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Abstract- The rapid advances of evolutionary methods 
for multi-objective (MO) optimization poses the 
difficulty of keeping track of the developments in this 
field as well as selecting an appropriate evolutionary 
approach that best suits the problem in-hand. This 
paper aims to analyze the strength and weakness of 
different evolutionary methods proposed in literatures. 
For this purpose, ten existing well-known evolutionary 
MO approaches have been experimented and 
compared exte nsively on two benchmark problems 
with different MO optimization difficulties and 
characteristics. Besides considering the usual two 
important aspects of MO performance, i.e., the spread 
across the Pareto-optimal front as well as the ability to 
attain the global optimum or final trade -offs, this 
paper also proposes a few useful performance 
measures for better and comprehensive examination 
of each approach both quantitatively and qualitatively. 
Simulation results for the comparisons are commented 
and summarized.  
 
1 Introduction 
 
Evolutionary techniques for multi-objective (MO) 
optimization are currently gaining significant attentions 
from researchers in various fields due to their 
effectiveness and robustness in searching for a set of 
global trade-off solutions. This growing interest is 
reflected by the significantly increase number of different 
evolutionary-based approaches and variations of existing 
techniques published in technical literatures. There have 
been many survey studies on evolutionary techniques for 
MO optimization (Fonseca and Fleming, 1995; Coello 
Coello, 1996; Bentley and Wakerfield, 1997; Horn, 1997; 
Coello Coello, 1998; Van Veldhuizen and Lamont, 2000). 
Among these, (Coello Coello, 1998) is a comprehensive 
survey aims to summarize and organize the information 
on different techniques. In their works, the techniques 
were classified into three main groups based on different 
implemented strategies in cost assignments and selection 
methods. They were naïve approach, non-aggregation 
approaches that are not Pareto-based and Pareto-based 
approaches. In each group, a fairly detailed 
implementation of the methods with relevant feedback 

were given, which provides readers a wide understanding 
and motivation to look into the mathematical 
programming approaches for exploiting the search 
capabilities of evolutionary-based MO optimization. 
Besides, there were also other studies that attempt to 
classify existing approaches in different ways. For 
example, Fonseca and Fleming (1995) classified existing 
techniques from a broad algorithmic perspective, Bentley 
and Wakerfield (1997) from perspective of range 
dependency while others (i.e. Horn, 1997; Van 
Veldhuizen and Lamont, 2000) from decision maker’s 
perspective. 

This paper attempts to analyze the strength and 
weakness of different well-known evolutionary MO 
optimization algorithms based upon benchmark problems. 
Section 2 provides a general overview and features of 
exiting evolutionary approaches for MO optimization. 
The performance measures is given in Section 3, and 
Section 4 describes the test problems with different MO 
optimization difficulties and characteristics used in this 
comparison study. The simulation results and 
performances of various algorithms are compared and 
summarized in Section 5. Conclusions are drawn in 
Section 6.  
 
2 Evolutionary Approaches for MO 

Optimization 
 
In general, multi-objective (MO) optimization can be 
defined as the problem of optimizing a vector of non-
commensurable and often competing objectives or cost 
functions, viz, it tends to find a parameter set P for 

 )(Min PF
P Φ∈

 (1) 

where P  = {p1, p2, … ,  pn} is a individual vector with n 
parameters and Φ defines a set of individual vectors. {f1, 
f2, … ,  fm} are m objectives to be minimized and F = {f1, 
f2, … ,  fm}. Instead of a single optima, solution to MO 
optimization problem is often a family of points known as 
Pareto optimal set, where each objective component of 
any point along the Pareto-front can only be improved by 
degrading at least one of its other objective components 
(Richardson et al., 1989; Srinivas and Deb, 1994). 
Evolutionary algorithms have been studied and 
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recognized to be well suited for MO optimization 
problems (Deb and Goldberg, 1989; Forrest et al., 1993). 
Emulating the biological evolution mechanism and 
Darwin’s principal on ‘survival-of-the-fittest’, 
evolutionary algorithms (EAs) have recently been 
growing in popularity owing to its powerful features in 
search adaptation and global optimization. Unlike 
conventional gradient-guided search methods, EAs 
require no gradient information, which makes it a unique 
and robust tool for solving multi-objective (MO) 
optimization problem. 

In this section, existing evolutionary-based approaches 
for MO optimization were looked in different perspective 

from previous surveys. Instead of trying to classify the 
existing approaches, the feature elements of each existing 
approach were extracted and discussed. In addition, more 
related citations, including the latest, were included in this 
discussion. Generally the MO handling technique for each 
algorithm can be broken down into at least one MO 
handling element. These elements cannot be split into 
simpler element since they themselves represent the basis 
of MO handling tools in evolutionary techniques. This 
finding is depicted in Table 1, which lists out all the MO 
handling elements available in existing evolutionary 
techniques. They are Weights, Min-Max , Pareto, Ranking, 
Goals, Pref., Gene, Sub-pop. , Fuzzy, Agents and Others. 

 
Table 1:  Feature elements in MO evolutionary approaches  

Label Descriptions 

Weights 

Multiple objectives are combined into scalar objective via weight vector. 
Weights may be assigned through: direct assignment, eigenvector method, entropy method, minimal information method, randomly 
determined or adaptively determined.  
It is difficult to precisely pre-determine the weights.  
If the objective functions are simply weighted and added to produce a single fitness, the function with the largest range would 
dominate evolution. A poor input value for the objective with the larger range makes the overall value much worse than a poor value 
for the objective with the smaller range (Bently and Wakefield, 1997).  
It suffers the disadvantage of missing concave portions of the trade -off curve (Coello Coello, 1996).  

Min-
Max 

It uses the distance between an efficient design and a pre-defined ideal design. It attempts to find from the feasible domain an efficient 
design which is nearest to the ideal design in the minimax sense. 
It is able of discovering all efficient solutions of a multiobjective problem whether the problem is convex or non-convex. 

Pareto It uses Pareto dominance scheme (Fonseca and Fleming, 1993) for individual comparison. The comparison results among the 
individuals will influence the selection and reproduction process in the evolution. 

Ranking Individuals are sorted from the most preferable to the least preferable, or vice versa. Individuals are then assigned rank according to 
their preferences. If two or more individuals are equally preferable, they will be assigned the same rank. 

Goals It requires a designer to set goals for the objectives that he wishes to achieve and adopts the decision rule that the best compromise 
design should be the one which minimizes the deviation from the set goals.  

Pref. It requires a designer to set preferences/priorities of the objectives to optimize and adopts the decision rule that the objectives with 
higher priorities are given higher privilege to optimize than the objectives with lower priorities.  

Gene 
Chromosome genes do not only store the information of decision variables or parameter values for each individual but they also 
influence the way where fitness/cost assignment process for each individual is performed. The genes for the latter purpose can be 
either altered stochastically through normal/special evolution process or assigned through deterministic rule.  

Sub-
pop. 

The main population is divided into several sub-populations where each sub-population is optimized based on similar/different 
selection criteria. If different selection criteria are applied, it may refer to either different objective component or utility function of 
the objectives.  
The shuffling and merging of all sub-populations are in fact corresponding to fitness averaging for each of the objective component 
(Richardson et al., 1989). 
If gender is applied to classify the population, a relative large population size with lots of computational effort is required to maintain 
a reasonably diverse spread of genders across the entire population (Coello Coello, 1998). 

Fuzzy Fuzzy rules and fuzzy membership functions are applied to combine the multiple objectives to handle the vague term of user’s 
specifications. The resulted fuzzy reasoning process is then used in selection process.  

Agents It involves the use of a family of agent where each agent participates in improving the individuals for its corresponding objective.  
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Others The objective handling techniques that are apart from the above techniques.  

Fig. 1 illustrates the development trends of MO 
handling elements starting from the first publication of 
MO evolutionary approaches until the most recent ones, 
according to the authors' best knowledge. The y-axis 
represents the cumulative number of methods applying 
the corresponding MO handling elements along the year 
of development, while the x-axis represents the years 
which is not according to linear scale. As can be seen 
from the figure that, the MO handling element of goals is 
the earliest while Agents is the latest to be applied. As 
time goes on, the elements of Min-Max , Gene , Sub-pop., 
Fuzzy, Agents, and Others receive less interest from 

researchers as compared to the elements of Weights, 
Pareto, Ranking, Goals and Pref. Among the former set 
of elements, Weights has attracted significant interest 
from researchers between the period of 1985-1997 and 
was the most popular method before 1997 (Fonseca and 
Flaming, 1997). On the other hand, the popularity of 
Pareto as MO handling elements continues to grow at the 
highest rate since 1987 (when it was first proposed by 
Goldberg and Richardson (1987)) as compared to others, 
and it is believed to be continuously growing in the future.  
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Fig. 1 Development trends of objective handling elements 
 
3 Performance Measures 
 

Until 1998, there is a lack of well-established approach 
for quantitative measure of performance in multi-
objective evolutionary algorithms. The arguments for and 
against the methods are based on qualitative aspects of the 
evolution process and population distribution. Since then, 
a few woks (Van Veldhuizen and Lamont, 1999; Deb, 
1999a; Shaw et al., 1999; Zitzler and Thiele, 1999) began 
to explore the field of MOEA comparison and tried to 
formalize the quantitative performance measures as a 
common comparative basis. However, as stated by (Shaw 
et al., 1999), there are only two aspects being covered: the 
first is according to their spread across the available trade-
off surface while the second is the ability in terms of 
attainment of optimum goal in multi-objective sense. In 
this paper, a set of performance measures is recommended 
and applied to compare various evolutionary MO methods. 
Besides covering the above two aspects of performance, 
the proposed measures also consider the fraction of useful 
individuals in the population in multi-objective sense, the 
uniform distribution of individuals on the found trade-off 
surface as well as the computational effort of the 
optimization method. 

There are all together five different quantitative 
measures of MO optimization performances used in this 
paper. Some of these measures are referred from other 
articles including Veldhuizen and Lamont, (1998); 
(1999); Zitzler and Thiele, (1999), while others are 
designed carefully in this paper for a more comprehensive 
comparison. Note that these measures are chosen since 
they are widely used for performance comparisons in MO 
optimization. Furthermore, these measures need not 
compute the actual trade-off that often needs to be 
obtained through deterministic enumeration or is not 
always practically implementable in some problems 
(Veldhuizen and Lamont, 1999). 
 
i)  Algorithm Effort (AE) 
The algorithm effort (AE) can be defined as the ratio of 
the total number of function evaluations Neval over a fixed 
period of simulation time Trun, 
 

 AE = 
eval

run
N

T
 (2) 

 
As shown in eqn. 2, for a fixed period of Trun, more 

number of function evaluations being performed 
indirectly indicates that less computational effort is 
required by the optimization algorithm and hence 
resulting in a smaller AE.  Similarly, for a fixed value of 
Neval, any optimization algorithm that requires a bigger 
value of Trun reflects the need of a larger algorithm effort, 
and vice versa.  
 
ii)  Ratio of Non -dominated Individuals (RNI) 
For more choices of non-dominated solutions, it is always 
desired to have as many as possible the useful candidate 
solutions known as the Pareto-front from a given 
population size. The performance measure is denoted here 
as the ratio of non-dominated individuals (RNI ) for a 
given population X and is mathematically formulated as: 
 

 
P

ivnondom_ind
RNI =)( X  (3) 

 
where nondom_indiv is the number of non-dominated 
individuals in population X while P is the size of 
population X. Therefore the value RNI  = 1 means all the 
individuals in the population are n on-dominated while the 
opposite, RNI = 0 represents the situation where none of 
the individuals in the population are non -dominated. 
 
iii)  Size of Space Covered (SSC) 
Zitzler and Thiele (1999) has proposed a quantitative 
measure of size of space covered (SSC) to evaluate the 
overall size of phenotype space covered by all the 
optimized solutions.  
 
iv)  Uniform Distribution (UD) 
A measure of uniform distribution (UD) to measure the 
distribution of non-dominated individuals is proposed 
here. Mathematically, UD(X') for a given set of non-
dominated individuals X'  in a population X, where X' ⊆ X, 
is defined as, 
 

 
ncS

UD
+

=
1

1
)'( X  (4) 

 
where Snc is the standard deviation of niche count of the 
overall set of non-dominated individuals X', and is 
formulated as, 
 

 
( )

1

'
)'()'(

' −

∑ −
=

x

N

i
i

nc N

x
ncxnc

S

X
 (5) 
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where Nx' is the size of the set X'; nc(x'i) is the niche count 

of i-th individual x'i where x'i ∈ X'; and )'(Xnc  is the 
mean value of nc(x'i), ∀ i  = 1, 2,…, Nx', as shown in the 
following equations, 
 

 ∑=
≠

'
),,()'(

,

x
jifxnc

N

ijj
i  (6a) 

 


 <

=
else

jidis
jifwhere share

,0

),(,1
),(

σ
 (6b) 

 

( )

'

'
'

)'(
x

N

i
i

N

x
xnc

nc
∑

=X  (7) 

 
where dis(i, j) is the distance between individual i  and j in 
the objective domain. 
 
v)  Coverage of Two Set (C) 
The Coverage of Two Set (C) is a measure to compare the 
domination of two populations in a pair-wise manner, i.e., 
how good population i dominates population j as well as 
how good population j dominates population i. This 
measure was proposed by Zitzler and Thiele (1999). 
 
4 Test Problems  
 

Concerning the formation of appropriate test problems for 
multi-objective evolutionary algorithms, Deb (1999b) has 
pointed out a few features that cause difficulties in 
converging to the Pareto-optimal front and maintaining 
population diversity in the current non-dominated front. 
These features include multi-modality, deception, isolated 
optimum and collateral noise. In this paper, some of the 
above features are accounted in our test functions.  
 
 (i)  Test Problem 1  
In test problem 1, the Fonseca’s two-objective 
minimization problem which has been widely studied in 
(Fonseca and Fleming, 1993) is applied here. Besides its 
non-convex Pareto optimal front, this test function is 
chosen since it has large and non-linear trade-off curve 
that should challenge the MO evolutionary algorithm’s 
ability to find and maintain the entire front uniformly. 
Besides, it is easy used for visualization and comparison. 
The two-objective functions, f1 and f2, to be minimized are 
given as 
 

 













∑ 





−−−=

=

28

1
811

8

1
1),...,(

i
ixexpxxf  (8a)

  

 













∑ 





+−−=

=

28

1
812

8

1
1),...,(

i
ixexpxxf  (8b) 

 

where 8,...,2,1,22 =∀<≤− ixi .  
 
(ii)  Test Problem 2  
In this test problem, the search algorithms are evaluated in 
the noisy environment to test their robustness in the sense 
that the disappearance of important individuals from the 
population has little effect on the global system behavior 
(Collard and Escazut, 1995). In order to investigate the 
relative abilities of MO search algorithms in noisy 
environment, noisy version of two -objective optimization 
with three variables is constructed here where the function 
being optimized contained elements of noise as 
formulated below: 
 
 ,11 xf ′=  (9a) 

 ( ) [ ] ,0.11
1 25.02

3
2

2
1

2








+′+′+= gxx
x

f  (9b) 

 ( ) 




 ′+′
1.02

3
2

2
2 50sin xxg  (9c) 

 
Instead of performing the optimization on real-valued 
parameters, xi, the optimization is performed on the 
‘corrupted” parameters with additive noise element: 
 
 ),,( µσNxx ii +=′  (9d) 
 
where 11.0 1 ≤≤ x  and 3,2100100 =∀≤≤− ixi . 

N(σ,µ) is the white noise. The population distribution 
density of the noise is given as normal distribution 
(Grimm, 1993) as indicated in eqn. 10: 
 

 
( )












 −−=
2

2

2 2
exp

2

1
)),(|(

σ

µ

πσ
µσ x

NxP  (10) 

 
where µ and σ2 are the mean and variance of the 
probability density distribution. In the normal curve, 
approximately 68% of the scores of the distribution lie 
between µ±σ. In this test problem, both µ and σ2 are 
given as 0 and 0.1, respectively.  
 
5 Performance Comparisons 
 

In this section, various evolutionary MO optimization 
methods have been compared using the benchmark 
problems in Section 4, and based upon the performance 
measures in Section 3. The MO evolutionary optimization 
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methods under studied include VEGA from (Schaffer, 
1985), MIMOGA from (Murata and Ishibuchi, 1995), 
HLGA from (Hajela and Lin, 1992), NPGA from (Horn et 
al., 1994), MOGA from (Fonseca and Fleming, 1993), 
NSGA from (Srinivas and Deb, 1994), SPEA from 
(Zitzler and Thiele, 1999), MOEA from (Tan et al ., 1999), 
IMOEA from (Tan et al., 2000) and EMOEA from (Tan 
et al., 2001). Most of the these methods have often been 
applied or taken as reference in literature for comparing 
different population-based multi-objective evolutionary 
algorithms, and hence they are chosen here for the study. 

In the simulations, the setting of parameter values are 
based upon two principles: 1) the values of the parameter 
that are commo nly used by several algorithms are 
identical in those algorithms and, 2) the values of the 
parameter that are used in specific algorithm are decided 
based upon the recommended values from their original 
literature. Phenotype sharing is applied in all algorithms 
that apply the sharing operation. The sharing distance for 
HLGA, NPGA, MOGA, NSGA as well as the 
performance measure of UD for all methods are set as 
0.01 in the normalized space. Since dynamic sharing (Tan 
et al., 1999) was used for both MOEA and IMOEA, the 
sharing distance is computed dynamically at each 
generation, whereas no distance parameter is needed for 
SPEA and EMOEA as proposed by (Zitzler and Thiele, 
1999) and (Tan et al., 2001). Tournament selection 
scheme with tournament size of 2 is used in MOGA, 
SPEA, MOEA IMOEA and EMOEA as suggested in their 
respective literatures. The Pareto tournament selection 
scheme with tdom = 10% of the population size is used in 
NPGA for a tight and complete population distribution as 
recommended by (Horn et al., 1994). In order to 
guarantee a fair comparison, all algorithms considered are 
implemented with the same coding scheme, crossover and 
mutation. Note that each parameter is represented by 3-
digit decimal and concatenated to form the chromosomes, 
which gives a shorter chromosome length and avoids the 
Hamming-cliff effect as encountered in traditional binary-
based coding scheme (Tan et al., 1999). In all cases, 
standard mutation with a probability of 0.01 and standard 
crossover with two-point crossover and a probability of 
0.7 are used. 

All methods under comparison were implemented 
with the same common sub-functions using the same 
programming language in Matlab (The Math Works, 
1998) on an Intel Pentium II 450 MHz computer. Each of 
the simulation was terminated automatically when a fixed 
pre-specified simulation period (for each test problem) is 
reached, in the same platform that is free from other 
computation or being interrupted by other programs. The 
period for all algorithms being compared for test 
problems 1 and 2 are 180 and 100 sec., respectively. 
These were pre-determined based on the criteria that they 
were found most appropriate to clearly observe the 
difference of simulation results among the various 

methods, in which at least one method has converged  
satisfactory. 30 independent simulation runs have been 
performed for each method in each test problem so as to 
study the statistical performance such as consistency and 
robustness of the methods. Here, a random initial 
population was created for each of the 30 runs. Except 
SPEA and EMOEA which include the secondary 
population, the population size of 100 is applied on test 
problems 1 while population size of 30 on 2. For SPEA 
and EMOEA, four combinations of {primary population 
size, secondary population size} are applied. {100, 20} on 
test problems 1 and {30, 10} on 2. All the methods being 
compared are indexed according to the sequence listed in 
first paragraph of this section. 

Fig. 2 summarizes the performances of each algorithm 
in each test problem with respect to the number of 
function evaluations ( Neval), algorithm effort (AE), ratio of 
non-dominated individuals (RNI), size of space covered 
(SSC) and uniform distribution (UD) of non-dominated 
population. The distribution simulation data of 30 
independent runs is represented in box plot format, which 
has been applied by (Zitzler and Thiele, 1999) to visualize 
the median, upper quartile, lower quartile, outside value 
for each distribution of the simulation data. In each graph, 
the sequence of box plots from left to right is based upon 
the above mentioned indexes of algorithms. 

In the aspect of Neval and AE per run under a fixed 
CPU time, it can be seen from the first and second 
columns of Fig. 2 that on almost all test problems, VEGA 
and MIMOGA have a relatively high Neval and low AE. 
This indicates that these algorithms are less computational 
expensive as compared to others and hence more 
iterations were being performed per run within the fixed 
period of CPU time. On the other hand, SPEA is observed 
to give the highest algorithm effort (especially on test 
problems 1 and 2) since they have a lowest Neval and 
highest AE on all test problems. The large computational 
effort of SPEA could mainly due to its clustering 
algorithm. This is followed by EMOEA. Meanwhile, the 
Neval and AE for HLGA, NPGA, MOGA, NSGA, MOEA 
and IMOEA are moderate, the computational effort of 
SPEA is, however, comparatively large.  

Concerning the RNI (3rd column in Fig. 2), MOEA and 
IMOEA have the highest RNI on almost all the test 
problems (except test problem 2) as compared to others. 
This clearly indicates their abilities to provide more non-
dominated solutions from a given size of population based 
on the incorporation of switching preserved strategy 
(SPS) (Tan et al., 1999) where all the non-dominated 
individuals are preserved for the next generation. The RNI  
for SPEA and EMOEA are mainly depending on the ratio 
of the size of secondary (best-found) population to the 
size of main population. For the rest of algorithms where 
no elitism strate gy is applied, their values of RNI are not 
in clear difference and are relatively low in general, 
especially on test problems 1and 2. 
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Fig. 2 Box plots for the measures of number of function evaluations (Neval), algorithm effort (AE), ratio of non-dominated 
individuals  (RNI), size of space covered (SSC) and uniform distribution (UD). 
 

In SSC, the performances of MOEA, IMOEA and 
EMOEA in approaching the actual trade-off region are 
outstanding in almost all test problems as compared to 
other algorithms. As for the rest of the algorithms, no 
significant difference of the SSC values is observed. In the 
context of UD, the performance of all the methods are 
about the same on test problem 2 (noisy environment). 
This indicates that in noisy environment, none of the 
algorithm is  significantly superior to the others. It can also 
be observed that EMOEA shows its superiority on test 
problems 1 for non-convex trade-off curve. Besides 
IMOEA and MOEA, SPEA has also shown to be 
performing well on many test problems, especially test 
problems 1 for the measure of SSC. 

The performance measures of C(Xi, Xj) for the 
comparison sets between algorithms i and j, where i, j = 
1,2, …, 10, are shown in Fig. 3. Again, box plots are used 
to summarize the sample distributions of 30 independent 
runs for each case. In each rectangle containing box plots, 
the sequence of box plots from left to right is based on the 
same indexes of algorithm as mentioned above. The 
ranges of y- and x- axis of each graph are [0, 1] and [1, 
number of compared algorithms in the respective test 
problem]. As can be seen, C(Xi, Xj) for i = j always takes 
the value of zero since two identical populations cannot 
dominate each other. Generally, there is no clear evidence 
that, for all the test problems, the population of any of the 
methods totally dominating any other method(s) in all the 
30 runs since, for all test problems, there appears to be no 
cases where C(Xi, Xj) = 0, and C(Xj, Xi) = 1 for i ≠ j. 

From these experiments, it can be concluded that 
although VEGA and MIMOGA require less 
computational effort, and are able to perform more 
number of iterations in a given fixed period of CPU time, 
their performance to discover the entire trade-off curve 
uniformly are less superior than other methods. This can 
be evident by their measures of SSC and UD in Fig. 2 and 
C in Fig. 3. This may be due to the absence of preserved 
strategy in these algorithms as well as other genetic 

operations that are different from other methods. The 
similarity of both methods is that there are no explicit 
operators to diversify the population along the discovered 
trade-off curve. The results also show that the methods 
with preserved strategy, such as SPEA, MOEA, IMOEA 
and EMOEA have better convergence and population 
distribution along the discovered trade-off region. The 
implementation of preserved strategy may significantly 
burden the computation and increase the algorithm effort. 

 
 

6 Conclusions 
 
Existing evolutionary algorithms for MO optimization 
have been surveyed and classified in this paper based 
upon the different features in each of the approaches. Ten 
existing well-known evolutionary MO approaches have 
been experimented and compared extensively on 
benchmark problems with different MO optimization 
difficulties and characteristics. Besides considering the 
usual two important aspects of MO performance, i.e., the 
spread across the Pareto-optimal front as well as the 
ability to attain the global optimum or final trade-offs, this 
paper has also proposed other performance measures. 

The overall simulation results show that none of the 
methods is the most superior considering all aspects of the 
performance measures. Some conclusions can, however 
be drawn based upon the basis of each feature element 
applied in the algorithm. In general, preserve strategy (as 
implemented in SPEA, MOEA, IMOEA and EMOEA) is 
important for better convergence and population 
distribution along the discovered trade-off region in MO 
optimization. However, this requires more algorithm 
effort and hence results in less function evaluations within 
a fixed period of CPU time. Therefore preserve strategy 
can be greatly beneficial for problems with heavy 
function evaluation since its effect in the algorithm effort 
becomes less insignificance.   
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Fig. 3  Box plot for the C measure. Each rectangle refers 
to the measure of C(Xi, X1-10) 
 

This study forms a good basis to match the existing 
approaches to the performance measures as well as the 
features of the optimization problems. This shall 
contribute to the effort of combining the promising 
elements from different approaches into a new approach 
that performs well for the current type of optimization 
problem we are dealing with. However, further 
investigation is needed to consider more kinds of test 
problems with different MO optimization difficulties, 
such as the heavy function evaluation, heavy constraint, 
dynamic search space and etc., Results and progress will 
be reported in due course. 
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