelized mask used in our setup causes a discretely modulated spectrum which gives rise
to special features that have to be taken into account. This has been discussed in detail else-
where [71,73,131].
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Figure 5.6: a) Phase differences ∆Φ = Φn − Φn−1 between two adjacent pixels and b) phase functions
Φn retrieved by the algorithm (bottom) for three different optical paths (�: air, △: ethanol-filled cuvette,
◦: Glan-Thompson polarizer).

Nyquist’s sampling theorem states that a periodical function must be probed at least twice
per period, or twice over a phase interval of 2π. Hence concerning the phase function to be
imposed onto a spectrum, a phase interval of 2π must be sampled by at least two pixels. The
absolute value of the phase difference ∆Φ between two adjacent pixels must thus be well below
π. Fig. 5.6 shows these differences for all three optimizations. With the polarizer in front of the
SH crystal, the phase difference ∆Φ attains ≈ 2.2 whereas it remains below 1.6 in all other cases.
Since the phase difference ∆Φ should remain well below π, Nyquist’s theorem may already be
violated for ∆Φ ≈ 2.2. Experimental evidence of violation in the case of a linear phase function
is the appearance of replica. In the case of nonlinear phase functions, the effect is somewhat
less trivial. Experimentally, a temporal smearing out of the pulse shape is observed which is
responsible for a decrease of the SH signal.
We believe that the algorithm found an optimal solution for the coefficients even when the
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dispersion to be compensated became excessive. Applying a phase function for which ∆Φ was
below its critical value proved insufficient to compensate the phase. Thus no short pulses were
obtained resulting in a SH signal below the expected value. On the other hand, applying the
phase function necessary to obtain the shortest pulse would have violated Nyquist’s theorem,
resulting in a temporal smearing out of the pulses and therefore, again, in a SH signal lower
than expected. The algorithm presumably applied only so much chirp as to compromise between
these two scenarios. The net effect was a residual phase remaining after the optimization process,
which caused a longer pulse duration.

For those cases where short pulses were obtained, Fig. 5.6 indicates that an estimate for an
acceptable phase difference between two adjacent pixels is ≈ 1.6. LC masks with a larger number
of pixels should be able to improve the maximum amount of chirp which can be introduced onto
a spectrum because more pixels would then cover the same spectral range.

The process of finding an optimum (e.g. a maximum) within a merit function of many parameters
largely depends on the structure of this function. The particular function may have many local
maxima separated by deep valleys, so that the optimization routine may be fooled by getting
stuck in such a local sub-optimal maximum. To gain insight into the structure of the merit
function and to offer evidence that the algorithm has indeed found the global optimum, we
performed a two-dimensional scan of the SH signal intensity vs. the second and third order
phase coefficients c2 and c3 without any material in the beam path (see Fig. 5.7).
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Figure 5.7: SH intensity (dark colors indicate high SH signal) vs. second (c2) and third (c3) order chirp
parameter.

Obviously, the function ISH = f(c2, c3) is unimodal with its maximum at c2 ≈ −160 ± 10 and
c3 ≈ −125 ± 25 which comes close to the values c2 = −162 and c3 = −109 determined by the
algorithm for identical experimental conditions. Thus, the algorithm finds the global optimum
of the SH value although, in this case under idealized noiseless conditions, it was a trivial task.
In this special optimization case and with this special parametrization a simple algorithm like
a Gauss-Seidel strategy [112] should have been sufficient and should have found the optimal
solution within a few seconds. We would like to emphasize however that we employed a special
parametrization of the phase function which strongly reduced the number of free parameters
and, furthermore, decoupled the parameters. Because with other parametrizations the merit
function could have had a totally different structure, we would not use deterministic algorithms in
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optimizations with unknown – and possibly multimodal – merit functions, since these algorithms
may be sensitive to experimental noise [115].

With other parameterizations of the phase function, we found that the convergence speed as
well as the final SH value was dependent on the internal strategy parameters of the algorithms.
As a rule of thumb, we found that the more complex the optimization, e.g. the more parameters
to be optimized, the more carefully the optimum must be approached by proper choice of the
internal strategy parameters mentioned above.

5.2 Hollow fiber compression

In a second experiment, a hollow fiber filled with an inert gas at high pressure, into which the
pulses from the amplified Ti:Sa laser system are focused, serves as the broadband source [132].
The pulses are spectrally broadened by self-phase modulation (SPM) and simultaneously stretched
in time by group velocity dispersion [50] depending on gas pressure and propagation length.
The output spectra show a complex structure, which requires that the spectrum is additionally
smoothed for the generation of side wing free pulses. Up to now, the prime endeavor in almost
all hollow fiber applications has been to adjust the propagation length and the gas pressure
such that a linear chirp was produced which could be removed by a simple prism compressor.
The ability to compensate arbitrary phase functions avoids such restricting limits on interaction
length and buffer gas pressure. The unrestrained shaping capability of the mask is used and
both phase and amplitude functions are applied to the spectrum.

The adaptive compression is accomplished in two independent steps: smoothing the spectrum of
the pulse via a pure amplitude modulation by the mask while keeping the phase fixed, and then
compensating for the spectral phase under the constraint of the previously determined amplitude
function. This dichotomy in the optimization process is made possible by to the capability of
the LC mask to independently influence the phase and amplitude of the pulse spectrum. It is
in fact required because with amplitude filtering, the output energy is no longer constant so the
highest SH signal is not necessarily indicative of the shortest pulse.

Fig. 5.8a shows the SHG FROG trace of a pulse after propagation through a 500mm long
argon-filled hollow fiber (inner diameter 225µm) pressurized to 3 bar. The input pulse was a
Fourier-limited Gaussian-shaped pulse (120 fs, 100 µJ) centered around 810 nm. The pulse
duration is broadened to about 400fs; the pulse spectrum is quite inhomogeneous as seen in
Fig. 5.8 b. A phase-only optimization returns a pulse with a non-uniform spectrum which still
features structured wings, as shown in Fig. 5.8c. The extended approach including spectral
smoothing is plotted in Fig. 5.8d and now shows a much more uniform pulse structure. For
the spectral smoothing, the deviation of each measured amplitude-modulated spectrum from a
well-defined Gaussian smoothing function (see Fig. 5.8b) was minimized. The phase function
retrieved by the subsequent SH optimization was in accordance with the one attained in the SH
optimization without amplitude shaping.

5.3 Summary

The fast adaptive compression of tunable pulses in the visible to below 16 fs has been demon-
strated in the presence of additional dispersive material in the beam path before the autocorre-
lation measurement. The scheme uses a combination of non-collinear OPA design, pulse shaper
and learning algorithm. Short pulses at virtually any desired location in an experimental setup
can be produced automatically in less than five minutes. It has been shown that our algorithm
finds the global optimum solution for the mask settings. An acceptable limit for the phase dif-
ference between two adjacent pixels is experimentally found to be 1.6. Given the virtue that the
center wavelength of the noncollinear OPA can be adjusted via a single delay without further
adjustments, our setup is a powerful tool for spectroscopy experiments with ultrafast pulses.
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Figure 5.8: FROG-trace (a) and spectrum (b) of a spectrally and temporally broadened pulse after
propagation through a hollow fiber, (c) spectral phase compensation resulting in ≈ 50fs (FWHM of
temporal marginal) still shows intense side wing structures, (d) optimization with optional smoothing of
the spectrum.

The modulation of broadband spectra in the visible is, after all, a prerequisite for the coherent
control experiments described in the forthcoming chapters.
The setup is also capable of attenuating the amplitude of each spectral component. Thus, even
nasty, deeply modulated spectra with side wings are compressible almost to the Fourier limit
by cutting off the unwanted spectral components: much less work is then required to generate
smooth spectra, as has been shown in the compression of pulses from a hollow fiber.
The purpose of these two experiments has not been to produce the shortest pulse but rather
to show that the principle of feedback controlled pulse shaping is a promising tool for pulse
compression [63,92,133].
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6

Control of two-photon transitions:

Dark and bright pulses

This chapter describes an experiment wherein tailored pulses were employed to enhance or cancel
the transition probability in the nonresonant two-photon process Na(3s →→5s) [16]. Using as
feedback the fluorescence from the 4p level which is populated from 5s by collisions, these
so-called dark and bright pulses are found with the learning loop approach within few minutes.
Different parametrizations of the phase distribution have been examined. Two of these produced
solutions which had not previously been predicted by theory, but which still met the objective
of the experiment. The study represents the first successful application of a feedback-organized
self-learning algorithm to the design of dark pulses.

The nonresonant two-photon process Na(3s →→5s) represents an example of effectively con-
trolled energy deposition in a two level system by tailoring the spectral phase of the pump pulse,
using an additionally implemented feedback scheme.

6.1 Experiment

A schematic diagram of the experimental layout as well as the relevant spectroscopic details
of the employed pump and detection scheme are displayed in Figs. 6.1 and 6.2. Sodium was
evaporated in a heat pipe oven [134] pressurized with 10mbar of Argon as a buffer gas. The
temperature was set sufficiently low (250◦C) to eliminate pulse propagation effects [135, 136].
The exciting OPA (100fs, 5µJ) was tuned to λ = 598nm which is close to the 3s→→5s resonance,
and focused to provide a maximum power density of ≈ 1011 W/cm2 inside the heat pipe. The
population of the 5s target level optically decays to 3p or undergoes collisional relaxation to the
4p state. Both levels are monitored separately via their fluorescence to the 3s ground state at
589nm and 330nm, respectively.

Due to the spectral width of the ultrashort 598nm pulses a competitive (1+1)-photon excitation
of 5s via 3p (at 589nm) cannot be immediately excluded. Thus, evidence must be presented
that the 5s level is indeed populated as a result of a nonresonant two-photon absorption. In a
theoretical treatment of the quantum control of multiphoton transitions by shaped ultrashort
pulses which excludes strong field effects, Meshulach et al. [129] have calculated the effect of a
π phase step on the probability of N -photon absorption in a two-level system. The plots of this
quantity vs. the normalized step position peak at the frequency of the N -photon absorption.
They are symmetric with respect to this maximum and vanish for N values of the phase step
position. The number of minima is thus indicative of the order of the absorption process.

6.2 Results

Fig. 6.3 shows the experimental result for the 3s →→ 5s transition as a function of the π
step position induced by the SLM. The position of the maximum and the occurrence of two
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Figure 6.1: Experimental layout of the pump- and detection schemes of the two-photon experiment.
The pulse shaper used in this experiment is composed of 1800 lines/mm gratings, f = 150mm cylindrical
lenses, and the CRI phase and amplitude mask. Fluorescence from 4p serves as feedback to the control
algorithm.
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Figure 6.2: Grotrian diagram of the sodium transitions important for this experiment (not to scale).

symmetrically arranged minima suggest a two-photon process induced by a wavelength of 602nm.
This number is directly read from a spectrum of the laser pulse which was taken while pixel no.
43 (maximum) was blocked (see Fig. 6.3).

The implementation of a feedback controlled optimization routine requires identification of an
observable which is uniquely tied to the quantity to be controlled. Population of 5s gives rise
to fluorescence from the 3p and 4p levels. 3p may, however, also be pumped in a 589nm one-
photon step from 3s. The text to follow describes two experiments which address and settle this
ambiguity.

The data from the first test are illustrated in Fig. 6.4 and show the fluorescence from the
3p and 4p levels, following excitation of 5s by 1mW of unchanged pump pulses. The latter
were obtained by clipping, in the Fourier plane, the blue wings (<591nm) of the frequency
spectrum. The ensuing pulse spectrum is shown in the right panel of Fig. 6.3. Fluorescence
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Figure 6.3: Left: π phase step shifted across the mask. Fluorescence from collisionally populated 4p
shows symmetry around pixel no. 43. Right: OPA spectrum behind SLM observed with pixel no. 43
shut and left wing clipped by blocking part of spectrum.
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Figure 6.4: Response of 3p and 4p fluorescence to the presence or absence of 589nm light (one-photon
resonance).

from 4p appears with equal intensity for either excitation condition. The 3p analog, however, is
drastically diminished in the absence of the wavelength matching the one-photon resonance.

The previous measurement strongly indicates that 5s, which is the precursor to 4p, is accessed
non-resonantly, rather than by a (1+1)-sequence. Supporting evidence comes from an examina-
tion of the fluorescence intensities vs. laser power, which is displayed in Fig. 6.5. Again, the 4p
signal appears unimpacted by the particularities of the pump laser frequency profile and exhibits
a quadratic slope, indicative of a two-photon process. The 3p data are more complex. In the
presence of 589nm the signal behaves linearly for low laser intensity and scales as I3/2 above
approximately 0.2mW, indicating saturation [137]. Blocking the resonant wavelength produces
the same low-intensity behavior, but a quadratic slope beyond 0.2mW.

The bottom line of the above results is as follows: Given the conditions of this experiment
(pump ≈ 1mW), 4p is exclusively fed from 5s which owes its population to a non-resonant two-
photon excitation. The 3p state draws to some extent from 5s, but is predominantly pumped
in a resonant single step when the pulse is left unmodified. We may thus apply Meshulach’s
model [129] to describe the coherently controlled population of Na(5s) and we have identified
4p fluorescence as a directly linked criterion suitable to serve as input to the modulator steering
algorithm.
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Figure 6.5: Power dependence of 3p and 4p fluorescence with or without 589nm light.

The nonresonant two-photon interaction of an ultrashort pulse with a two-level system induces
a transition with a probability S2 [128,129]:
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∣

∣

∣

∣

2

. (6.1)

where ω0 is the energy of the 3s →→ 5s transition which corresponds to 301nm [138]. Two-
photon transitions occur for all pairs of photons ω1, ω2 which satisfy the condition ω1+ω2 = ω0.
The detuning of frequencies ω1, ω2 from ω0/2 is denoted by Ω. Control of the excitation process
is exercised via the interference term and can either maximize or minimize the probability S2, as
Meshulach et al. [128,129] have recently demonstrated for the nonresonant two-photon transition
of Cesium. Maximization is obviously achieved if the interference term vanishes, which describes
the minimum duration transform limited pulse. This solution is not singular, however, since any
shaped pulse with the same power spectrum A(ω) but with an antisymmetric phase function,
Φ(ω0/2−Ω) = Φ(ω0/2+Ω), will yield the same result, irrespective of the particular appearance
of the phase distribution. This result is counterintuitive since longer, i.e. less intense, pulses
should be less effective in transferring population. In their paper, Meshulach et al. [128,129] have
also formulated phase requirements to produce so-called dark pulses which altogether cancel the
two-photon pumping probability. No net transitions are induced as long as Φ(Ω) = cos(βΩ).
The totality of solutions, discriminated by virtue of the parameter β, is symmetric with respect
to the center frequency ω0/2.

In the present experiment, the designed pulses were created by phase-only modulation. The task
of pinpointing the conditions which either maximize or cancel S2 was left to the optimization
algorithm guided by the 4p fluorescence as feedback. Unbiased by any a-priori modeling the
algorithm set out from a phase filter Φ(n) = a cos(bn+ c) with n as the variable which numbers
the LC pixels, and a, b, and c as free parameters to be optimized. This approach is still tractable
but sufficiently general to comprise Meshulach’s solution [128, 129]. The experiment was run
repeatedly for either objective and achieved convergence within five generations. The phase
filters which were retrieved as a result of the optimization procedure are symmetric (cosine)
in the case of extinction, and antisymmetric (sine) in the case of enhancement of fluorescence.
Symmetry persists with reference to the center frequency ω0/2 which impinges on strip no. 43
(see Fig. 6.6). Such good agreement with theory afforded by this three parameter optimization
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Figure 6.6: Generation of dark and bright pulses in the Na(3s→→ 5s) transition. The vertical line at
pixel 43 marks the symmetry reference position of the phase which has been determined in an auxiliary
experiment [16,128] (a) The phase structures of dark pulses cancelling the transition Na(3s→→ 5s) show
symmetry (b): Phase structures of bright pulses show antisymmetry.

requires imposition of upper and lower restrictions on the parameter b. In the bright pulse case,
b must be sufficiently large to allow at least four oscillations of the phase over the width of the
mask. In the absence of this lower limit the algorithm would merely compensate the chirp of
the incoming pulse to produce the Fourier limited shape, i.e. the pulse having the minimum
time duration, which obviously maximizes S2. To optimize the dark pulses, b has been limited
to yield a maximum of eight phase oscillations. Lifting this restriction would result in very long
pulses which are dark due to insufficient intensity.
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Figure 6.7: Free optimization using a six-parameter phase function with linear interpolation. (a) Cross-
correlation of a typical dark pulse. (b) Convergence as achieved in three different runs.
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Figure 6.8: Convergence data of the six-parameter search for the dark pulse. Figure shows the best and
worst mask patterns for each generation. As long as 589nm light is blocked, 3p and 4p fluorescence are
equally suited as feedback signal. This is not the case if one-photon transitions are admitted since the
direct excitation of 3p is phase insensitive.

In a further experiment we lifted the restriction on the dimensionality of the parameter space and
tried a model of the phase filter which permitted an unbiased choice of parameters. Aiming at
the generation of dark pulses we introduced a phase function defined by the minimum number of
sampling points connected by a linear interpolation. Each of these points may assume 64 discrete
values within a range from 0 to 2π. Six parameters proved sufficient to achieve this goal. The
dark pulse retrieved by the algorithm is shown in Fig. 6.7(a) whereas Fig. 6.7(b) represents
the phase setting of the mask. The property of being ”dark” is indeed phase-related, which is
convincingly shown by comparison with the effect induced by a chirped pulse of equivalent energy
and duration. The evolution of a dark pulse as mirrored by the decrease of the 4p fluorescence
feedback signal is shown in the top row of Fig. 6.8. Compared to an unmodulated pulse the
5s population is reduced to <3%. The left panel proves the insensitivity of the one-photon
3s→ 3p transition to a phase-only modulation. Once the resonant pumping of 3p is suppressed
by blocking the relevant wavelength the fluorescence from this level perfectly matches that of
4p (Fig. 6.8, bottom row). 3p is now populated via radiative decay of 5s and hence is equally
suited as feedback input.
Both the three- and the six-parameter approach converge after less than 50 generations, i.e.
within less than 5 minutes. A comparative inspection of the phase functions returned by either
method raised the question of the existence of further solutions which are of altogether different
character. We thus expanded the previous parametrization to 128 sample points, each falling
between 0 and 2π as before. Fig. 6.9 documents the convergence towards the dark (left) and
the bright pulse (right) which was attained after ≈ 10 generations. In accordance with theory
an antisymmetric phase function causes population enhancement (Fig. 6.9 (b)). No likewise
apparent symmetry properties, however, characterize the suppression of two-photon pumping.
Re-runs of the optimization procedure produced identical experimental results but differing
phase functions. The solutions which the algorithm produced bore no resemblance with the
prediction of theory. The shaped pulses show a complex phase- and amplitude-time structure of
comparable duration (≈2ps). It is thus not their peak power but rather their phase distribution
which produces qualities such as ”bright” or ”dark” [139].
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Figure 6.9: Convergence data of the 128-parameter search for the dark (left) and bright (right) pulse.
(a): Normalized fluorescence intensity to document convergence. Dashed lines mark ”no signal” (0)
and ”unshaped reference pulse” (1). (b): Right: Phase structure of bright pulse showing antisymmetry.
Reference position has shifted to 602nm due to re-alignment of optical setup. (c): Pulse shape and
phase structure in the time domain. Bright and dark pulses show a complex structure, but are of similar
duration.
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6.3 Summary

In this section, the influence of phase modulated fs laser pulses on two-photon transitions in an
atomic prototype system has been studied. The implementation of different parameterizations in
the feedback loop has been tested. The phase-modulated excitation of the two-photon-transition
shows that the feedback approach can be successfully used to find fs laser pulses for different
control objectives, even without an intelligent initial guess supplied by theory. The properties of
pulses being either ”dark” or ”bright” have been demonstrated to be dependent on the phase and
not the intensity of the excitation pulse. The results of Meshulach et al. [127,129]regarding the
symmetry of the phase functions have been verified autonomously by the adaptive approach,
thus confirming the concept of parameterization. The best solutions for both extremes were
obtained within five generations. Allowing the feedback algorithm to search in an extended
parameter space yielded new phase structures in addition to known analytic solutions. These
structures are not intuitively comprehensible and call for further theoretical studies.
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7

Control of Ground State Dynamics

in Polydiacetylene

7.1 Introduction

Many coherent control studies so far have dealt with the control of electronically excited spe-
cies [140]. Control of ground state dynamics, however, might be even more important since
chemical reactions usually take place on the lowest potential energy surface. For mode-selective
chemistry it is crucial to focus energy in a local vibrational motion of a certain bond (local mode)
or, in a more general sense, to form a superposition of vibrations leading to dynamics along
the reaction coordinate. Such dynamics can be described by a superposition of eigenfunctions
(normal modes) resulting from the stationary Schrödinger equation. Due to the broad spectra of
femtosecond laser pulses, these pulses are capable of coherently exciting more than one normal
mode [141, 142]. If the phases of these modes are chosen suitably, the enhancement of normal
modes or the preparation of local modes should be possible.

This section reports the selective excitation of ground state vibrational modes in a polymer,
polydiacetylene, by a stimulated Raman process. The interaction of the electric field with the
molecule cannot be calculated by first-principle methods, which makes any predictions of pulse
shapes for selecting a certain mode almost impossible. The process is optimized in a feed-
back loop using the anti-Stokes Raman signal of a four-wave-mixing (FWM) process as feed-
back. Polydiacetylene (PDA) has been studied in detail with femtosecond time– and frequency–
resolved coherent anti–Stokes Raman Scattering (fs–CARS) [143–145]. In those experiments,
several normal modes were excited in a stimulated Raman process and the vibrational dynamics
in the electronic ground and self-trapped exciton state were studied by analyzing the anti–Stokes
signal. Additionally, two strategies to excite selectively vibrational motion of the ν̃2/ν̃2′ modes
in the electronic ground state of PDAs were demonstrated. One technique made use of the
Tannor–Rice scheme [6], which is related to the vibrational dynamics in the excitonic states
of PDA. The other method included the variation of the chirp of the ultrashort Stokes laser
pulse [146], already pointing to the important role of the phase in the selective excitation of
vibrational motions.

In the experiments presented here, time- and wavelength-resolved CARS serves both as control-
ling and surveying mechanism for the optimization. Control is achieved by shaping of the Stokes
pulse. The different modes of the PDA molecules show different contributions in the frequency-
resolved CARS spectrum. Two very similar experiments were performed: the first one with
100fs pulses as supplied by a commercial OPA shows the feasibility of the control [147], whereas
the second experiment, involving the non-collinear OPAs with substantially shorter pulses and
broader spectra, allowed for the excitation of an additional mode and the observation of shorter
oscillation periods.
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7.2 Experiment

The samples used in the experiments were FBS (bis-p-fluorobenzene-sulfonate) diacetylenes.
Their structure is shown in Fig. 7.1 [148]. Polydiacetylene is obtained by topochemical solid
state polymerization of the monomer single crystal, which can be induced thermally or with
UV light. Polymerization occurs with synchronous rotation of the single molecules around their
center of mass which does not impact the surrounding lattice. A polymer structure results in
which all polydiacetylene (PDA) chains are aligned parallel to the b-axis of the diacetylene single
crystal. Less than 1% polymer was embedded in the monomer single crystal, thus the interaction
between the polymer chains can be neglected.

�

�

�

�

� �

�

�

�

�

�

� �

�

�

�

�

� � �

�

�

�

��

� � �

�

�

�

� � �

�

�

�

��

� � �

� � � � � � �� � �
 � � �

�  � � � � � � � �� �

� % & % � %

� %

Figure 7.1: The molecular structure of (a) the diacetylene monomer and the polymer unit (b) and (c).
The polymer chain (backbone) can be described by two mesomeric structures, the acetylenic (b) and the
butatrienic (c). The experiments of this section were performed with the FBS side groups (d), although
other side groups have been investigated in femtosecond CARS experiments as well [144].

The delocalized π-electrons of the backbone form a quasi one-dimensional system, which results
in a strong anisotropy of the physical properties, as for example the dichroism of the PDA crys-
tals. When incident light is polarized perpendicular to the polymer chain direction, the crystals
appear nearly transparent, whereas light polarized parallel to the chains is absorbed strongly
(see Fig. 7.2). Therefore, the polarization of the CARS beams has to be chosen appropriately
to assure efficient excitation.
The sample was cooled to approximately 20 K in a closed-cycle helium cryostat. The electronic
ground state of the PDA is best represented by an acetylenic structure, see Fig. 7.1.
Fig. 7.3 shows a part of the resonance Raman spectrum obtained from PDA at 10 K and the
motions of the atoms resulting in the four vibrational normal modes ν̃1, ν̃2/ν̃2′ (Fermi–coupled
modes), ν̃3, and ν̃4 [151]. The modes are composed mainly of stretching and bending motions of
the backbone bonds and were all excited by the pump and Stokes laser pulses of the fs–CARS
experiment.
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Figure 7.2: Absorption spectra of PDA for light polarized perpendicular and parallel to the b-axis of
the single crystal (from [149]). Absorption independent of polarization above 30000cm−1 can be traced
back to the absorption of diacetylene monomers. The absorption peak at 16800cm−1 is assigned to the
0-0 transition from the electronic GS 1Ag to the electronically excited state

1Bg of the π electron system
of the PDA chains. Upon excitation with a pump photon at 16800cm−1, a free exciton is produced in
the 1Bg state from which a self-trapped exciton is then formed (see [150] for further details).
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Figure 7.3: Resonance Raman spectrum displaying the vibrational modes excited by the fs pump
and Stokes pulse. For each principal Raman vibrational mode (ν̃1, ν̃3, ν̃4) as well as for the Fermi
coupled vibrational modes (ν̃2, ν̃2′) atomic displacements [151] are given assuming a simplified side group
structure. From [149].
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The experimental setup (Fig. 7.4) included two collinear, two-stage OPAs [152] for the experi-
ments with 100fs time resolution and two non-collinear OPAs (chapter 1) for experiments with
30fs time resolution.

For the experiments with 100fs pulses, the OPA outputs were tuned to 605 nm and 652 nm. The
605 nm pulses were compressed by a prism pair to yield a FWHM of 100fs and split into pump
and probe pulses. The 652 nm pulses served as Stokes beam and were fed through a 4f pulse
shaping setup (see caption of Fig. 7.4 for details). With no mask voltages applied, the shaper
was adjusted for shortest (Fourier limited) Stokes pulse to remove residual chirp of the OPA
output pulses. The shaped pulses were characterized with a multi-shot FROG setup, using SHG
in a 100 µm BBO crystal as nonlinear element, and with a commercial SHG autocorrelator.

computer
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Figure 7.4: Layout of the fs CARS experiment. The Stokes pulses are tailored with a pulse shaper
which features a pair of 1/d=1800/mm gratings, f=150mm cylindrical mirrors for the 100fs experiments
with the collinear OPAs, and 1/d=600/mm gratings, f=150mm cylindrical mirrors for the experiment
with non-collinear OPAs. The CRI phase and amplitude mask has been used in both experiments. The
accepted bandwidths are above the OPA bandwidths in either case.

Pump, Stokes and probe pulses were focused with a f=60 cm spherical focusing mirror into
the 20K cryostat containing the PDA crystal. All beams were polarized horizontally. At the
focus, each of the three beams had a pulse energy of ≈100 nJ. The beams were arranged in a
folded BoxCARS configuration [153, 154] and placed such that the sum of the wave vectors of
pump and Stokes is in the direction of the crystal b axis which is parallel to the polymer chains
(Fig. 7.5c). This assures effective excitation in the exciton band. Behind the cell, the CARS
signal was collimated with an f=60 cm lens, spectrally dispersed and detected with a cooled
CCD line camera.

The spectral bands of the wavelength-resolved CARS signal which correspond to the different
modes of PDA served as the feedback signal for the optimization algorithm. The optimization
algorithm searched for the optimal settings for the LC mask to enhance the desired mode.

In order to avoid features arising at zero time delay of pump, Stokes, and probe pulses, the delay
τ1 between pump pulse and the unshaped Stokes pulse was chosen to be τ1= +100 fs which is
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Figure 7.5: Setup of the fs-CARS experiment. (a) energy diagram of the CARS pulses, (b) pulse
sequence of the three incoming pulses with Stokes pulse shaped, (c) wavelength-resolved folded BoxCARS
configuration.

well after the pump pulse (Fig. 7.5b). To overcome possible effects arising from the beating of
the modes, the delay of the probe pulses was wobbled over several beatings with a frequency of
about 5 Hz between +100 fs and +366 fs. Great care was taken that the density distribution
of the delay values versus time was uniform. The averaging was performed by simply recording
spectra while the probe delay continuously alternated between the two boundary points as shown
in Fig. 7.6.

For the experiments with higher time resolution using non-collinear OPAs, the setup was essen-
tially the same as before, with the only exception that FS prism compressors were used in both
beams. The non-collinear OPAs were tuned to ≈605nm with a FWHM of 25 nm for the pump
and probe and ≈660nm with a FWHM of 34 nm for the Stokes pulses. The FS prism compressor
for each color was adjusted to compensate for the chirp introduced by the cryostat windows,
yielding pulse durations of approximately 30 fs (pump, probe) and 35fs (Stokes) as measured by
autocorrelation. The pulses were attenuated to yield approximately 70 nJ for pump and probe
each and 110nJ for the Stokes in front of the cryostat. The non-resonant CARS signal at the
100µm glass plate mounted inside the cryostat routinely delivered crosscorrelation widths of
approximately 30fs.

7.3 Results

The goal was to demonstrate that it is possible to influence the relative population and relative
phase of the coherently excited normal modes.

7.3.1 Experiments with 100 fs temporal resolution

In the experiments on PDA with the commercial OPAs and 100fs temporal resolution, the ν̃2/ν̃2′ ,
ν̃3, and ν̃4 vibrations have been excited. If we are able to control the phase and excitation of
normal modes, we should also be able to excite normal modes such that certain bonds are
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Figure 7.6: Derivation of the feedback signal. The probe delay is wobbled continuously between τ2=100fs
and τ2=366fs. Spectra are recorded throughout all the time. After a given integration time, the spectral
intensity is integrated over a wavelength range corresponding to the ν̃2,2′ , ν̃3, ν̃4 modes, respectively.
Altogether, this results in an integration over the transients as indicated by the three boxes.

efficiently excited; this scheme would be of great interest for reaction control. Figure 7.7a
shows the three dimensional pattern obtained from the CCD detection of the transient anti–
Stokes signal with nearly Fourier limited pulses. With a constant time delay of τ1 between pump
and Stokes pulse, the time delay τ2 between Stokes and probe pulses was varied. According to
a previous article [145], the relative intensities of the three Gaussian–like peaks, which are
centered at about 1480 cm−1, 1200 cm−1, and 960 cm−1, reflect the relative population of the
three coherently excited modes. The time-and frequency-resolved anti–Stokes signal I(ω, τ2) can
be written as [155]:

I(ω, τ2) =
∑

i=2(2′),3,4

Q2
i (ω) exp

(−2τ2
T2i

)

+
∑

i, j = 2(2′), 3, 4
i > j

Qi(ω)Qj(ω) exp

( −τ2
T2iT2j/(T2i + T2j)

)

cos(ωijτ2 + φij) , (7.1)

where Qi(ω) is the spectral amplitude distribution of mode i, given by the product of a mode
intensity with a frequency-dependent function reflecting the spectral contribution of this mode
to the anti-Stokes signal [145], T2i the coherent dephasing time, and ωij = |ωi − ωj |, where
ωi and ωj are the carrier angular frequencies of modes i and j, respectively. Since the probe
was wobbled over several beating periods, the CARS signal has to be integrated over several
oscillations of the second term in eqn. 7.1, which makes this contribution to the integral small
compared to that of the first:

A(ω) =

∫ t1

t0

I(ω, τ2)dτ2 ≈
∑

i=2(2′),3,4

1

2
Q2
i (ω)T2i

(

e
−

2t0
T2i − e−

2t1
T2i

)

(7.2)

The corresponding population in each mode can be obtained by integrating over its spectral
profile, which serves as an input for the merit function in the optimization algorithm:

Pν̃j =

∫ ωj+∆ωj/2

ωj−∆ωj/2
A(ω)dω . (7.3)
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Correspondingly, the population Pν̃j of a particular mode νj was determined in the experiment
by summation over the intensities of the corresponding CCD pixel values,

Pν̃j =

n(ν̃j+∆ν̃j/2)
∑

n(ν̃j−∆ν̃j/2)

I(n), (7.4)

n(ν̃j) being the CCD pixel corresponding to the Raman shift ν̃j and ∆ν̃j the width of the mode.
An efficient optimization strongly depends on a suitably chosen feedback. The following merit
functionsmν̃22′ (Pν̃22′ , Pν̃3 , Pν̃4) were considered (without loss of generality, maximization of mode
ν̃22′ is desired):

mν̃22′ (Pν̃22′ , Pν̃3 , Pν̃4) = Pν̃22′ (7.5)

mν̃22′ (Pν̃22′ , Pν̃3 , Pν̃4) = Pν̃22′ − (Pν̃3 + Pν̃4) (7.6)

mν̃22′ (Pν̃22′ , Pν̃3 , Pν̃4) =
Pν̃22′

Pν̃3 + Pν̃4 .
(7.7)

Merit function (7.5) usually showed poor results regarding the contrast of the modes. Func-
tions (7.6) and (7.7) achieved comparable optimization results in many cases. The advantage
of (7.7) is that, if a similar dependence of Pν̃22′ , Pν̃3 , and Pν̃4 on laser power is assumed, the
feedback signal is normalized for laser power. Nevertheless, for low values of the denominator
in eq. (7.7) this merit function is sensitive to background noise. One might suspect that (7.7)
merely enhances the contrast at the expense of the total signal strength, but this has not been
observed. For merit function (7.6), the contrary line of argument may be considered. Neverthe-
less, we observed that it exhibits good signal intensities as well as a reasonable contrast. For
the optimizations shown in Figs. 7.7 and 7.8, merit function (7.7) was used throughout.
In previous experiments [146] it was shown that the distribution of energy in the different modes
strongly depends on chirp and delay of the Stokes pulse. Hence it is appropriate to restrict the
algorithm mainly to a search for polynomial phase functions, without changing the spectrum of
the pulses by an amplitude function. We thus chose a polynomial representation of the phase
function, compare Eq. 4.17,

Φn =
K

∑

k=2

ck

(

n−N0

N

)k

n = 0, · · · , N − 1 = 127, (7.8)

with quadratic terms as the lowest polynomial order. The parameters ck and N0 are optimized
by the algorithm such that the vibrational dynamics are only excited in the desired mode while
all other modes are suppressed. In the experiments of section 5 [65], N0 has been included
as parameter to ensure that the offset of the phase function coincides with the center of the
spectrum after an optimization has been accomplished. Here, N0 is a means of adjusting the
delay of the pulse shaper, since a linear phase shift can be performed with this parameter as
well.
At first, mν̃22′ served as the feedback signal in order to maximize the relative population of the
ν̃22′ mode. Figure 7.7b is the three dimensional time– and wavenumber–resolved CARS signal
obtained after optimization of the ν̃22′ mode. The two undesired modes are almost completely
suppressed. When the optimization of the ν̃22′ mode was repeated with new, randomly-chosen
initial parameters, the retrieved phase function was nearly identical, indicating that the phase
functions retrieved by an optimization are physically significant. The optimum phase function
is characterized by a linear chirp which is in accordance with former results. [146].
The same method has been applied for the selective optimization of the ν̃3 and ν̃4 modes. The
results are shown in Figs. 7.7c and 7.7d. In each case it was possible to suppress the two other
modes. In addition, the decay times of the optimized mode could be increased by a factor of
two. The strong beating between the modes, as observed in Fig. 7.7a, disappeared.
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Figure 7.7: Spectrally resolved CARS transients on polydiacetylene with shaped Stokes pulse for opti-
mization of different modes: a) unshaped pulses (Fourier limited); b) Optimization of the ν̃2/ν̃2′ mode.
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Figure 7.8: Spectrally resolved CARS transients on polydiacetylene with shaped Stokes pulse for opti-
mization of different modes: c) Optimization of the ν̃3 mode; d) Optimization of the ν̃4 mode.
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Figure 7.9: Phases retrieved by the algorithm for the optimization of the ν̃22′ , ν̃3, and ν̃4 mode.
The parameters in eq. 7.8 retrieved during the optimization are N0 = 0, c2 = −7.88, c3 = 0.79(ν̃22′),
N0 = 48.86, c2 = −10.10, c3 = −3.45(ν̃3), and N0 = 68.22, c2 = −9.29, c3 = 9.78(ν̃4), respectively.

In Fig. 7.9 the phase functions for the three optimizations are shown. Since the excitation of
the modes is caused by a stimulated Raman process, the frequencies for the excitation of a
certain mode are given by the convolution of the pump and the Stokes pulse. This means that
a certain range of the Stokes spectrum is responsible for the excitation of a specific mode. The
center of the Raman resonance for the ν̃4 mode corresponds to mask pixel 80 at the given laser
wavelengths for pump and Stokes pulse, to pixel 48 for ν̃3, and to pixel 14 for ν̃22′ . These values
agree well with the retrieved values for N0 of the polynomial. Since the derivative of the phase
functions with respect to frequency is zero at N0, the phases of the frequency components are
not changed at these positions. On the other hand, the phase function temporally shifts the
frequency components responsible for the other two modes out of the Franck-Condon window
between the self-trapped exciton state and the electronic ground state, thereby minimizing their
contributions. In addition, the shape of the phase function might be interpreted in terms of sym-
metric and antisymmetric phase functions around the corresponding Raman resonances which
suppress or enhance this two-photon transition according to control studies on multi-photon
transitions [129]. Applying instead predefined phase functions in which only the coefficient c2
(eq. 7.8) has been varied, the beating structure could be changed in a defined manner giving
rise to any superposition of normal modes.

A linear interpolation of the phase function with 64 parameters (see section 4.3) was also tested
for the optimization of the ν̃22′ mode and also proved to be highly efficient. The results are shown
in Fig. 7.10. The non-trivial phase function resulted in a highly complex pulse, though a smooth,
linear phase can be observed around pixel 16 which corresponds to the Stokes wavelength of the
ν̃22′ mode. This means that the optimization shifted the frequency components that dump
population from the STE state to the ν̃22′ mode of the ground state to a suitable temporal
delay, thus ensuring efficient population transfer, whereas it scattered all other frequencies in
time.

As can be clearly seen from the results above, the three modes have been controlled and the
transients could be modified. If the reaction coordinate for a certain chemical reaction requires
the interplay of several normal modes, the corresponding superposition of the eigenstates can
already be achieved by this population and phase control.
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Figure 7.10: (a) LCM phase retrieved after optimization of the ν̃22′ mode. A linear phase approximation
with 64 interpolation points and feedback function 7.6 has been used. (b) The integrated mode intensities
exhibit a high selectivity for the retrieved pulse.

7.3.2 Experiments with 30 fs time resolution

For a better description of the control mechanism, investigations with a better time resolution
are needed. With the ultrabroad spectra of the non-collinear OPAs, excitation of a fourth mode,
ν̃1 at 2030 cm

−1, is achieved in addition to the three modes ν̃22′ , ν̃3, and ν̃4. Even with this
increase in complexity of the control task, control is still possible.

A wavelength-resolved transient of an unshaped Stokes pulse and a pump delay τ1 = 0 is shown
in Fig. 7.11. With the enhanced temporal resolution, the beating between the ν̃22′ and ν̃4 mode
appears, as can be seen in Fig. 7.12 and 7.13. The ν̃3 mode is not clearly distinguishable from the
strong neighbouring modes and can only be deduced from the low-frequency beating structure
(see Fig. 7.13). Thus, only the optimizations of the modes ν̃1, ν̃22′ , and ν̃4 are discussed here.

With the shorter pulses, a temporal delay τ1=50 fs between pump and stokes (instead of 100fs
as chosen with the 100 fs pulses) proved sufficient to minimize time zero features. The probe
delay was again wobbled by the same amount, but between τ2=50fs and τ2 =316 fs.

Merit function 7.7 was changed accordingly to account for the ν̃1 mode and was used in these
optimizations throughout unless otherwise noted.

A preliminary optimization experiment using a chirp parameterization (Eq. 7.8) yielded only
poor results regarding mode contrast. The spectrum of the pump and probe pulses had to be
reduced from 25 nm down to 20 nm FWHM with a slit behind the second compressor prism in
order to get sufficiently high contrast with the chirp parameterization. Optimization of the ν̃3
mode was only achieved with low selectivity which is traced back to the fact that the ν̃3 mode
is overlapped by the ν̃22′ and ν̃4 modes (see Figs. 7.11 and 7.12).

From the results of the experiments in the previous section, it was deduced that the incidence
of the Stokes frequencies at the correct time for dumping the desired part of the population
from the self-trapped exciton state to the ground state is one of the mechanisms responsible for
the optimization results. In order to test this hypothesis, a parameterization was chosen that
used a Taylor series for the phase, as before, and additionally a Gaussian amplitude window
with adjustable width and center. This parameterization used only 6 parameters, and the
corresponding optimizations achieved high selectivity and fast convergence. After optimization
of each single mode, the optimal values for the pixel of the center of the Gaussian window as well
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Figure 7.11: Wavelength-resolved CARS transient using broadband pulses from non-collinear OPAs.

as the pixel of the zenith of the phase parabola were near the values for the pixel corresponding
to the Stokes wavelength of each mode (see Fig. 7.14). Additionally, the curvature of the phase
function retrieved for the optimization of the middle, ν̃22′ , mode (Fig. 7.14b) is observed to
be larger than for the optimization of the two outer modes, ν̃1 and ν̃4. An explanation for
this is that the Stokes frequencies corresponding to the ν̃1 and ν̃4 modes have to be shifted
temporally farther in order to suppress the dump process of these two modes. Altogether, the
data enforce the explanation of the previous section that one mechanism for achieving selectivity
in the excitation of ground state vibrational modes is a Tannor-Rice pump-dump scheme.
Optimizations using a free parameterization with 32 interpolation points each for phase and
amplitude (section 4.3) have been performed as well and produced high selectivity, though the
retrieved phase and amplitude functions were complex and unintuitive. No smooth function for
a range of pixels corresponding to the Stokes frequencies of the mode for which maximization
was sought has been observed, as was the case in Fig. 7.10.
Fig. 7.15(b) and 7.16(a) and (b) compile the transients obtained after optimization of the mode
ν̃1 as well as the combination modes ν̃1+ ν̃22′ and ν̃22′+ ν̃4. Fig. 7.15(a) shows the corresponding
reference transient. It was also possible to excite the remaining single modes ν̃22′ and ν̃4 with
high selectivity as well as the ν̃1 + ν̃4 mode, which is not shown here.
The combination modes ν̃1 + ν̃22′ , ν̃1 + ν̃4, and ν̃22′ + ν̃4 were optimized with a merit function
similar to Eq. 7.7 (without loss of generality, optimization of the ν̃1 + ν̃22′ combinatorial mode
is desired):

mν̃1ν̃22′ (Pν̃1 , Pν̃22′ , Pν̃3 , Pν̃4) =
Pν̃1Pν̃22′
Pν̃4

(7.9)

Altogether, all combinations of the modes ν̃1, ν̃22′ and ν̃4 could be prepared.
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Figure 7.12: Cuts along wavelengths corresponding to the ν̃1 - ν̃4 modes of the wavelength-resolved
transient in Fig. 7.11.
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Figure 7.13: FFT analysis of the ν̃4 mode in Fig. 7.12. FFT components at 238 cm−1, 266 cm−1,
284 cm−1, 503 cm−1, and 523 cm−1 are visible, corresponding to the beating of the ν̃3/ν̃4, ν̃2/ν̃3, ν̃2′/ν̃3,
ν̃1/ν̃2, and ν̃1/ν̃2′ modes, respectively.



7.3. RESULTS 91

16 32 48 64 80 96 112 128

0

1
-1

0

1

2

3

4

5

6(a)

 

tr
an

sm
is

si
on

pixel

 

 

ph
as

e 
[r

ad
]

16 32 48 64 80 96 112 128

0

1
-1

0

1

2

3

4

5

6

 

tr
an

sm
is

si
on

pixel

(b)
 

 

ph
as

e 
[r

ad
]

16 32 48 64 80 96 112 128

0

1
-1

0

1

2

3

4

5

6

 

tr
an

sm
is

si
on

pixel

(c)
 

 

ph
as

e 
[r

ad
]

Figure 7.14: Phase and amplitude functions retrieved with the combined chirp/ Gaussian amplitude
parameterization after optimization of the ν̃1 (a), ν̃22′ (b), and ν̃4 (c) modes, respectively. The center of
the Gaussian amplitude window as well as the zenith of the quadratic phase function coincides with the
pixels corresponding to the Stokes wavelengths of each mode (pixel 100, 66 and 40 for the ν̃1, ν̃22′ , and ν̃4
modes, respectively, as indicated by dashed lines) assuming a central wavelength of the pump of 602nm.
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Figure 7.15: Wavelength-resolved transients (2D plots, left) and distribution of the mode intensities
(bar charts, right) after optimization with free phases and amplitudes, using 32 interpolation points. (a)
Reference transient, showing the ν̃1, (ν̃3), ν̃22′ , and ν̃4 mode. (b) After optimization of the ν̃1 mode.
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Figure 7.16: Wavelength-resolved transients (2D plots, left) and distribution of the mode intensities
(bar charts, right) after optimization with free phases and amplitudes, using 32 interpolation points. (a)
After optimization of the ν̃1 and ν̃22′ mode, (b) after optimization of the ν̃22′ and ν̃4 mode.
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The question remains whether mode-selective excitation is still possible with the full pump/probe
spectrum.
With a free phase-only parameterization (see section 4.3) using 32 interpolation points, it was
still necessary to use spectrally clipped pump and probe pulses in order to get a good contrast
ratio of the modes after optimization. A combined phase and amplitude function with 32
interpolation points each had to be used in order to achieve a good contrast ratio with the full
pump/probe spectrum, whereas 16 points each for phase and amplitude did not suffice.
This suggests that the 16-parameter phase and amplitude approximation as well as the chirp
parameterization does not offer enough free parameters to obtain a faithful optimization result.
Therefore, between 33 and 64 free parameters are needed in order to obtain a sufficiently large
subspace of the complete space of possible pulse shapes that contains the optimal solution.
For the focusing of a wave packet in order to produce a local mode, it is essential to be able
to control the phases of the normal modes. In order to verify that the phase of the oscillations
changes with the phase of the controlling Stokes pulse, a phase step was introduced onto the
spectrum of the Stokes pulse between the pixels corresponding to the Stokes wavelength of the
ν̃1 and ν̃22′ mode. Seven transients were averaged for phase steps of 0, π/2, π, and 3π/2. Cuts
through the transients at the anti-Stokes wavelength corresponding to the ν̃1 mode are shown
in Fig. 7.17. The phase of the beat structure shifts linearly (dashed lines) with the phase step.
This indicates that the phases of the normal modes can be influenced. Hence, the generation of
local modes is feasible.

-200 0 200 400

0

2

4

6

8

10

12

14

�=3�/2

�=�

�=0

�=�/2

 

 

C
A

R
S

 s
ig

na
l 5

38
nm

delay [fs]

Figure 7.17: Cuts through the transients at a Stokes wavelength corresponding to the ν̃1 mode for phase
steps 0, π/2, π, and 3π/2 between the wavelengths of the Stokes spectrum corresponding to the ν̃1 and
ν̃22′ mode.
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7.4 Summary

Optimal control of the ground state dynamics in PDA by a stimulated Raman process in a
computer-controlled feedback loop has been demonstrated. It has been shown that selective
excitation of one vibrational ground state mode and suppression of all other modes is possible
in a complex molecular system.
In a second experiment with higher temporal resolution, a further mode could be excited. The
ultrafast beating of the modes up to 523 cm−1 has been observed. Despite the increased com-
plexity of the optimization problem, selectivity could be achieved for the excitation of single and
combination modes.
With a special parameterization consisting of Gaussian amplitudes and polynomial phases, the
algorithm could select the timing of the frequencies that dumped the population from the self-
trapped exciton state to the ground state and achieved high selectivity in the excitation of
ground state modes. Therefore, a Tannor-Rice scheme has been identified as one of the processes
responsible for the mode-selective excitation.
The optimizations using a free parameterization for phases and amplitudes revealed further,
unintuitive solutions which in combination with the dependence of the transients on the phase
structure of the Stokes pulse suggest that a phase-sensitive control mechanism still exists.
Since the relative phase of the three normal modes can also be set, any desired superposition of
normal modes can be produced. The excitation of local modes or the excitation along a reaction
coordinate to open a specific reaction channel on the ground state potential surface should be
therefore possible.
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8

Towards control of bimolecular

reactions: Dynamics of the NaH2

exciplex

One of the goals of coherent control studies is to guide a chemical reaction from the educt to the
product state. Starting from the control of unimolecular reactions, as successfully performed in
the previous chapter, the next step would be to control a simple bimolecular reaction. We chose
a simple system with only few atoms that is accessible to theoretical treatment on a quantum
mechanical level.
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Figure 8.1: Scheme of the NaH2 ground state and first excited state (exciplex) PES in C2v symmetry.
The abscissa represents the distance R between the sodium atom and the center of mass of the H2

molecule. Upon excitation with a red-detuned fs laser pulse, a wave packet oscillates between the inner
and outer turning points. A non-adiabatic crossing near the inner turning point couples the repulsive
ground state and the bound excited state.

The NaH2 collision complex is advantageous for several reasons: (a) Collisions between Alkali
atoms and molecules in the gas phase represent an important class of bimolecular reactions,
namely photo induced reactions, and are well-studied ( [156–162] and references therein). (b)
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The non-adiabatic crossing takes place via a conical intersection, vide infra. (c) Since only
three atoms are involved in this reaction, with H2 being the simplest conceivable molecule and
sodium a hydrogen-like atom with only one outer shell electron, a theoretical simulation of the
atom-molecule system with only three internal degrees of freedom is feasible [160,163–169].
After excitation of the unbound (Na(3s)+H2) system with a red-detuned laser pulse, a bound
collision complex (Na(3p)+H2) is formed (exciplex) with a well depth of 0.4 eV [159], due to
the wave function overlap of the orbital of the H2 molecule and the lobes of the valence electron
of the Na(3p) atom [168]. The population of the excited state is reflected at the inner turning
point of the well in the bound PES and oscillates in the well of the excited state. A fraction of
the population leaks to the ground state via a non-adiabatic crossing between these two states
located near the inner turning point of the PES. The excess energy is transferred very effectively
into rovibrational states of the H2 molecule. This process is called quenching and has been
observed as early as 1911 [170,171].
Figure 8.1 shows a cut through the ground (X2A1) and first electronically excited (A

2B2) PES
of the NaH2 collision system in C2v symmetry. This symmetry gives the largest contribution for
the quenching process as has been shown by Botschwina [168] and de Vivie-Riedle et al. [169].
A qualitative description based upon ab-initio calculations has been given by Botschwina [168]
in the context of the ”bond-stretch-attraction” model. To achieve a bound PES via the wave
function overlap between the Na(3p) lobes and the H2 orbitals, the p-orbital must be aligned
parallel to the H2 axis, whereas the remaining two p-orientations lead to repulsive PES. The
energetic minimum of the crossing between excited and ground PES is achieved for a stretched H2

bond. A transition to the ground state PES causes a dissociation of the complex into Na(3p) and
rovibrationally highly excited H2. These results, as first deduced from qualitative considerations
on static potential energy surfaces, could be confirmed by dynamical calculations [167,172–179]
and experiments [156].
The non-adiabatic crossing between the two PES in Fig. 8.1 has been shown to be a conical
intersection [168]. The crossing point is energetically below the asymptote of the excited state
[168,169], which is consistent with the experimentally observed high efficiency of the quenching
process [156]. The transition at the conical intersection is therefore ultrafast, and the lifetime of
the exciplex is expected to be on the order of several hundred femtoseconds, which is supported
by quantum-mechanical calculations [169,175]. All studies on this system to date only employed
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Figure 8.2: (a) Potential energy curves for Na(3S)H2 and Na(3P)H2 and (b) their difference potential
in units of nm for the NaH2 complex for the H–H distance r fixed at the H2 equilibrium distance.

nanosecond time resolution. For example, the distribution of the rovibrational excitation of
the H2 molecules after the collision has been extensively studied with ns CARS spectroscopy
[159,180–183]. Hertel et al. have investigated the collision complex in crossed beam experiments
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[160, 184] and have demonstrated that the non-adiabatic crossing can be explained by energy
transfer from electronic to rovibrational and translational energy.
However, none of these nanosecond experiments could verify the theoretically predicted ultra-
fast dynamics, hence the present investigation. In any ultrafast time-resolved experiment, the
definition of the time zero, which corresponds here to the onset of the reaction, has to be defined
properly. This is the main reason why femtosecond experiments on reaction dynamics have dealt
only with unimolecular reactions and precursors so far. In this experiment, the onset of the re-
action is defined by selection of an impact parameter with a laser pulse red-detuned from the
Na-D line1. Only those collision partners are excited whose distance R equals the position on
the PES at which the energy of the difference potential equals that of the exciting laser photons
(Fig. 8.2b ). Thus, the NaH2 distance which defines the time zero of the collision is exactly
defined. This corresponds to a so-called photoassociation process which has been demonstrated
so far only with the Hg2 system [185] with fs laser pulses.
As a first step towards control of the photoassociation [179], the goal of this experiment was the
temporally resolved direct observation of the NaH2 collision complex. Several obstacles called for
explicit attention regarding experimental constraints in order to ensure transients which could
faithfully be traced back to the collision complex.

• The pulses have to be sufficiently short since recent quantum mechanical calculations by
de Vivie-Riedle et al. suggested an oscillation period of the bound state of about 50-
100fs [179].

• The absolute number of NaH2 complexes that are generated upon excitation along the
direction of the R coordinate with a red-detuned laser pulse is given by the density of
the Maxwell tail for high temperatures since only collision partners with sufficient thermal
energy can approach the excitation window defined by the red-detuning of the laser pulse.
Calculations reveal that this number reaches the lower limit of FWM detection schemes,
which are the only feasible detection schemes, as will be discussed further.

• The sodium dimers, which show absorption in the same spectral range as the collision
complex, have to be removed. This calls for a cell with a differential superheating since
the ratio between [Na] and [Na2] is dependent on the vapor pressure of the liquid sodium
which, in turn, depends on the temperature of the reservoir. The local superheating of the
observation zone is supposed to crack the dimers.

• In order to enhance the number of collision complexes, which is dependent on the pressure
of both reactants, the buffer gas pressure must be raised, since an upper limit of [Na] is
given by the maximal tolerable temperature in the cell. This calls for a high pressure cell.

• On the other hand, the sodium concentration has to be sufficiently low to avoid pulse prop-
agation effects due to power broadening of the Na-D line. It should be kept in mind that
the excitation occurs close to the transition of the Na-D line which features an oscillator
strength close to 1.

• Hot Alkali metal vapors are highly reactive and attack most window materials. Only
few transparent materials, such as Sapphire, can withstand these extreme conditions.
Nevertheless, these materials cause severe problems with stray light and birefringence
when used as windows since no high grade polishing is possible.

Aside from quenching, the laser-induced formation of NaH is also possible. This has been
observed with Na(4p)+H2 for H2 in the (v = 0) state [161, 162] as well as for the Na(3p)+H2

system if the H2 molecules possess sufficiently high vibrational energy [183]. Since the NaH2

system thus features both the reactive and the quenching channel, the question arises whether

1The D1/D2 splitting is neglected here since a quantum beat between these lines appears on a ps time scale.
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the branching ratio between these two channels can be controlled with a suitably modulated
pump pulse. This experiment focuses on the observation of the dynamics of the quenching
channel.

8.1 High pressure Alkali vapor cell

One of the major tasks in this experiment was to develop a cell with differential heating which
could produce hot, reactive, dimer-free Alkali vapors at high buffer gas pressures. In collabora-
tion with Hrvoje Skenderović and Goran Pichler from the Institut za Fisiku in Zagreb, Croatia,
a twin tube heat pipe was developed.

The principle of a conventional heat pipe [186,187] is that the liquid Alkali metal is evaporated
within a heated section and circulates by convection with a cooled part of the cell. A mesh acts
as a wick which enhances the backflow of the liquid Alkali metal to the heated zone. Because
of convection, the Alkali vapor does not approach the windows which are installed in the cooled
region, and the problem of the reactivity of the Alkali vapors is solved, which enables the use
of simple glass windows. Furthermore, since the windows are kept at room temperature, no
intricate high temperature sealings are necessary. These standard spectroscopic heat pipes as
investigated by Vidal [186] cannot be used in this experiment since the temperatures of the
sodium reservoir and the observation zone are identical, which induces the Na2 problem, as
discussed above. Operation of convection in heat pipes has only been reported for relatively low
pressures, and it remains to be shown that it works as well for high buffer gas pressures.

There have been preliminary attempts to build a conventional heat pipe with a superheating
zone by the group of Pichler. Differentially heated cells which produce dimer-free vapors in the
superheated part are available as well. Again, operation of both cell types has been reported
only with low pressures.

Superheating can be accomplished in two basic approaches. (a) The two-chamber principle
uses a sodium reservoir which is connected to a separate superheated probe chamber. (b) The
one-chamber approach features a small superheated region inside a heat pipe.

The cell development as described in [153] resulted in a new cell that follows the two-chamber
approach and features a conventional heat pipe in the lower part (the reservoir) and a super-
heated zone in its upper part. The heat pipe design had been chosen for the reservoir because
it prevents the formation of an oxide layer on th sodium surface which has been observed with
simpler types of reservoirs. A drawing is provided in Fig. 8.3. As in the conventional heat
pipe, cooled flanges are attached on both sides of the heating zone of each tube so that no hot
Alkali vapor can reach the FS windows. The heated zones of both tubes are connected via
a high-temperature tube which allows sodium transfer. Two additional, unheated connection
tubes in the cooled regions support convection between upper and lower part. The cell has been
designed and tested to withstand 40bar while cold and up to 25bar at 400 ◦C. To achieve these
operation pressures, considerable attention had to be paid to the windows and their sealing. The
required window thickness amounts to 15mm at a window diameter of 25mm and an accessible
aperture of 18mm. Gold rings were used as sealing gaskets and proved to withstand both high
pressures and high operation temperatures. During operation, a slight tarnish of the windows
was observed which could be removed by additionally heating the windows to 150 ◦C and only
slightly decreasing the maximal operation pressure of the cell.

Fig. 8.4 provides an absorption measurement in the upper and lower part of the cell. In the lower
part, the dimer absorption bands are observed. The upper part is superheated and exhibits a
structureless absorption. This shows that superheating, as desired, causes a reduction of dimer
concentration. As will be explained later, buffer gas pressures above 5 bar lead to the formation
of a refractive index gradient in the upper part which causes large beam deflections of the laser
pulses.

It is important to determine the optimal cell operation parameters, such as buffer gas pressure
and temperatures of the three tubes. The number of duty cycles of the cell is still quite low.
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Figure 8.3: Sketch of the high pressure cell. The region between the two cooling flanges is heated with
a heating wire in the upper and the lower tube, as well as the connecting tube. The window flanges are
designed for quick exchange: The window is mounted with two gold rings in the window holder which
is connected to the cell via a CF-40 flange. The thickness of the heat-resistive stainless steel (1-41-45)
tubing wall is approximately 5mm. The overall length of the upper cell without windows flanges amounts
to 260mm, that of the lower cell to 360mm. The distance between the upper and lower tube centers is
approximately 120mm.

After a few hours of operation with pump pulses entering the cell, the formation of NaH crystals
(”laser snow”) was observed. These crystals can be removed several times after cooling down
the cell, but after approximately five consecutive days of operation, the cell has to be thoroughly
cleaned because the NaH formation completely occludes the upper tube.

8.2 Experiment

The fs pump pulses from a two-stage non-collinear OPA were detuned from the Na-D resonance
to approximately 607nm with a FWHM of approximately 23nm. The output energy was ≈5 µJ.
The amplified non-collinear OPA was preferred to a single stage version for this experiment
since we observed that it produces more stable spectra and output energies. Residual spectral
components at the Na-D resonance were intercepted by a beam block behind the second prism
of the pulse compressor. This unit was adjusted to compensate for the chirp of the OPA
output as well as the dispersion in the 15mm thick windows of the heat pipe. A pulse width of
approximately 40 fs FWHM was obtained with an autocorrelator measurement, mainly due to
the non-linear chirp in the thick windows. The autocorrelation has not been determined inside
the cell, but rather with a spare window. Therefore, propagation effects inside the cell caused by
the proximal sodium D-line have not been accounted for. In this first experiment, the adaptive
pulse compression approach as described in chapter 5 was not employed, so as to avoid the
intensity losses occurring at the shaper. In future experiments, the use of a shaper in the pump
beam is mandatory, since not only can ultrashort pulses easily be delivered to the cell, but also
feedback-controlled experiments to control the wave packet dynamics at the conical intersection
are possible.
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Figure 8.4: Absorption spectra of the double heat pipe in the lower part (thick line) and the upper,
superheated part (thin line). The superheated upper part does not exhibit the Na2 absorption bands.

The detection of the wave packet dynamics in the excited state of the exciplex relies on near
resonant DFWM at the Na(3p-6s) transition. This scheme has several advantages. We chose
DFWM as proposed in [154] because all excited states of the exciplex are expected to cut across
the ground state surface, leading to a short lifetime at high buffer gas pressures. Motzkus et
al. [154] proposed the Na(3p-4d) transition wavelength for DFWM detection. The Na(3p-4d)
has the advantage that the fundamental pulses of the Ti:Sa regenerative amplifier can be used
in the DFWM scheme, which makes wavelength conversion unnecessary. Nevertheless, because
the oscillation period of the exciplex was calculated to be below the pulse duration of our Ti:Sa
fundamental pulses, a pulse shortening had to be performed in any case. We found that pulse
shortening by a non-collinear OPA process is superior to spectral broadening in a hollow fiber
inasmuch as it produces smooth spectra and pulses with a high contrast ratio. Finally, the
Na(3p-6s) transition was chosen because the 6s level is energetically above the 5s level and
therefore unaffected by the two-photon transitions from 3s to 5s induced by the pump pulses as
discussed in chapter 6.

A LIF detection scheme would be much less complicated but nonetheless cannot be used, since it
relies on spontaneous emission requiring an excited state lifetime of several ns. For higher buffer
gas pressures, the quenching channel is much more probable than the LIF channel because of
the high number of collisions; thus the LIF signal vanishes exactly at those cell conditions which
support the appearance of an intense signal from the exciplex. Moreover, since LIF detection
funnels all population from upper levels which can decay to the detected level, it is sensitive to
multi-photon absorption of the pump as well, which is unfavorable.

The probe pulses have been produced with a second single stage non-collinear OPA which pro-
vides sufficient pulse energy. Again, great care was taken to obtain a smooth beam profile.
Rather than being centered on the Na(3p-6s) transition, which corresponds to 515nm, its spec-
trum with a FWHM of 15nm was blue-detuned to approximately 507nm. The reason to do
so is illustrated in Fig. 8.5. After excitation with a red-detuned pump pulse, the wave packet
oscillates in the well. In order to observe the collision complex but not the free Na, the probe
pulses must be detuned to match the transition between the Na(3P)H2 and the Na(6S)H2 exci-
plex states at the outer turning point of the wave packet. A small amount of spectral intensity
at the Na(3p-6s) resonance was left to facilitate the detection of signal in the first run of the
experiment. To compensate for the 15mm FS cell windows, the probe pulses have also been
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Figure 8.5: Near-resonant DFWM detection scheme based upon the Na(3P-6S)H2 transition. The po-
tential energy surfaces in the region of the dashed box are not precisely known. The potential of the
Na(6S)H2 exciplex is expected to be bound with a smaller well depth (< 0.1eV) than the Na(3P)H2 exci-
plex [188,189]. Therefore, the DFWM wavelength has to be blue-detuned from the Na(3p-6s) transition.

compressed with a FS prism compressor. Nevertheless, presumably due to the greater disper-
sion at lower wavelengths, pulse lengths of 40fs to 50fs FWHM as measured by autocorrelation
have been obtained. Without the FS windows, the DFWM pulses could be compressed down to
approximately 40fs. Pump and probe pulse spectra are sketched in Fig. 8.7.

The experimental setup is basically the same as in the 30fs CARS experiments on PDA (see
section 7 and Fig. 8.6 in this chapter). The only difference is that one color (the probe pulse)
is split into three sub-pulses of equal energy rather than into two as in the CARS experiments.
Compensation plates for the beam splitters are inserted in all three arms of the DFWM setup
such that every beam passes the same amount of dispersive material, thus eliminating the need
for three separate prism compressors. The pump pulse is guided through the center of the
DFWM pulse arrangement, as depicted in Fig. 8.6. All four beams are focused into the high
pressure heat pipe described in section 8.1. The DFWM signal emerges separate from all other
beams, as depicted in Fig. 8.6. It is spatially filtered, routed along a path of approximately
10m to further reduce stray light, spectrally filtered in a 30cm monochromator and recorded by
a cooled photomultiplier tube. The PMT signal is recorded by an A/D converter. Since the
registered signal contains contributions not only from the near-resonant DFWM signal of the
Na(3P-6S)H2 transition, but also from the non-resonant background of the sodium atoms and
the H2 molecules in the cell, a chopper synchronized to the fs laser is installed in the pump
beam. The chopping frequency is chosen such that every other pump pulse may pass. Two
consecutive laser pulses are binned to form one event, and for every event the signal without
pump pulse is subtracted from the signal with pump pulse. The differences of a number of
events (usually 100) are then averaged for each delay. This scheme assures proper subtraction of
the background signal since the pulse-to pulse stability of the pump and probe sources is better
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Figure 8.6: Schematic setup of the pump-DFWM experiment. (a) Timing of the pump pulse and the
three concurrent probe pulses with definition of delay τ . (b) Pattern of the pulses at the position of the
beam block.

than the long-term stability.
A first transient measured with the new cell and the above-described setup is shown in Fig.
8.8. The buffer gas pressure was slightly below one bar. A coherence spike near t = 0 is
visible which is expected to originate from residual spectral intensity on the Na(3s-3p) and the
Na(3p-6s) resonances, causing a resonance-enhanced multi-photon transition. The FWHM of
the coherence spike is approximately 40fs. No oscillations are visible: only a stepwise decrease of
the signal can be ascertained. The noise originates from the high background signal and could
only be detected with the above-described chopper technique since the signal-to-background
ratio is worse than 1:10.
More experiments have been performed with higher buffer gas pressures (up to 25bar). Under
these conditions, the cell still produces dimer-free sodium vapor. Nevertheless, horizontal layers
with different refractive indices were observed, forming a ”gas lens” at high temperatures and
pressures which caused a large beam deflection downwards. Under these conditions, no DFWM
signal could be observed, since no spatial overlap of the focused beams could be assured, and even
if the beams met at the focus, the DFWM signal would point in an unpredictable direction. This
effect is caused by the buffer gas, and it vanishes immediately once the temperature approaches
room temperature. The origin of this effect is still not clear and is the subject of current
investigations. For higher temperatures at lower pressures (∼ 5 bar), the high sodium vapor
pressure and long sodium vapor zone led to further problematic pulse propagation effects.
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Figure 8.7: Spectra of pump and probe pulses, as recorded simultaneously at the location of the focus.
The Na(3s-3p) and Na(3p-6s) resonances are marked by two vertical lines.
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Figure 8.8: Transient recorded at < 1bar H2 buffer gas pressure, Tlower = 400◦C, Tmiddle = 450◦C,
Tupper = 450◦C. The window flanges were heated to 150◦C in order to prevent sodium desorption on
the FS windows. 50 scans have been averaged, and each point of each scan was averaged over 100 single
measurements.
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8.3 Discussion

The transient obtained in the above experiment in all likelihood represents real-time observation
of the exciplex, since the observed transient exhibits the expected feature of an ultrafast decay
of the Na(3P)H2 population. Moreover, the temporal features of the transient are close to
those predicted by theory [179, 190], as shown in Fig. 8.9. Both in experiment and theory,
the Na(3P)H2 population decays within roughly 300fs. It should be noted that assignment of
the transient in Fig. 8.8 to the exciplex lacks direct proof, though we consider it highly likely
because all parameters and experimental considerations known to date (see list at the beginning
of this chapter) have been set correctly.
Further experiments are necessary to verify that the NaH2 collision complex has been indeed
observed. These include experiments with different buffer gases that are not expected to form an
exciplex, and measurements with chirped pump pulses which should influence the wave packet
dynamics [191]. A further optimization of the cell parameters, more stable OPA outputs, a
low-noise PMT detector and lock-in detection should all enhance the signal-to-noise ratio.
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Figure 8.9: Three-dimensional propagation of a Gaussian wave packet on the S1 PES (equivalent to the
Na(3p)+H2 PES). The initial wave packet has been placed at R=1.88 Å (conical intersection), r=0.794
Å (equilibrium distance), r being the H-H distance. From [190].

If the observation of the temporal dynamics of the exciplex can be verified, the next step would
be to control the wavepacket dynamics at the conical intersection. Further control experiments
could entail manipulation of the rovibrational population distribution of the H2 molecule after
the collision, which could be detected by ns CARS [156,159,180], or opening the NaH formation
channel. It should be noted that this (reactive) channel has already been observed in the above
experiments (”laser snow”) [181,182,192,193].
The door to control experiments on the NaH2 exciplex, as already described theoretically, is
very nearly open. The control of a prototypical bimolecular reaction seems now to be within
reach.
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Summary and outlook

This work deals with the fundamentals of feedback-controlled shaping of ultrashort laser pulses
with respect to both the establishment of its technical prerequisites and the application to suit-
able model systems. The feedback loop has been tested using a simple optimization experiment
with known outcome; then it was applied to experiments of progressively increasing complexity.
From the optimized pulses, physical insight into the optimization process has been gained.

In the first part of this work, the implementation of the required technology has been detailed
such that control experiments might employ it as a standard tool. One of the technical pre-
requisites was the frequency conversion of the 800 nm Ti:Sa laser pulses to a wavelength range
suited to the particular systems. To this end, non-collinear optical parametric amplifiers have
been built in different designs that routinely produce tunable sub-20 fs pulses in the visible. The
characterization techniques for ultrashort pulses have been implemented as well.

Pulse shapers with cylindrical instead of spherical mirrors have been implemented for the mod-
ulation of broadband pulses, and their functionality has been explained both theoretically and
experimentally. A new liquid crystal device, the core of our pulse shapers, has been developed in
cooperation with the group of Thomas Feurer at the Universität Jena and the Jenoptik GmbH
which allows for the generation of more complex pulse shapes than with other commercially
available devices to date.

Using a pulse shaper to modulate the white light continuum that serves as the seed for the
non-collinear optical parametric amplifier, generation of phase-locked two-color double pulses
has been achieved, with tunable wavelengths, delays, and relative carrier phases between the
single pulses. The basic principle, phase conservation during optical parametric amplification,
has been demonstrated. With this setup, control experiments which require pulses with the
above described attributes in electronically controllable form are possible for the first time.

An evolutionary strategy used as the optimization algorithm in the feedback loop has been
programmed and characterized both in simulation and experiment using a simple optimization
experiment, namely pulse recompression by phase compensation.

In the second part of this work, pulse recompression of ultra-broadband spectra in the sub-20fs
regime serves as an example of utility of feedback-controlled optimization. This experiment si-
multaneously served as a further test of the feedback loop in the limit of a physically unreachable
optimization goal.

It has been demonstrated that a suitable parameterization of the electric field, implemented by
a mapping of the optimization parameters adjusted by the algorithm to the physical parameters
controlling the liquid crystal mask affords a means of acquiring physical knowledge from the
retrieved optimal electric fields. A parameterization helps to dissect the physical processes
mediating the control process, thereby assuring fast, secure convergence and robustness against
signal noise.

So-called ”bright” and ”dark” pulses, i.e. pulses that are absorbed by a medium or transmitted,
respectively, have been demonstrated for the case of the two-photon transition Na(3s→→5s).
The physical constraints responsible for pulses being either ”bright” or ”dark”, namely a sym-
metric or anti-symmetric spectral phase, have been incorporated in the parameterization with
the purpose of testing the concept of parameterization for such studies.
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An example of mode-selective preparation of vibrational states in a polyatomic molecule is the
control of the ground state dynamics in polydiacetylene. In a Raman step with a shaped Stokes
pulse, the population of the backbone vibrations of polydiacetylene in its ground state could
be controlled. A consecutive probe pulse in a CARS (coherent anti-Stokes Raman scattering)
arrangement generates an anti-Stokes signal which, once frequency-resolved, served as feedback.
Of the three or four modes, respectively, accessible within the pulse bandwidth, single modes as
well as combinations of modes could be excited with high selectivity. Again, suitable parame-
terizations helped to identify one of the processes responsible for the control as a Tannor-Rice
scheme. Since both the amplitude and the phase of each mode could be influenced, the focusing
of a wave packet at a predefined time, or, equivalently, the generation of local modes represents
the control of a unimolecular reaction.

Starting from the control of a unimolecular reaction, the possibilities of controlling a bimolecular
reaction were addressed. The NaH2 collision complex was chosen as a suitable system for the
control of bimolecular reactions generally and a conical intersection in particular. First time-
resolved experiments have been presented.

First time-resolved experiments have been presented in a pump-DFWM experiment with ≈
50fs temporal resolution. The obtained transient strongly supports the real-time observation
of the exciplex, since the temporal features of the transient are close to that predicted from
theory [179].

In the near future, several experimental results of this work call for further investigation:

The development and testing of the optimization routines will, of course, never reach a steady
state condition. Several modifications are envisioned in the near future, such as the development
of a front end interface that automatically sets the internal parameters, so that users need not
be concerned with internal parameters of the algorithm. A meaningful modularization of the
optimization algorithm should result in a program package in which the user has only to provide
a parameterization of the electric field and a routine for the feedback signal. An algorithm
that autonomously tests different parameterizations and chooses the most appropriate one is
envisioned.

The successful demonstration of phase-locked pulses with different colors calls for an experiment
which exploits the specific properties of such pulse structures. An experiment following the
Tannor-Rice scheme seems appropriate in this context. Moreover, the implementation of qubits
in iodine within a CARS experiment has been suggested [194] and seems to be a promising
experiment for the use of phase-locked multi-colour pulses.

As an extension to the control of two-photon transition in an atomic system, experiments with
laser pulses which give rise to light-induced transparency, as well as lasing without inversion
should be possible for complex multi-level systems. The feedback approach also offers the possi-
bility of suppressing unwanted competitive multi-photon absorptions while a specific transition
is excited.

In the control of ground state vibrations of polydiacetylene, a fit of the transients using the
model of T. Chen [155] must be performed in order to obtain information about the relative
phases of the normal modes in a more accurate way. The dependence of these relative phases
on the Stokes pulse should then offer information on how the phase of the Stokes pulse must be
chosen to focus the wave packet dynamics into a specific local mode at a predefined time.

If the observation of the temporal dynamics of the NaH2 exciplex can be verified in a forth-
coming experiment, the next step would be to use shaped pulses for the excitation. Numerical
simulations revealed a strong dependence of the efficiency of the transition at the crossing on
the shape of the wave packet at the the conical intersection [179, 190]. Since the shape of the
wave packet at this location is given by the properties of the pump pulse, control of the wave
packet dynamics at the conical intersection appears to be feasible. With suitably modulated
excitation pulses, the reactive channel (NaH2)

⋆ −→ NaH + H should be accessible. Detection
of NaH formation is possible using a narrowband CARS or DFWM setup [192,193].
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In the longer term, the control of a photochemical reaction represents a promising experiment.
The dynamics of cyclic polyenes is well-studied both experimentally [195, 196] and theoreti-
cally [191,197–199]. The ring opening has been shown to proceed on an ultrafast time scale and
to take place via conical intersections between the excited and ground potential energy surface.
A compelling experiment should therefore employ feedback control in an attempt to influence
the branching ratio of ring opening to relaxation back to the ground state closed ring using
modulated excitation pulses.
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Appendix A

The Titanium:Sapphire laser system

The core of all experiments in this thesis is the femtosecond Titanium-Sapphire regenerative
laser system (CPA-1000) supplied by Clark MXR (Fig. A.1). Since it has been described in
great detail in [153], only the main features of the system are summarized. The coherent
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Figure A.1: Setup of the Ti:Sa laser system. Only one of the two OPAs is shown, the missing one is
pumped with the residual 400µJ. With friendly permission by Tobias Lang.

broadband spectra are produced in the Kerr-lens mode-locked Ti:Sa oscillator (NJA-4) which
is pumped by a diode-pumped intra-cavity doubled Nd:YVO4 laser (Millenia). The oscillator
emits pulses at an energy of about 3nJ and a repetition rate of approximately 80MHz. Their
central wavelength is typically 810nm. The pulses are stretched in the grating stretcher unit
(PS-1000) and then coupled into the regenerative amplifier (TRA-1000). This stage is basically
a Ti:Sa laser cavity which is pumped by a flashlamp-pumped intra-cavity doubled Nd:YAG laser
(Orc-1000) delivering 7mJ pulses at a repetition rate of 1kHz. The stretched oscillator pulses
are amplified to approximately 1.6mJ. Recompression (PC-1000) down to approximately 100fs
FWHM leaves an output energy of 800µJ.
Wavelengths other than the Ti:Sa fundamental are obtained from two independent collinear two-
stage OPA units, of which only one is shown in Fig. A.1. Alternatively, up to three non-collinear
OPAs as described in section 1 can be pumped by the fundamental Ti:Sa pulses.
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Appendix B

Characterization of ultrashort pulses

The characterization of shaped ultrashort pulses is an important prerequisite for the adjustment
of a pulse shaper and the generation of faithfully shaped pulses. In this section, the basic
principles of pulse characterization are presented. It follows the review article by Trebino et
al. [200]; for more detailed information, the reader is referred to this publication.

Mathematical description of ultrashort pulses

Laser pulses are defined by their electric field E(t). The field is regarded as linearly polarized,
and therefore only its scalar component is considered. If the electric field can be separated into
a product of spatial and temporal factors, the time-dependent component of the pulse can be
written as:

E(t) = Re {A(t) exp [i (ω0t− φ(t))]} (B.1)

where A(t) = I(t)1/2 and φ(t) are the envelope and time-dependent phase of the pulse, ω0 is the
carrier frequency, and I(t) the time-dependent intensity. The time-dependent phase contains
the frequency versus time information. The instantaneous frequency of the pulse, ω(t), is given
by

ω(t) = ω0 −
∂φ

∂t
. (B.2)

Thus, a constant-phase pulse shows no frequency variation in time. Linear variation of φ in time
simply corresponds to a frequency shift. Quadratic variation of φ in time represents a linear
ramp of frequency versus time. Pulses with increasing (or decreasing) frequency versus time are
said to be positively (or negatively) chirped. If the phase function is quadratic, the chirp is said
to be linear. Higher-order phase functions are termed ”nonlinear chirp”. The field can also be
expressed in the frequency domain1:

Ẽ(ω) = Ã(ω − ω0) exp[iφ̃(ω − ω0)], (B.3)

where Ẽ(ω) is the Fourier transform of E(t). Ĩ(ω − ω0) is the spectrum, Ã(ω − ω0) = Ĩ(ω −
ω0)

1/2, and φ̃(ω − ω0) is the spectral phase. The spectral phase contains time versus frequency
information. The group delay versus frequency, t̃(ω) �= ω(t)−1, is defined by

t̃(ω) =
∂φ̃

∂ω
. (B.4)

As in the time domain, a frequency-domain constant-phase pulse experiences no frequency vari-
ation with time. Linear variation of φ̃(ω − ω0) with frequency is simply a shift in time, that

1In this expression, the negative-frequency terms arising from the Fourier transformation are neglected.
See [201].
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is, a delay. Quadratic variation of φ̃(ω − ω0) with frequency represents a linear ramp of group
delay versus frequency and corresponds to a linearly chirped pulse. As in the time domain,
higher-order terms imply nonlinear chirp.

In order to completely characterize E(t) or Ẽ(ω), respectively, it is necessary to measure both
the intensity and phase, either in the frequency or the time domain.

B.1 Autocorrelation

The most commonly used device for time-domain characterization of ultrashort pulses is the
autocorrelator [202–204] which, since no shorter event is available, uses the pulse to measure
itself. Figure B.1 shows a schematic setup.
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Figure B.1: Setup of a non-collinear SHG autocorrelator. The input pulse is split with a metallic
beamsplitter into two replica of equal energy. These are focused onto a 10µm BBO crystal. The wave
vector of the signal, �k2ω

sig, is determined by the conservation of momentum
�k2ω

sig =
�kω

1 +
�kω

2 . Signal is
produced if and only if the pulses overlap. Thus, the autocorrelator signal is background-free.

Autocorrelation entails the superposition of a pulse with its adjustably delayed replica in some
instantaneously responding nonlinear-optical medium, such as a SHG crystal. The instantaneous
magnitude of the SHG signal is proportional to the product of the instantaneous intensities of
the two input pulses. A detector measures the temporally integrated SHG intensities. The SHG
autocorrelator signal in a non-collinear arrangement as depicted in Fig. B.1 can thus be written
as

A(τ) =

∞
∫

−∞

I(t)I(t− τ)dt, (B.5)

where τ is the relative delay between the pulses. Other types of nonlinearity can be used, as well,
such as THG or optical Kerr effect [205]. Using different types of nonlinearities, autocorrelation
measurements can be performed in a wavelength range from the UV (using, e.g. Kerr effect) to
the IR.

The main advantages of SHG autocorrelation are sensitivity, since it involves only a second-order
nonlinearity, while third-order optical nonlinearities are much weaker, and the simple setup.
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The main disadvantage is that, unlike third-order autocorrelation, the SHG autocorrelation trace
is symmetrical with respect to delay, and, as a result, it has an ambiguity in the direction of time.
The pulse, E(t), and its time-reversed replica, E(−t), both yield the same autocorrelation trace.
Autocorrelation measurements yield a smeared out version of I(t), and it often hides structure.
In order to merely obtain the pulse duration, an educated guess must be made for a pulse shape,
yielding a multiplicative factor that relates the autocorrelation FWHM to that of the pulse itself.
This factor varies significantly for different common pulse shapes, such as sech2(t), which yields a
large multiplicative factor and hence a shorter pulse length for a given measured autocorrelation
width compared to other assumptions, as for example a Gaussian pulse [201]. Moreover, even
when the spectrum or another quantity, such as the interferometric autocorrelation [201], is
also measured, there is not sufficient information to completely characterize the pulse. Finally,
systematic error can be present in the measured autocorrelation, e.g. misalignment effects that
can introduce distortions, and it is difficult to know when the measured autocorrelation is free of
such effects. One of the most common sources of error is a insufficient phasematching bandwidth
of the SHG crystal. This is discussed in the SHG FROG section.

B.2 Cross-correlation

Cross-correlation is also based on the spatiotemporal overlap of two pulses in a nonlinear
medium, but the second pulse which serves as reference pulse is no longer a replica of the
pulse to be characterized. As previously, any physical process which depends on the product of
the intensity of the reference (”gate”) pulse and the pulse to be characterized (”probe”), can be
exploited. In analogy to Eq. B.5, the cross-correlation signal can be expressed as

C(τ) =

∞
∫

−∞

Ip(t)Ig(t− τ)dt, (B.6)

where Ip(t) represents the temporal evolution of the probe pulse and Ig(t) that of the gate
pulse. Provided Ig(t) is known, Ip(t) can be determined by deconvolution. If both pulses can be
written as Gaussian pulses with duration τp and τg, respectively, the cross-correlation can also
be described as a Gaussian pulse with duration τc. With τc and τg known, τp can be calculated

by solving Eq. B.6 for τp and is given by τp =
√

τ2c − τ2g .
Cross-correlation measurements feature a number of advantages over autocorrelation measure-
ments. First, cross-correlation can be used to determine very weak signals since the gate pulse
can be used for amplification. Second, the wavelength range of the cross-correlation signal can
be shifted to a region where detection is convenient. This is used quite commonly in the char-
acterization of IR or UV pulses via the use of SFG or DFG. Third, no time-reversal ambiguity
exists since gate and probe pulse can be well distinguished. In pump-probe experiments, cross-
correlation measurements are often the only way of determining the pulse properties at the
location of the sample (e.g. inside a cell) by observing the signal of a non-resonant material
instead of the sample under investigation.

Nevertheless, cross-correlation also features several drawbacks, one of the largest of which is that
the temporal delay zero between gate and probe pulse has to be maintained for the measurement.
Another drawback is that the gate pulse has to be characterized very faithfully in order to obtain
true information on the probe pulse.

B.3 Frequency-resolved optical gating

Techniques for a full characterization of ultrashort pulses operate in the ”time-frequency do-
main” [206,207]. Measurements in this domain involve both temporal resolution and frequency
resolution simultaneously. Basically, this involves two consecutive steps: the application of a
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gate function which slices out a defined part of the pulse temporally and thereby creates the tem-
poral information on the pulse, and a frequency gate which produces the spectral information.
Scanning all delays and frequencies, a so-called spectrogram is obtained, which is the description
of a pulse in the time-frequency domain and can be expressed as

S(ω, τ) =

∣

∣

∣

∣

∣

∣

∞
∫

−∞

E(t)g(t− τ) exp(−iωt)dt

∣

∣

∣

∣

∣

∣

2

(B.7)

where g(t − τ) is a variable-delay gate function. Knowledge of the spectrogram is essentially
sufficient to completely determine E(t) [49,51] except for an absolute phase factor. The first
step of FROG [208,208–212] involves measuring the spectrogram of the pulse; the second is the
reconstruction of I(t) and φ(t) from the spectrogram.
Unlike other ultrashort-pulse-measurement methods, FROG needs no a priori assumptions
about the pulse. Even the assumption of a nearly instantaneous response of the nonlinear
medium has been shown to be unnecessary, as this can be included in the algorithm [213]. Simi-
larly, any known systematic error in the measurement may also be modeled in the algorithm [214]
although this is not generally necessary, except for extremely short pulses (< 10 fs).
FROG uses the time domain to obtain long-time resolution and the frequency domain for short-
time resolution. Consequently, if the full pulse spectrogram is entirely contained within the mea-
sured trace, there can be no other long-time pulse structure (since the spectrogram is essentially
zero for off-scale delays), nor any additional short-time pulse structure (since the spectrogram
is essentially zero for off-scale frequency offsets).
Another useful and important feature of FROG is that it provides feedback regarding the validity
of the measurement data. FROG actually contains two different types of feedback. The first
results from the fact that the FROG trace is a time-frequency plot, that is, an N × N array
of points, which are then used to determine N intensity points and N phase points. Pulse
intensity and phase are thus significantly overdetermined, and it is highly unlikely that a trace
composed of randomly generated points corresponds to an actual pulse. Similarly, a measured
trace that has been contaminated by systematic error is unlikely to correspond to an actual
pulse. Thus, convergence of the FROG algorithm to a pulse whose trace agrees well with the
measured trace virtually assures that the measured trace is free of systematic error. Conversely,
non-convergence of the FROG algorithm indicates the presence of systematic error.
Another feedback mechanism in FROG is deterministic and has proven extremely effective in
revealing systematic error in SHG FROG measurements of 10 fs pulses, where crystal phase-
matching bandwidths are insufficient to cope with the bandwidths of the pulses to be measured.
It involves computing the ”marginals” of the FROG trace, that is, integrals of the trace with
respect to delay or frequency. The marginals can be compared to the independently measured
spectrum or autocorrelation, and expressions have been derived relating these quantities. The
marginals can furthermore be used to correct an erroneous trace [208,214].
In principle, any autocorrelation measurement in which the autocorrelator signal beam is spec-
trally resolved is a FROG measurement. Depending on the type of nonlinearity which is used
to perform the temporal gating, several types of FROG exist. Out of the approximately five
different FROG setups which are common today [200], only two, SHG FROG and TG FROG
will be described.

Second-harmonic-generation FROG

If the signal pulse in a SHG-based autocorrelator is spectrally resolved, the result is the SH
spectrogram, also referred to as the ”SHG FROG trace”:

ISHG
FROG(ω, τ) =

∣

∣

∣

∣

∣

∣

∞
∫

−∞

E(t)E(t− τ) exp(−iωt)dt

∣

∣

∣

∣

∣

∣

2

(B.8)
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SHG FROG [208, 209, 211, 215–217] is only slightly less sensitive than an autocorrelator. The
main disadvantages of SHG FROG are again that the SHG FROG trace is symmetrical with
respect to delay. This ambiguity can easily be removed in a number of ways. One may, for
example, perform another SHG FROG measurement of the pulse after it has been distorted in
some known manner, e.g. by placing a piece of glass in the beam which introduces chirp. Only
one of the two possible pulses is consistent with both measurements.

A further class of ambiguities exists in SHG FROG though they rarely appear in practical
measurements. If the pulse consists of two (or more) well separated pulses, then their relative
phase has an ambiguity. Specifically, the relative phases φ and φ+π yield the same SHG FROG
trace and hence cannot be discriminated.

The most important experimental consideration in SHG FROG is that the SHG crystal has to
provide sufficient bandwidth: it must be thin enough to frequency double the entire bandwidth
of the pulse to be measured. If the crystal is too thick, then the SHG FROG trace will be too
narrow along the spectral axis, leading to nonconvergence of the algorithm. It is important to
realize that autocorrelators carry the same crystal-bandwidth requirement, but this requirement
is often violated in practice because, unlike FROG, no independent check of the autocorrelation
trace exists.

Transient-grating FROG

This setup is mentioned here because it uses an experimental technique which is fundamental
to this work. The transient-grating (TG) beam geometry uses a DFWM type setup with three
beams, which requires splitting the input pulse into three pulses. Two of these are overlapped
in time and space at the optical Kerr medium, producing a refractive-index grating. The third
pulse is variably delayed and is diffracted off the induced grating to produce the signal which
emerges in a fourth, unique direction. The four beams in TG geometries usually take the form
of what is known as the BoxCARS arrangement [156,218].

In principle, a four-wave mixing experiment is performed. The setup of a DFWM experiment
is described in chapter 8, Fig. 8.6.

TG FROG has several advantages over other χ(3) FROG setups such as polarization gate, self-
diffraction or third harmonic generation FROG [200]. Since it avoids polarizers as used in PG
FROG, it does not distort extremely short pulses, and hence can be used in the deep UV. The
mutual polarizations of all three beams may be parallel, which yields greater signal strength

because χ
(3)
1111 is usually the largest element of the susceptibility tensor. TG FROG is inherently

phase matched, and long interaction lengths in the nonlinear medium may be used, which
enhance the signal. TG FROG traces are more intuitive than their SHG analog and free from
ambiguities. The only disadvantage of TG FROG is the need for three beams and the critical
adjustment of the temporal overlap of the two constant-delay beams. The large bandwidth of
this entirely phase-matched geometry and the avoidance of potentially pulse-distorting polarizers
make TG FROG ideal for measuring extremely short pulses.

Phase retrieval algorithm

The use of the pulse to gate itself in a spectrogram complicates the reconstruction problem.
Spectrogram inversion algorithms require knowledge of the gate function and hence cannot be
used. The problem must then be recast into another form. The solution is to rewrite the
above expression as the ”two-dimensional phase-retrieval problem” [211, 212, 215, 219]. The
autocorrelator signal field, E(t)E(t − τ) for a SHG autocorrelator, is referred to as Esig(t, τ).
Now, consider Esig(t, τ) to be the Fourier transform with respect to τ of a new quantity that
will be called Êsig(t,Ω). Once this quantity has been determined, Êsig(t,Ω) yields the electric
field, E(t) since E(t) = Esig(t, τ = 0). Thus, it is sufficient to find Êsig(t,Ω). Rewriting the
expression for the FROG trace B.7 in terms of Êsig(t,Ω) yields:
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IFROG(ω, τ) =
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Êsig(t,Ω) exp(−iωt− iΩτ)dtdΩ
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2

. (B.9)

This expression can be verified by simply performing the Ω integration, which then yields Eq. B.8.
The measured quantity, ISHG

FROG(ω, τ), is the squared magnitude of the 2D Fourier transform

of Êsig(t,Ω). The spectrogram measurement thus yields the magnitude, but not the phase,
of the two-dimensional Fourier transform of the desired quantity Êsig(t,Ω). The problem is
then to find the phase of the Fourier transform of Êsig(t,Ω), which is the 2D phase-retrieval
problem [220,221].

This problem is solvable when certain additional information on Êsig(t,Ω) is available. In
ultrashort-pulse measurements, the required additional information is the knowledge of the
mathematical form of Êsig(t,Ω). For example, in SHG FROG [209], it is known that

Esig(t, τ) = E(t)E(t− τ). (B.10)

In transient grating FROG,

Esig(t, τ) = E(t)|E(t− τ)|2 or (B.11)

Esig(t, τ) = E2(t)E∗(t− τ), (B.12)

depending on which of the two delays is scanned. This additional information turns out to be
sufficient.

The pulse-retrieval is supposed to find E(t), or, equivalently, Esig(t, τ). There are two equations,
or constraints, that Esig(t, τ) must satisfy. One is that the measured FROG trace is the squared
magnitude of the 1D Fourier transform of Esig(t, τ) with respect to time (intensity constraint):

IFROG(ω, τ) =
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Esig(t, τ) exp(−iωt)dt
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∣

2

(B.13)

The other constraint (gate constraint) is the mathematical form of the signal field in terms of
the pulse field, E(t), for the particular nonlinear-optical process used in the measurement. For
SHG FROG and TG FROG, Esig(t, τ) is given by Eqs. B.10-B.12.

These two constraints can be regarded as sub-spaces of the entire space of signal fields which
meet the Maxwell equations.

In essence, the FROG retrieval algorithm is very simple: Beginning with an initial guess for the
signal field which can be generated, for example, at random, the retrieval algorithm mutually
projects the solution iteratively onto both of these sub-spaces given by the two constraints
until convergence is achieved. Instead of standard projection, a special type of projections is
used which is called ”generalized projections” (GP) and which assures convergence of the above
scheme for a broader variety of constraints.

GP is implemented in FROG by considering the pulse field, E(k)(ti), the signal field in the t− τ
domain, E

(k)
sig (ti, τj), and the signal field’s Fourier transform with respect to time, Ẽ

(k)
sig (ωi, τj),

where i = 1, · · · , N for all ti, τi, ωi. These quantities are each N or N2 complex numbers. The
superscript, (k), in all of these definitions indicates that these quantities are kth iterations of
the actual quantities for the pulse.

In order to perform a GP to the FROG-trace data constraint (intensity constraint), one must

simply replace the magnitude of Ẽ
(k)
sig (ωi, τj) with the square root of the measured FROG trace,

IFROG(ωi, τj).

In order to perform a GP to the gate constraint, the closest signal field to the current iteration

for the signal field, E
(k)
sig (ti, τj), that has the desired mathematical form for the particular version
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E(0)(ti) −→ E(k)
sig (ωi, τj)

F−→
√

I(k)(ω, τ), φ(k)(ω, τ)

gate constraint ↑ ↓ intensity constraint

E(k)(t)
F
−1

←−
√

IFROG(ωi, τj), φ
(k)(ω, τ)

Figure B.2: Flow diagram of a FROG inversion algorithm. Within each iteration loop, intensity and
gate constraint are applied to the data sets.

of FROG has to be found, depending on the gate function. In other words, a new signal field,

E
(k+1)
sig (ti, τj), that minimizes the merit function:

Z =
N

∑

i,j=1

∣

∣

∣
E

(k)
sig (ti, τj)− E

(k+1)
sig (ti, τj)

∣

∣

∣
(B.14)

has to be found. Both of these conditions are met by explicitly substituting Eq. B.10-B.12 into
the above distance function and solving directly for the pulse field.
Once E(k+1)(ti) is found, the corresponding signal field can be computed for this pulse field using

Eq. B.10-B.12 and will be the next iteration for the signal field, E
(k+1)
sig (ti, τj). By construction,

E
(k+1)
sig (ti, τj) satisfies the gate constraint exactly. Since it also minimizes Z, the process in which

E
(k)
sig (ti, τj) is substituted with E

(k+1)
sig (ti, τj) is a GP. The minimization of Z can, for example,

be performed with a conjugate gradient method. Because this minimization is performed in
each iteration of the FROG retrieval, it is not necessary to perform the minimization of Z to its
asymptotic limit. The new field then will not be the precise projection, but rather approximate
it, which still suffices in FROG pulse retrieval. Later steps make up for this inaccuracy, and, as
a result, this approximate procedure results in a significantly faster pulse-retrieval algorithm.
Lately, a new algorithm labeled ”principal components generalized projections algorithm” (PCGPA)
has been developed which proved to be superior to the above algorithm with respect to stabil-
ity and computational effort [222]. The phase retrieval problem is mapped to an Eigenvalue
problem which finally results in finding the principal component of a diagonal matrix.
The measure of the success of a pulse measurement using FROG is the ”FROG error”. It
is the rms difference between the normalized measured trace IFROG(ωi, τj) and the normalized

trace I
(k)
FROG(ωi, τj) computed from the retrieved pulse field, E(k)(ti), where k indicates the most

recent iteration. It is given by

G =
1

N
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2
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. (B.15)

The resulting FROG error for experimental traces should reflect the experimental error. Typical
values achieved in experiments with 128 × 128 arrays are 1% using PG FROG and 0.5% using
SHG FROG. Errors tend to be lower for larger arrays because, due to the fast Fourier transform
relations between the delay and frequency axis ranges and increments, the fractional area of the
trace that is nonzero is less in the larger array traces.
In this work, FROG traces and the reconstructed fields can be seen in section 3 wherein a
commercial FROG retrieval software (FROG 3.03, Femtosoft technologies) has been used. The
PCGPA algorithm has also been realized in a LabviewTM environment, but the reconstruction
with the commercial software was preferred since it proved to be more robust.
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Abbreviations
AC autocorrelation
AOM acousto-optical modulator
BBO β-Barium Borate
CARS coherent anti-Stokes Raman scattering
CC cross-correlation
CCD charge-coupled device
CPA chirped pulse amplification
DFM / DFG difference frequency generation
DFWM degenerate four-wave mixing
FIR far infrared
FROG frequency-resolved optical gating
FRAC fringe-resolved autocorrelation
FS fused silica
FWHM full width at half maximum
FWM four-wave mixing
GP generalized projections
GVD / GVM group velocity dispersion / mismatch
IVR intramolecular vibrational relaxation
KTP Potassium Titanyl Phosphate
LBO Lithium Triborate
LC liquid crystal
LIF laser-induced fluorescence
MMDM micro-machined membrane deformable mirror
MIR mid infrared (ca. 2-10 µm)
NIR near infrared (ca. 0.8-2 µm)
OPA optical parametric amplifier
OCT optimal control theory
PCGPA principal components generalized projections algorithm
PDA Polydiacetylene
PDE partial differential equation
PES potential energy surface
PMT photomultiplier tube
rf radio frequency
rms root mean square
SFM / SFG sum frequency mixing / generation
SH / SHG second harmonic / second harmonic generation
SiC silicon carbide
SPM self-phase modulation
SLM spatial light modulator
STIRAP Stimulated Raman scattering involving adiabatic passage
TG FROG transient gating frequency-resolved optical gating
UV ultraviolet
VIS visible (ca. 430-750 nm)
WLC white light continuum
XFROG cross correlation frequency-resolved optical gating
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