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A review of evolutionary algorithms (EAs) with applications to antenna and propagation problems is presented. EAs have emerged
as viable candidates for global optimization problems and have been attracting the attention of the research community interested
in solving real-world engineering problems, as evidenced by the fact that very large number of antenna design problems have
been addressed in the literature in recent years by using EAs. In this paper, our primary focus is on Genetic Algorithms (GAs),
Particle Swarm Optimization (PSO), and Di�erential Evolution (DE), though we also brie�y review other recently introduced
nature-inspired algorithms. An overview of case examples optimized by each family of algorithms is included in the paper.

1. Introduction

Several evolutionary algorithms (EAs) have emerged in
the past decade that mimic the behavior and evolution of
biological entities inspired mainly by Darwin’s theory of
evolution and its natural selection mechanism. �e study
of evolutionary algorithms began in the 1960s. Several
researchers independently developed three mainstream evo-
lutionary algorithms, namely, the Genetic Algorithms [1, 2],
Evolutionary Programming [3], and evolution strategies [4]
(Figure 1). EAs are widely used for the solution of single and
multiobjective optimization problems and Figure 1 depicts
some of the main algorithmic families.

Swarm Intelligence (SI) algorithms are also a special type
of EA. �e SI can be de�ned as the collective behavior
of decentralized and self-organized swarms. SI algorithms
include Particle Swarm Optimization (PSO) [5], Ant Colony
Optimization [6], and Arti�cial Bee Colony (ABC) [7].
PSO mimics the swarm behavior of birds �ocking and �sh
schooling [5].�emost common PSO algorithms include the
classical Inertia Weight PSO (IWPSO) and the Constriction
Factor PSO (CFPSO) [8]. �e PSO algorithm is easy to
implement and is computationally e�cient; it is typically used

only for real-valued problems. An option to expand PSO for
discrete-valued problems also exists [9]. Other SI algorithms
include (i) Arti�cial Bee Colony (ABC) [7], which models
and simulates the behaviors of honey bees foraging for food,
and (ii) Ant Colony Optimization (ACO) [6, 10, 11], which is
a population-based metaheuristic inspired by the behavior of
real ants.

Di�erential Evolution (DE) [12, 13] is a population-based
stochastic global optimization algorithm, which has been
used in several real-world engineering problems utilizing
several variants of the DE algorithm. An overview of both
the PSO and DE algorithms and hybridizations of these
algorithms along with other so� computing tools can be
found in [14].

Other evolutionary techniques applied to antenna prob-
lems include the recently proposed Wind Driven Optimiza-
tion (WDO) [15]; biogeography-based optimization (BBO);
Invasive Weed Optimization (IWO) [16–20]; Evolutionary
Programming (EP) [21, 22]; and the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [23, 24].

An important theorem which is pertinent to the per-
formance of optimization algorithms is the so-called “No
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Figure 1: A diagram depicting main families of evolutionary algorithms.

Free Lunch” (NFL) theorem, which pertains to the average
behavior of optimization algorithms over given spaces of
optimization problems. It has been shown in [25] that when
averaged over all possible optimization problems de�ned
over some search space �, no algorithm has a performance
advantage over any other. Additionally, in [26] the authors
show that it is theoretically impossible to have a best general-
purpose universal optimization strategy, and the only way for
one strategy to be superior to the others is when it focuses
on a particular class of problems. It should be noted that a
wide variety of optimization problems arise in the antenna
domain and that it is not always an easy task to �nd the best
optimization algorithm for solving each of them. �erefore,
it is worthwhile to explore new optimization algorithms if
we �nd that they can work well for the problem at hand.
Optimization problems arising in the design and synthesis of
antennas can bene�t considerably from an application of the
EAs, which can lead to unconventional solutions regarding
position and excitation of the antenna elements in an array.
Furthermore, the elements themselves can be geometrically
designed by using the EAs.

�e purpose of this paper is to brie�y describe the
algorithms and present their application to antenna design
problems found in the recent literature.

Section 2 reviews the Genetic Algorithms (GAs). Sec-
tion 3 focuses on PSO and Section 4 is devoted to DE. A brief
overview of other EA algorithms is provided in Section 5.
We describe the algorithms brie�y and then present some
statistics regarding the use of the algorithms in the literature.
Additionally, for each algorithm some representative papers
are referenced in the tables. Some open issues are discussed
in Section 6, and conclusions are drawn in Section 7.

2. Genetic Algorithms

GAs, the most popular EAs, are inspired by Darwin’s natural
selection. GAs can be real or binary-coded. In a binary-coded

GA each chromosome encodes a binary string [27, 28].
�e most commonly used operators are crossover, mutation,
and selection. �e selection operator chooses two parent
chromosomes from the current population according to a
selection strategy. Most popular selection strategies include
roulette wheel and tournament selection. �e crossover
operator combines the two parent chromosomes in order to
produce one new child chromosome. �e mutation operator
is applied with a prede�ned mutation probability to a new
child chromosome.

A search in the Scopus database shows that there are
65762 conference papers and 94510 journal papers related
to GAs from 1977 to 2016. Figure 2 shows the number
of papers related to GAs and antennas over the last 15
years. Additionally, the search in the same database using
the keywords GAs and Antennas reveals a total number of
2807 papers (both journal and conference). Tutorials and
applications of GAs to electromagnetics can be found in
[29, 30].

Table 1 lists selected papers that use GAs (mostly binary-
coded) for antenna design. Several papers exist in the lit-
erature that apply GAs for array synthesis. A binary-coded
GA has been applied for linear and planar array synthesis in
[31, 32], among others, while a GA that uses decimal operator
has been used in [33]. �e problem of array thinning has
been addressed in the literature using binary-coded GAs in
[34], while the array-failure correction problem has been
addressed by using the real-coded GAs in [35]. A simple GA
has been used for the synthesis of time-modulated arrays in
[36]. Di�erent antenna types have been designed using the
GAs, for example, wire antennas in [37–40], patch antennas
in [41, 42], and RFID tags in [43]. Other GA-type algorithms,
such as a mixed integer GA, have also been applied in [44]
to several di�erent antenna design problems. An improved
GA for the design of linear aperiodic arrays and a binary-
coded GA which uses two-point crossover (instead of the
usual one point) have been used in [45] for the design of
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Table 1: Selected journal papers that use GAs for antenna design.

Problem Algorithm(s) used Ref.

�inned arrays Binary-coded GA [34]

Wire antennas and Yagi-Uda antenna Binary-coded GA [37–40]

Array synthesis Decimal operators GA [33]

Array-failure correction Real-coded GA [35]

Linear and planar array synthesis
Binary-coded GA and hybrid GA with simulated annealing
(SA)

[31, 32]

Broadband patch antennas and dual-band patch
antennas

Binary-coded GA and parallel GA [41, 42]

RFID tags Binary-coded GA [43]

Time-modulated linear arrays Simple GA [36]

Linear array design, thinned subarrays, and circularly
polarized patch antenna

Mixed integer GA [44]

Linear aperiodic arrays design Improved GA [138]

Low RCS slot patch antennas Binary-coded GA and two-point crossover [45]

T-shaped MIMO radar antenna array chaos genetic algorithm [46]

Quad-band patch antenna Binary-coded GA [47]
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Figure 2: Papers using GAs for antenna design from 1993 to May
2016.

patch antennas with low RCS. A GA that combines chaos
theory and genetic algorithm is used for designing T-shaped
MIMOradar antenna array in [46]. A design procedure based
on a GA is given in [47] for optimizing a patch antenna
for operation to four frequency bands GSM1800, GSM1900,
LTE2300, and Bluetooth.

3. Particle Swarm Optimization (PSO)

In PSO, the particles move in the search space, where each
particle position is updated by two optimum values. �e �rst
one is the best solution (�tness) that has been achieved so far.
�is value is called pbest.�e other one is the global best value
obtained so far by any particle in the swarm. �is best value

is called �����. A�er �nding the pbest and �����, the velocity
update rule is an important factor in a PSO algorithm. �e
most commonly used algorithm de�nes that the velocity of
each particle for every problem dimension is updated with
the following equation:

��+1,�� = 	��,�� + 
1rand1(0,1) (������+1,�� − �,��)
+ 
2rand2(0,1) (������+1,�� − �,��) ,

(1)

where ��+1,�� is the �th particle velocity in the �th dimension,
� + 1 denotes the current iteration and � denotes the
previous, �,�� is the particle position in the �th dimension,
rand1(0,1), rand2(0,1) are uniformly distributed random num-
bers in (0, 1), 	 is a parameter known as the inertia weight,
and 
1 and 
2 are the learning factors.

�e parameter 	 (inertia weight) is a constant between
0 and 1. �is parameter represents the particle’s �y without
any external in�uence. �e higher the value of 	 is or the
closer it is to unity, themore the particle stays una�ected from
pbest and �����. �e inertia weight controls the impact of the
previous velocity: a large inertia weight favors exploration,
while a small inertia weight favors exploitation. �e param-
eter 
1 represents the in�uence of the particle memory on its
best position, while the parameter 
2 represents the in�uence
of the swarm best position. �erefore, in the Inertia Weight
PSO (IWPSO) algorithm the parameters to be determined are
the swarm size (or population size), usually 100 or less, the
cognitive learning factor 
1 and the social learning factor 
2
(usually both are set equal to 2.0), the inertia weight 	, and
the maximum number of iterations. It is common practice to
linearly decrease the inertia weight starting from 0.9 or 0.95
to 0.4.

Clerc [8] has suggested the use of a di�erent velocity
update rule, which has introduced a parameter � called
constriction factor. �e role of the constriction factor is to
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Table 2: Selected journal papers that use PSO for antenna design.

Problem Algorithm(s) used Ref.

Linear arrays design Original PSO and CLPSO [50, 51, 63]

Pro�led corrugated horn antenna design Original PSO and GA and hybrid GA-PSO [54]

Phased arrays design Original PSO and GA comparison [52]

Circular array design Original PSO and DE and GA comparison [53]

Coplanar waveguide-fed planar monopole antenna Original PSO with MoM [56]

Conformal phased arrays design Original PSO [55]

Recon�gurable phase-di�erentiated array design Original PSO [57]

Multiband and wideband patch antenna design Parallel PSO/FDTD [58]

Time-modulated arrays design Original PSO [59]

In�nitesimal dipoles array synthesis QPSO [61]

Yagi-Uda antenna CLPSO [62]

�inned planar circular arrays Modi�ed PSO [64]

Adaptive beamforming of linear antenna arrays Adaptive Mutated Boolean PSO [139]

Dual-band patch antenna design Boolean PSO [140]

Array design Chaotic PSO [141]

Square thinned arrays Hybrid PSO and Hadamard di�erence sets [142]

Linear array design
Feedback Particle Swarm Optimization (FPSO) with nonlinear
inertia weight

[65]

ensure convergence when all the particles have stopped their
movements. �e velocity update rule is then given by

��+1,�� = � [��,�� + 
1rand1(0,1) (������+1,�� − �,��)
+ 
2rand2(0,1) (������+1,�� − �,��)] ,

� = 2�������2 − � − √�
2 − 4�

�������
,

(2)

where � = 
1 + 
2 and � > 4. �is PSO algorithm variant is
known as Constriction Factor PSO (CFPSO).

�e Scopus database shows a total number of 39673
papers from 1995 toApril 2016 for PSO related papers (includ-
ing 19570 journal papers and 18355 conference papers).
A re�ned search for antenna papers reveals 519 journal
papers and 515 conference papers from 2002 to May 2016
indicating the popularity of PSO algorithm. Figure 3 shows
the distribution of papers on PSO design of antennas from
2002 to 2016.

Table 2 lists selected PSO antenna papers. Introductory
and tutorial papers that introduce the application of the PSO
for antenna design are [48, 49]. Additionally, the problem of
sidelobe suppression of linear arrays using the PSO has been
addressed in [50, 51]. A comparison of the performance of the
PSO and GA algorithms, as applied to the problem of phased
arrays design, has been given in [52], while a comparative
study of PSO, GAs, and DE for circular array design has been
reported in [53]. A performance comparison of PSO, GA, and
a hybrid GA-PSO has been provided in [54], where they have
been applied to the problem of designing pro�led corrugated
horn antennas. �e application of PSO to conformal phased
arrays design has been shown in [55]. A coplanar waveguide-
fed planar monopole antenna for multiband operation has
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Figure 3: Papers using PSO for antenna design from 2002 to May
2016.

been designed in [56] using the PSO algorithm in conjunc-
tionwith theMethodofMoments (MoM).�e authors in [57]
use PSO for recon�gurable phase-di�erentiated array design.
A Parallelized PSO optimizer has been used in conjunction
with the Finite Di�erence Time Domain (FDTD) which
has been employed for multiband patch antenna designs in
[58], and the problem of minimizing power loss in time-
modulated arrays has been addressed in [59]. Boundary
conditions play an important role in the application of the
PSO, and the performances of di�erent boundary conditions
have been tested on a 16-element array antenna in [60], based
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on mathematical benchmark functions. All of the above
papers use the original IWPSO or the CFPSO, although
several variants of PSO are available. A new PSO variant
called quantum PSO (QPSO) algorithm has been proposed
and applied in [61] to �nd a set of in�nitesimal dipoles which
produces the same near and far �elds as a circular dielectric
resonator antenna (DRA).�e interesting point about QPSO
is the fact that it contains only one control parameter. �e
comprehensive learning PSO (CLPSO) is applied to Yagi-Uda
antenna design in [62] and unequally spaced arrays sidelobe
suppression in [63]. A modi�ed PSO algorithm has been
applied in [64] for the synthesis of thinned planar circular
arrays. A Feedback Particle Swarm Optimization (FPSO) is
in [65] proposed for SLL minimization and null control of
linear arrays.�e FPSO is based on a nonlinear inertia weight
algorithm.

4. Differential Evolution (DE)

In DE, the initial population evolves in each generation with
the use of three operators: mutation, crossover, and selection.
Several DE variants or strategies exist in the literature [13, 66]
that depend on the form of these operators.�e choice of the
best DE strategy depends on the problem type [67]. Common
DE strategies for the generation of trial vectors include
DE/rand/1/bin, DE/rand-to-best/2/bin, and DE/rand/2/bin.
In these strategies amutant vector V�+1,� for each target vector
�,� is computed by

DE/rand/1/bin
V�+1,� = �,�1 + � (�,�2 − �,�3) , �1 ̸= �2 ̸= �3
DE/rand-to-best/2/bin
V�+1,� = �,� + � (�,best − �,�) + � (�,�1 − �,�2)

+ � (�,�3 − �,�4) , �1 ̸= �2 ̸= �3 ̸= �4
DE/rand/2/bin
V�+1,� = �,�1 + � (�,�2 − �,�3) + � (�,�4 − �,�5) ,

�1 ̸= �2 ̸= �3 ̸= �4 ̸= �5,

(3)

where �1, �2, �3, �4, �5 are randomly chosen indices from
the population that are di�erent from the index � and
� is a mutation control parameter. A�er mutation, the
crossover operator is applied to generate a trial vector
��+1,� = (��+1,1�, ��+1,2�, . . . , ��+1,��, . . . , ��+1,��) whose coor-
dinates are given by

��+1,�� =
{
{
{

V�+1,��, if rand�[0,1) ≤ CR or ! = rn (�) ,
�+1,��, if rand�[0,1) > CR and ! ̸= rn (�) ,

(4)

where ! = 1, 2, . . . , ", rand�[0,1) is a number from a
uniform random distribution from the interval [0, 1), rn(�)
is a randomly chosen index from (1, 2, . . . , "), and CR is
the crossover constant from the interval [0, 1]. DE uses a
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Figure 4: Papers using DE for antenna design from 2002 to May
2016.

greedy selection operator, which for minimization problems
is de�ned by

�+1,� =
{
{
{

��+1,�, if # (��+1,�) < # (�,�) ,
�,�, otherwise,

(5)

where #(��+1,�) and #(�,�) are the �tness values of the trial
and the old vector, respectively. �e new trial vector ��+1,�
replaces the old vector �,� only when it produces a lower
objective-function value than the old one. Otherwise, the old
vector remains in the next generation.�e stopping criterion
for the DE is usually the generation number or the number of
objective-function evaluations.

A search in the Scopus database reveals 38,097 documents
related to DE (27,482 journal papers and 7831 conference
papers). A re�ned search for antenna related papers using
the DE shows 221 journal papers and 152 conference papers.
Figure 4 shows how the papers related to DE antenna are
distributed from 2002 to May 2016.

A general review paper of the use of DE in electro-
magnetics has been reported in [68], and a book [69] on
DE implementation in electromagnetics has been published.
Table 3 lists some representative papers for antenna design.
�e most commonly used DE strategy for antenna design
is the DE/rand/1/bin variant. �e above-mentioned strat-
egy has been applied, among others, to the problem of
linear array design in [70]; synthesis of di�erence patterns
of monopulse antennas in [71]; array pattern nulling in
[72]; and conformal array design in [73]. Several other DE
strategies have been applied to antenna problems. In [74],
the authors have introduced a new DDE/BoR/1/bin strategy
for linear array synthesis, while a modi�ed DE strategy
(MDES) has been used in [75] for the same problem. �e
strategy DE/best/1/bin has been applied in [76–78] for time-
modulated array design. Self-adaptive DE algorithms have
also been applied to antenna problems, including jDE [79]
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Table 3: Selected journal papers that use DE for antenna design.

Problem Algorithm(s) used Ref.

Linear arrays design DE/rand/1/bin [70]

Linear arrays design DDE/BoR/1/bin [74]

Linear arrays design and E-shaped patch antenna jDE [79] [80–82]

Di�erence patterns of monopulse antennas DE/rand/1/bin [71]

Array pattern nulling DE/rand/1/bin [72]

Linear arrays design Modi�ed DE strategy (MDES) [75]

Linear arrays design Multiobjective DE [87]

Array design Improved DE [143]

Shaped beam synthesis CODE-EIG [86]

Conformal arrays design DE/rand/1/bin [73]

Horn antenna design and sparse linear arrays synthesis SaDE [83] [84, 85]

Subarray design Memetic GDE3 [88]

Time-modulated arrays design DE/best/1/bin [76–78]

Monopulse antenna with a subarray weighting Hybrid DE [144]

Yagi-Uda antenna GDE3 [89]

Low Radar Cross Section (RCS) slot patch antenna design DE/MoM [90]

in [80–82]; SaDE [83] in [84, 85]; and CODE-EIG in [86].
Multiobjective DE algorithms are also another large group of
DE algorithms applied to antenna problems. �ese include
applications to linear array design in [87], to subarray design
in [88], and to Yagi-Uda antennas [89]. DE algorithms
hybridized with other methods are also commonly found in
the literature; for instance, the DE has been used with the
Method ofMoments in [90] for the design of lowRadar Cross
Section (RCS) antennas.

5. Other Innovative Algorithms

Several new EAs have emerged during the last ten years
that are based on di�erent evolutionary models of animals,
insects, or other biological entities. Arti�cial Bee Colony
(ABC) [7] is a recently proposed SI algorithm, which has
been applied to several real-world engineering problems.
�e ABC algorithm models and simulates the honey bee
behavior in food foraging. In the ABC algorithm, a potential
solution to the optimization problem is represented by the
position of a food source while the food source corresponds
to the quality (objective-function �tness) of the associated
solution.�e ABC algorithm has been successfully applied to
several problems in wireless communications [91]. A number
of di�erent variants of the ABC that improve the original
algorithm have been proposed in [92]. A search in the Scopus
database shows that there aremore than 3000 papers onABC,
of which 48 use the ABC for antenna design. �ese include
array design [93–96]; resonant frequency of patch antennas
calculation [97]; and RFID tags design [98–100].

Ant Colony Optimization (ACO) [6, 10, 11] is a
population-based metaheuristic which was introduced
by Dorigo et al. [11] inspired by the behavior of real ants.
�e algorithm is based on the fact that ant colonies can �nd
the shortest path between their nest and a food source just
by depositing and reacting to pheromones while they are

exploring their environment. ACO is suitable for solving
combinatorial optimization problems that are common in
antennas. �e search in Scopus shows more than 10,000
papers on ACO, with 169 papers dealing with the topic
of antenna design. �e topic of linear array synthesis has
been presented in [101]; patch antenna design in [102];
sum-di�erence pattern synthesis in [103]; and thinned array
design in [102]. A modi�ed touring ant colony optimizer
has been used for shaped beam synthesis [104] and for
pattern nulling in [105–107]. �e authors in [108] present
a comparative study of simulated annealing (SA), GA, and
ACO on self-structured antenna design.

Biogeography-based optimization (BBO) [109] is another
later addition to EAs. BBO is based on mathematical models
that describe how species migrate from one island to another,
how new species arise, and how species become extinct. �e
way the problem solution is found is analogous to nature’s
way of distributing species.�e search in the Scopus database
yielded 654 papers that refer to BBO from 2007 to May 2016
with 40 papers that use BBO for antenna design from 2009
till today. BBO has been applied to Yagi-Uda design [110]
and array synthesis [111–117]. Additionally a hybrid DE/BBO
algorithm has been used for the design of a recon�gurable
antenna array with discrete phase shi�ers in [118].

Evolutionary Programming (EP) was originally proposed
by Fogel in [3]. EP is based on the idea of representing
individuals phenotypically as �nite state machines capable
of responding to environmental stimuli. �e representations
used in EP are problem-dependent. �e most common
representation used is a �xed-length real-valued vector. In
EP, the vectors evolve but do not exchange information
between them. �ere are no crossover operators but only
mutation operators. EP has been applied to several problems
in electromagnetics [21, 119, 120]. Among others EP has been
applied to patch antenna design [121] and to wideband
parasitic dipole arrays [122].
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Hansen and Ostermeier [123] introduced the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES). CMA-ES
is a second-order approach estimating a positive covariance
matrix within an iterative procedure. More details about the
CMA-ES performance algorithm can be found in [124, 125].
In [23, 24] the authors present an approach for mixed-
parameter optimization based on CMA-ES, which is success-
fully applied in several design problems in electromagnetics.
�is approach is based on the concepts presented in [22]
for EP. �e CMA-ES algorithm has been recently applied to
design problems in antennas and electromagnetics in general
[126–129].

5.1. Other Arti�cial Intelligence Methods. Other arti�cial
intelligencemethods and techniques includeArti�cialNeural
Network (ANN) architectures [130], which are a family of
models inspired by biological neural networks. ANNs are
used to estimate or approximate functions that can depend
on a large number of inputs and are generally unknown. �e
applications of ANNs to electromagnetics are a popular topic
in the literature [131].

Deep learning is a type ofmachine learning based on a set
of algorithms that attempt tomodel high-level abstractions in
data by using a deep graph with multiple processing layers,
composed of multiple linear and nonlinear transformations
[132–135]. �ese methods have dramatically improved the
state of the art in speech recognition, visual object recogni-
tion, object detection, and many other domains such as drug
discovery and genomics [132].

6. Discussion: Open Issues

�e choice of the best algorithm for every problem requires
the consideration of its speci�c characteristics. Once the
algorithm is chosen, the key issue becomes the selection of
the algorithm control parameters, which inmost cases can be
also problem-dependent. A practical initial approach is to use
the control parameters for these algorithms that commonly
perform well regardless of the characteristics of the problem
to be solved.

For real-codedGAs typical values are 0.9 for the crossover
probability and 1/$ for the mutation probability, where $
is the problem dimension. For the binary-coded GA, typical
values for crossover and mutation probabilities are [1.0, 0.8]
and [0.01, 0.1], respectively.

In the PSO algorithms 
1 and 
2 are set equal to 2.05. For
CFPSO, these values result in � = 0.7298. For IWPSO, it is
common practice to linearly decrease the inertia weight start-
ing from 0.95 to 0.4. �e velocity is updated asynchronously,
which means that the global best position is updated at the
moment it is found.

For the DE, Storn and Price [13] have suggested choosing
the di�erential evolution control parameters � and CR from
the intervals [0.5, 1] and [0.8, 1], respectively, and setting
$% = 10". �e correct selection of these control parameter
values is, frequently, a problem-dependent task. Multiple
algorithm runs are o�en required for �ne-tuning the control
parameters. �ere are several DE algorithms in the literature

that self-adapt these control parameters. Another question is
the selection of the appropriate strategy for the generation of
trial vectors, which requires additional computational time
using a trial-and-error search procedure. �erefore, it is not
always an easy task to �ne-tune the control parameters and
strategy. Since �nding the suitable control parameter values
and strategy in such a way is o�en very time-consuming,
there has been an increasing trend among researchers in
designing new adaptive and self-adaptive DE variants. A DE
strategy (jDE) that self-adapts the control parameters has
been introduced in [79]. �is algorithm has been applied
successfully to a microwave absorber design problem [136]
and linear array synthesis [82]. SaDE, a DE algorithm that
self-adapts both control parameters and strategy based on
learning experiences from previous generations, is presented
in [83].

�e research domain of evolutionary algorithms is grow-
ing rapidly. A current and growing research trend in evolu-
tionary algorithms is their hybridization with local optimiz-
ers. �ese algorithms are called Memetic Algorithms (MAs)
[90] that are inspired by Dawkins’ notion of meme. �e
advantage of such an approach is that the use of a local
search optimizer ensures that speci�c regions of the search
space can be explored using fewer evaluations and good
quality solutions can be generated early during the search.
Furthermore, the global search algorithm generates good
initial solutions for the local search. MAs can be highly
e�cient due to this combination of global exploration and
local exploitation.

An interesting idea has been presented in [137] where
the authors conceptually present the equivalences of various
popular EAs like GAs, PSO, DE, and BBO. �eir basic con-
clusion is that the conceptual equivalence of the algorithms is
supported by the fact that modi�cations in algorithms result
in very di�erent performance levels.

Finally, another concern that is pertinent to all of the
above algorithms is the de�nition of the stopping criterion.
Usually, this is the iteration number or the number of
objective-function evaluations. Additionally and in order
to avoid stagnation, another criterion could be set for the
algorithm to stop a�er a number of generations when the
objective function does not further improve.

7. Conclusion

A brief survey of di�erent evolutionary algorithms and their
application to di�erent problems in antennas and propaga-
tion have been presented in this review paper. It is to be
noted that, among the evolutionary algorithms used in the
literature, the GA and SI algorithms are among those most
commonly utilized.

�e bibliography statistics show that GAs, PSO, and DE
are among themost popular algorithms for antenna design. It
must be pointed out that several variants of these algorithms
have also been employed along with other nature-inspired
algorithms that have emerged. Most notably, ABC, ACO,
BBO, EP, and CMA ES have been applied to several antenna
design problems. �e body of literature on EAs to antenna
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design is by now quite extensive and it continues to grow
fast with more innovative algorithms. �e above presented
algorithms have been proven e�ective in solving speci�c
antenna design problems, although the NFL theorem assures
that a best global optimizer does not exist. the search for new
algorithms and their application to antenna design problems
is an ongoing research process, which is likely to continue
unabated for some time to come.
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