
Evolutionary Algorithms for
Optimal Placement of Antennae in Radio Network Design

E. Alba
Departamento de Lenguajes y Ciencias de la Computación

Campus de Teatinos, E.T.S.I. Informática, 3-2-12
University of Málaga, 29071 Málaga

Spain
e-mail: eat@lcc.uma.es.

Abstract

In this paper, evolutionary algorithms (EAs) are applied
to solve the radio network design problem (RND). The task
is to find the best set of transmitter locations in order to
cover a given geographical region at an optimal cost. Usu-
ally, parallel EAs are needed in order to cope with the high
computational requirements of such a problem. Here, we
try to develop and evaluate a set of sequential and paral-
lel genetic algorithms (GAs) in order to solve efficiently the
RND problem. The results show that our distributed steady
state GA is an efficient and accurate tool for solving RND
that even outperforms existing parallel solutions. The se-
quential algorithm performs very efficiently from a nume-
rical point of view, although the distributed version is much
faster, with an observed linear speedup.

keywords: parallel evolutionary algorithm, radio net-
work design, performance evaluation.

1 Introduction

An important symbol of our present information society
are telecommunications. With a rapidly growing number of
user services, telecommunications is a field in which many
open research lines are challenging the research commu-
nity. Many of the problems found in this area can be formu-
lated as optimization tasks. Some examples are assigning
frequencies in radio link communications [11], predicting
bandwidth demands in ATM networks [15], developing er-
ror correcting codes for transmission of messages [8], and
designing the telecommunication network [9, 12, 13, 18].

The problem tackled in this paper belongs to this broad
class of network design tasks. When a geographically dis-
persed set of terminals needs to be covered by transmission
antennae a key issue is to minimize the number and loca-

tions of these antennae to cover a maximum area. This is
usually called the radio network design problem (RND).

Some existing approaches for solving this problem in-
clude the utilization of an evolutionary algorithm, e.g. ge-
netic algorithms [7]. But, as it happens frequently in prac-
tice, the high complexity of this task needs the computa-
tional power of several machines working together to find a
feasible solution. This gives rise to the application of paral-
lel algorithms to achieve high efficiency.

In this paper, our goal is to analyze different kinds of ge-
netic algorithm to find out which of them is more suited to
solve the RND problem efficiently and accurately. In gene-
ral, evolutionary algorithms encode tentative problem solu-
tions in a population of individuals with an associated fit-
ness (quality) value and then evolve it towards increasingly
better search regions. Thus, numerical issues are quite im-
portant in order to make a fair comparison with future op-
timization techniques. In particular, we will analyze the re-
lative advantages of using a single pool of solutions versus
an algorithm having multiple pools of solutions. Also, the
fitness function is a capital feature in EAs that we analyze
here, since it usually encapsulates as much problem knowl-
edge as possible to better guide the algorithm. We will then
analyze some alternatives to fitness function definitions for
the same problem. Finally, the actual goal of a telecommu-
nication network designer is to get an optimum design at a
maximum speed; therefore, we will encompass a set of tests
to find an efficient parallel algorithm that reduces the search
time and, at the same time, that maximizes the quality of the
solutions worked out.

The paper is organized as follows. In the second section
we define and characterize the radio network design prob-
lem. In Section 3 we will briefly describe evolutionary al-
gorithms as well as the necessary details to understand the
proposed ones. Then, Section 4 will discuss some design
issues relating the encoding and fitness functions we should

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

use to drive the search. In Section 5 we will provide the
results of the tests performed to compare algorithms and
fitness functions, developing efficient parallel algorithms.
Then, we report how our results relate to existing studies in
literature in Section 6. Finally, some concluding remarks
and future research lines are drawn in Section 7.

2 The Radio Network Design Problem (RND)

The radio coverage problem amounts to covering an area
with a set of transmitters. The part of an area that is covered
by a transmitter is called a cell. A cell is usually not connex.
In the following we will assume that the cells and the area
considered are discretized, that is, they can be described as
a finite collection of geographical locations (taken from a
geo-referenced grid, for example). The computation of cells
may be based on sophisticated wave propagation models,
on measurements, or on draft estimations. In any case, we
assume that cells can be computed and returned by an ad
hoc function.

Let us consider the set L of all potentially covered lo-
cations and the set M of all potential transmitter locations.
Let G be the graph, (M

⋃
L,E), where E is a set of edges

such that each transmitter location is linked to the locations
it covers and let be the vector −→x a solution to the problem
where xi ∈ {0, 1}, and i ∈ [1, 149] indicates whether a
transmitter is being used or not. As the geographical area
needs to be discretized, the potentially covered locations are
taken from a grid, as shown in the Figure 1.

Figure 1. (left) Three potentially transmitter lo-
cations and their associated covered cells on
a grid, and (right) graph representing covered
locations.

Searching for the minimum subset of transmitters that
covers a maximum surface of an area comes to searching
for a subset M ′ ⊆ M such that | M ′ | is minimum and
such that | Neighbors(M ′, E) | is maximum, where

Neighbors(M ′, E) = {u ∈ L | ∃v ∈ M ′, (u, v) ∈ E} (1)

M ′ = {t ∈M | xt = 1} (2)

The problem we consider recalls the unicost set cover-
ing problem (USCP) that is known to be NP-hard. The ra-
dio coverage problem differs, however, from the USCP in
that the goal is to select a subset of transmitters that ensures
a good coverage of the area and not to ensure a total co-
verage. The difficulty of our problem arises from the fact
that the goal is twofold, no part being secondary. If mini-
mizing was the primary goal, the solution would be trivial:
M ′ = φ. If maximizing the number of covered locations
was the primary goal, then problem would be the USCP. An
objective function f(−→x) to combine the two goals has been
proposed in [7]:

f(−→x) =
CoverRate(−→x)α

Number of transmitters selected(−→x)
(3)

where

CoverRate(−→x) = 100 · Neighbors(M
′, E)

Neighbors(M,E)
(4)

the parameter α can be tuned to favor the cover rate item
with respect to the number of transmitters. Just like Calégari
et al. did in [7], we will use α = 2, a 287 × 287 point
grid representing an open-air flat area. Also, 49 primary
transmitter locations are distributed regularly in this area in
order to form a 7×7 grid structure, and each transmitter has
an associated 41 × 41 point cell.

Consequently, the obtained coverage would be total if
the algorithm happens to assign one transmitter to these lo-
cations. A hundred complementary transmitters locations
were then randomly selected, associated to 41 × 41 point
cells (fewer when clipped by the border of the area), and
shuffled with the 49 primary ones (to avoid any kind of bias
in the recombination phase of our algorithms). By construc-
tion, the best solution is the one that covers 100% of the
area with the 49 primary transmitters (giving a fitness value
of 204.08). See in Figure 2 the graphical representation of a
partial (left) and optimal (right) solution for the RND prob-
lem.

3 Evolutionary Algorithms

In this section we intend to provide a quick overview of
the evolutionary algorithms family in order to classify and
explain the class of algorithms we are using in the paper.

Let us begin by outlining the skeleton of a standard
evolutionary algorithm. An EA (see the following pseudo-
code) proceeds in an iterative manner by generating
populations P(t) of µ individuals from the old ones (t=0,
t=1, t=2, . . .). Every individual in the population is the
encoded (binary, real, . . .) version of a tentative solution.
An evaluation function associates a fitness value to every
individual indicating its suitability to the problem. The

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Figure 2. (left) Graphical representation of a
partial solution covering 85.8% of the whole
area, and (right) a graphical representation of
an optimal solution.

canonical algorithm applies stochastic operators such as
selection, recombination, and mutation on an initially
random population in order to compute a whole generation
of new individuals. In a general formulation, we apply
variation operators to create a temporary population P’(t),
evaluate the resulting individuals, and get a new population
P(t+1) by either using P’(t) and, optionally P(t). The stop
condition is usually set to reach a pre-programmed number
of iterations of the algorithm, or to find an individual with
a preset (non-optimal) final quality.

Evolutionary Algorithm

t := 0;
initialize and evaluate [P(t)];
while not stop_condition do

P’(t) := variation [P(t)];
evaluate [P’(t)];
P(t+1) := select [P’(t),P(t)];
t := t + 1;

end while;

It is usual for many EA families to manipulate the popu-
lation as a single pool of individuals. By manipulation we
mean to apply selection of the fittest individuals, recombi-
nation of slices of two individuals to yield one or two new
children, and mutation of their contents. Frequently, EAs
use these variation operators in conjunction with associated
probabilities that govern their application in each step of the
algorithm.

In general, any individual can potentially mate any other
by applying a centralized selection operator. The same
holds for the replacement operator, where any individual
can potentially leave the pool and be replaced by a new
one. This is called a panmictic population of individuals.
A different (decentralized) selection model exists in which
individuals are arranged spatially, therefore giving place to

structured EAs. Most other operators, such as recombina-
tion or mutation, can be readily applied to any of these two
models [2].

There exist two quite popular classes of panmicitic EAs
having different granularity at the reproductive step [16].
The first one is called “generational” model, in which a
whole new population of λ individuals replaces the old one
(right part of Figure 3, where µ is the population size). The
second type is called “steady state”, since usually one or
two new individuals are created at every step of the algo-
rithm and then they are inserted back into the population,
consequently coexisting with their parents. In the mean
region, there exists a plethora of selection models, gener-
ically termed as “generation gap” algorithms, in which a
given percentage of the individuals are replaced with the
new ones. Clearly, generational and steady state selections
are two special subclasses of generation gap algorithms.

Figure 3. Panmictic EAs: from steady-state to
generational algorithms.

Centralized versions of selection are typically found in
serial EAs, although some parallel implementations have
also used it. For example, the global parallelism ap-
proach evaluates in parallel the individuals of the popu-
lation (sometimes also recombination and/or mutation are
parallelized), while still using a centralized selection per-
formed sequentially in the main processor guiding the base
algorithm [14]. This algorithm keeps the same behavior as
the sequential centralized one, although it usually performs
much faster for time-consuming objective functions.

Most parallel EAs found in the literature usually utilize
some kind of spatial disposition for the individuals, and then
parallelize the resulting chunks in a pool of processors. We
must stress at this point of the discussion that parallelization
is mainly achieved by first structuring the panmictic algo-
rithm, and then parallelizing it. This is why we distinguish
throughout the paper between structuring populations and
making parallel implementations, since the same structured
EA can admit many different implementations.

Therefore, we now turn to consider structured algorithms
also in this work. There exists a long tradition in using evo-
lutionary algorithms having structured populations, espe-
cially in association with parallel implementations. Among
the most widely known types of structured EAs, distributed
(dEA) and cellular (cEA) algorithms are very popular opti-
mization procedures [2].

Decentralizing a single population can be achieved by

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

partitioning it into several sub-populations, where island
EAs are run performing sparse exchanges of individuals
(distributed EAs), or in the form of neighborhoods (cellu-
lar EAs).

In distributed EAs, additional parameters control-
ling when migration occurs and how migrants are se-
lected/incorporated from/to the source/target islands are
needed [6, 17]. In cellular EAs, the existence of over-
lapped small neighborhoods helps in exploring the search
space [5]. These two kinds of EAs seem to provide a better
sampling of the search space and to improve the numerical
and runtime behavior of the basic algorithm in many cases
[4, 10].

In the present study we mainly focus on distributed EAs.
A distributed EA is a multi-population (island) model per-
forming sparse exchanges of individuals among the elemen-
tary populations. This model can be readily implemented in
distributed memory MIMD computers, one main reason for
its popularity. A migration policy controls the kind of dis-
tributed EA being used. The migration policy must define
the island topology, when migration occurs, which indivi-
duals are being exchanged, the synchronization among the
sub-populations, and the kind of integration of exchanged
individuals within the target sub-populations. The advan-
tages of a distributed model (either running on separate pro-
cessors or not) is that it is usually faster than a panmictic
EA. The reason for this is that the run time and the number
of evaluations are potentially reduced thanks to its separate
search from several regions of the problem space. A high di-
versity and species formation are two of their well reported
features of distributed EAs.

In this work we analyze the performance of a steady state
GA (ssGA) to solve the RND problem. Additionally, we
have developed a distributed ssGA (dssGA) that can be run
on any number of processors (also on one single processor)
for solving the RND problem more efficiently. The dssGA
falls into the distributed structured GA class allowing its
concurrent or physically parallel execution on a cluster of
workstations.

4 A Fitness Function for Solving RND

Designing a fitness function is one of the most impor-
tant steps in applying an EA to a new problem. The kind of
representation being used in the algorithm influences its use
inside the fitness function. In this section, we will address
the definition of the fitness function and the interpretation
of the resulting GA strings that hopefully will guide the al-
gorithms towards the problem regions where the solution
reside.

In our representation, every potential transmitter loca-
tion is assigned a bit in the binary string manipulated in
the algorithm. A 1 in a given string position means that

the associated transmitter will be used in the placement, i.e.
more points are potentially covered in the grid and one more
transmitter needs to be considered in all the computations
inside the fitness function.

The fitness function accounts for all problem knowledge
details since it scans the binary string provided by the al-
gorithm. In this way it computes the covered area as well
as other statistical measures that could be needed to assess
the quality of the evaluated individual as a tentative solution
to the problem. In our case, we will investigate the relative
performances of two evaluation functions.

The first one (Equation 5) is a fitness function that di-
rectly follows the problem definition given in Section 2,
thus computing the ratio between the covered and total area
in the problem (the grid). See in Equation 6 the maximized
function, by which we maximize the covered area and, at
the same time, we penalize solutions having a large number
of transmitters.

Evaluate1(−→x) = f(−→x) (5)

Evaluate1(−→x) =
CoverRate(−→x)α

Number of transmitters selected
(6)

This first evaluation function was also used in [7], work-
ing out a considerably high time before computing a solu-
tion. Therefore, we will test a second fitness function that
could directly account for the features that an optimal so-
lution should exhibit, thus hopefully reducing the number
of sampled points. In particular, we know that an optimal
solution for this problem should not leave any point in the
grid without coverage, and this means that the mean number
of transmitters covering a single point should be 1.0. This
is computed in a penalty term Pm explained in Equation
7. See in Table 2 the meaning of the symbols used in the
equations.

Pm(−→x) =
Φ

100
· (t(−→x) · am + bm) (7)

But it is not enough to have a mean number of trans-
mitters of 1.0 over each point in the target area. In addition,
it should hold that the standard deviation have a value of 0.0,
since in this way we could ensure that each point is covered
by one and only one transmitter in the solution. See this
second penalty term Pv in Equation 8.

Pv(−→x) =
Φ

100
· (σ2

t (−→x) · av + bv) (8)

We have called these two terms penalty values since we
plan to penalize the first evaluation function with they two in
order to engineer the algorithm with a more accurate guide
along the search space. See in Equation 9 the resulting eva-
luation function intended to be maximized by the analyzed
algorithms.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Evaluate2(−→x) = Evaluate1(−→x) − Pm(−→x) − Pv(−→x) (9)

Therefore, we are going to compare the results by using
these two evaluation functions throughout our tests. It is
expected for the second function to be harder to compute,
since we need to calculate more statistical info inside the
problem simulator embedded in the fitness function; on the
contrary, we expect it to find out a solution in a smaller
search time (despite the overload of computing additional
statistics in this function).

See in Table 1 the numeric ranges of the fitness values
returned by each of the maximized functions. We set con-
stants ai, bi to have values in the same range, thus making
more understandable the tests.

Function Ranges
Evaluate1 [0,204.08]
Evaluate2 [0,204.08]

Table 1. Numeric ranges for the result of every
fitness function.

In Table 2 we deploy a list with all the used symbols in
order to help the reader to understand the previous equa-
tions.

Symbol Description
G Graph representing the problem
L Set of all potentially covered locations
M Set of all potential transmitter locations
E Set of edges linking a transmitter to its covered locations−→x Solution vector to the problem
t Mean number of transmitters associated to a location

σ2
t Variance of the mean number of transmitters for a location

Pm Penalty value for t
Pv Penalty value for σ2

t
Φ Maximum value of f(−→x)

am, bm Coefficients for penalty Pm (am = −4.878, bm = 4.878)
av, bv Coefficients for penalty Pv (av = 0.01, bv = 2.704)

Table 2. Meaning of the symbols.

5 Tests and Results

In this section we present the results of performing an
assorted set of tests by using sequential and parallel GAs to
solve the RND problem (the two evaluation functions are
considered throughout).

First, we will analyze the number of evaluations and time
needed by each configuration. Let us begin by considering
a sequential implementation of a steady state GA with a sin-
gle population of 512 individuals, utilizing a usual parame-
terization, namely roulette wheel selection of each parent,
two-point crossover (tpx) with probability 1.0, bit-flip mu-
tation with probability 1/strlen, and replacement always of
the worst string.

Then we will analyze the results of a parallel steady state
GA having 8 islands, each one with 64 individuals perform-
ing in parallel the mentioned basic evolutionary step, with
an added migration operation. The migration will occur in
a unidirectional ring manner, sending one single randomly
chosen individual to the neighbor sub-population. The tar-
get population incorporates this individual only if it is bet-
ter than its presently worst solution. The migration step is
performed every 2048 iterations in every island in an asyn-
chronous way, since it is expected to be more efficient than a
synchronous execution over the pool of available processors
[3]. We will run the algorithms both in one single CPU (i.e.,
concurrently) and on 8 processors. Each processor is an Ul-
tra Sparc 1 CPU at 143 MHz linked by an ATM commu-
nication network. Although it is not a cutting-edge cluster
platform, we plan to extend and compare the results against
a clusters or Pentium 4, and against a beowulf of machines
aged differently. Thus, this work is a first step (the most im-
portant milestone) for the upcoming works in next months.
Also, see a summary of the conditions for experimentation
in Table 3. We perform 30 independent runs of each ex-
periment, what represents a considerable time since, as we
will see, some algorithms will need several hours to locate
a solution.

Population Size 512
Selection roulette wheel
Crossover tpx prob = 1.0
Mutation bit-flip prob = 0.00671
Replacement least fitted

Number of islands 8
Migration policy for selection random selection
Migration policy for replacement replace if better
Migration gap 2048
Number of migrants 1
Synchronization asynchronous mode

Table 3. Parameters of the algorithms being
used.

Now, let us begin the analysis by presenting in Table 4
the number of evaluations and the running time for two al-
gorithms: the ssGA and the distributed ssGA with 8 islands
(this last running on 1 processor and also on 8 processors).

Evaluate1 Evaluate2
evals time (h) # evals time (h)

dssGA (8 CPUs) 505624 1.38 579922 3.53
dssGA (1 CPU) 491496 10.87 573175 28.41

ssGA 173013 3.86 169016 8.49

Table 4. Number of evaluations (left) and time
(right) with ssGA and dssGA for Evaluate1
and Evaluate2.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

To asses the statistical significance of the results we not
only performed 30 independent runs, but also computed a
Student t-test analysis so that we could be able to distin-
guish meaningful differences in the average values. The
significance p-value is assumed to be 0.05, in order to in-
dicate a 95% confidence level in the results.

If we interpret the results in Table 4 we can notice several
facts. Firstly, for Evaluate1, it is clear that the sequential
ssGA is the best algorithm numerically, since it samples al-
most 3 times less number of points in the search space than
the second best algorithm before locating an optimal solu-
tion. As to the search time, the best algorithm is the dssGA
heuristic on 8 processors, since it performs very quickly
(1.38 hours) in comparison with the ssGA (3.86 hours), and
the dssGA on a single processor (10.87 hours). This comes
as no surprise since numerically, ssGA was better, although
dssGA on 8 processors makes computations much faster.
Since it is not fair to compute speedup against a panmictic
ssGA [1] we compare the same algorithm, both in sequen-
tial and parallel (dssGA on 8 versus 1 processors), with the
stopping criterion of getting a solution of the same quality.
We then are allowed to perform a fair comparison, whose
result is to find out that speedup is 7.87, i.e. near linear
speedup, which is very satisfactory.

For the second fitness function (see Table 4 again) we
can notice that the results are much the same: ssGA is nu-
merically advantageous with respect both execution scena-
rios of dssGA (p-values well below 0.05). These two last
algorithms seem again to provide the same average num-
ber of evaluations (differences are not significant, since the
t-test offers a p-value clearly larger than 0.05, the signifi-
cance level). Again, the execution time relationship is just
like with the first evaluation function (in fact, speedup is
perfect, even slightly superlinear: 8.04).

Therefore, the conclusions are that, numerically speak-
ing, ssGA is the best algorithm for any of the evaluation
functions. It can also be concluded that the second evalua-
tion function do not reduce the number of sampled points
before getting a solution significantly, despite we expected
it. In addition, the execution time of all the algorithms is
clearly enlarged when using Evaluate2. It might be possi-
ble that a multiobjective redefinition of the problem based
in the ideas of such function could lead to a more efficient
conclusion. See a graphical interpretation of the results in
Figure 4, were we plot the average number of evaluations
and execution time for ssGA and for the serial and parallel
versions of dssGA.

From our results, it is clear that the two dssGA scenarios
are similar in number of evaluations (p-value=0.738) while
ssGA is clearly giving the best average evaluation number
(t-tests much below 0.05). The set of t-tests for time values
make us conclude that all the differences in time are signi-
ficant, which supports our claims of a good speedup for the

Figure 4. Number of evaluations (up) and time
(down) needed by (d)ssGA to solve RND.

two evaluation functions.

6 Further Understanding on the Distributed
Algorithms for RND

In this section we want to discuss some other aspects of
the process of solving RND. In [7] the authors do not solve
them completely (optimum at 204.08), but only partially at
different percentages of this optimum, in particular at 61%
of the maximum fitness (optimum at/above 125.4). We here
consider solving the problem at 100% and also at a 61% of
the maximum to stress the point that the difficulty of RND
resides not only in locating a solution, but also in the very
slow progress of the algorithm towards an optimum, what
needs small tuning steps.

Let us begin with a detailed comparison between using
Evaluate1 and Evaluate2 when the problem is solved 100%.
The results (see Table 5) clearly indicate that there is a nu-
meric advantage for the first evaluation function, both for
the sequential execution of dssGA (p-value=0.0502) and
for its parallel distributed execution (p-value slightly above
0.05, i.e. 0.0867).

As to the execution time when the 100% case is being
considered, we can notice in Table 6 that there is a clear ad-
vantage for the simplest first fitness function (p-values much
below 0.05). Another conclusion is that speedups confirm
we are using a good parallel implementation (almost line-
ar —7.87— and slightly superlinear —8.04—), as we ex-
plained in the previous section.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

evals Evaluate1 Evaluate2 t-test
dssGA (1 CPU) 491496 573175 0.0502
dssGA (8 CPUs) 505624 579922 0.0867

Table 5. Average number of evaluations for
RND problem dssGA.

Time (hours) Evaluate1 Evaluate2 t-test
dssGA (1 CPU) 10.87 28.41 4.930e−16

dssGA (8 CPUs) 1.38 3.53 3.461e−12

speedup 7.87 8.04

Table 6. Average time of execution for RND
problem dssGA.

Let us now turn to consider the case in which the pro-
blem is solved partially, at a 61% fitness value of the opti-
mum. The interest of such tests comes from the practical
application of the algorithm by an engineer, that usually is
interested in a good guess in a small time. The results in
[7] show a required time of 540 minutes, although our algo-
rithm makes the same work in only 6.41 minutes. However,
we need to remark that our disposition of the regular trans-
mitters in the string is slightly different from that they used,
which can be one reason for this difference.

In fact, our implementation is also faster than the one
they used on the average, since they needed 540 minutes for
making 40,000 evaluations in one processor (74 evaluations
per minute), while we can perform 4287 evaluations in 6.41
minutes (669 evaluations per minute). This may be due, of
course, to the fact that we are using different machines (not
specially fast in our case), but also since they implement
graphs and other data structures that we have taken care of
in our implementations from the complexity point of view,
in order to speedup the computations of the number of co-
vered points by a solution.

In our results, the numeric data in Tables 7 and 8 con-
firms that the first evaluation function is the best in reducing
the number of visited points.

evals Time (min.) Fitness
dssGA (1 CPU) 3940 6.78 127.19
dssGA (8 CPUs) 4021 0.85 126.79

Table 7. Results for Evaluate1 RND 61% dssGA.

The speedup (when solving the problem at 61%) be-
tween the sequential and parallel dssGA is 7.97 for Evalu-
ate1 and 9.07 for Evaluate2. This result confirms that, while
Evaluate1 is approaching linear speedup, Evaluate2 is bet-
ter in profiting from a larger number of processors, which is
generally considered an advantage in parallel programming.

However, Evaluate1 is that fast in locating a 61% of the so-
lution with 8 processors that we can almost forget about this
small advantage of Evaluate2, at least for this RND problem
instance.

evals Time (min.) Fitness
dssGA (1 CPU) 5128 21.32 127.14
dssGA (8 CPUs) 4094 2.35 128.45

Table 8. Results for Evaluate2 RND 61% dssGA.

7 Conclusions

In this paper we intended to design better algorithms to
solve the RND problem. We have tried two fitness functions
and different sequential and parallel genetic algorithms to
find an optimal solution to the placement of antennae in a
geographical area, which is an important issue in telecom-
munications.

Our results show that the evaluation function reported
in [7] works properly without needing additional help co-
ming from explicit penalty terms (as usual in other com-
plex problems). The used steady state GA provides a very
good sampling of the search space. The problem is that it is
slow. This drawback has been fixed by using a distributed
multi-population version (dssGA) running on an network of
workstations (NOW) that, despite making a somewhat less
efficient search space sampling, provides a much faster way
of execution, reducing the wait time for a solution to just
about one hour.

Since there exist many possible instances for this same
problem, we are working in more difficult scenarios, and of
course, we are exploring the use of some other kinds of evo-
lutionary algorithms, specially cellular GAs [19] and mul-
tiobjective EAs. A clear improvement proceeds consisting
in utilizing additional hardware platforms to know more on
the generalization of the results presented in this paper.

Acknowledgements

This work has been partially funded by the Ministry
of Science and Technology and FEDER under contract
TIC2002-04498-C05-02 (the TRACER project). The au-
thor also thanks M. Vallejo for his help.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

References

[1] E. Alba. Parallel evolutionary algorithms can achieve su-
perlinear performance. Information Processing Letters,
82(1):7–13, April 2002.

[2] E. Alba and M. Tomassini. Parallelism and evolutionary al-
gorithms. IEEE Transactions on Evolutionary Computation,
6(5):443–462, October 2002.

[3] E. Alba and J. M. Troya. Analyzing synchronous and asyn-
chronous parallel distributed genetic algorithms. Future
Generation Computer Systems, 17:451–465, January 2001.

[4] E. Alba and J. M. Troya. Gaining new fields of application
for OOP: the parallel evolutionary algorithm case. Journal
of Object Oriented Programming, December (web version
only) 2001.

[5] S. Baluja. Structure and performance of fine-grain paral-
lelism in genetic search. In S. Forrest, editor, Proceedings
of the Fifth International Conference on Genetic Algorithms,
pages 155–162. Morgan Kaufmann, 1993.

[6] T. C. Belding. The distributed genetic algorithm revisited.
In L. J. Eshelman, editor, Proceedings of the Sixth Interna-
tional Conference on Genetic Algorithms, pages 114–121.
Morgan Kaufmann, 1995.

[7] P. Calégari, F. Guidec, P. Kuonen, and D. Kobler. Paral-
lel island-based genetic algorithm for radio network design.
Journal of Parallel and Distributed Computing, 47:86–90,
1997.

[8] H. Chen, N. Flann, and D. Watson. Parallel genetic sim-
ulated annealing: A massively parallel SIMD algorithm.
IEEE Transactions on Parallel and Distributed Systems,
9(2):126–136, 1998.

[9] C. Chu, G. Premkumar, and H. Chou. Digital data networks
design using genetic algorithms. European Journal of Op-
erational Research, 127:140–158, 2000.

[10] V. S. Gordon and D. Whitley. Serial and parallel genetic
algorithms as function optimizers. In S. Forrest, editor, Pro-
ceedings of the Fifth International Conference on Genetic
Algorithms, pages 177–183. Morgan Kaufmann, 1993.

[11] A. Kapsalis, V. Rayward-Smith, and G. Smith. Using ge-
netic algorithms to solve the radio link frequency assigment
problem. In D. Pearson, N. Steele, and R. Albretch, ed-
itors, Proceedings of the International Conference on Ar-
tificial Neural Nets and Genetic Algorithms, pages 37–40.
Springer-Verlag, 1995.

[12] N. Karunanithi and T. Carpenter. Sonet ring sizing with
genetic algorithms. Computers and Operations Research,
24(6):581–591, 1997.

[13] S. Khuri and T. Chiu. Heuristic algorithms for the terminal
assignment problem. In Proceedings of the 1997 ACM Sym-
posium on Applied Computing, pages 247–251. ACM Press,
1997.

[14] D. Levine. Users guide to the PGAPack parallel genetic al-
gorithm library. Technical Report ANL-95/18, Argonne Na-
tional Laboratory, Mathematics and Computer Science Di-
vision, January 31 1995.

[15] N. Swaminathan, J. Srinivasan, and S. Raghavan.
Bandwidth-demand prediction in virtual path in atm
networks using genetic algorithms. Computer Commnuni-
cations, 22(12):1127–1135, 1999.

[16] G. Syswerda. A study of reproduction in generational and
steady-state genetic algorithms. In G. J. E. Rawlins, editor,
Foundations of Genetic Algorithms, pages 94–101. Morgan
Kaufmann, 1991.

[17] R. Tanese. Distributed genetic algorithms. In J. D. Schaffer,
editor, Proceedings of the Third International Conference
on Genetic Algorithms, pages 434–439. Morgan Kaufmann,
1989.

[18] C. Vijayanand, M. S. Kumar, K. R. Venugopal, and P. S.
Kumar. Converter placement in all-optical networks using
genetic algorithms. Computer Communications, 23:1223–
1234, 2000.

[19] D. Whitley. Cellular genetic algorithms. In S. Forrest, ed-
itor, Proceedings of the Fifth International Conference on
Genetic Algorithms, page 658. Morgan Kaufmann Publish-
ers, San Mateo, California, 1993.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

