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Abstract

Evolutionary computation techniques have received a lot of attention regarding their potential

as optimization techniques for complex numerical functions. However, they have not produced

a signi�cant breakthrough in the area of nonlinear programming due to the fact that they have

not addressed the issue of constraints in a systematic way. Only recently several methods have

been proposed for handling nonlinear constraints by evolutionary algorithms for numerical opti-

mization problems; however, these methods have several drawbacks and the experimental results

on many test cases have been disappointing.

In this paper we (1) discuss di�culties connected with solving the general nonlinear pro-

gramming problem, (2) survey several approaches which have emerged in the evolutionary com-

putation community, and (3) provide a set of eleven interesting test cases, which may serve as

a handy reference for future methods.

1 Introduction

The general nonlinear programming (NLP) problem is to �nd ~x so as to

optimize f(~x), ~x = (x

1

; : : : ; x

n

) 2 IR

n

,

where ~x 2 F � S. The objective function f is de�ned on the search space S � IR

n

and the

set F � S de�nes the feasible region. Usually, the search space S is de�ned as a n-dimensional

rectangle in IR

n

(domains of variables de�ned by their lower and upper bounds):
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l(i) � x

i

� u(i); 1 � i � n,

whereas the feasible region F � S is de�ned by a set of m additional constraints (m � 0):

g

j

(~x) � 0, for j = 1; : : : ; q, and h

j

(~x) = 0, for j = q + 1; : : : ;m.

At any point ~x 2 F , the constraints g

k

that satisfy g

k

(~x) = 0 are called the active constraints

at ~x. By extension, equality constraints h

j

are also called active at all points of S.

The NLP problem, in general, is intractable. If the objective function f and functions g

j

's

and h

j

's expressing constraints are arbitrary, then there is little choice apart from methods

based on exhaustive search. This is the reason for identifying several special cases of the NLP.

One of the studied cases is the one where all functions g

j

's and h

j

's are linear; such problems

are called linearly constrained optimization problems. If, additionally, the objective function f

is polynomial at most quadratic, the problem is called quadratic programming problem. The

best known special case of quadratic programming is where the objective function f is linear

as well; this problem is called linear programming problem. There is also an important special

case, called unconstrained optimization, where there are no constraints at all, i.e., m = 0 and

F = S.

One of the main di�culties in solving NLP is the problem of local optima; a feasible point

~x

0

2 F is a local optimum for the objective function f i� there exist � > 0 such that for all ~x

in the �-neighborhood of ~x

0

in F , f(~x) > f( ~x

0

).

1

Local optima just satisfy the mathematical

requirements on the derivatives of the functions and many optimization techniques based on

gradient methods aim at local optimization only.

In general, it is impossible to develop a deterministic method for the NLP in the global

optimization category, which would be better than the exhaustive search. As stated by Gregory

(1995):

\It's unrealistic to expect to �nd one general NLP code that's going to work for

every kind of nonlinear model. Instead, you should try to select a code that �ts

the problem you are solving. If your problem doesn't �t in any category except

`general', or if you insist on a globally optimal solution (except when there is no

chance of encountering multiple local optima), you should be prepared to have to

use a method that boils down to exhaustive search, i.e., you have an intractable

problem."

Evolutionary algorithms are global methods, which aim at complex objective functions (e.g.,

non di�erentiable or discontinuous). However, most research on applications of evolutionary

computation techniques to nonlinear programming problems has been concerned with complex

objective functions but no constraints (F = S). Many of the test functions used by various re-

searchers during the last 20 years did not include any constraints (apart from speci�ed domains

1

For minimization problems.

2



of variables); this was the case with �ve test functions F1{F5 proposed by De Jong (1975), as

well as with many other test cases proposed since then (Eshelman and Scha�er, 1993; Fogel

and Stayton, 1994; Wright, 1991). Only recently several approaches have emerged which aim

at general nonlinear programming problems.

It seems worthwhile to extend evolutionary techniques by some constraint-handling meth-

ods. It is also important to gain some experimental feedback on merits and drawbacks of these

methods. The ultimate goal is to create a useful evolutionary toolbox for the general NLP

problem!

The paper is organized as follows. The following section surveys brie
y several opera-

tors which has been developed for evolutionary algorithms with 
oating-point representation.

Section 3 presents several constraint-handling techniques for numerical optimization problems

which have emerged in evolutionary computation techniques over the years. Most methods

are enlightened by an example of how they behave on a speci�c NLP problem. Section 4

summarizes all methods and indicates some directions for future research.

2 Numerical Optimization and Operators

Most evolutionary algorithms for numerical optimization problems use vectors of 
oating point

numbers for their chromosomal representations. For such representations, many operators have

been proposed during the last 30 years. Several constraint-handling methods are discussed

in the following section; some of these methods (e.g., Genocop, section 3.1.1) require a set of

speci�c operators. For that reason, we discuss brie
y these operators in turn.

2.1 Mutation operators

The most popular mutation operator is Gaussian mutation, which modi�ed all components of

the solution vector ~x = hx

1

; : : : ; x

n

i by adding a random noise:

~x

t+1

= ~x

t

+N(0; ~�),

where N(0; ~�) is a vector of independent random Gaussian numbers with a mean of zero and

standard deviations ~�. Such a mutation is used in evolution strategies (B�ack et al., 1991)

and evolutionary programming (Fogel, 1995). (One of the historical di�erences between these

techniques lies in adjusting vector of standard deviations ~�).

Other types of mutations include non-uniform mutation, where

x

t+1

k

=

(

x

t

k

+4(t; r(k)� x

k

) if a random binary digit is 0

x

t

k

�4(t; x

k

� l(k)) if a random binary digit is 1

for k = 1; : : : ; n. The function4(t; y) returns a value in the range [0; y] such that the probability

of 4(t; y) being close to 0 increases as t increases (t is the generation number). This property
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causes this operator to search the space uniformly initially (when t is small), and very locally

at later stages. In experiments reported by Michalewicz et al. (1994), the following function

was used:

4(t; y) = y � r � (1 �

t

T

)

b

;

where r is a random number from [0::1], T is the maximal generation number, and b is a system

parameter determining the degree of non{uniformity.

It is also possible to experiment with a uniform mutation, which changes a single component

of the solution vector; e.g., if ~x

t

= (x

1

; : : : ; x

k

; : : : ; x

n

), then ~x

t+1

= (x

1

; : : : ; x

0

k

; : : : ; x

n

), where

x

0

k

is a random value (uniform probability distribution) from the domain of variable x

k

. A

special case of uniform mutation is boundary mutation, where x

0

k

is either left of right boundary

of the domain of x

k

.

2.2 Crossover operators

There are several interesting types of crossover operators. The �rst family is directly designed

from the well-known bitstring crossover operators (known also as \discrete recombination"

operators): 1-point, 2-point and uniform crossover, except that the \genes" exchanged between

the two parents are real-valued coordinates. For instance, uniform crossover, works as follows.

Two parents, ~x = hx

1

; : : : ; x

n

i and ~y = hy

1

; : : : ; y

n

i, produce an o�spring, ~z = hz

1

; : : : ; z

n

i,

where z

i

= x

i

or z

i

= y

i

with equal probability for all i = 1; : : : ; n (the second o�spring is

created by reversing decisions for all components).

Some multi-parents versions of these operators have also been designed. M�uhlenbein and

Voigt (1995) investigated the properties of a recombination operator called gene pool recombi-

nation (default recombination mechanism in evolution strategies (Schwefel, 1981), where the

genes are randomly picked from the gene pool de�ned by the selected parents. A similar multi-

parent crossover was also investigated also by Eiben et al. (1994) in the context of combinatorial

optimization.

Another possibility is arithmetical crossover. Here two vectors, ~x and ~y produce two o�-

spring, ~p and ~q, which are linear combinations of their parents, i.e.,

~p = a � ~x+ (1 � a) � ~y and ~q = (1 � a) � ~x+ a � ~y.

This operator has also been called guaranteed average crossover (Davis, 1989) (when a = 1=2),

and intermediate crossover (Schwefel, 1981).

It is possible to generalize arithmetical crossover into multi-parent operator; parents ~x

1

; ~x

2

;

: : : ; ~x

r

may produce a family of o�spring:

~y = a

1

~x

1

+ a

2

~x

2

+ : : :+ a

r

~x

r

,
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for any choice of (a

i

) 2 [0; 1]

r

such that a

1

+ a

2

+ : : :+ a

r

= 1.

The simplex crossover operator proposed by Renders and Bersini (1994) for numerical opti-

mization problems can also be viewed as another generalization of arithmetical crossover; this

crossover operator involves computing the centroid of group of parents and moving from the

worst individual beyond the centroid point. More precisely, the operator selects k > 2 par-

ents (set J), determines the best and the worst individual within the selected group (

~

b and ~w,

respectively), computes the centroid ~c of the selected group with removed worst individual:

~c =

P

~x

i

2J�~w

~x

i

=(k � 1),

and computes the `re
ected point' ~y (i.e., the o�spring) obtained from the worst one:

~y = ~c+ (~c� ~w).

(This operator includes also a few extra options, which are based on the outcome of comparisons

between the values of f(~y), f(~w), and f(

~

b); for details, see Renders and Bersini, 1994).

Some of these ideas were embodied earlier in the evolutionary procedure called scatter search

(Glover, 1977). The process generates initial populations by screening good solutions produced

by heuristics. The points used as parents are then joined by linear combinations with context-

dependent weights, where such combinations may apply to multiple parents simultaneously.

The linear combination operators are further modi�ed by adaptive rounding processes to handle

components required to take discrete values. (The vectors operated on may contain both real

and integer components, as opposed to strictly binary components.) Finally, preferred outcomes

are selected and again subjected to heuristics, whereupon the process repeats. The approach has

been found useful for mixed integer and combinatorial optimization problems. (For background

and recent developments see, e.g., (Glover, 1994)).

An interesting variation along this line is the heuristic crossover operator proposed by

Wright (1991); this crossover uses values of the objective function in determining the direction

of the search, and it produces only one o�spring. The operator generates a single o�spring ~z

from two parents, ~x and ~y according to the following rule:

~z = r � (~x� ~y) + ~x,

where r is a random number between 0 and 1, and the parent ~x is not worse than ~y, i.e.,

f(~x) � f(~y) for maximization problems and f(~x) � f(~y) for minimization problems.

Recently, some results of experiments with a geometrical crossover operator were reported

(Michalewicz et al., 1996). Geometrical crossover can only be applied to problems where each

variable takes nonnegative values only, i.e., 0 � l(i) � x

i

� u(i), so its use is quite restricted

in comparison with other types of crossovers (e.g., arithmetical crossover). However, for many

engineering problems, all problem variables are positive; moreover, it is always possible to

replace variable x

i

2 hl(i); u(i)i which can take negative values (i.e., where l(i) < 0) with a new

variable y

i

= x

i

� l(i).
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The geometrical crossover operator takes two parents and produces a single o�spring; for

parents ~x and ~y the o�spring is ~z = h

p

x

1

y

1

; : : : ;

p

x

n

y

n

i. Also it is possible to generalize this

operator to include several parents:

~y = h(x

1;1

)

�

1

(x

1;2

)

�

2

: : : (x

1;r

)

�

r

; : : : ; (x

n;1

)

�

1

(x

n;2

)

�

2

: : : (x

n;r

)

�

r

i,

where �

1

+ : : :+ �

r

= 1 and 0 � �

i

� 1 for all 1 � i � r.

3 Constraint-handling methods

During the last few years several methods were proposed for handling constraints by genetic

algorithms for parameter optimization problems; this section discusses them in turn. It is useful

to group these methods into four categories:

1. methods based on preserving feasibility of solutions,

2. methods based on penalty functions,

3. methods which make a clear distinction between feasible and infeasible solutions, and

4. other hybrid methods.

The subsequent four subsections 3.1{3.4 describe methods of these categories, respectively.

Also, for most methods we provide with a test case and the results of the method on this test

case. We do not di�erentiate between minimization and maximization problems (we present

test cases of both categories); note that

min ff(~x)g is equivalent to max f�f(~x)g, for ~x 2 F .

3.1 Methods based on preserving feasibility of solutions

There are two methods which fall into this category; we discuss them in turn.

3.1.1 Use of specialized operators

The Genocop (for GEnetic algorithm for Numerical Optimization of COnstrained Problems)

system was developed by Michalewicz and Janikow (1991). The idea behind the system is

based on specialized operators which transform feasible individuals into feasible individuals, i.e.,

operators, which are closed on the feasible part F of the search space. The method assumes

linear constraints only and a feasible starting point (or feasible initial population). Linear

equations are used to eliminate some variables; they are replaced as a linear combination of
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remaining variables. Linear inequalities are updated accordingly. A closed set of operators

maintains feasibility of solutions. For example, when a particular component x

i

of a solution

vector ~x is mutated, the system determines its current domain dom(x

i

) (which is a function

of linear constraints and remaining values of the solution vector ~x) and the new value of x

i

is

taken from this domain (either with 
at probability distribution for uniform mutation, or other

probability distributions for non-uniform and boundary mutations). In any case the o�spring

solution vector is always feasible. Similarly, arithmetic crossover, a~x+ (1� a)~y, of two feasible

solution vectors ~x and ~y yields always a feasible solution (for 0 � a � 1) in convex search spaces

(the system assumes linear constraints only which imply convexity of the feasible search space

F). The heuristic crossover described in section 2.2 generates a single o�spring ~z (note that an

additional feasibility check is required in such a case) from two parents.

Genocop proved its usefulness for linearly constrained optimization problems; it gave sur-

prisingly good performance on many test functions (Michalewicz et al., 1994; Michalewicz,

1996). For example, let us consider the following problem (Floudas and Pardalos, 1987) to

minimize a function:

G1(~x) = 5x

1

+ 5x

2

+ 5x

3

+ 5x

4

� 5

P

4

i=1

x

2

i

�

P

13

i=5

x

i

,

subject to the following constraints:

2x

1

+ 2x

2

+ x

10

+ x

11

� 10, 2x

1

+ 2x

3

+ x

10

+ x

12

� 10, 2x

2

+ 2x

3

+ x

11

+ x

12

� 10,

�8x

1

+ x

10

� 0, �8x

2

+ x

11

� 0, �8x

3

+ x

12

� 0,

�2x

4

� x

5

+ x

10

� 0, �2x

6

� x

7

+ x

11

� 0, �2x

8

� x

9

+ x

12

� 0,

and bounds 0 � x

i

� 1, i = 1; : : : ; 9, 0 � x

i

� 100, i = 10; 11; 12, 0 � x

13

� 1.

The problem has 13 variables and 9 linear constraints; the function G1 is quadratic with its

global minimum at

~x

�

= (1; 1; 1; 1; 1; 1; 1; 1; 1; 3; 3; 3; 1),

where G1(~x

�

) = �15. Six (out of nine) constraints are active at the global optimum (all except

the following three: �8x

1

+ x

10

� 0, �8x

2

+ x

11

� 0, �8x

3

+ x

12

� 0).

Genocop requires less than 1,000 generations to arrive at the global solution.

Note that the linear constraints imply convexity of the feasible search space, which usually

require smaller e�ort of the search process than non convex ones, where the feasible parts of

the search space can be disjoint and irregular. Note also, that the method can be generalized

to handle nonlinear constraints provided that the resulting feasible search space F is convex.

But the weakness of the method lies in its inability to deal with non convex search spaces (i.e,

to deal with nonlinear constraints in general).
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3.1.2 Searching the boundary of feasible region

One of the main reasons that lie behind di�culties in locating the global solution is the inability

of evolutionary systems to search precisely the boundary area between feasible and infeasible

regions of the search space. This ability can be quite important in the case of optimization

problems with nonlinear equality constraints or with active nonlinear constraints at the target

optimum.

Some other heuristic methods recognized the need for searching areas close to the boundary

of the feasible region. For example, one of the most recently developed approach for constrained

optimization is strategic oscillation. Strategic oscillation was originally proposed in accompa-

niment with the strategy of scatter search (Glover, 1977), and more recently has been applied

to a variety of problem settings in combinatorial and nonlinear optimization (see, for example,

the review of Glover and Kochenberger (1995)). The approach is based on identifying a critical

level, which represents a boundary between feasibility and infeasibility. The basic strategy is to

approach and cross the feasibility boundary, by a design that is implemented either by adaptive

penalties and inducements (which are progressively relaxed or tightened according to whether

the current direction of search is to move deeper into a particular region or to move back toward

the boundary) or by simply employing modi�ed gradients or sub-gradients to progress in the

desired direction.

Evolutionary computation techniques have a huge potential in incorporating specialized

operators which search the boundary of feasible and infeasible regions in an e�cient way.

This might be quite signi�cant: it is a common situation for many constrained optimization

problems that some constraints are active at the target global optimum. This optimum thus lies

on the boundary of the feasible space. One the other hand, it is commonly acknowledged that

restricting the size of the search space in evolutionary algorithms (as in most search algorithms)

is generally bene�cial. Hence, it seems natural in the context of constrained optimization to

restrict the search of the solution to the boundary of the feasible part of the space. We provide

two examples of a such approach; for more details the reader is referred to (Schoenauer and

Michalewicz, 1996).

An interesting constrained numerical optimization test case emerged recently; the problem

(Keane, 1994) is to maximize a function:

G2(~x) = j

P

n

i=1

cos

4

(x

i

)�2

Q

n

i=1

cos

2

(x

i

)

p

P

n

i=1

ix

2

i

j;

subject to

Q

n

i=1

x

i

� 0:75 ,

P

n

i=1

x

i

� 7:5n , and bounds 0 � x

i

� 10 for 1 � i � n.

Function G2 is nonlinear and its global maximum is unknown, lying somewhere near the

origin. The problem has one nonlinear constraint and one linear constraint; the latter one is

inactive around the origin and will be forgotten in the following.
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Figure 1: The graph of function G2 for n = 2. Infeasible solutions were assigned value zero

Some potential di�culties of solving this test case are illustrated in �gure 1, where infeasible

points were assigned a value of zero. The interesting boundary between feasible and infeasible

regions is de�ned by the equation �x

i

= 0:75. It is a di�cult problem, on which no standard

method (be it deterministic or evolutionary) gave satisfactory results. As Keane (1994) noted:

\I am currently using a parallel GA with 12 bit binary encoding, crossover, inver-

sion, mutation, niche forming and a modi�ed Fiacco-McCormick constraint penalty

function to tackle this. For n = 20 I get values like 0.76 after 20,000 evaluations."

This test case was the �rst one on which the idea of searching only the boundary was used

(Michalewicz et al., 1996): due to the simple analytical formulation of the constraint, ad hoc

speci�c initialization procedure and operators could be designed:

� Initialization: Randomly choose a positive variable for x

i

, and use its inverse as a

variable for x

i+1

. The last variable is either 0.75 (when n is odd), or is multiplied by 0.75

(if n is even), so that the point lies on the boundary surface.

� Crossover: The geometrical crossover is de�ned by

(x

i

)(y

i

)! (x

�

i

y

1��

i

), with � randomly chosen in [0; 1]

Figure 2 illustrates the possible o�spring from two parents for all values of �.

� Mutation: Pick two variables randomly, multiply one by a random factor q and the

other by

1

q

(restrict q to respect the bounds on the variables).
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x y

z

Figure 2: The geometrical crossover on the hyperboloid around its center: when parameter �

goes from 0 to 1, the o�spring of two parents de�nes the line joining them on the plot.

The simple evolutionary algorithm described above gave outstanding results. For the case

n = 20 the system reached the value of 0.80 in less than 4,000 generations (with population

size of 30, probability of crossover p

c

= 1:0, and probability of mutation p

m

= 0:06) in all

runs. The best value found (namely 0.803553) was better than the best values of any method

discussed earlier, whereas the worst value found was 0.802964. Similarly, for n = 50, all results

(in 30,000 generations) were better than 0.83 (with the best of 0.8331937).

It was interesting to note the importance of geometrical crossover. With �xed population

size (kept constant at 30), the higher values of probability of crossover p

c

, the better results of

the system were observed. Similarly, the best mutation rates were relatively low (p

m

� 0:06).

Since evolutionary methods for searching boundaries of feasible region constitute a new

development in constrained optimization, let us illustrate this approach on another test case.

The test problem was constructed for the case of sphere (Michalewicz et al., 1996; Schoenauer

and Michalewicz, 1996); the task is to maximize

G3(~x) = (

p

n)

n

�

Q

n

i=1

x

i

,

where

P

n

i=1

x

2

i

= 1 and 0 � x

i

� 1 for 1 � i � n.

The function G3 has a global solution at (x

1

; : : : ; x

n

) = (

1

p

n

; : : : ;

1

p

n

) and the value of the

function in this point is 1. The evolutionary algorithm uses the following components:
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� Initialization: Randomly generate n variables y

i

, calculate s =

P

n

i=1

y

2

i

, and initialize

an individual (x

i

) by x = y

i

=s for i 2 [1; n].

� Crossover: The sphere crossover produces one o�spring (z

i

) from two parents (x

i

) and

(y

i

) by:

z

i

=

q

�x

2

i

+ (1 � �)y

2

i

i 2 [1; n], with � randomly chosen in [0; 1]:

� Mutation: Similarly, the problem-speci�c mutation transforms (x

i

) by selecting two

indices i 6= j and a random number p in h0; 1i, and setting:

x

i

! p � x

i

and x

j

! q � x

j

;where q =

s

(

x

i

x

j

)

2

(1 � p

2

) + 1:

The simple evolutionary algorithm described above gave very good results. For the case n = 20

the system reached the value of 0.99 in less than 6,000 generations (with population size of 30,

probability of crossover p

c

= 1:0, and probability of mutation p

m

= 0:06) in all runs. The best

value found in 10,000 generations was 0.999866.

3.2 Methods based on penalty functions

In Evolutionary Computation as in many other �elds of optimization, most of the constraint-

handling methods are based on the concept of (exterior) penalty functions, which penalize

infeasible solutions, i.e. try to solve an unconstrained problem (on F) using the modi�ed

�tness function:

eval(~x) =

(

f(~x); if ~x 2 F

f(~x) + penalty(~x); otherwise;

where penalty(~x) is zero, if no violation occurs, and is positive, otherwise. Usually, the penalty

function is based on the distance of a solution from the feasible region F , or on the e�ort to

\repair" the solution, i.e., to force it into F . The former case is the most popular one; in many

methods a set of functions f

j

(1 � j � m) is used to construct the penalty, where the function

f

j

measures the violation of the j-th constraint in the following way:

f

j

(~x) =

(

maxf0; g

j

(~x)g; if 1 � j � q

jh

j

(~x)j; if q + 1 � j � m:

However, these methods di�er in many important details, how the penalty function is designed

and applied to infeasible solutions. In the following subsections we discuss all known methods

in turn.

11



3.2.1 Method of static penalties

The method was proposed by Homaifar, Lai, and Qi (1994); it assumes that for every constraint

we establish a family of intervals which determine appropriate penalty coe�cient. It works as

follows:

� for each constraint, create several (`) levels of violation,

� for each level of violation and for each constraint, create a penalty coe�cient R

ij

(i =

1; 2; : : : ; `, j = 1; 2; : : : ;m); higher levels of violation require larger values of this coe�-

cient.

� start with a random population of individuals (feasible or infeasible),

� evolve the population; evaluate individuals using the following formula

eval(~x) = f(~x) +

P

m

j=1

R

ij

f

2

j

(~x).

The weakness of the method is in the number of parameters. For m constraints the method

requires m(2`+1) parameters in total: m parameters to establish number of intervals for each

constraint, ` parameters for each constraint, de�ning the boundaries of the intervals (levels of

violation), and ` parameters for each constraint representing the penalty coe�cients R

ij

. In

particular, for m = 5 constraints and ` = 4 levels of violation, we need to set 45 parameters!

Clearly, the results are parameter dependent. It is quite likely that for a given problem there

exist one optimal set of parameters for which the system returns feasible near-optimum solution,

however, it might be quite hard to �nd it.

A limited set of experiments reported by Michalewicz (1995a) indicates that the method can

provide good results if violation levels and penalty coe�cients R

ij

are tuned to the problem.

For example, Homaifar et al. (1994) experimented with the following problem (Himmelblau,

1992). Minimize a function of 5 variables:

G4(~x) = 5:3578547x

2

3

+ 0:8356891x

1

x

5

+ 37:293239x

1

� 40792:141,

subject to three double inequalities:

0 � 85:334407 + 0:0056858x

2

x

5

+ 0:00026x

1

x

4

� 0:0022053x

3

x

5

� 92

90 � 80:51249 + 0:0071317x

2

x

5

+ 0:0029955x

1

x

2

+ 0:0021813x

2

3

� 110

20 � 9:300961 + 0:0047026x

3

x

5

+ 0:0012547x

1

x

3

+ 0:0019085x

3

x

4

� 25,

and bounds:

78 � x

1

� 102, 33 � x

2

� 45, 27 � x

i

� 45 for i = 3; 4; 5.

The best solution obtained in 10 runs (Homaifar et al., 1994) was

12



~x = (80:49; 35:07; 32:05; 40:33; 33:34)

with G4(~x) = �30005:7, whereas the optimum solution (Himmelblau, 1992) is

~x

�

= (78:0; 33:0; 29:995; 45:0; 36:776),

with G4(~x

�

) = �30665:5. Two constraints (upper bound of the �rst inequality and the lower

bound of the third inequality) are active at the optimum.

However, the importance of proper values for penalty coe�cients should be emphasized.

For example, Homaifar et al. (1994) reported a value 50 for such penalty coe�cient for the

violation of the lower boundary of the �rst constraint and the value of 2.5 for the violation

of the upper boundary of the �rst constraints, without any comments on the source for these

values.

3.2.2 Method of dynamic penalties

The method was proposed by Joines and Houck (1994). As opposed to the previous method,

the authors assumed dynamic penalties. Individuals are evaluated (at the iteration t) by the

following formula:

eval(~x) = f(~x) + (C � t)

�

P

m

j=1

f

�

j

(~x),

where C, � and � are constants. A reasonable choice for these parameters, reported by Joines

and Houck (1994), is C = 0:5, � = � = 2. The method requires much smaller number

(independent of the number of constraints) of parameters than the �rst method. Also, instead

of de�ning several levels of violation, the pressure on infeasible solutions is increased due to the

(C � t)

�

component of the penalty term: towards the end of the process (for high values of the

generation number t), this component assumes large values.

One of the problems (Hock and Schittkowski, 1981) experimented by Joines and Houck

(1994) was to minimize a function

G5(~x) = 3x

1

+ 0:000001x

3

1

+ 2x

2

+ 0:000002=3x

3

2

subject to

x

4

� x

3

+ 0:55 � 0, x

3

� x

4

+ 0:55 � 0,

1000 sin(�x

3

� 0:25) + 1000 sin(�x

4

� 0:25) + 894:8 � x

1

= 0

1000 sin(x

3

� 0:25) + 1000 sin(x

3

� x

4

� 0:25) + 894:8 � x

2

= 0

1000 sin(x

4

� 0:25) + 1000 sin(x

4

� x

3

� 0:25) + 1294:8 = 0

0 � x

i

� 1200, i = 1; 2, and �0:55 � x

i

� 0:55, i = 3; 4.

The best known solution is

13



~x

�

= (679:9453; 1026:067; 0:1188764;�0:3962336),

and G5(~x

�

) = 5126:4981.

The best result of experiments reported by Joines and Houck (1994) (many runs, various

values of � and �) gave a value of 5126.6653 of the objective function. No solution was fully

feasible due to the three equality constraints, but the sum of the violated constraints was quite

small (10

�4

). On the other hand, the method seems to provide too strong penalties: often the

factor (C � t)

�

grows too fast to be useful. The system has little chances to escape from local

optima: in most experiments reported by Michalewicz (1995a) the best individual was found

in early generations. The method gave very good results for test cases where the objective

functions were quadratic.

3.2.3 Method of annealing penalties

This method, called Genocop II, is also based on dynamic penalties and was described by

Michalewicz and Attia (1994) and Michalewicz (1996). Its modi�ed version works as follows:

� divide all constraints into four subsets: linear equations, linear inequalities, nonlinear

equations, and nonlinear inequalities,

� select a random single point as a starting point (the initial population consists of copies

of this single individual). This initial point satis�es linear constraints,

� set the initial temperature � = �

0

,

� evolve the population using the following formula:

eval(~x; � ) = f(~x) +

1

2�

P

m

j=1

f

2

j

(~x),

� if � < �

f

, stop, otherwise

{ decrease temperature � ,

{ the best solution serves as a starting point of the next iteration,

{ repeat the previous step of the algorithm.

This is the only method we are aware of (except Genocop III, section 3.3.3) which distin-

guishes between linear and nonlinear constraints. The algorithm maintains feasibility of all

linear constraints using a set of closed operators, which convert a feasible solution (feasible in

terms of linear constraints only) into another feasible solution. At every iteration the algorithm

considers active constraints only, the pressure on infeasible solutions is increased due to the

decreasing values of temperature � .
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The method has an additional unique feature: it starts from a single point.

2

Consequently,

it is relatively easy to compare this method with other classical optimization methods whose

performance are tested (for a given problem) from some starting point.

The method requires a starting and `freezing' temperatures, �

0

and �

f

, respectively, and

the cooling scheme to decrease temperature � . Standard values (reported by Michalewicz and

Attia (1994)) are �

0

= 1, �

i+1

= 0:1 � �

i

, with �

f

= 0:000001.

One of the test problems (Floudas and Pardalos, 1987) experimented by Michalewicz and

Attia (1994) was:

minimize G6(~x) = (x

1

� 10)

3

+ (x

2

� 20)

3

,

subject to nonlinear constraints:

c1 : (x

1

� 5)

2

+ (x

2

� 5)

2

� 100 � 0,

c2 : �(x

1

� 6)

2

� (x

2

� 5)

2

+ 82:81 � 0,

and bounds:

13 � x

1

� 100 and 0 � x

2

� 100.

The known global solution is ~x

�

= (14:095; 0:84296), and G6(~x

�

) = �6961:81381 (see �g-

ure 3). Clearly, both constraints are active at the optimum. The starting point, which is not

feasible, is ~x

0

= (20:1; 5:84).

GENOCOP II approached the optimum very closely at the 12th iteration. The progress of

the system is reported in the table 1.

In (Michalewicz, 1995a) some experimental evidence is presented to the e�ect that linear

constraints of a problem may prevent the system to move closer to the optimum. This is

an interesting example of damaging e�ect of limiting population to the feasible (with respect

to linear constraints) region only. Additional experiments indicated that the method is very

sensitive to the cooling scheme.

3.2.4 Methods of adaptive penalties

In this section we discuss two methods which are based on adaptive penalty functions.

The �rst method was developed by Bean and Hadj-Alouane (1992), and Hadj-Alouane and

Bean (1992). As the previous method, it uses a penalty function, however, one component of

the penalty function takes a feedback from the search process. Each individual is evaluated by

the formula:

2

This feature, however, is not essential. The only important requirement is that the next population contains

the best individual from the previous population.
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feasible

space

optimum

(14.095, 0.84296)

Figure 3: A feasible space for test case of G6

eval(~x) = f(~x) + �(t)

P

m

j=1

f

2

j

(~x),

where �(t) is updated every generation t in the following way:

�(t+ 1) =

8

>

>

<

>

>

:

(1=�

1

) � �(t); if

~

b

i

2 F for all t� k + 1 � i � t

�

2

� �(t); if

~

b

i

2 S �F for all t� k + 1 � i � t

�(t); otherwise;

where

~

b

i

denotes the best individual, in terms of function eval, in generation i, �

1

; �

2

> 1 and

�

1

6= �

2

(to avoid cycling). In other words, the method (1) decreases the penalty component

�(t + 1) for the generation t + 1, if all best individuals in the last k generations were feasible,

and (2) increases penalties, if all best individuals in the last k generations were infeasible. If

there are some feasible and infeasible individuals as best individuals in the last k generations,

�(t+ 1) remains without change.

The method introduces three additional parameters, �

1

, �

2

, and the time horizon, k. It

seems that there is an interesting analogy between this method and the method used in early

evolution strategies to optimize the convergence rate, where a \1/5 success rule" was proposed

(Rechenberg, 1973; B�ack et al., 1991):

The ratio ' of successful mutations to all mutations should be 1/5. Increase the

variance of the mutation operator, if ' is greater than 1/5; otherwise, decrease it.

The 1/5 success rule emerged as a conclusion of the process of optimizing convergence rates of

two functions (the so-called corridor model and sphere model). The rule was applied every k
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Iteration The best Active

number point constraints

0 (20.1, 5.84) c

1

, c

2

1 (13.0, 0.0) c

1

, c

2

2 (13.63, 0.0) c

1

, c

2

3 (13.63, 0.0) c

1

, c

2

4 (13.73, 0.16) c

1

, c

2

5 (13.92, 0.50) c

1

, c

2

6 (14.05, 0.75) c

1

, c

2

7 (14.05, 0.76) c

1

, c

2

8 (14.05, 0.76) c

1

, c

2

9 (14.10, 0.87) c

1

, c

2

10 (14.10, 0.86) c

1

, c

2

11 (14.10, 0.85) c

1

, c

2

12 (14.098, 0.849) c

1

, c

2

Table 1: Progress of GENOCOP II on test case of function G6; for iteration 0 the best point

is the starting point.

generations:

~�

t+1

=

8

>

<

>

:

c

d

� ~�

t

; if '(k) < 1=5;

c

i

� ~�

t

; if '(k) > 1=5;

~�

t

; if p

s

(k) = 1=5;

where '(k) is the success ratio of the mutation operator during the last k generations, and

c

i

> 1, c

d

< 1 regulate the increase and decrease rates for the variance of the mutation. Schwefel

in his experiments (Schwefel, 1981) used the following values: c

d

= 0:82, c

i

= 1:22 = 1=0:82.

The intuitive reason behind adaptation of penalties in Bean's and Hadj-Alouane's method

is similar to the reason behind the 1/5 success rule: the increased e�ciency of the search. In

evolution strategies, if successful, the search would continue in \larger" steps; if not, the steps

would be shorter. In Bean's and Hadj-Alouane's method, if constraints do not pose a problem,

the search would continue with decreased penalties, if not, the penalties would be increased.

The presence of both feasible and infeasible individuals in the set of best individuals in the last

k generations means that the current value of penalty component �(t) is set right.

The adaptive penalty function used by Smith and Tate (1993) incorporates both the search

length and constraint severity feedback. It involves the estimation of a near-feasible threshold

q

j

for each constraint 1 � j � m); such thresholds indicate distances from the feasible region F

which are \reasonable" (or, in other words, which determine \interesting" infeasible solutions,
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i.e., solutions relatively close to the feasible region). Thus the evaluation function is de�ned as

eval(~x; t) = f(~x) + F

feas

(t)� F

all

(t)

m

X

j=1

(f

j

(~x)=q

j

(t))

k

;

where F

all

(t) denotes the unpenalized value of the best solution yet found (up to generation t),

F

feas

(t) denotes the value of the best feasible solution yet found (up to generation t), and k

is a constant. Note, that the near-feasible thresholds q

j

(t) are dynamic, i.e., they are adjusted

during the search (for example, it is possible to de�ne q

j

(t) = q

j

(0)=(1 + �

j

t) thus resulting in

increasing the penalty component over time).

To the best of our knowledge, neither of the adaptive methods described in this subsection

has been applied to continuous nonlinear programming problems.

3.2.5 Death penalty method

This method just rejects infeasible individuals (death penalty); the method has been used by

evolution strategies (B�ack et al., 1991) and simulated annealing. For some problems, this simple

method provides quality results.

For example, one of the test cases considered recently (Michalewicz, 1995a) included the

following problem (Hock and Schittkowski, 1981). Minimize a function:

G7(~x) = x

2

1

+ x

2

2

+ x

1

x

2

� 14x

1

� 16x

2

+ (x

3

� 10)

2

+ 4(x

4

� 5)

2

+ (x

5

� 3)

2

+ 2(x

6

� 1)

2

+

5x

2

7

+ 7(x

8

� 11)

2

+ 2(x

9

� 10)

2

+ (x

10

� 7)

2

+ 45,

subject to the following constraints:

105 � 4x

1

� 5x

2

+ 3x

7

� 9x

8

� 0, �3(x

1

� 2)

2

� 4(x

2

� 3)

2

� 2x

2

3

+ 7x

4

+ 120 � 0,

�10x

1

+ 8x

2

+ 17x

7

� 2x

8

� 0, �x

2

1

� 2(x

2

� 2)

2

+ 2x

1

x

2

� 14x

5

+ 6x

6

� 0,

8x

1

� 2x

2

� 5x

9

+ 2x

10

+ 12 � 0, �5x

2

1

� 8x

2

� (x

3

� 6)

2

+ 2x

4

+ 40 � 0,

3x

1

� 6x

2

� 12(x

9

� 8)

2

+ 7x

10

� 0, �0:5(x

1

� 8)

2

� 2(x

2

� 4)

2

� 3x

2

5

+ x

6

+ 30 � 0,

and bounds

�10:0 � x

i

� 10:0, i = 1; : : : ; 10.

The problem has 3 linear and 5 nonlinear constraints; the function G7 is quadratic and has its

global minimum at

~x

�

= (2:171996; 2:363683; 8:773926; 5:095984; 0:9906548;

1:430574; 1:321644; 9:828726; 8:280092; 8:375927),

where G7(~x

�

) = 24:3062091. Six (out of eight) constraints are active at the global optimum

(all except the last two).
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The \death penalty" method provided with respectable solutions the best of which had

the value of 25.653. To evaluate this method it is necessary to initialize a population by

feasible solutions. This di�erent initialization scheme makes the comparison of all the methods

even harder. However, in experiments reported in (Michalewicz, 1995a), an interesting pattern

emerged: the method generally gave a quite poor performance. Also, the method was not as

stable as other methods; the standard deviation of returned solutions was relatively high.

3.2.6 Segregated genetic algorithm

The method of so-called segregated genetic algorithm was proposed by Le Riche et al. (1995)

as yet another way to handle the problem of the robustness of the penalty level (see section

3.2). The tuning of the penalty level encounters the following dilemma: a too small penalty

level leads to solutions which are infeasible (some penalized points still exhibit higher penalized

�tness than the best feasible point); a too high penalty level restricts the search inside the

feasible region, forbidding any shot-cut across the infeasible region, and thus eventually failing

to converge to the optimal solution.

The idea is to design two di�erent penalized �tness functions with static penalty terms p

1

and p

2

(see section 3.2): penalty p

1

is purposely too small, while penalty p

2

is hopefully too

high. All individuals of the current population undergo crossover and mutation. The values

of the two �tness functions f

i

(~x) = f(~x) + p

i

(~x), i = 1; 2, are computed for each resulting

o�spring (at no extra cost in term of objective function evaluation), and two ranked lists are

created according to the values of the �tnesses of all individuals (parents plus o�spring) for

each one of the �tnesses. The selection of the parents of next generation is then achieved by

picking up alternatively the best individual from each list (and removing this individual from

both lists afterwards). The main idea is that such a selection scheme will result roughly in

maintaining two subpopulations: the individuals selected on the basis of f

1

will more likely

lie in the infeasible region while the ones selected on the basis of f

2

will probably stay in the

feasible region; the overall process is thus allowed to reach the feasible optimum from both sides

of the boundary of the feasible region.

This method gave excellent results in the domain of Laminated Design Optimization (Le

Riche et al., 1995), but has not yet, to the best of our knowledge, been applied to continuous

nonlinear programming problems.

3.3 Methods based on a search for feasible solutions

There are a few methods which emphasize the distinction between feasible and infeasible so-

lutions in the search space S. One method considers the problem constraints in a sequence; a

switch from one constraint to another is made upon arrival of a su�cient number of feasible

individuals in the population. The second method is based on an assumption, that any feasible
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solution is better than any infeasible one. The third method repairs infeasible individuals. We

discuss these methods in turn.

3.3.1 Behavioral memory method

The method was proposed by Schoenauer and Xanthakis (1993); the authors called this method

a \behavioral memory" approach. It works as follows:

� start with a random population of individuals (feasible or infeasible),

� set j = 1 (j is a constraint counter),

� evolve this population with eval(~x) = f

j

(~x), until a given percentage of the population

(so-called 
ip threshold �) is feasible for this constraint,

3

� set j = j + 1,

� the current population is the starting point for the next phase of the evolution, where

eval(~x) = f

j

(~x) (de�ned in the section 3.2). During this phase, points that do not satisfy

one of the 1st, 2nd, ..., or (j � 1)-th constraint are eliminated from the population.

The stop criterion is again the satisfaction of the j-th constraint by the 
ip threshold

percentage � of the population.

� if j < m, repeat the last two steps, otherwise (j = m) optimize the objective function,

i.e., eval(~x) = f(~x), rejecting infeasible individuals.

The method requires a linear order of all constraints which are processed in turn. It is unclear

what is the in
uence of the order of constraints on the results of the algorithm; our experiments

indicated that di�erent orders provide di�erent results (di�erent in the sense of the total running

time and precision).

In total, the method requires three parameters: the sharing factor �, the 
ip threshold �,

and a particular order of constraints. The method is very di�erent to the other methods, and,

in general, is di�erent than other penalty approaches, since it considers only one constraint at

the time. Also, in the last step of the algorithm the method optimizes the objective function f

itself with a death penalty.

The method was evaluated by Schoenauer and Xanthakis (1993) on the following problem:

Maximize the function

G8(~x) =

sin

3

(2�x

1

)�sin(2�x

2

)

x

3

�(x

1

+x

2

)

,

subject to the following constraints:

3

The method suggests the use of a sharing scheme to maintain diversity of the population.
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c1(~x) = x

2

1

� x

2

+ 1 � 0,

c2(~x) = 1� x

1

+ (x

2

� 4)

2

� 0

and bounds:

0 � x

1

� 10 and 0 � x

2

� 10.
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Figure 4: Function G8 together with two �tness landscapes corresponding to two di�erent

penalization parameters �: a small value of � leaves the highest peaks outside the feasible

region, while a large value of � makes the feasible region look like a needle in a haystack (all

plots are truncated between �10 and 10 for the sake of visibility)

Function G8 has many local optima, the highest peaks are located along the x axis (e.g.,

G8(0:00015; 0:0225) > 1540). In the feasible region, however, G8 has two maxima of almost

equal �tness of value of 0.1. Figures 4 show the penalized �tness landscape for di�erent penalty

parameters (i.e., plots of the function G8(~x) � �(c1(~x)

+

+ c1(~x)

+

) for di�erent values of �).

All values of the penalized function are truncated at �10 and 10 to allow values in the feasible

region (around 0) to be distinguishable.

This situation makes any attempt to use penalty parameters a di�cult task: small penalty

parameters leave the feasible region hidden among much higher peaks of the penalized �tness

(Figure 4-b) while penalty parameters large enough to allow the feasible region to really out-

stand in the penalized-�tness landscape imply vertical slopes of that region (Figure 4-c): the

partial credit principle, allowing the evolutionary algorithm to gently climb such slopes is not

valid, and the discovery of the global maximum of the penalized �tness thus relies on a lucky

move from the huge and 
at low-�tness region.

On the other hand, the behavioral memory method has no di�culty in localizing 80% of

the population �rst into the feasible region for constraint c1 (step 1), then into the feasible

region for both constraints (step 2), as can be seen on Figure 5. The optimization of G8

itself in that region is then straightforward (see the smooth bimodal �tness landscape in that

21



X1

X
2

0 1 2 3

1

3

5

7

9

The two steps of behavioral memory method

Population at end of step 1

Population at end of step 2

Figure 5: Illustration of a sample run of behavioral memory method on G8: zoom around the

feasible region. The dashed curve is constraint c1 and the continuous curve is constraint c2.

The population at end of �rst step samples the feasible region for c1 while that of the end of

step 2 samples the feasible region for both c1 and c2

region in Figure 4). Throughout all steps, however, the diversity in the population had to be

preserved: the resulting population is to be used as the starting point for another evolution,

and hence must sample as uniformly as possible the target feasible region in the two �rst steps;

the objective function is multi-modal in that feasible region, hence care must be taken to locate

both peaks. This requirement, achieved using the sharing scheme, is evenmore mandatory when

the feasible region is made of several distinct connected components, as shown by Schoenauer

and Xanthakis (1993) on a similar problem (with a slightly di�erent constraint c2).

3.3.2 Method of superiority of feasible points

The method was developed by Powell and Skolnick (1993). The method is based on a classical

penalty approach with one notable exception. Each individual is evaluated by the formula:

eval(~x) = f(~x) + r

P

m

j=1

f

j

(~x) + �(t; ~x),

where r is a constant; however, the original component �(t; ~x) is an additional iteration de-

pendent function which in
uences the evaluations of infeasible solutions. The point is that

the method distinguishes between feasible and infeasible individuals by adopting an additional

heuristic rule (suggested earlier by Richardson et al., 1989): for any feasible individual ~x and

any infeasible individual ~y: eval(~x) < eval(~y), i.e., any feasible solution is better than any

infeasible one. This can be achieved in many ways; one possibility is to set

�(t; ~x) =

(

0; if ~x 2 F

maxf0;max

~x2F

ff(~x)g �min

~x2S�F

ff(~x) + r

P

m

j=1

f

j

(~x)gg; otherwise:
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In other words, infeasible individuals have increased penalties: their values cannot be better

than the value of the worst feasible individual (i.e., max

~x2F

ff(~x)g).

4

For example, the above method was experimented with by Michalewicz (1995a) on one of

the problems described by Hock and Schittkowski (1981): minimize the function

G9(~x) = (x

1

� 10)

2

+ 5(x

2

� 12)

2

+ x

4

3

+ 3(x

4

� 11)

2

+ 10x

6

5

+ 7x

2

6

+ x

4

7

� 4x

6

x

7

� 10x

6

� 8x

7

,

subject to the following constraint:

127 � 2x
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1

� 3x
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2

� x

3

� 4x

2

4

� 5x

5

� 0, 282 � 7x

1

� 3x

2

� 10x

2

3

� x

4

+ x

5

� 0,

196 � 23x

1

� x

2

2

� 6x

2

6

+ 8x

7

� 0, �4x

2

1

� x

2

2

+ 3x

1

x

2

� 2x

2

3

� 5x

6

+ 11x

7

� 0

and bounds:

�10:0 � x

i

� 10:0, i = 1; : : : ; 7.

The problem has 4 nonlinear constraints; the function G9 is nonlinear and has its global mini-

mum at

~x

�

= (2:330499; 1:951372;�0:4775414; 4:365726;�0:6244870; 1:038131; 1:594227),

where G9(~x

�

) = 680:6300573. Two (out of four) constraints are active at the global optimum

(the �rst and the last one).

The method of Powell and Skolnick gave a reasonable performance; the best solution found

was 680.934. However, for some test problems (Michalewicz, 1995a) the method may have some

di�culties in locating a feasible solution.

3.3.3 Repairing infeasible individuals

This recently developed method, called Genocop III (Michalewicz and Nazhiyath, 1995) is based

on the idea of repairing infeasible solutions and also incorporates some concepts of co-evolution.

As in the original Genocop (section 3.1.1), linear equations are eliminated, number of vari-

ables is reduced, and linear inequalities are modi�ed accordingly. All points included in the

initial population satisfy linear constraints; specialized operators maintain their feasibility (in

the sense of linear constraints) from one generation to the next. We denote the set of points

which satisfy the linear constraints by F

l

� S.

Nonlinear equations require an additional parameter (
) to de�ne the precision of the sys-

tem. All nonlinear equations h

j

(~x) = 0 (for j = q + 1; : : : ;m) are replaced by a pair of

inequalities:

4

Powell and Skolnick (1993) achieved the same result by mapping evaluations of feasible solutions into the

interval (�1; 1) and infeasible solutions into the interval (1;1). For ranking and tournament selections this

implementational di�erence is not important.
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�
 � h

j

(~x) � 
,

so we deal only with nonlinear inequalities. These nonlinear inequalities restrict further the set

F

l

: they de�ne the fully feasible part F � F

l

of the search space S.

Genocop III incorporates the original Genocop system, but also extends it by maintaining

two separate populations, where a development in one population in
uences evaluations of

individuals in the other population. The �rst population P

s

consists of so-called search points

from F

l

which satisfy linear constraints of the problem. As mentioned earlier, the feasibility

(in the sense of linear constraints) of these points is maintained by specialized operators (see

section 3.1.1). The second population P

r

consists of so-called reference points from F ; these

points are fully feasible, i.e., they satisfy all constraints.

5

Reference points ~r from P

r

, being

feasible, are evaluated directly by the objective function (i.e., eval(~r) = f(~r)). On the other

hand, search points from P

s

are \repaired" for evaluation and the repair process works as

follows. Assume, there is a search point ~s 2 P

s

. If ~s 2 F , then eval(~s) = f(~s), since ~s is fully

feasible. Otherwise (i.e., ~s 62 F), the system selects

6

one of the reference points, say ~r from

P

r

and creates a sequence of random points ~z from a segment between ~s and ~r by generating

random numbers a from the range h0; 1i: ~z = a~s+ (1 � a)~r.

7

Once a fully feasible ~z is found,

eval(~s) = eval(~z) = f(~z).

8

Additionally, if f(~z) is better than f(~r), then the point ~z replaces ~r as a new reference point

in the population of reference points P

r

. Also, ~z replaces ~s in population of search points P

s

with some probability of replacement p

r

.

The structure of Genocop III is shown in �gure 6 and the procedure for evaluating (not

necessarily fully feasible) search points from population P

s

is given in �gure 7. Note that there is

some asymmetry between processing population of search points P

s

and population of reference

points P

r

: while we apply selection procedure and operators to P

s

every generation, population

P

r

is modi�ed every k (parameter of the method) generations (however, some additional changes

in P

r

are possible during the evaluation of search points, see �gure 7). The main reason behind

this arrangement is e�ciency of the system: search within feasible part of the search space F ,

as much less e�ective for NLP problems, is treated as a background event. Note also, that the

\selection" and \alternation" steps are reversed in the evolution loop for the P

r

: due to a low

probability of generating feasible o�spring, �rst parent individual reproduce and later the best

feasible individuals (from both parents and o�spring) are selected for the next population (this

is similar to the (�+ �) selection of evolution strategies (B�ack et al., 1991).

5

If Genocop III has di�culties in locating such a reference point for the purpose of initialization, the user

is prompted for it. In cases, where the ratio jFj=jSj of feasible points in the search space is very small, it may

happen that the initial set of reference points consists of a multiple copies of a single feasible point.

6

Better reference points have better chances to be selected; a selection method based on nonlinear ranking

was used.

7

Note that all such generated points ~z belong to F

l

.

8

Clearly, in di�erent generations the same search point S can evaluate to di�erent values due to the random

nature of the repair process.
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procedure Genocop III

begin

t 0

initialize P

s

(t)

initialize P

r

(t)

evaluate P

s

(t)

evaluate P

r

(t)

while (not termination-condition) do

begin

t t+ 1

select P

s

(t) from P

s

(t� 1)

alter P

s

(t)

evaluate P

s

(t)

if t mod k = 0 then

begin

alter P

r

(t)

select P

r

(t) from P

r

(t� 1)

evaluate P

r

(t)

end

end

end

Figure 6: The structure of Genocop III

Genocop III uses the objective function for evaluation of fully feasible individuals only, so the

evaluation function is not distorted as in methods based on penalty functions. It introduces only

few additional parameters (the population size of reference points, probability of replacement,

frequency of application of operators to the population of reference points, precision 
). It

always returns a feasible solution. A feasible search space F is searched (population P

r

) by

making references from the search points and by application of operators (every some number

of generations, k in �gure 6). The neighborhoods of better reference points are explored more

often. Some fully feasible points are moved into the population of search-points P

s

(replacement

process), where they undergo additional transformation by specialized operators.

One of the most interesting parameters of the developed system is the probability of replace-

ment p

r

(replacement of ~s by ~z in population of search points P

s

; see �gure 7). Recently, Orvosh

and Davis (1993) reported a so-called 5%-rule: this heuristic rule states that in many combina-

torial optimization problems, an evolutionary computation technique with a repair algorithm

provides the best results when 5% of repaired individuals replace their infeasible originals.

However, neither Davis (1995) nor the authors are aware of any experiments connected with

the probability of replacement for repair algorithms applied for problems in numerical domains.

Experiments reported by Michalewicz and Nazhiyath (1995) were done for p

r

= 0:20; this value
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procedure evaluate P

s

(t)

begin

for each ~s 2 P

s

(t) do

if ~s 2 F

then evaluate ~s (as f(~s)) else

begin

select ~r 2 P

r

(t)

generate ~z 2 F

evaluate ~s (as f(~z))

if f(~r) > f(~z) then replace ~r by ~z in P

r

replace ~s by ~z in P

s

with probability p

r

end

end

Figure 7: Evaluation of population P

s

provided with the best results on a selected test suite.

The results of experiments were quite good. For example, the following problem (Hock and

Schittkowski, 1981) proved very di�cult to all methods described earlier. The problem is to

minimize

G10(~x) = x

1

+ x

2

+ x

3

,

subject to the following constraints:

1� 0:0025(x

4

+ x

6

) � 0, 1 � 0:0025(x

5

+ x

7

� x

4

) � 0,

1� 0:01(x

8

� x

5

) � 0, x

1

x

6

� 833:33252x

4

� 100x

1

+ 83333:333 � 0,

x

2

x

7

� 1250x

5

� x

2

x

4

+ 1250x

4

� 0, x

3

x

8

� 1250000 � x

3

x

5

+ 2500x

5

� 0,

and bounds

100 � x

1

� 10000, 1000 � x

i

� 10000, i = 2; 3, 10 � x

i

� 1000, i = 4; : : : ; 8.

The problem has 3 linear and 3 nonlinear constraints; the function G10 is linear and has its

global minimum at

~x

�

= (579:3167; 1359:943; 5110:071; 182:0174; 295:5985; 217:9799; 286:4162; 395:5979),

where G10(~x

�

) = 7049:330923. All six constraints are active at the global optimum.

For the above problem the best result of Genocop III was 7286.650: much better than the

best result of the best system from those discussed in (Michalewicz, 1995a). Similar performance

26



was observed on two other problems, G9 (with 680.640) and G7 (with 25.883). Additional

interesting observation was connected with stability of the system. Genocop III had a very low

standard deviation of results. For example, for problem G9, all results were between 680.640

and 680.889; on the other hand, other systems produced variety of results (between 680.642

and 689.660, see Michalewicz (1995a)).

Of course, all resulting points ~x were feasible, which was not the case with other systems

(e.g., Genocop II produced a value of 18.917 for the problem G7, the systems based on the

methods of Homaifar, Lai, and Qi (section 3.2.1) and Powell and Skolnick (section 3.3.2) gave

results of 2282.723 and 2101.367, respectively, for the problem G10, and these solutions were

not feasible).

3.4 Hybrid methods

It is relatively easy to develop hybrid methods which combine evolutionary computation tech-

niques with deterministic procedures for numerical optimization problems. Waagen et al.

(1992) combined evolutionary programming technique (with 
oating point representation, Fo-

gel, 1995) with the direction set method of Hooke-Jeeves; this hybrid method was tested on

three (unconstrained) test functions. Myung et al. (1995) considered a similar approach, but

they experimented with constrained problems. Again, they combined 
oating-point evolution-

ary programming technique with some other method|developed by Maa and Shanblatt (1992).

However, while the method of Waagen et al. (1992) incorporated the direction set algorithm

as a problem-speci�c operator of his evolutionary technique, Myung et al. (1995) divided the

whole optimization process into two separate phases. During the �rst phase, evolutionary

algorithm optimizes the function

eval(~x) = f(~x) +

s

2

0

@

m

X

j=1

f

2

j

(~x)

1

A

;

where s is a constant. After the termination of this phase, the second phase of the optimization

algorithm of Maa and Shanblatt (1992) was applied to the best solution found during the �rst

phase; this phase iterates until the system

~x

0

= �5 f(~x)�

2

4

m

X

j=1

5f

j

(~x)(sf

j

(~x) + �

j

)

3

5

;

is in equilibrium, where the Lagrange multipliers are updated as �

0

j

= �sf

j

for a small positive

constant �.

This hybrid method was successfully applied to a few test cases; for example, one of the

test cases was to minimize

G11(~x) = x

2

1

+ (x

2

� 1)

2

,
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subject to a nonlinear constraint:

x

2

� x

2

1

= 0,

and bounds:

�1 � x

i

� 1, i = 1; 2.

The known global solutions are ~x

�

= (�0:70711; 0:5), and G11(~x

�

) = 0:75000455.

For this problem, the �rst phase of the evolutionary process converges quickly in 100 gen-

erations to (�0:70711; 0:5), and the second phase drives the system to the global solution.

However, the method was not tested for problems of higher dimensions.

Several other constraint handling methods deserve also some attention. For example, some

methods use of the values of objective function f and penalties f

j

(j = 1; : : : ;m) as elements

of a vector and apply multi-objective techniques to minimize all components of the vector. For

example, Scha�er's (1985) Vector Evaluated Genetic Algorithm (VEGA) selects 1=(m + 1) of

the population based on each of the objectives. Such an approach was incorporated by Parmee

and Purchase (1994) in the development of techniques for constrained design spaces. On the

other hand, in the approach by Surry et al. (1995), all members of the population are ranked on

the basis of constraint violation. Such rank r, together with the value of the objective function

f , leads to the two-objective optimization problem. This approach gave a good performance

on optimization of gas supply networks (Surry et al., 1995).

Also, an interesting approach was reported by Paredis (1994). The method (described in

the context of constraint satisfaction problems) is based on a co-evolutionary model, where a

population of potential solutions co-evolves with a population of constraints: �tter solutions

satisfy more constraints, whereas �tter constraints are violated by more solutions. There is

some development connected with generalizing the concept of \ant colonies" (Colorni et al.,

1991) (which were originally proposed for order-based problems) to numerical domains (Bilchev

and Parmee, 1995); �rst experiments on some test problems (from Table 3) gave very good

results (Bilchev, 1995). It is also possible to incorporate the knowledge of the constraints of the

problem into the belief space of cultural algorithms (Reynolds, 1994); such algorithms provide

a possibility of conducting an e�cient search of the feasible search space (Reynolds et al.,

1995). Recently, Kelly and Laguna (1996) developed a new procedure for di�cult constrained

optimization problems, which

\...has succeeded in generating optimal and near-optimal solutions in minutes to

complex nonlinear problems that otherwise have required days of computer time

in order to verify optimal solutions. These problems include nonconvex, nondi�er-

entiable and mixed discrete functions over constrained regions. The feasible space

explicitly incorporates linear and integer programming constraints and implicitly in-

corporates other nonlinear constraints by penalty functions. The objective functions
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to be optimized may have no `mathematically speci�able' representation, and can

even require simulations to generate. Due to this 
exibility, the approach applies

also to optimization under uncertainty (which increases its relevance to practical

applications)."

The method combines evolutionary processes with (1) scatter search, (2) with procedures of

mixed integer optimization, and (3) with adaptive memory strategies of tabu search.

However, all the above methods are on early stages of their development, or they have not

been applied yet to the general NLP, so we do not discuss them any further.

4 Conclusions and Future Work

It is di�cult to compare the constraint-handling methods which were discussed in the previous

section of this paper. The main reason is that the original formulations of these methods are

based on di�erent representations (binary or 
oat), and consequently they use di�erent opera-

tors. For example, the method of static penalties (section 3.2.1) was proposed for a standard

GA with binary representation, standard crossover and mutation. Genocop (section 3.1.1) uses


oating point representation with seven specialized operators. The method of superiority of

feasible points (section 3.3.2) was also developed for 
oating point representation. However,

their operators were di�erent to those of Genocop. Bean and Hadj-Alouane adapted penalties

(section 3.2.4) for integer programming problems and used binary representation to code inte-

gers. Death penalty methods (section 3.2.5) were mainly used by evolution strategies (
oating

point representation with Gaussian mutation and adaptation of control parameters), and the

segregated GAs (section 3.2.6) has not been applied yet to the NLP. For these reasons we do

not provide numerical results of the above methods on all test cases de�ned in the previous

section. The only general observation we can make at this stage is that for constrained numer-

ical optimization problems, the 
oating point representation provides with much better results

(some of experiments on comparisons between binary and 
oating point representations for

unconstrained problems were reported in Michalewicz, 1996, chapter 5).

Some partial comparisons of several constraint-handling methods were reported (Michalewicz,

1995a), where a modi�ed version of Genocop system was used for all experiments; the code was

updated accordingly for each considered method. The results of these comparisons are given

in Table 2.

It is not clear what characteristics of a constrained problem make it di�cult for an evo-

lutionary technique. It seems that no single parameter (number of linear, nonlinear, active

constraints, the ratio � = jFj=jSj of feasible points in S, type of the function, number of

variables) proved to be signi�cant as a major measure of di�culty of the problem. For exam-

ple, many methods approached the optimum quite closely for the test cases G1 and G7 (with

� = 0:0111% and � = 0:0003%, respectively), whereas most of the methods experienced di�-

culties for the test case G10 (with � = 0:0010%). Two quadratic functions (the test cases G1
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Test Exact Method Method Method Method Method Method Method

Case opt. of section of section of section of section of section of section of section

3.2.1 3.2.2 3.3.1 3.2.3 3.3.2 3.2.5 3.2.5(f)

b �15:002 �15:000 �15:000 �15:000 �15:000 �15:000

G1 �15:000 m �15:002 �15:000 �15:000 �15:000 �15:000 | �14:999

w �15:001 �14:999 �14:998 �15:000 �14:999 �13:616

c 0, 0, 4 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

b 2282.723 3117.242 7485.667 7377.976 2101.367 7872.948

G10 7049.331 m 2449.798 4213.497 8271.292 8206.151 2101.411 | 8559.423

w 2756.679 6056.211 8752.412 9652.901 2101.551 8668.648

c 0, 3, 0 0, 3, 0 0, 0, 0 0, 0, 0 1, 2, 0 0, 0, 0

b 680.771 680.787 680.836 680.642 680.805 680.934 680.847

G9 680.630 m 681.262 681.111 681.175 680.718 682.682 681.771 681.826

w 689.660 682.798 685.640 680.955 685.738 689.442 689.417

c 0, 0, 1 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

b 24.690 25.486 18.917 17.388 25.653

G7 24.306 m 29.258 26.905 | 24.418 22.932 | 27.116

w 36.060 42.358 44.302 48.866 32.477

c 0, 1, 1 0, 0, 0 0, 1, 0 1, 0, 0 0, 0, 0

Table 2: Experimental results. For some methods, the best (b), median (m), and the worst

(w) result (out of 10 independent runs) are reported together with the number (c) of violated

constraints at the median solution: the sequence of three numbers indicate the number of

violations by more than 1.0, more than 0.1, and more than 0.001, respectively. The symbol `|'

stands for `the results were not meaningful'. The results for method of section 3.2.5 report also

the results of experiments (case 3.2.5(f)) where the initial population was feasible.

and G7) with a similar number of constraints (9 and 8, respectively) and an identical number

(6) of active constraints at the optimum, gave a di�erent challenge to most of these methods.

Also, several methods were quite sensitive to the presence of a feasible solution in the initial

population (e.g., method of section 3.2.5; see table 2).

All test cases are summarized in table 3; for each test case we list number n of variables,

type of the function f , the relative size of the feasible region in the search space given by the

ratio �, the number of constraints of each category (linear inequalities LI, nonlinear equations

NE and inequalities NI), and the number a of active constraints at the optimum (including

equality constraints).

Despite some obvious weaknesses of the method of static penalties (section 3.2.1), this basic

method, which requires �xed user-supplied penalty parameters, remains the most popular one

to handle constraints for evolutionary algorithms and many other optimization frameworks.

The main reason for that popularity is that it certainly is the simplest technique to implement:

it requires only a straightforward modi�cation of the objective function. Moreover, it is fair to

say that it gives quite reasonable results in many cases. Nevertheless, as emphasized in some of
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Function n Type of f � LI NE NI a

G1 13 quadratic 0.0111% 9 0 0 6

G2 k nonlinear 99.8474% 0 0 2 1

G3 k polynomial 0.0000% 0 1 0 1

G4 5 quadratic 52.1230% 0 0 6 2

G5 4 cubic 0.0000% 2 3 0 3

G6 2 cubic 0.0066% 0 0 2 2

G7 10 quadratic 0.0003% 3 0 5 6

G8 2 nonlinear 0.8560% 0 0 2 0

G9 7 polynomial 0.5121% 0 0 4 2

G10 8 linear 0.0010% 3 0 3 6

G11 2 quadratic 0.0000% 0 1 0 1

Table 3: Summary of eleven test cases. The ratio � = jFj=jSj was determined experimentally

by generating 1,000,000 random points from S and checking whether they belong to F (for G2

and G3 we assumed k = 50). LI, NE, and NI represent the number of linear inequalities, and

nonlinear equations and inequalities, respectively

the research cited in this paper, there are also many other cases for which the penalty method

fails. This raises two questions: (1) what features of the problem can guide the choice of the

constraint-handling technique to be incorporated into an evolutionary algorithm (either among

those surveyed here, or based on a new paradigm), and (2) is it possible to detect a priori

such problems, which are resistant to the penalty approach? Let us provide a few comments

addressing these two questions.

The experimental results of this paper suggest that making an appropriate a priori choice

of an evolutionary method for a nonlinear optimization problem remains an open question. It

seems that more complex properties of the problem (e.g., the characteristic of the objective

function together with the topology of the feasible region) may constitute quite signi�cant

measures of the di�culty of the problem. Also, some additional measures of the problem

characteristics due to the constraints might be helpful. However, this kind of information is not

generally available a priori. One possibility would be to measure how fast the feasible region

grows when the constraints are relaxed. We discuss brie
y these concepts in the following

paragraphs.

Consider the general NLP problem of section 1. Suppose that each constraint g

j

; j 2 [1; q]

and h

j

; j 2 [q+1;m] is upper-bounded on S by M

j

� 0. Then, for every value of ! 2 [0; 1], we

can de�ne F

!

as

F

!

= f~x 2 S : 8j 2 [1; q] g

j

(~x) � !M

j

and 8j 2 [q + 1;m] jh

j

(~x)j � !M

j

g:
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It is interesting to observe that F

0

= F and F

1

= S. The way �

!

= jF

!

j=jSj behaves

around ! = 0 | measured, for instance, by the value

�

!

=

d�

!

d!

j

!=0

;

can serve as an indicator of \how fast" the feasible region expands around its boundary.

Of course, the di�culty of the NLP also heavily depends on the objective function f itself.

So one possible measure of di�culty of the constrained problem is an evaluation of the optimum

of the objective function f with relaxed constraints. The following formula,

9

'

!

=

max

~x2F

!

f(~x)

max

~x2F

f(~x)

;

can serve as a such measure. Unfortunately, this ratio can only be estimated a posteriori by

solving a large number of NLPs, all as di�cult as the original one.

In general, there are three possible sources of di�culties of the NLP. These di�culties can

arise from the objective function itself, from the de�nition of the feasible region (i.e., from the

constraints alone), or from the coupling between the objective function and the constraints.

Hence the following features should be taken into account when trying to characterize di�erent

NLPs:

� The ruggedness of the unconstrained �tness landscape certainly is the �rst important

characteristic in
uencing the overall problem di�culty; for instance, linear or convex

objective functions will always result in easier constrained problems than almost-chaotic

functions, for the same set of constraints; however, this characteristic can hardly be

estimated a priori.

� The sparseness of the feasible region indeed is a crucial factor of di�culty: in some

problems, �nding a single feasible point is the major di�culty. Moreover, a high slope of

the constraints on the border of the feasible region is another way by which a constrained

problem can resist the penalty method; some hints have been given above (the factors �

and �

!

can be numerically estimated a priori).

� A high ratio between the highest global optima of the objective function (on the whole

domain where it is de�ned) and of the optima of the constrained function (e.g., the local

optima of the objective function in the feasible region), as well as a small distance between

these global optima and the feasible region can make the constrained optimization problem

almost intractable for penalty methods; unfortunately, it is almost impossible to estimate

this factor a priori. However, some useful a posteriori informations about the behavior

of di�erent methods might be obtained at the cost of heavy computations by comparing

their respective performances on gradually relaxed hard NLPs.

9

For maximization problems. The objective function f takes non-negative values.
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� The number of active constraints at the optimum is of course of importance: the more

constraints that are active at the optimum, the more likely to succeed are algorithms

searching close to the boundary of the feasible region; the extreme case being that de-

scribed in section 3.1.2. But here again it is very di�cult to predict such a number a

priori.

It seems that the most promising approach at this stage of research is experimental, involving

the design of a scalable test suite of constrained optimization problems, in which many of these

features could be easily tuned. Then it should be possible to test new methods with respect to

the corpus of all available methods.

Such experimental suite should contain:

� Convex problems (for validation only, as any gradient-bassed method will outperform any

stochastic algorithm by several orders of magnitude on such problems);

� Convex objective function and non-convex constraints (from easy to di�cult in slope,

number of connected components, etc.);

� Non-convex objective function (with multiple optima) with convex constraints;

� Non-convex objective function (with numerous multiple optima) and highly non-convex

steep constraints (with F consisting of possibly disjoint regions).

Such an experimental test suite is currently under construction.
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