
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2012; 42:1331–1362
Published online 2 November 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.1135

Evolutionary algorithms for the multi-objective test data
generation problem

Javier Ferrer*,†, Francisco Chicano and Enrique Alba

Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, Málaga, Spain

SUMMARY

Automatic test data generation is a very popular domain in the field of search-based software engineering.
Traditionally, the main goal has been to maximize coverage. However, other objectives can be defined, such
as the oracle cost, which is the cost of executing the entire test suite and the cost of checking the system
behavior. Indeed, in very large software systems, the cost spent to test the system can be an issue, and then it
makes sense by considering two conflicting objectives: maximizing the coverage and minimizing the oracle
cost. This is what we did in this paper. We mainly compared two approaches to deal with the multi-objective
test data generation problem: a direct multi-objective approach and a combination of a mono-objective algo-
rithm together with multi-objective test case selection optimization. Concretely, in this work, we used four
state-of-the-art multi-objective algorithms and two mono-objective evolutionary algorithms followed by a
multi-objective test case selection based on Pareto efficiency. The experimental analysis compares these
techniques on two different benchmarks. The first one is composed of 800 Java programs created through
a program generator. The second benchmark is composed of 13 real programs extracted from the literature.
In the direct multi-objective approach, the results indicate that the oracle cost can be properly optimized;
however, the full branch coverage of the system poses a great challenge. Regarding the mono-objective
algorithms, although they need a second phase of test case selection for reducing the oracle cost, they are
very effective in maximizing the branch coverage. Copyright © 2011 John Wiley & Sons, Ltd.

Received 22 December 2010; Revised 15 September 2011; Accepted 15 September 2011

KEY WORDS: multi-objective test data generation; branch coverage; oracle cost; evolutionary testing;
evolutionary algorithms; search-based software engineering

1. INTRODUCTION

Automatic software testing is one of the most studied topics in the field of search-based software

engineering [1–4]. From the very first work [5, 6] to nowadays, many approaches have been pro-

posed for solving the automatic test data generation problem (TDGP). This great effort in building

computer-aided software testing tools is motivated by the cost and importance of the testing phase

in the software development cycle. It is estimated that half the time spent on software project devel-

opment, and more than half its cost, is devoted to testing the product [7]. This explains why software

industry and academia are interested in automatic tools for testing.

Evolutionary algorithms (EAs) have been the most popular search-based algorithms for gener-

ating test cases [3]. In fact, the term evolutionary testing is used to refer to this approach. In the

paradigm of structural testing, many researches have been performed using EAs and, in particular,

different elements of the structure of a program have been studied in detail. Some examples are the

presence of flags in conditions [8], the coverage of loops [9], the existence of internal states [10],

and the presence of possible exceptions [11]. In addition, several EAs have been used as the search

*Correspondence to: Javier Ferrer, Departamento de Lenguajes y Ciencias de la Computación, University of Málaga,
Málaga, Spain.

†E-mail: ferrer@lcc.uma.es

Copyright © 2011 John Wiley & Sons, Ltd.

1332 J. FERRER, F. CHICANO AND E. ALBA

engine such as scatter search [12], genetic algorithms (GAs) [13,14], simulated annealing [15], and

tabu search [16].

Traditionally, the solution of the TDGP is a set of test cases whose execution is able to cover all

the software elements. Branch coverage is usually the most popular goal. Despite the most previ-

ous work only considering branch coverage, real-world engineers deal with the tedious and costly

task of checking the system behavior for all the generated test cases. This significant and usu-

ally neglected cost is called the oracle cost [17]. Thus, a reformulation of the TDGP to deal with

real-world problems is a need, taking into account the oracle cost as another important objective

to minimize. The oracle cost can be reduced by minimizing the test suite size. The ideal sce-

nario is to reduce the test suite size without any loss of coverage. However, in certain situations,

the two objectives are in conflict: minimizing the oracle cost implies minimizing the coverage.

When there are multiple conflicting objectives, the optimization literature recommends the con-

sideration of a Pareto optimal optimization approach that is able to take into account the need to

balance the conflicting objectives. Thus, the TDGP has been reformulated into a multi-objective

problem (MOTDGP) in the work by Lakhotia et al. [18] and more recently, in 2010, in a work by

Harman et al. [17].

Our main goal in this work is the comparison between two approaches to deal with the MOTDGP:

a direct multi-objective approach (MM) and a combination of a mono-objective algorithm followed

by a multi-objective test case selection optimization (mM). The general scheme of the proposed

approaches can be seen in Figure 1.

On one hand, the MM approach considers the conflicting objectives during all the test data gen-

eration process, thus a priori, it focuses both on the test suite size minimization and the coverage

maximization. On the other hand, the mM approach only considers the branch coverage during the

test data generation process, thus a priori, it focuses only on the branch coverage maximization. For

us to deal with the optimization of the test suite size, in this second approach, an additional second

phase of multi-objective test case selection is performed. As nobody has previously compared these

approaches yet, we can raise the following research questions and try to answer them in an extensive

experimental study.

� How does MM approach deal with MOTDGP?

� Is the MM approach good enough in maximizing the coverage?

� How good is the mM approach performance in optimizing the coverage and the test suite size?

� Which approach is the best?

In order to completely answer the questions, we should use all the possible automatic test data

generators in both multi-objective and mono-objective or, at least, a large number of them. We can

also focus on some test data generators and answer the previous questions on them, taking into

account that, in this case, the results will be valid for the test data generators considered. This is

what we do in this paper. In particular, we study the MOTDGP with two objectives, maximizing

the branch coverage and minimizing the oracle cost. Among our contributions, we generate the test

data, and we also minimize the number of tests needed to achieve different values of coverage of

the program. The solutions are provided as Pareto fronts. For the MM approach, we use five test

Figure 1. The general scheme of the two proposed approaches.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1333

data generators: four of them based on evolutionary testing and an additional one based on random

search. In the mM approach, we use three mono-objective test data generators with a second phase

of multi-objective test data selection.

The rest of the paper is organized as follows. In Section 2, we define the multi-objective TDGP.

Then, in Section 3, we present some background on multi-objective optimization. Next, in Section 4,

we describe the MM approach and the multi-objective algorithms. After that, in Section 5, we

describe the mM approach and provide details regarding the general structure of the test data gener-

ator for single-objective algorithms and the algorithms used in the experiments. Section 6 is devoted

to the experimental methodology where we explain the quality indicators and the benchmark of

programs that we used in the experiments. In Section 7, we show the results of the experiments and

answer the proposed research questions. Finally, in Section 8, some conclusions and future work

are outlined.

2. MULTI-OBJECTIVE TEST DATA GENERATION PROBLEM

The most popular technique to test software programs consists in executing the program with a

set of test data (software testing). The engineer selects an initial set of configurations for the pro-

gram under test (PUT), called test data suite and checks the PUT behavior with them. Because

the size of the test data suite is an engineer’s decision, she or he can control the effort devoted

to this task, which is the oracle cost. In order to ensure the correctness of a program with this

technique, it would be necessary to execute the PUT with all the possible configurations, but in prac-

tice, this is unfeasible. The alternative consists in testing the program with a representative set of

test data.

Automatic test data generation (automatic software testing) consists in proposing an adequate

set of test data in an automatic way to test a program, thus preventing the engineer from the task

of selecting an adequate set of test data to test the PUT. This automation of the process requires a

precise definition of what is an ‘adequate set’ of test data, definition that we will defer until some

terms are defined. As we said before, this is a costly and hard task of the software development.

Thus, another objective for a software engineer is the minimization of the oracle cost, which can be

reduced to the minimization of the test suite size. In the following, we formally define the MOTDGP,

but we first need to introduce several terms and notation.

Let P be a program, and we denote with BP the set of branches of the program and with

BranchExecP .C / the set of branches covered in P because of the execution of a given set of test

data, C . We define the branch coverage of the test suite C , BrCovP .C /, as the ratio between the

traversed branches in the executions of the program P with the set of test data C and the number of

branches of the program, that is,

BrCovP .C / D
jBranchExecP .C /j

jBP j
. (1)

The adequacy criterion of branch coverage states that a test suite C for a program P is ‘adequate’

when BrCovp.C / D 1. Nevertheless, it is not always possible to reach such a value of coverage,

and in case of reaching it, the cost to test the entire program can be unaffordable. Consequently, a

balance between a coverage and the cost to achieve such coverage is mandatory. Because the cost

of the testing phase depends on the test suite size, minimizing the test suite size, denoted with jC j,

must be another goal.

Finally we deal with the MOTDGP with two conflicting objectives:

� max BrCovP .C /, and

� min jC j,

that is, maximizing the branch coverage and minimizing the test suite size.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1334 J. FERRER, F. CHICANO AND E. ALBA

3. MULTI-OBJECTIVE BACKGROUND

In this section, we provide background on multi-objective optimization. In particular, we define

the concept of multi-objective optimization problem (MOP), Pareto dominance, and Pareto front.

In these definitions, we are assuming, without loss of generality, that minimization is the goal for all

the objectives.

A general MOP can be formally defined as follows:

Find a vector x� D
�

x�
1 , x�

2 , : : : , x�
n

�

that satisfies the m inequality constraints gi .x/ > 0, i D

1, 2, : : : , m, and the p equality constraints hi .x/ D 0, i D 1, 2, : : : , p, and minimizes the vector

function f.x/ D .f1.x/, f2.x/, : : : , fm.x//T, where x D .x1, x2, : : : , xn/T is the vector of decision

variables. The set of all the values satisfying the constraints defines the feasible region �, and any

point x 2 � is a feasible solution.

Taking into account this definition of a MOP, a solution x1 D
�

x1
1 , x1

2 , : : : , x1
n

�

is said to dom-

inate a solution x2 D
�

x2
1 , x2

2 , : : : , x2
n

�

, denoted with x1 > x2, if and only if fi .x
1/ 6 fi .x

2/ for

i D 1, 2, : : : , m, and there exists at least one j (1 6 j 6 m) such that fj .x1/ < fj .x2/. Conversely,

two points are said to be nondominated whenever none of them dominates the other. Figure 2 depicts

some examples of dominated and nondominated solutions. In this figure, A dominates C because

f1.A/ < f1.C / and f2.A/ < f2.C /. Meanwhile, A and B are nondominated solutions because A

is better than B in the first objective function (f1.A/ < f1.B/), but B is better than A in the other

objective function (f2.A/ > f2.B/).

The solution of a given MOP is usually a set of solutions (referred to as the Pareto optimal set)

satisfying the following:

� Every pair of two solutions in the set are nondominated.

� Any other solution, y, is dominated by at least one solution in the set.

The representation of this set in the objective space is referred to as the Pareto front. Generating

the Pareto front of a problem is the main goal of multi-objective optimization techniques. In theory,

a Pareto front could contain a large number of points. In practice, a usable approximate solution will

only contain a limited number of them; thus, an important goal is that solutions should be as close as

possible to the exact Pareto front and uniformly spread, otherwise, they would not be very useful to

the decision maker. Besides, closeness to the Pareto front ensures that we are dealing with optimal

solutions, whereas a uniform spread of the solutions means that we have made a good exploration

of the objective space and no regions are left unexplored.

Figure 3 depicts these issues of convergence and diversity. The left front (Figure 3(a)) depicts

an example of good convergence and bad diversity: the approximation set contains Pareto opti-

mal solutions, but there are some unexplored regions of the objective space. The approximation set

depicted on the right (Figure 3(b)) illustrates poor convergence but good diversity: it has a diverse

Figure 2. Examples of dominated and nondominated solutions.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1335

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f 2

f 2

f 2

f1 f1

f1

Approximation Set

Optimal Pareto Front

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Approximation Set

Optimal Pareto Front

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Approximation Set

Optimal Pareto Front

(c)

Figure 3. Examples of Pareto fronts with different behavior of convergence and diversity.

set of solutions, but they are not Pareto optimal. Finally, the lowermost front (Figure 3(c)) depicts

an approximation front with both good convergence and good diversity.

4. MM APPROACH

In this work, we are dealing with the MOTDGP from two points of view: a direct multi-objective

approach (MM) and the application of a mono-objective algorithm followed by a multi-objective

test case selection phase (mM). In this section, we explain the first approach: the MM approach. We

describe how we deal with the MOTDGP and the algorithms used to solve the problem.

The MM approach considers the conflicting objectives during all the test data generation process,

thus a priori, it focuses on both objectives during all the process. In this approach, a solution to the

problem is a test suite, that is, a set of test data. These test suites are evaluated according to both

objectives. The evaluation of the first objective (coverage) requires, in general, the execution of the

test suite over the program under test. The evaluation of the second objective is a simple count of

the number of test data in the set. In the following section, we present the multi-objective algorithms

used in Section 7.

4.1. Multi-objective algorithms

In this section, we describe the five multi-objective algorithms used in Section 7: Nondominated

Sorting GA II (NSGA-II), Multi-Objective Cellular GA (MOCell), Strength Pareto EA 2 (SPEA2),

Pareto Archived Evolution Strategy (PAES), and a random search algorithm (RNDMulti).

Nondominated Sorting GA II, proposed by K. Deb et al. [19], is a GA that is the refer-

ence algorithm in multi-objective optimization (with over 4,860 citations at the time of writing‡).

Its pseudocode is presented in Algorithm 1. NSGA-II makes use of a population (P) of candidate

‡Data from Google Scholar: 4,860 citations on July 13, 2011.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1336 J. FERRER, F. CHICANO AND E. ALBA

solutions (known as individuals). In each generation, it works by creating new individuals after

applying the genetic operators to P, in order to create a new population Q (lines 5–8). Then, both the

current (P) and the new population (Q) are joined; the resulting population, R, is ordered accord-

ing to a ranking procedure and a density estimator known as crowding distance (line 13) (for further

details, please see [19]). Finally, the population P is updated with the best individuals in R (line 14).

These steps are repeated until the termination condition is fulfilled.

Multi-Objective Cellular GA, introduced by Nebro et al. [20], is a cellular GA (cGA) that out-

performs NSGA-II in some studies [20, 21]. In cGAs, the concept of (small) neighborhood is

paramount. This means that an individual may only cooperate with its nearby neighbors in the breed-

ing loop. Overlapped small neighborhoods of cGAs help in exploring the search space because they

induce a slow diffusion of solutions through the population, providing a kind of exploration (diversi-

fication). Exploitation (intensification) takes place inside each neighborhood by applying the typical

genetic operations (crossover, mutation, and replacement).

Multi-Objective Cellular GA includes an external archive to store the nondominated solutions

found as the algorithm progresses. This archive is limited in size and uses the crowding distance

of NSGA-II to maintain diversity. The pseudocode of MOCell is presented in Algorithm 2, which

corresponds with the version called aMOCell4, described in [21].

We can observe that, in this version, for each individual, we select one parent from its neigh-

borhood and one from the archive, in order to guide the search towards the best solutions found

(lines 5–8). Then a new solution is created by applying the genetic operators to these parents. The

new solution is used to replace the current solution (line 11) and is considered for inclusion in the

archive (line 12). This constitutes a single iteration of the algorithm. The overall algorithm iterates

until a termination condition is fulfilled.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1337

The SPEA2 is a multi-objective EA proposed by Zitler et al. in [22]. We show the algorithm’s

pseudocode in Algorithm 3. SPEA2 uses a population and an archive simultaneously in its operation.

In it, each individual is assigned a fitness value that is the sum of its strength raw fitness and a density

estimation. The strength value of a solution i represents the number of solutions (in either the popu-

lation or the archive) that are dominated by that solution, that is, S.i/ D j¹j jj 2 Pt [Pt ^ i > j ºj.

The strength raw fitness value of a given solution i , on the contrary, is the sum of strengths of all the

solutions that dominate it and is subject to minimization, that is, R.i/ D
P

j 2Pt [Pt ,j >i S.j /. The

algorithm applies the selection, crossover, and mutation operators to fill an archive of individuals;

then, the nondominated individuals of both the original population and the archive are copied into

a new population. If the number of nondominated individuals is greater than the population size, a

truncation operator based on calculating the distances to the kth nearest neighbor is used (a typi-

cal value is k D 1), D.i/ D 1=.�k
i C 2/, where �k

i is the distance from solution i to its kth nearest

neighbor. This way, the individuals having the minimum distance to any other individual are chosen.

Pareto Archived Evolution Strategy is a metaheuristic proposed by Knowles and Corne [23].

The algorithm is based on a simple (1 C 1) evolution strategy. To find diverse solutions in the

Pareto optimal set, PAES uses an external archive of nondominated solutions, which is also used

to make decisions about new candidate solutions. An adaptive grid is used as a density estimator

in the archive. The most remarkable characteristic of PAES is that it does not make use of any

recombination operators (crossover). New solutions are generated only by modifying the current

solution. The pseudocode of PAES is presented in Algorithm 4. It starts with a random solution

(line 3). In each iteration, a new solution is produced by modifying the current solution (line 5). This

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1338 J. FERRER, F. CHICANO AND E. ALBA

new solution is included in the archive and is considered as a potential replacement for the current

solution (lines 7–14). These steps are repeated until the maximum number of evaluations is reached.

We have included PAES in our study because of its simplicity. PAES does not use any recombina-

tion operator, and its only parameter is the number of partitions of the adaptive grid of the archive.

Its relative simplicity makes it attractive because there are comparatively few parameters that require

tuning in order to know that the algorithm is being applied properly (e.g., population size, crossover

probability, and mutation probability).

We also apply a random search (RNDMulti). This is merely a ‘sanity check’; all metaheuristic

algorithms should be capable of comfortably outperform random search for a well-formulated opti-

mization problem. The pseudocode of the RNDMulti is presented in Algorithm 5. The final result

of this random search is the set of all the nondominated solutions found.

5. mM APPROACH

In this section, we present the second approach. In this approach, we use a mono-objective test data

generator to obtain a set of test data with the highest coverage. The mono-objective test data gener-

ator deals with only one branch of the program at the same time. This is an advantage to obtain high

coverage because the search can focus on covering the most complex branches of the program.

However, the resulting test suite is usually large, redundant, and inefficient because these algo-

rithms do not try to minimize the test suite size. One way to reduce the number of test cases in a test

suite, and still test the same functionality, is by solving a multi-objective test case selection problem

on the given test suite. This problem was recently formalized by Yoo and Harman in [24] as follows:

Given a test suite T and several objective functions Fi , we must find a subset T 0 � T such that T 0

is a Pareto optimal set with respect to the objective functions. The resulting subset of the test suite,

T 0, is composed of the nondominated solutions considering the objectives as equally important.

In order to solve the multi-objective test case selection problem, we always use in Section 7 the

multi-objective algorithm NSGA-II. Our implementation is able to generate a Pareto front from

thousands of test cases previously generated by the mono-objective algorithms. But first, we delete

repeated test cases from the obtained test suite in order to reduce from thousands of test cases to

hundreds of them. Two test cases are repeated when both of them traverse the same branches. We

have compared the results obtained with and without this reduction phase, and the results are better

when this reduction is applied. Finally, for the mono-objective algorithm involved in the first phase

of test data generation, we use three different algorithms: a GA, an evolutionary strategy (ES), and

a random search. In the following, we describe in detail the test data generator and the algorithms

used as its search engine.

5.1. Test data generator

Our test data generator breaks down the global objective (to cover all the branches) into several

partial objectives consisting of dealing with only one branch of the program. Then, each partial

objective can be treated as a separate optimization problem in which a solution to the problem is a

test datum and the function to be minimized is a distance between the current test datum and one

satisfying the partial objective. In order to solve such minimization problem, we use EAs. The main

loop of the test data generator is shown in Figure 4.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1339

Select a Partial

Objective

Optimization

Algorithm

End

Continue?
yes

no

Test Case Generator

Test case

Objective function

Program

Figure 4. The test data generation process.

In a loop, the test data generator selects a partial objective (a branch) and uses the optimization

algorithm to search for test data exercising that branch. When a test datum covers a branch, the test

datum is stored in a set associated with that branch. The structure composed of the sets associated

with all the branches is called coverage table. After the optimization algorithm stops, the main loop

starts again, and the test data generator selects a different branch. This scheme is repeated until total

branch coverage is obtained or a maximum number of consecutive failures of the optimization algo-

rithm is reached. When this happens, the test data generator exits the main loop and returns the sets

of test data associated with all the branches. In the following two sections, we describe two impor-

tant issues related to the test data generator: the objective function to minimize and the optimization

algorithms used.

5.2. Objective function

We have to solve several minimization problems: one for each branch. Now we need to define an

objective function (for each branch) to be minimized. This function will be used for evaluating each

test datum, and its definition depends on the desired branch and on whether the program flow reaches

the branching condition associated with the target branch or not. If the condition is reached, we can

define the objective function on the basis of the logical expression of the branching condition and of

the values of the program variables when the condition is reached. The resulting expression is called

branch distance and can be recursively defined on the structure of the logical expression. That is,

for an expression composed of other expressions joined by logical operators, the branch distance is

computed as an aggregation of the branch distance applied to the component logical expressions.

For the Java logical operators && and ||, we define the branch distance as

bd.a&&b/ D bd.a/ C bd.b/, (2)

bd.a||b/ D min.bd.a/, bd.b//, (3)

where a and b are logical expressions.

In order to completely specify the branch distance, we need to define its value in the base case of

the recursion, that is, for atomic conditions. The particular expression used for the branch distance

in this case depends on the operator of the atomic condition. The operands of the condition appear

in the expression. Many research has been devoted in the past to the study of appropriate branch

distances in software testing. An accurate branch distance considering the value of each atomic con-

dition and the value of its operands can better guide the search. In procedural software testing, these

accurate functions are well known and popular in the literature. They are based on distance mea-

sures defined for relational operators such as < and > [25]. We use here these distance measures

described in the literature.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1340 J. FERRER, F. CHICANO AND E. ALBA

When a test datum does not reach the branching condition of the target branch, we cannot use

the branch distance as objective function. In this case, we identify the branching condition c whose

value must first change in order to cover the target branch (critical branching condition), and we

define the objective function as the branch distance of this branching condition plus the approx-

imation level. The approximation level, denoted here with ap.c, b/, is defined as the number of

branching nodes lying between the critical one (c) and the target branch (b) [26].

In this paper, we also add a real-valued penalty in the objective function to those test data that do

not reach the branching condition of the target branch. With this penalty, denoted by p, the objective

value of any test datum that does not reach the target branching condition is higher than the one of

any test datum that reaches the target branching condition. The exact value of the penalty depends

on the target branching condition, and it is always an upper bound of the target branch distance.

Finally, the expression for the objective function is as follows:

fb.x/ D

²

bdb.x/ if b is reached by x,

bdc.x/ C ap.c, b/ � p otherwise,
(4)

where c is the critical branching condition and bdb and bdc are the branch distances of branching

conditions b and c. The use of the penalty p could be avoided by normalizing the branch distance

to the interval Œ0, 1/ (see [27] for example). However, in this work, we do not normalize the branch

distance, thus requiring the penalty value p, which is set to p D 10, 000 in the experiments.

Nested branches pose a great challenge for the search. For example, if the condition associated

with a branch is nested within three conditional statements, all the conditions of these statements

must be true in order for the program flow to proceed onto the next one. Therefore, for the purposes

of computing the objective function, it is not possible to compute the branch distance for the second

and third nested conditions until the first one is true. This gradual release of information might cause

efficiency problems for the search (what McMinn calls the nesting problem [28]), which forces us

to concentrate on satisfying each predicate sequentially.

In order to alleviate the nesting problem, the test data generator selects as objective in each loop

one branch whose associated condition has been previously reached by other test data stored in the

coverage table. Some of these test data are inserted in the initial population of the EA used for solv-

ing the optimization problem. The percentage of individuals introduced in this way in the population

is called the replacement factor and is denoted by Rf . In the beginning of the generation process,

some random test data are generated in order to reach some branching conditions.

5.3. Mono-objective algorithms

We use two EAs inside the test data generator used in the mM approach: a GA and an ES. Let us

first describe the general structure of an EA, and then we detail the differences between the EAs

used here. In Algorithm 6, we show the main loop of an EA.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1341

Initially, the algorithm creates a population of � individuals randomly or by using a seeding algo-

rithm. At each step, the algorithm applies stochastic operators such as selection, recombination,

and mutation in order to compute a set of � descendant individuals Q. The objective of the selec-

tion operator is to select some individuals from the population to which the other operators will be

applied. The recombination operator generates a new individual from several ones by combining

their solution components. This operator is able to put together good solution components that are

scattered in the population. On the other hand, the mutation operator modifies one single individual

and is the source of new different solution components in the population. The individuals created

are evaluated according to the fitness function. The last step of the loop is a replacement opera-

tion in which the individuals for the new population P.t C 1/ are selected from the offspring Q.t/

and the old one P.t/. This process is repeated until a stop criterion is fulfilled, such as reaching a

preprogrammed number of iterations of the algorithm or finding an individual with a preset target

quality. In this work, we use two EAs as the optimization algorithm of the test data generator: an ES

and a GA. In the following, we focus on the details of the ES. We defer the details of the GA to the

parameterization section.

In an ES [29], each individual is composed of a vector of real numbers representing the problem

variables (x), a vector of standard deviations (�), and a vector of angles (!). These two last vectors

are used as parameters for the main operator of this technique: the Gaussian mutation. They evolved

together with the problem variables themselves, thus allowing the algorithm to self-adapt the search

to the landscape. The mutation operator is governed by the three following equations:

� 0
i D �i exp.�N.0, 1/ C �Ni .0, 1//, (5)

!0
i D !i C 'Ni .0, 1/, (6)

x0 D x C N.0, C.� 0, !0//, (7)

where C.� 0, !0/ is the covariance matrix associated with � 0 and !0; N.0, 1/ is the standard univariate

normal distribution; and N.0, C / is the multivariate normal distribution with mean 0 and covariance

matrix C . The subindex i in the standard normal distribution indicates that a new random number is

generated anew for each component of the vector. The notation N.0, 1/ is used for indicating that the

same random number is used for all the components. The parameters � , �, and ' are set to .2n/�1=2,

.4n/�1=4, and 5�=180, respectively, as suggested in [30]. For the recombination operator of an ES,

there are many alternatives: each of the three real vectors of an individual can be recombined in a

different way. In our particular implementation, we use discrete uniform recombination for the solu-

tion vector x, where each component is selected from the best parent with a predefined probability,

called bias. For the vector of standard deviations and angles, we use arithmetic recombination. The

exact expressions for the components of the vectors are the following:

xi D

´

x1
i if U.0, 1/ < bias,

x2
i otherwise,

(8)

�i D .�1
i C �2

i /=2, (9)

!i D .!1
i C !2

i /=2, (10)

where the superindices are used to denote the two parent solutions (x1 is the best one) and U.0, 1/

denotes a random sample of a uniform distribution in the interval Œ0, 1/. With respect to the replace-

ment operator, there is a special notation to indicate whether the old population is taken into account

or not to form the new population. When only the new individuals are used, we have a .�, �/-ES;

otherwise, we have a .� C �/-ES. Regarding the representation, because all the test programs have

integer parameters, each component of the vector solution x is rounded to the nearest integer and

used as actual parameter of the program. There is no limit in the input domain, thus allowing the ES

to explore the whole solution space.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1342 J. FERRER, F. CHICANO AND E. ALBA

We also apply a random algorithm (RNDMono) as search engine of our test data generator (see

Algorithm 7). This is again merely a ‘sanity check’. The final result of this random search is the set

of all the created solutions.

6. EXPERIMENTAL METHODOLOGY

This section is aimed at presenting the indicators used to measure the quality of the obtained results

and the benchmark programs we have used. It also describes how the solutions of the problem

have been encoded and the genetic operators employed, the configuration of the algorithms, and the

methodology we have followed.

6.1. Quality indicators

Two different issues are normally considered for assessing the quality of the results computed by a

multi-objective optimization algorithm:

� to minimize the distance of the computed solution set by the proposed algorithm to the optimal

Pareto front (convergence towards the optimal Pareto front); and

� to maximize the spread of solutions found, so that we can have a distribution of vectors as

smooth and uniform as possible (diversity).

A number of quality indicators have been proposed in the literature. Among them, we can distin-

guish between Pareto-compliant and non-Pareto-compliant indicators [31]. Given two Pareto fronts,

A and B, if A dominates B, the value of a Pareto-compliant quality indicator is higher for A than

for B; meanwhile, this condition is not fulfilled by the noncompliant indicators. Thus, the use of

Pareto-compliant indicators should be preferable. In this work, we apply the hypervolume (HV)

[32] (Pareto-compliant), which takes into account the convergence as well as the diversity of the

solutions; and empirical attainment surfaces (EASs) [33], which measures the probability of being

dominated by the approximated Pareto front. Both indicators are defined as follows:

� Hypervolume. This indicator calculates the volume (in the objective space) covered by mem-

bers of a nondominated set of solutions Q (the region enclosed into the discontinuous line in

Figure 5(a), Q D ¹A, B , C º) for problems where all objectives are to be minimized. Mathe-

matically, for each solution i 2 Q, a hypercube vi is constructed with a reference point W

and the solution i as the diagonal corners of the hypercube. The reference point can simply be

found by constructing a vector of the worst objective function values. Thereafter, a union of all

hypercubes is found, and its HV is calculated as follows:

HV D volume

0

@

jQj
[

iD1

vi

1

A . (11)

We apply this metric after a normalization of the objective function values to the range Œ0..1�. A

Pareto front with a higher HV than another one could be due to some solutions in the better front

dominate solutions in the other or solutions in the better front are more widely distributed than

in the other. Because both properties are considered to be good, algorithms with larger values

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1343

Pareto-optimal front

W

A

B

C

f2

f1 f1

f2
75% attainment surface

50% attainment surface

25% attainment surface

(a) (b)

Figure 5. Examples of hypervolume and attainment surfaces.

of HV are considered to be desirable. For this quality indicator to be applied, it is usually nec-

essary to know the optimal Pareto front (form normalization purposes). Of course, typically,

we do not know the location of the optimal front. Therefore, we employ as a reference Pareto

optimal front the front composed of all the nondominated solutions out of all the executions

carried out (i.e., the best front known until now).

� Empirical attainment surfaces: In the related literature, the trade-off among several objectives

in a MOP is usually presented by showing one of the approximated Pareto fronts obtained in

one single run of a given algorithm. However, the optimization algorithms used are stochastic;

therefore, there is no warranty that the same result is obtained after a new run of the algorithm.

Thus, a single run of a stochastic algorithm gives no information about the average performance

of the algorithm. We need a way of representing the results of a multi-objective algorithm that

allows us to observe the expected performance and its variability, in the same way as the aver-

age and the standard deviation are used in the single-objective case. To do this, we use the

concept of empirical attainment function (EAF) [33]. In short, the EAF is a function ˛ from

the objective space R
n to the interval Œ0, 1� that estimates for each vector in the objective space

the probability of being dominated by the approximated Pareto front of one single run of the

multi-objective algorithm. Given the r approximated Pareto fronts obtained in the different

runs, the EAF is defined as

˛.´/ D
1

r

r
X

iD1

I.Ai � ¹´º/, (12)

where Ai is the i th approximated Pareto front obtained with the multi-objective algorithm and

I is an indicator function that takes value 1 when the predicate inside it is true and 0 otherwise.

The predicate Ai � ¹´º means Ai dominates solution ´. Thanks to the attainment function,

it is possible to define the concept of k% attainment surface [33]. The attainment function ˛

is a scalar field in R
n, and the k% attainment surface is the level curve with value k=100 for

˛. Informally, the 50% attainment surface in the multi-objective domain is analogous to the

median in the single-objective one. In a similar way, the 25% and 75% attainment surfaces can

be used as the first and third ‘quartile fronts’, and the region between them could be considered

a kind of ‘interquartile region’ (see Figure 5(b)). When the number of objectives is one, the

50% attainment surface is the median, and the ‘interquartile region’ is the interquartile range.

6.2. Automatic program generator

We designed an automatic program generator able to generate programs similar to the ones of the

real-world software. To achieve this goal, we focus on measures, made on source code pieces, that

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1344 J. FERRER, F. CHICANO AND E. ALBA

do not require the execution of the program, called static measures. Once we have computed these

static measures in real-world software, we generate programs having values of the static measures

that are similar to the ones of the real-world programs. The main characteristic of our program gen-

erator is that it is able to create programs for which total branch coverage is possible, but they do not

solve any concrete problem. We propose this generator with the aim of generating a big benchmark

of programs with certain characteristics chosen by the user.

In a first approximation, we could create a program by using a representation based on a syn-

tax tree and a table of variables. The tree stores the sentences that are generated, and the table of

variables stores basic information about the variables declared and their possible use. With these

structures, we are able to generate programs, but we cannot ensure that all the branches of the gen-

erated programs are reachable. The unreachability of all the branches is a quite common feature of

real-world programs, so we could stop the design for the generator at this stage. However, another

objective of the program generator is to be able of creating programs that can be used to compare

the performance of different algorithms for test data generation. In this case, programs for which

total coverage is reachable are desirable, because we can use the coverage obtained by a test suite

as a measure of its quality.

Let us illustrate this with an example. Let us suppose that a given tool for automatic test case

generation is able to find test suites that cover 80% of the branches of program A and 90% of the

branches of program B (a test suite for each program). It seems that the tool is more effective in

program B , because it is able to generate a test suite with higher coverage. Now, imagine that 20%

of the branches of program A are unreachable and all the branches of program B are reachable.

Then, the tool obtained the maximum possible coverage in program A but not in program B . Thus,

we would say that the tool is more effective for program A.

This example shows that coverage is not a good measure of the performance of an automatic tool

for test case generation if we do not know the maximum reachable coverage for each program. In

previous work, alternative measures, such as corrected coverage [34] have been used to alleviate

this problem. In this work, we adopt a different approach. Because we automatically generate the

programs of the benchmark, we decided to generate programs for which the maximum coverage

is always 100%. This way, we can safely use the coverage as a measure of performance of the

automatic test data generators, and we can compare these generators among them using coverage.

An alternative approach would be to generate programs for which there is no warranty that 100%

of branch coverage can be obtained and then to analyze these programs in order to find the max-

imum possible coverage and to use a corrected coverage measure. However, the drawback of this

alternative approach is that the size of the benchmark would be limited, because we should check

all the programs by hand (the automatic determination of the maximum branch coverage is an unde-

cidable problem), and we would lose statistical confidence in the results. It would be unviable to

generate 800 programs (as we did in this work) and analyze them manually.

With the goal of generating programs for which total coverage is reachable, we thought in the

way the variables are treated in symbolic execution [35, 36] and some methods of formal derivation

of programs [37–39]. Unlike the formal derivation of programs, our generator is not guided by a

specification. Therefore, at the end, we introduce logic predicates in the program generation process

in order to generate programs for which total coverage is always ensured.

The program generator is parameterizable, the user can fix several parameters of the program

under construction (PUC). Thus, we can assign the probability distributions of the number of

sentences of the PUC, the number of variables, the maximum number of atomic conditions per

condition, and the maximum nesting degree. Another parameter the user can tune is the percentage

of control structures or assignment sentences that will appear in the code. With this parameter being

tuned, the program will contain the desired density of decisions.

Once the parameters are fixed, the program generator builds the general scheme of the PUC. It

stores in the syntax tree the program structure and creates a main method where the local variables

are first declared. Then, the program is built through a sequence of basic blocks of sentences where,

according to a probability, the program generator decides which sentence will be added to the pro-

gram. The creation of the entire program is performed in a recursive way. The user can decide

whether all the branches of the generated program are reachable or not.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1345

/* */

if (x < 0)

/* */

y=5;

/* */

else

/* */

x=x-3;

/* */

/* */

Figure 6. Illustration of the predicates transformation.

If total reachability is desired, logic predicates are used to represent the set of possible values that

the variables can take at a given point of the PUC. Using these predicates, we can know the range

of values that a variable can take. This range of values is useful to build a new condition that can

be true or false. For example, if at a given point of the program we have the predicate x 6 3, we

know that a forthcoming condition x 6 100 will be always true, and if this condition appears in

an if statement, the else branch will not be reachable. The predicates are thus used to guide the

program construction to obtain a 100% coverable program.

In general, at each point of the program, the predicate is different. During the program construc-

tion, when a sentence is added to the program, we need to compute the predicate at the point after

the new sentence. For this computation, we distinguish two cases. First, if the new sentence is an

assignment, then the new predicate CP 0 is computed after the previous one CP by updating the

values that the assigned variable can take. For example, if the new sentence is x D x C 7 and

CP � x 6 3, then we have CP 0 � x 6 10.

Second, if the new sentence is a control statement, an if statement, for example, then the pro-

gram generator creates two new predicates called True-predicate (TP) and False-predicate (FP).

The TP is obtained as the result of the AND operation between CP and the condition related to the

control statement. The FP is obtained as the result of the AND operation between the CP and the

negated condition. In order to ensure that all the branches can be traversed, we check that both TP

and FP are not equivalent to false. If any of them were false, this new predicate is not valid, and a

new control structure would be generated.

Once these predicates are checked, the last control statement is correct, and new sentences are

generated for the two branches. The predicates are computed inside the branches in the same way.

After the control structure is completed, the last predicates of the two branches are combined using

the OR operator, and the result is the predicate after the control structure. In Figure 6, we illustrate

the previous explanation with one example.

6.3. Benchmark of test programs

In Section 7, we use two benchmarks. The first one is composed of 800 synthetic programs.§ They

are described in the next section. The second one is composed of 13 real-world programs that are

described in Section 6.3.2.

§They are available at http://neo.lcc.uma.es/mase/index.php/component/content/article/48-problems/121-source-of-800-
sythetic-programs

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1346 J. FERRER, F. CHICANO AND E. ALBA

6.3.1. Synthetic programs. The program generator can create programs having the same value for

the static measures, as well as programs having different values for the measures. In addition,

the generated programs are characterized by having a 100% coverage, thus all possible branches

are reachable.

Our program generator takes into account the desired values of some static measures. The static

measures selected are the following: the number of atomic conditions, the nesting degree, the num-

ber of sentences, and the number of variables. The main features of the generated programs are the

following: they deal with integer input parameters, their conditions are joined by whichever logical

operator, they are randomly generated, and all their branches are reachable.

The methodology applied for the program generation was the following. First, we analyzed a set

of Java source files from the Java Development Kit 1.5 (java.util.*, java.io.*, java.sql.*, etc.), and

we computed the static measures on these files. Next, we used the ranges of the most interesting

values, obtained in this previous analysis as a guide to generate Java source files having values in

the same range for the static measures. This way, we generated programs with the values in these

ranges, for example, nesting degree in 1–4 (25% for each value), atomic conditions per condition

in 1–4 (68.43% with four conditions per decision), and statements in 25, 50, 75, or 100 (25% for

each value). The percentage of control flow statements is 32.23% (in this work, we use IF state-

ments), this means that the test case generator should cover around 64 different branches (32 true

and 32 false) in programs with 100 statements. The previous values are realistic with respect to the

static measures, making our study meaningful. Besides, we generated 50 programs for each size and

nesting degree (50 � 4 sizes � 4 nesting degrees D 800), which is a total of 800 Java programs.

6.3.2. Real programs. In order to improve the interest of our work, we propose an additional

benchmark of real programs. It is composed of 13 real programs extracted from the literature

[40–42]. Some of them have been extracted from the book C Numerical Recipes, available online

at http://www.nr.com/. They deal with real and integer input values and some of them also contain

loops. The programs are listed in Table I, where we inform on the maximum nesting degree, the

lines of code, the number of branches, and the number and type of input arguments.

6.4. Solution encoding, genetic operators, and configuration

Here, we detail the configuration of the operators and the encoding of the solutions used in the

algorithms.

6.4.1. Details of the mono-objective algorithms. In this work, each solution is encoded as an inte-

ger/real vector of length n (the number of arguments). As we said in Section 5.1, the generator

breaks down the global objective (to cover all the branches) into several partial objectives consisting

Table I. Characteristics of the real programs.

Name ND LOC Branches Arguments Description

calday 2 47 22 3 integer Calculate the day of the week
complex 3 74 24 6 integer Calculate complex arithmetic functions
gcd 2 28 8 2 Integer Greatest common denominator
line 8 92 36 8 integer Check if two rectangles overlap
numbers 3 71 28 1 integer Parse a big number from integer to string
qformula 2 24 4 3 double Solve real equations
qformulas 2 22 6 3 integer Solve integer equations
remainder 6 49 18 2 integer Calculate the remainder of an integer division
tmichael 5 69 20 3 integer Classify triangles in four types: Michael
tmyers 6 54 12 3 integer Classify triangles in four types: Myers
triangle 4 53 28 3 integer Classify triangles in four types: our implementation
tsthamer 3 76 26 3 integer Classify triangles in five types: Sthamer
twegener 3 46 26 3 double Classify triangles in five types: Wegener

ND, nesting degree; LOC, lines of code.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1347

of dealing with only one branch of the program. Thus, two stopping conditions exist: one for partial

objectives and the other one for the whole test data generation process. The search for one partial

objective stops when 1000 evaluations are performed, whereas the test data generation process ends

after 150,000 evaluations.

In our GA, we use as a recombination operator the uniform crossover in which each component

of the new solution is randomly selected from the two parents. The formal definition is the same as

Equation (8) with bias D 0.5. The mutation operator adds a random value to the components of the

vector, that is,

xi D xi C U.�500, 500/, (13)

where the probability distribution of these random values is a uniform distribution in the range

Œ�500, 500�. However, not all the components of the individual are perturbed, only half of them are.

In our ES, we use a discrete crossover operator and a Gaussian mutation. We show in Table II a

summary of the parameters used by the two EAs in Section 7.

After the execution of the test data generator, we obtain a huge table of coverage where the test

data that satisfy a concrete branch during the execution are saved. This table is filtered in order to

remove those test data for which a different test exist in the table traversing the same branches, as

explained in Section 5. Then, a test data selection is performed over this set by using a standard

NSGA-II.

6.4.2. Details of the multi-objective algorithms. In the multi-objective approach, each individual is

encoded as a set of test data. In Table III, the parameters of the multi-objective EAs used in Section 7

can be seen. As genetic operators, the binary tournament was used as the selection scheme. This

operator works by randomly choosing two individuals from the population, and the one dominating

the other is selected; if both solutions are nondominated, one of them is randomly selected.

We created some crossover operators to increase the efficiency of the algorithm. The best results

were obtained with the union crossover. It takes two solutions, C1 and C2, and creates a new one C ,

which is the union of both, that is, C D C1 [C2. If the resulting solution C has more coverage than

C1 and C2, then C is the new offspring. Otherwise, the solution with more coverage (C1 or C2) is

the new child.

Table II. Parameters of the two mono-objective evolutionary algorithms used in Section 7.

Evolutionary strategy Genetic algorithm

Population 25 individuals 25 individuals
Selection Random, 5 individuals Random, 5 individuals
Mutation Gaussian Add U.�500, 500/
Crossover discrete (bias D 0.6) Uniform

C arithmetic C arithmetic
Replacement Elitist Elitist
Stopping condition 1000 evaluations 1000 evaluations
Total evaluations 150,000 evaluations 150,000 evaluations

Table III. Parameters of the multi-objective evolutionary algorithms used in Section 7.

NSGA-II MOCell SPEA2 PAES

Population 20 individuals 20 individuals 20 individuals 20 individuals
Selection BT, 2 individuals BT, 2 individuals BT, 2 individuals BT, 2 individuals
Mutation Adaptive mutation Adaptive mutation Adaptive mutation Adaptive mutation
Crossover Union crossover Union crossover Union crossover —
Replacement Elitist Elitist Elitist Elitist
Total evaluations 150,000 evaluations 150,000 evaluations 150,000 evaluations 150,000 evaluations

NSGA-II, Nondominated Sorting Genetic Algorithm II; MOCell, Multi-Objective Cellular Genetic Algorithm;
SPEA2, Strength Pareto Evolutionary Algorithm 2; PAES, Pareto Archived Evolution Strategy; BT, binary
tournament.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1348 J. FERRER, F. CHICANO AND E. ALBA

Finally, the mutation operator adds new test data to the solution with probability 0.6, deletes one

test datum with probability 0.2, and keeps the individual unchanged with probability 0.2. In the case

of adding test data, the number of new test data is 30% of the test data present in the solution.

If the resulting individual has the same coverage and more test data, at the end of the iteration,

the algorithm deletes it from the population because this solution is dominated.

All the multi-objective algorithms have been implemented using jMetal [43], a Java framework

aimed at the development, experimentation, and study of metaheuristics for solving MOPs.

7. EXPERIMENTAL ANALYSIS

In this section, we present the results of the two proposed approaches. In Section 7.1, we analyze the

MM approach, and we compare the performance of the multi-objective algorithms. In Section 7.2,

we study the mM approach, and we compare the performance of the mono-objective algorithms used

as the base for the approach. Then, in Section 7.3, we compare the two proposed approaches for the

academic benchmark, and finally, in Section 7.4, we compare both approaches with a benchmark of

real programs.

For the study, we use the 800 Java programs automatically generated and another benchmark

composed of 13 real programs. Both benchmarks were described in Section 6.3. Because we are

dealing with stochastic algorithms, we need to perform several independent runs of each algorithm

and program, 30 in our case, in order to obtain a very stable average of the measures. All test

data generators used in this work proceed by generating test data until a maximum of 150,000 test

data are generated. We also perform a multiple comparison statistical test for each program on the

obtained results to compare the algorithms among them. We set a confidence level of 95% (p-value

under 0.05) for the whole comparison (all the algorithms acting on a program), and we used the

Bonferroni correction for each particular comparison.

7.1. Evaluation of the MM approach

In this section, we analyze the behavior of the multi-objective algorithms with the aim of highlight-

ing the algorithm that works better. We have analyzed 800 programs, so we cannot represent all HV

values for all the programs. For this reason, we summarize in Table IV the times one algorithm has

better median HV than the others. We have classified the results according to the nesting degree and

the size of the PUT. For this indicator, the higher the value, the better the quality of the obtained

results. Thus, by looking at the tables, we can see that MOCell was usually the algorithm computing

clearly the best results regarding HV. However, when the programs are small (25–50 statements) and

complex (nesting degree 4), the NSGA-II algorithm has a better behavior. We must highlight the big

difference among MOCell (443), NSGA-II (198), and the others altogether (43).

Then, we compare the HV values of all the programs and independent executions with the

Kruskal–Wallis test. In each cell of a table of statistics, we have a pair (number, triangle). The num-

ber indicates how many programs are significantly different, and the triangle indicates that the

program in the row is significantly better (N) or worse (O) than the program in the column. The

results are summarized in Table V. Although the previous values set a clear tendency, the absence of

significant differences among MOCell, NSGA-II, and SPEA2 does not allow us to say that MOCell

is better than the other two. However, we can mention that RNDMulti is the worst algorithm in all

the programs (800) and PAES is worse than MOCell in 18 programs, NSGA-II in 9 programs, and

SPEA2 in only 2 programs.

With the aim of showing an example of the computed fronts for the instances, we selected one

program for each nesting degree that can represent the typical behavior of the different algorithms

in this kind of instance. Figure 7 depicts the 50% attainment surfaces of these selected programs.

In the instance with low nesting degree, MOCell dominates the others and has a good performance

because it reaches almost the same or better coverage with the same test data. NSGA-II has a similar

behavior except in the right extreme of the figure where it is not able to reach the same maximum

coverage as MOCell. On the other hand, in the program with nesting degree 4, NSGA-II is the

algorithm that is able to reach the best coverage and dominates all the other fronts. The other two

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1349

Table IV. Programs in which the median hypervolume of one algorithm is better than that
of the others.

Nesting degree Statements MOCell NSGA-II SPEA2 PAES RNDMulti

1 25 10 1 0 0 0
50 24 9 0 2 2
75 34 6 1 1 0

100 38 4 0 1 0
Total 106 20 1 4 2

2 25 13 5 1 2 3
50 35 13 0 0 0
75 37 12 0 0 0

100 40 10 0 0 0
Total 125 40 1 2 3

3 25 18 11 3 1 2
50 33 15 0 0 0
75 32 16 1 0 0

100 30 19 0 0 0
Total 116 61 4 1 2

4 25 17 20 3 2 2
50 23 25 2 1 0
75 27 19 2 0 1

100 29 13 10 0 0
Total 96 77 17 3 3

Total 443 198 23 10 10

NSGA-II, Nondominated Sorting Genetic Algorithm II; MOCell, Multi-Objective Cellular
Genetic Algorithm; SPEA2, Strength Pareto Evolutionary Algorithm 2; PAES, Pareto Archived
Evolution Strategy.

Table V. Number of programs where there exists significant difference among the
hypervolumes obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell

MOCell 800N 18N 0 0 —
NSGA-II 800N 9N 0 — 0
SPEA2 798N 2N — 0 0
PAES 750N — 2O 9O 18O

RNDMulti — 750O 798O 800O 800O

NSGA-II, Nondominated Sorting Genetic Algorithm II; MOCell, Multi-Objective Cellular
Genetic Algorithm; SPEA2, Strength Pareto Evolutionary Algorithm 2; PAES, Pareto Archived
Evolution Strategy.

multi-objective algorithms (SPEA2 and PAES) have problems finding the solutions with high cov-

erage, in the upper-right bound of the figure, and are worse than MOCell and NSGA-II. RNDMulti

is always the worst. MOCell has been able to find nondominated solutions in the right area where

SPEA2, PAES, and RNDMulti have not found any of them (solutions in the extremes of the front).

This is related to a better exploration of the search space by MOCell. Specifically, this is one of

the properties of the cGA model, on which MOCell is based. This fact has been reported in many

studies on single-objective optimization (see [44]). There is only one exception, when a program has

nesting degree 4 and it is more difficult to obtain high coverage, NSGA-II has the best performance.

We have also analyzed the reduction obtained in the number of test cases, because one of our

goals is to minimize the number of test cases. We analyze the reduction experienced using our

approaches compared with the use of all the generated test cases. It is very difficult to analyze this

reduction because not all the algorithms achieve a 100% coverage in all the programs. For this

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1350 J. FERRER, F. CHICANO AND E. ALBA

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12
30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

B
ra

n
c
h
 C

o
v
e
ra

g
e

Number of Test Cases

B
ra

n
c
h
 C

o
v
e
ra

g
e

Number of Test Cases

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12
30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

B
ra

n
c
h
 C

o
v
e
ra

g
e

Number of Test Cases

B
ra

n
c
h
 C

o
v
e
ra

g
e

Number of Test Cases

Nesting 1 Nesting 2

Nesting 3 Nesting 4

MOCell
NSGA-II
SPEA2
PAES

RNDMulti

(a) (b)

(c) (d)

MOCell
NSGA-II
SPEA2
PAES

RNDMulti

MOCell
NSGA-II
SPEA2
PAES

RNDMulti

MOCell
NSGA-II
SPEA2
PAES

RNDMulti

Figure 7. Fifty percent attainment surfaces: coverage against the number of test cases. MOCell, Multi-
Objective Cellular Genetic Algorithm; NSGA-II, Nondominated Sorting Genetic Algorithm II; SPEA2,

Strength Pareto Evolutionary Algorithm 2; PAES, Pareto Archived Evolution Strategy.

reason, we cannot simply average the number of test cases, but we must take into account the max-

imum obtained coverage in order to give the real reduction made by the multi-objective algorithm.

The total reduction is from thousands of test cases generated to around 10, but this reduction could

also be easily computed on the basis of the table of coverage of the algorithms by choosing one

test case per branch. The drawback of the latter approach is that the minimization of the test suite

would be far from optimal. For this reason, we establish a theoretical upper bound of the required

number of test cases needed. This upper bound is the number of branches that were achieved by the

algorithm. We compute the real oracle cost of the test suites generated by any algorithm according

to the next expression:

upper_bound.P , A/ D BP � MaxCov.P , A/,

oracle_cost.P , A/ D
tc.P , A/

upper_bound.P , A/
,

(14)

where P is a program, A is an algorithm, BP is the number of branches of the program P ,

MaxCov.P , A/ is the maximum coverage obtained by the algorithm A in the program P , and

tc.P , A/ is the number of test cases needed by the algorithm A to obtain the maximum coverage in

program P .

We can state that the oracle cost of the test suite generated by all the multi-objectives algorithms

can be reduced by our approach; only 15.12% of the test cases are needed in comparison with the

computed upper bound. This reduction is computed in the case of the maximum coverage and hence

the largest number of computed test cases. But we must bear in mind that our solution is a complete

Pareto front offered to the expert to make a decision about the test suite that best fits his or her needs;

therefore, a similar percentage of reduction is carried out for each couple coverage number of test

cases that appears in the Pareto front.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1351

Table VI. Relationship between the nesting degree and the average maximum coverage for
the multi-objective algorithms. The standard deviation is shown in subscript.

Nesting degree MOCell NSGA-II SPEA2 PAES RNDMulti

1 98.102.08 97.902.22 97.532.34 93.085.30 81.3612.74

2 94.773.44 94.423.49 93.563.75 87.596.31 75.0414.00

3 90.665.83 90.415.46 89.295.65 81.557.68 69.7713.87

4 85.509.45 85.778.18 84.618.12 75.879.22 63.8715.95

Total 92.267.54 92.126.99 91.247.24 84.529.72 72.5115.57

MOCell, Multi-Objective Cellular Genetic Algorithm; NSGA-II, Nondominated Sorting Genetic
Algorithm II; SPEA2, Strength Pareto Evolutionary Algorithm 2; PAES, Pareto Archived
Evolution Strategy.

Table VII. Number of programs where there exists a significant difference among the
coverage values obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell

MOCell 800N 800N 2N 0 —
NSGA-II 800N 799N 0 — 0
SPEA2 800N 782N — 0 2O

PAES 711N — 782O 799O 800O

RNDMulti — 711O 800O 800O 800O

MOCell, Multi-Objective Cellular Genetic Algorithm; NSGA-II, Nondominated Sorting Genetic
Algorithm II; SPEA2, Strength Pareto Evolutionary Algorithm 2; PAES, Pareto Archived
Evolution Strategy.

In the TDGP, it is particularly hard to achieve a 100% branch coverage, specially if one uses a

multi-objective algorithm because its execution is not entirely guided to obtain a total coverage. The

multi-objective approach deals with all the branches at the same time, and this provokes a lack of

information. In addition, the search does not spend most of its effort to cover the most complex

branches. In Table VI, we show the average of maximum coverage (among the solutions in the

front) obtained with the solutions for all the programs with different nesting degree. We highlight

the maximum values in the table for each nesting degree. As we expected, MOCell’s performance

is the best on nesting degrees 1, 2, and 3. On the other hand, NSGA-II obtains the best coverage

with nesting degree 4. Because the differences are low, we compared the coverage values of all the

programs and independent executions with the Kruskal–Wallis test. The results are summarized in

Table VII. As we expected, MOCell obtains significant differences in more programs with respect

to PAES and RNDMulti, than NSGA-II and SPEA2.

If we consider the HV obtained (Table IV), the significant HV differences (Table V), the attain-

ment surfaces and the average maximum coverage (Table VI), it is clear that the ranking of the

performance of the algorithms is as follows: MOCell is the best, NSGA-II is the second, SPEA2 is

the third, PAES is the fourth, and finally, RNDMulti is the worst one, as expected.

7.2. Evaluation of mM approach

In this section, we analyze the mM approach. First of all, we study the values of HV. We show in

Table VIII the programs in which one algorithm has a better value of HV.

It is noteworthy that when the nesting degree is the smallest (1), the ES obtains better results

and when the nesting degree is large (3 and 4), the GA is better than the others. In other words,

when the program is more complex, the GA is clearly the best. The ES is better in large programs

(100 statements) except when the program has nesting degree 4. Then, we compared the HV values

of all the programs and independent executions with the Kruskal–Wallis test. The results indicate

that there is no significant difference between GA and ES (Table IX). As we expected, the results of

RNDMono are worse than that of ES in 786 programs and that of GA in 765 programs.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1352 J. FERRER, F. CHICANO AND E. ALBA

Table VIII. Programs in which the median hypervolume of one algorithm is better than that
of the others.

Nesting degree Statements Genetic algorithm Evolutionary strategy RNDMono

1 25 3 3 0
50 7 18 1
75 7 26 3

100 9 33 3
Total 26 80 7

2 25 13 8 1
50 23 17 0
75 23 22 1

100 18 29 1
Total 77 76 3

3 25 23 6 0
50 31 16 0
75 30 16 0

100 21 29 0
Total 105 67 0

4 25 37 3 0
50 41 6 0
75 39 11 0

100 34 14 0
Total 151 34 0

Total 359 257 10

Table IX. Programs where a significant difference exists among the
hypervolumes obtained.

RNDMono Evolutionary strategy Genetic algorithm

Genetic algorithm 765N 0 —
Evolutionary strategy 786N — 0
RNDMono — 786O 765O

Second, we show the 50% attainment surfaces of four representative programs with different nest-

ing degree in Figure 8. In the instance with nesting degree 1, the attainment surfaces are very similar

between GA and ES. RNDMono is far from the behavior of the others. In the instance with nesting

degree 2, the three algorithms obtain similar results. The instances with nesting degrees 3 and 4 rep-

resent the general behavior of the algorithms in most of the programs. The RNDMono is far from

the others, and the ES obtains similar values of coverage to the GA with the same number of test

cases, but GA can achieve the best value of coverage. The GA is the best algorithm in maximum

obtained coverage. This is related to a better exploitation of the search space by GA.

In order to highlight the reduction of the test cases needed to achieve the maximum coverage, we

have applied Equation (14). We can state that the oracle cost of the test suite generated by the three

studied mono-objective algorithms can be reduced by our approach; only 19.32% of the test cases

are needed in comparison with the computed upper bound. This percentage of test cases needed to

achieve a concrete coverage is larger than the one obtained with the MM approach (15.12%).

Now, let us analyze the best value of coverage obtained with the three algorithms. In Table X, we

show the average of maximum coverage of the three algorithms. As is known, achieving a total cov-

erage is a great challenge for the search; for this reason, we consider that an algorithm must focus on

obtaining a high value of coverage. In this sense, the GA and ES obtain very good values of cover-

age, both above 90% in all the cases. However, the average coverage obtained by the GA is always

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1353

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

B
ra

n
c
h
 C

o
v
e
ra

g
e

Number of Test Cases

Nesting 1

GA

ES
RNDMono

(a) (b)

(c) (d)

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

B
ra

n
c
h
 C

o
v
e
ra

g
e

Number of Test Cases

Nesting 2

Nesting 3 Nesting 4

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

B
ra

n
c
h
 C

o
v
e
ra

g
e

Number of Test Cases

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

B
ra

n
c
h
 C

o
v
e
ra

g
e

Number of Test Cases

GA

ES
RNDMono

GA

ES
RNDMono

GA

ES
RNDMono

Figure 8. Fifty percent attainment surfaces: coverage against the number of test cases. GA, genetic
algorithm; ES, evolutionary strategy.

Table X. Relationship between the nesting degree and the average maximum coverage for
the mono-objective algorithms. The standard deviation is shown in subscript.

Nesting degree Genetic algorithm Evolutionary strategy RNDMono

1 99.192.20 98.702.63 85.3310.51

2 98.852.02 97.872.44 79.2012.14

3 98.522.09 95.664.54 71.9413.36

4 96.894.80 93.196.66 66.4214.80

Total 98.363.13 96.364.90 75.7214.65

the best. This advantage of the GA increases in programs with higher nesting degree where high

values of coverage are very difficult to obtain. We performed a statistical test (Table XI); however,

although the GA obtains the best results, significant differences only exist in 23 programs between

GA and ES. Thus, it seems that GA is the best in obtaining a high value of coverage, specifically in

more complex programs.

Table XI. Number of programs where there exists a significant difference between the
coverage obtained.

RNDMono Evolutionary strategy Genetic algorithm

Genetic algorithm 800N 23N —
Evolutionary strategy 800N — 23O

RNDMono — 800O 800O

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1354 J. FERRER, F. CHICANO AND E. ALBA

7.3. MM versus mM approaches

In the previous sections, we have performed a comparison between the algorithms used in each of the

approaches. In the mM approach, GA seems to be the best algorithm in most of the programs, and

ES is the best algorithm in programs with the lowest nesting degree. Regarding the MM approach,

MOCell was the best in most of the programs, except in a few programs with high nesting degree.

In this section, we compare all the algorithms together, with the aim of showing what technique is

the overall best.

First of all, we analyze the HV indicator. In Table XII, we summarize the number of times where

the HV value of an algorithm is better than that of the rest. The results show that, on the one hand,

MOCell is better for programs with low nesting degree (1 and 2). On the other hand, the GA is better

for programs with high nesting degree (3 and 4). The performance of the MOCell algorithm and of

the GA is similar, but they work better in different kind of programs. This performance depends

on the maximum nesting degree of the program. NSGA-II and the ES have similar performances

among them; however, they are clearly worse than MOCell and GA. Finally, the performance of

SPEA2, PAES, RNDMono, and RNDMulti is clearly worse than that of the previous algorithms

(MOCell, GA, NSGA-II, and ES).

In order to clarify the obtained results, we have performed the statistical test to check if there

exist significant differences among the HV values. In Table XIII, we can see that there is just a small

significant difference among the main EAs. However, there are significant differences between the

worse algorithms (the two random algorithms and PAES) and the rest. In Table XIII, we show that

the HV values of GA are significantly better than that of the others, except that of ES. The same

observation can be made on ES: it is significantly better than the others (except the GA). NSGA-II,

MOCell, and SPEA2 are worse than GA and ES, but for most of the programs, their HV values

are better than that of the random algorithms. In some programs, there are significant differences

between MOCell and PAES and also between NSGA-II and PAES.

Table XII. Programs in which the median hypervolume of one algorithm is better than that of the others.

ND Statements MOCell NSGA-II SPEA2 PAES RNDMulti GA ES RNDMono

1 25 1 0 0 0 0 0 0 0
50 5 0 0 0 0 0 0 0
75 16 2 0 1 0 0 0 0

100 14 2 0 0 0 0 2 0
Total 36 4 0 1 0 0 2 0

2 25 4 1 0 0 0 0 0 0
50 16 4 0 0 0 4 2 0
75 24 6 0 0 0 4 1 0

100 26 8 0 0 0 6 4 0
Total 70 19 0 0 0 14 7 0

3 25 4 0 1 0 0 6 1 0
50 10 1 0 0 0 18 4 0
75 14 4 0 0 0 20 9 0

100 13 10 0 0 0 13 11 0
Total 41 15 1 0 0 57 25 0

4 25 2 1 1 0 0 19 1 0
50 6 5 0 0 0 34 0 0
75 7 2 0 0 0 33 6 0

100 3 6 4 0 0 27 7 0
Total 18 14 5 0 0 113 14 0

Total 165 52 6 1 0 184 48 0

ND, nesting degree; MOCell, Multi-Objective Cellular Genetic Algorithm; NSGA-II, Nondominated Sorting
Genetic Algorithm II; SPEA2, Strength Pareto Evolutionary Algorithm 2; PAES, Pareto Archived Evolution
Strategy; GA, genetic algorithm; ES, evolutionary strategy.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1355

Table XIII. Programs where a significant difference exists among the hypervolumes obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell RNDMono GA ES

MOCell 800N 235N 0 0 — 800N 39O 7O

NSGA-II 800N 197N 0 — 0 800N 29O 5O

SPEA2 800N 61N — 0 0 800N 13O 2O

PAES 799N — 61O 197O 235O 645N 36O 18O

RNDMulti — 799O 800O 800O 800O 24O 782O 795O

ES 795N 18N 2N 5N 7N 737N 0 —
GA 782N 36N 13N 29N 39N 689N — 0
RNDMono 24N 645O 800O 800O 800O — 689O 737O

MOCell, Multi-Objective Cellular Genetic Algorithm; NSGA-II, Nondominated Sorting Genetic Algorithm II;
SPEA2, Strength Pareto Evolutionary Algorithm 2; PAES, Pareto Archived Evolution Strategy; GA, genetic
algorithm; ES, evolutionary strategy.

In summary, the mM approach using the EAs (GA and ES) always achieves good HV values. We

observed that MOCell, NSGA-II, and SPEA2 are significantly better than PAES in more programs

than GA and ES. In this case, the HV values of the mM approach are worse; concretely, they do

not obtain a good diversity because the Pareto fronts are computed from a finite subset of test cases

obtained by the mono-objective algorithms. However, the MM approach takes better care of the

convergence as well as the diversity of the Pareto front; consequently, their HV values will be better.

For the purpose of illustrating this issue, we plot in Figure 9 the 50% attainment surfaces for the

best algorithms: MOCell, NSGA-II, GA, and ES.

80

85

90

95

100

0 2 4 6 8 10 12 14 16 18

B
ra

n
c
h
 C

o
v
e
ra

g
e

Number of Test Cases

Nesting 1

GA
ES

MOCell
NSGA-II

(a)

80

85

90

95

100

0 2 4 6 8 10 12 14 16 18

B
ra

n
c
h
 C

o
v
e
ra

g
e

Number of Test Cases

Nesting 2

GA
ES

MOCell
NSGA-II

(b)

80

85

90

95

100

0 2 4 6 8 10 12 14 16 18

B
ra

n
c
h
 C

o
v
e
ra

g
e

Number of Test Cases

Nesting 3

GA
ES

MOCell
NSGA-II

(c)

80

85

90

95

100

0 2 4 6 8 10 12 14 16 18

B
ra

n
c
h
 C

o
v
e
ra

g
e

Number of Test Cases

Nesting 4

GA
ES

MOCell
NSGA-II

(d)

Figure 9. 50% attainment surfaces: coverage against the number of test cases of all the algorithms.
GA, genetic algorithm; ES, evolutionary strategy; MOCell, Multi-Objective Cellular Genetic Algorithm;

NSGA-II, Nondominated Sorting Genetic Algorithm II.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1356 J. FERRER, F. CHICANO AND E. ALBA

We focus on the most interesting area (80%–100% coverage) of the plots in Figure 9. In all the

pictures, we appreciate that MOCell and NSGA-II have the best fronts in the programs with nesting

degrees 1, 2, and 3, although they do not obtain the best coverage in all cases. In addition, we must

highlight that the fronts of GA and ES are dominated in this case. We find the exception when the

program has nesting degree 4, where the GA is the best algorithm because its solutions dominate the

others. The second in performance is the ES, which close to the values of GA. The other algorithms

only find solutions with middle values of coverage and more test cases.

At this stage of the study, we know that the MM approach provides more diversity in the solu-

tions. In other words, it is able to find a test suite with few test cases, but the obtained coverage is

not very large. On the other hand, the mM approach is able to better explore the search space to

find solutions with a high coverage, but it needs more test cases than the MM approach. The MM

approach obtains worse average coverage because nested statements pose a great challenge for the

search. We think that the main reason for this fact is that the multi-objective algorithms deal with

all the branches at the same time and less information is obtained to guide the search.

As we previously said, automatically generating a test suite that covers the entire program is a

hard task. When a program has high nesting degree and the decisions are very complex, the task

of covering all the program code requires much effort. It is important for an algorithm to be able

to find test cases to cover all the program’s branches. We show in Table XIV a comparison of the

average maximum coverage obtained for all the algorithms and all the programs. It is clear that the

best algorithm, if coverage is the main objective, is GA. It obtains the best results in all the groups of

programs with different nesting degree and therefore in the complete benchmark. The performance

of ES is also very good because it is always better than the multi-objective algorithms. If the nest-

ing degree increases, the distance between the average coverage of GA and ES increases. In other

words, the ES has a similar performance to GA in low complexity programs, and it is worse than

GA in complex programs. On the other hand, MOCell and NSGA-II have almost the same coverage;

it only varies at the decimal level. SPEA2 is only 1% worse in the entire benchmark with respect to

MOCell and NSGA-II. The results of the PAES algorithm are in the middle between the best (GA)

and the worst (RNDMulti).

In order to provide a high level of confidence to these results, we have performed statistical tests.

The results are shown in Table XV. There are some differences among the best algorithms; we can

take as a reference the column of the GA values. This column can be seen as a ranking of the per-

formance of all algorithms. The GA has the best results and outperforms the rest of the algorithms

in average maximum coverage. ES is the second in average maximum coverage (with significant

difference), next MOCell, then NSGA-II, and finally SPEA2. As we expected, the statistical test

does not show significant differences among MOCell, NSGA-II, and SPEA2, but if the number of

independent runs were higher, the significant differences would appear. We should highlight that

PAES is not much better than the random algorithms. The differences in average maximum cover-

age shown in Table XIV have been confirmed by the statistical tests: using a GA is the best way to

obtain high branch coverage.

Finally, we have considered in this experimental study the obtained HV, the significant differ-

ences, the attainment surfaces and the average maximum coverage achieved with all the algorithms,

Table XIV. Relationship between the nesting degree and the average coverage for all the algorithms. The
standard deviation is shown in subscript.

ND GA ES RNDMono MOCell NSGA-II SPEA2 PAES RNDMulti

1 99.192.20 98.702.63 85.3310.51 98.102.08 97.902.22 97.532.34 93.085.30 81.3612.74

2 98.852.02 97.872.44 79.2012.14 94.773.44 94.423.49 93.563.75 87.596.31 75.0414.00

3 98.522.09 95.664.54 71.9413.36 90.665.83 90.415.46 89.295.65 81.557.68 69.7713.87

4 96.894.80 93.196.66 66.4214.80 85.509.45 85.778.18 84.618.12 75.879.22 63.8715.95

Total 98.363.13 96.364.90 75.7214.65 92.267.54 92.126.99 91.247.24 84.529.72 72.5115.57

ND, nesting degree; GA, genetic algorithm; ES, evolutionary strategy; MOCell, Multi-Objective Cellular Genetic
Algorithm; NSGA-II, Nondominated Sorting Genetic Algorithm II; SPEA2, Strength Pareto Evolutionary
Algorithm 2; PAES, Pareto Archived Evolution Strategy.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1357

Table XV. Number of programs where a significant difference exists among the coverage obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell RNDMono GA ES

MOCell 800N 797N 0 0 — 800N 350O 30O

NSGA-II 800N 786N 0 — 0 800N 438O 87O

SPEA2 800N 691N — 0 0 800N 613O 322O

PAES 503N — 691O 786O 797O 85N 800O 800O

RNDMulti — 503O 800O 800O 800O 7O 800O 800O

ES 800N 800N 322N 87N 30N 800N 1O —
GA 800N 800N 613N 438N 350N 800N — 1N

RNDMono 7N 85O 800O 800O 800O — 800O 800O

MOCell, Multi-Objective Cellular Genetic Algorithm; NSGA-II, Nondominated Sorting Genetic Algorithm II;
SPEA2, Strength Pareto Evolutionary Algorithm 2; PAES, Pareto Archived Evolution Strategy; ES, evolutionary
strategy; GA, genetic algorithm.

and the benchmark of 800 programs. After analyzing the experimental results, we can state that

the GA is the best mono-objective algorithm and MOCell is the best multi-objective algorithm. We

expected that an algorithm such as MOCell would be clearly superior to all the mono-objective ones

in the MOTDGP, but, in fact, this is not true. In addition, the GA is clearly superior in HV and in

average maximum coverage when we are testing programs with high nesting degree. This fact is

due to a better exploration of the search space because this algorithm is able to find solutions for

the most complex branches that appear in the code. It uses most of its evaluations in most complex

branches, in order to achieve a high coverage. However, the multi-objective algorithms deal with all

the branches at the same time; for this reason, they do not use most of its evaluations trying to cover

a concrete complex branch. This fact suggests that if there exist hard requirements of coverage and

if the program has high nesting degree, we should use the GA as search engine of an automatic

test data generator. Nevertheless, a second phase of multi-objective test case selection must be per-

formed in order to minimize the oracle cost. On the other hand, if there are cost requirements, we

highly recommend the use of MOCell algorithm.

7.4. Real programs

In this section, we analyze the two proposed approaches by using some real programs. We study 13

real programs extracted from the literature and with characteristics similar to the artificial programs

used in the previous sections. The reader must take into account that the number of programs used

in the previous sections gives us the chance to average among 800 programs and extract statistically

more reliable results. Although in this section we only analyze the performance of the proposed

approaches and algorithms over 13 programs, most of the conclusions are similar to the ones we

have obtained with the synthetic programs.

Once again, we start the analysis with the HV indicator. In Table XVI, we summarize the number

of programs where the HV value of an algorithm is better than that of the others. There are six pro-

grams where an algorithm is the best. The GA outperforms the other algorithms in four programs,

Table XVI. Real programs in which the median hypervolume of one algorithm is better than that of the
others and average maximum coverage of all the real programs.

MOCell NSGA-II SPEA2 PAES RNDMulti GA ES RNDMono

Hypervolume 1 0 0 0 0 4 2 0
better
Average maximum 87.26 91.35 89.31 72.43 76.84 94.14 92.27 80.09
coverage

MOCell, Multi-Objective Cellular Genetic Algorithm; NSGA-II, Nondominated Sorting Genetic Algorithm II;
SPEA2, Strength Pareto Evolutionary Algorithm 2; PAES, Pareto Archived Evolution Strategy; GA, genetic
algorithm; ES, evolutionary strategy.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1358 J. FERRER, F. CHICANO AND E. ALBA

then the ES in two programs, and the MOCell in only one program. In the previous results, these

three algorithms also obtain the best results.

In order to validate these previous results, we compared the HV values of all the real programs

by using the multiple comparison statistical test. In Table XVII, we show the existing differences

among the HV value of all the algorithms. We can observe that the GA outperforms the other algo-

rithms in at least one program. Then, there is a group of algorithms composed of ES, NSGA-II,

SPEA2, MOCell, and RNDMono that are better than PAES and RNDMulti, but the statistical test

does not show significant differences among them. In addition, we can analyze the PAES column in

order to obtain an informal ranking of algorithms according to the HV indicator.

Let us analyze the average maximum coverage obtained by the algorithms when applied to real

programs (Table XVI). We must highlight that the GA and the ES are the best algorithms in cover-

age for the real programs. In contrast, the PAES has obtained the worst results, even worse than the

random algorithms. In Table XVIII, we show the results of a statistical test to compare the maximum

coverage. Once again, the GA is the best algorithm: it obtains significant differences in 40 compar-

isons. NSGA-II obtains significant differences in 30 comparisons. Next, SPEA2 and ES are better

than the others in 18 comparisons. Most of these significant differences are obtained in comparison

with PAES or the random algorithms. Only a few differences exist among the best algorithms. Nev-

ertheless, the performance of GA seems to be better than that of the other algorithms. On the other

hand, the PAES has obtained the worst results. We think that these results are due to the absence of

a crossover operator and the nature of the selected programs (i.e., number of equalities in the code).

Finally, with the aim of showing an example of the computed fronts for the instances, we selected

the line program. This program can represent the typical behavior of the different algorithms in this

kind of instance. In Figure 10, the 50% attainment surfaces of the best algorithms are depicted. In

this instance, GA dominates the others and has a good performance because it always reaches the

Table XVII. Real programs where a significant difference exists among the hypervolumes obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell RNDMono GA ES

MOCell 1N 1N 0 0 — 0 2O 0
NSGA-II 3N 3N 0 — 0 0 1O 0
SPEA2 3N 2N — 0 0 0 1O 0
PAES 0 — 2O 3O 1O 1O 7O 6O

RNDMulti — 0 3O 3O 1O 1O 7O 4O

ES 4N 6N 0 0 0 0 1O —
GA 7N 7N 1N 1N 2N 3N — 1N

RNDMono 1N 1N 0 0 0 — 3O 0

MOCell, Multi-Objective Cellular Genetic Algorithm; NSGA-II, Nondominated Sorting Genetic Algorithm II;
SPEA2, Strength Pareto Evolutionary Algorithm 2; PAES, Pareto Archived Evolution Strategy; ES, evolutionary
strategy; GA, genetic algorithm.

Table XVIII. Number of real programs where a significant difference exists among the coverages obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell RNDMono GA ES

MOCell 6N 12N 0 0 — 0 2O 0
NSGA-II 12N 13N 1N — 0 4N 0 0
SPEA2 7N 13N — 0 1N 0 3O 0
PAES 0 — 13O 13O 12O 4N 13O 12O

RNDMulti — 0 7O 12O 6O 3O 12O 9O

ES 9N 12N 0 0 0 0 3O —
GA 12N 13N 3N 0 2N 7N — 3N

RNDMono 3N 4O 0 4O 0 — 7O 0

MOCell, Multi-Objective Cellular Genetic Algorithm; NSGA-II, Nondominated Sorting Genetic Algorithm II;
SPEA2, Strength Pareto Evolutionary Algorithm 2; PAES, Pareto Archived Evolution Strategy; ES, evolutionary
strategy; GA, genetic algorithm.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1359

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18

B
ra

n
c
h
 C

o
v
e
ra

g
e

Number of Test Cases

GA
ES

MOCell
NSGA-II

Figure 10. Fifty percent attainment surfaces: coverage against the number of test cases for the program line.
GA, genetic algorithm; ES, evolutionary strategy; MOCell, Multi-Objective Cellular Genetic Algorithm;

NSGA-II, Nondominated Sorting Genetic Algorithm II.

best coverage with the same test data. MOCell is the only algorithm able to obtain all the points of

the front. This is a desirable property for a solution of a multi-objective problem.

8. CONCLUSIONS

In this paper, we have studied the multi-objective TDGP with the aim of analyzing the performance

of a direct multi-objective approach (MM) versus the application of mono-objective algorithms fol-

lowed by a test case selection (mM). Previous results in the literature have only focused on the

coverage of a program, although the oracle cost is a significant cost that has been ignored in most

of the previous studies. For this reason, in this work, we have dealt with the coverage and the oracle

cost as equally important targets.

Our study has been performed on 800 synthetic programs. We designed a program generator able

to produce programs ensuring a 100% of branch coverage. This kind of programs is very useful

because all the branches are reachable, and we can compare the algorithms in a fair way using cov-

erage. In addition, we have also analyzed the two proposed approaches with a benchmark of 13

real and popular programs in the literature. We have evaluated four state-of-the-art multi-objective

optimization algorithms, MOCell, NSGA-II, SPEA2, and PAES; two mono-objective algorithms

GA and ES; and two random algorithms as merely a ‘sanity check’. This comparison has been car-

ried out on the basis of three quality indicators: the HV, the 50% EASs, and the average maximum

coverage obtained by those algorithms. We can see a final ranking of algorithms in Table XIX.

In terms of convergence towards the optimal Pareto front, GA and MOCell have been the best

solvers in our comparison. On the one hand, MOCell has obtained the best fronts in programs with

nesting degrees 1 and 2, values commonly found in practice. On the other hand, the GA is the best

algorithm for facing programs with high nesting degree, and it is the algorithm that is significantly

better in most of the programs attending to the HV indicator and to the average maximum coverage.

This fact indicates that GA is the best alternative if the tested program has a high nesting degree

or if we need a high coverage. But, if we have time restrictions, we highly recommend the use

of MOCell as a search engine for an automatic test data generator. Although the multi-objective

approach is working very well in most of the programs, we realized that dealing with only one

branch at the same time (mono-objective approach) can be more effective when the program under

test has high nesting degree. In addition, we must highlight that both approaches (MM and mM)

are quite good at reducing the number of test cases needed to obtain a given coverage. The oracle

cost can be greatly reduced because the mM approach only needs 19.32% of the upper bound of test

cases needed for obtaining the maximum value of coverage, and the MM approach, only needing a

15.12% of the test cases, is even better. This improvement justifies the use of our approaches to deal

with the MOTDGP.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1360 J. FERRER, F. CHICANO AND E. ALBA

T
ab

le
X

IX
.

R
an

k
in

g
o

f
al

g
o

ri
th

m
s

ac
co

rd
in

g
to

m
ax

im
u

m
co

v
er

ag
e

an
d

h
y

p
er

v
o

lu
m

e
g

ro
u

p
ed

b
y

n
es

ti
n

g
d

eg
re

e.

C
o
v
er

ag
e

H
y

p
er

v
o

lu
m

e

R
an

k
N

D
1

N
D

2
N

D
3

N
D

4
A

ll
N

D
1

N
D

2
N

D
3

N
D

4
A

ll

1
G

A
G

A
G

A
G

A
G

A
M

O
C

el
l

M
O

C
el

l
G

A
G

A
G

A
2

E
S

E
S

E
S

E
S

E
S

N
S

G
A

-I
I

G
A

M
O

C
el

l
M

O
C

el
l

M
O

C
el

l
3

M
O

C
el

l
M

O
C

el
l

M
O

C
el

l
N

S
G

A
-I

I
M

O
C

el
l

E
S

N
S

G
A

-I
I

N
S

G
A

-I
I

E
S

E
S

4
N

S
G

A
-I

I
N

S
G

A
-I

I
N

S
G

A
-I

I
M

O
C

el
l

N
S

G
A

-I
I

G
A

E
S

E
S

N
S

G
A

-I
I

N
S

G
A

-I
I

5
S

P
E

A
2

S
P

E
A

2
S

P
E

A
2

S
P

E
A

2
S

P
E

A
2

P
A

E
S

S
P

E
A

2
S

P
E

A
2

S
P

E
A

2
S

P
E

A
2

6
P
A

E
S

P
A

E
S

P
A

E
S

P
A

E
S

P
A

E
S

S
P

E
A

2
P
A

E
S

P
A

E
S

P
A

E
S

P
A

E
S

7
R

N
D

M
o

n
o

R
N

D
M

o
n

o
R

N
D

M
o

n
o

R
N

D
M

o
n

o
R

N
D

M
o

n
o

R
N

D
M

o
n

o
R

N
D

M
o

n
o

R
N

D
M

o
n

o
R

N
D

M
o

n
o

R
N

D
M

o
n

o
8

R
N

D
M

u
lt

i
R

N
D

M
u

lt
i

R
N

D
M

u
lt

i
R

N
D

M
u

lt
i

R
N

D
M

u
lt

i
R

N
D

M
u

lt
i

R
N

D
M

u
lt

i
R

N
D

M
u

lt
i

R
N

D
M

u
lt

i
R

N
D

M
u

lt
i

N
D

,
n
es

ti
n
g

d
eg

re
e;

M
O

C
el

l,
M

u
lt

i-
O

b
je

ct
iv

e
C

el
lu

la
r

G
en

et
ic

A
lg

o
ri

th
m

;
N

S
G

A
-I

I,
N

o
n
d
o
m

in
at

ed
S

o
rt

in
g

G
en

et
ic

A
lg

o
ri

th
m

II
;

S
P

E
A

2
,

S
tr

en
g
th

P
ar

et
o

E
v
o

lu
ti

o
n

ar
y

A
lg

o
ri

th
m

2
;

P
A

E
S

,
P

ar
et

o
A

rc
h

iv
ed

E
v
o

lu
ti

o
n

S
tr

at
eg

y
;

E
S

,
ev

o
lu

ti
o

n
ar

y
st

ra
te

g
y

;
G

A
,

g
en

et
ic

al
g

o
ri

th
m

.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

EVOLUTIONARY ALGORITHMS FOR THE MO TEST DATA GENERATION PROBLEM 1361

Future work will verify these findings with still larger real-world software. Also, we should find

a set of representative software programs because research community has not established a stan-

dard benchmark of well-known programs. We also want to advance in designing better evolutionary

operators in order to deal with programs with high nesting degree that could pose a challenge for

our algorithms, especially for the multi-objective ones.

ACKNOWLEDGEMENTS

This work has been partially funded by the Spanish Ministry of Science and Innovation and FEDER under
contract TIN2008-06491-C04-01 (the M� project). It has also been partially funded by the Andalusian
Government under contract P07-TIC-03044 (DIRICOM project).

REFERENCES

1. Xanthakis S, Ellis C, Skourlas C, Gall AL, Katsikas S, Karapoulios K. Application of genetic algorithms to soft-

ware testing. Proceedings of the 5th International Conference on Software Engineering and Applications, Toulouse,

France, 1992; 625–636.

2. Harman M, Jones BF. Search-based software engineering. Information and Software Technology 2001; 43(14):

833–839.

3. McMinn P. Search-based software test data generation: a survey. Software Testing, Verification and Reliability 2004;

14(2):105–156.

4. Harman M. The current state and future of search based software engineering. In Proceedings of International

Conference on Software Engineering/Future of Software Engineering 2007 (ICSE/FOSE ’07). IEEE Computer

Society: Minneapolis, Minnesota, USA, 2007; 342–357.

5. Miller W, Spooner DL. Automatic generation of floating-point test data. IEEE Transactions on Software Engineering

1976; 2(3):223–226.

6. Korel B. Automated software test data generation. IEEE Transactions on Software Engineering 1990; 16(8):870–879.

7. Beizer B. Software Testing Techniques, (2nd edn). Van Nostrand Reinhold Co.: New York, NY, USA, 1990.

8. Baresel A, Binkley DW, Harman M, Korel B. Evolutionary testing in the presence of loop–assigned flags: a testability

transformation approach. International Symposium on Software Testing and Analysis (ISSTA 2004), 2004; 108–118.

9. Díaz E, Blanco R, Tuya J. Tabu search for automated loop coverage in software testing. Proceedings of the

International Conference on Knowledge Engineering and Decision Support (ICKEDS), Porto, 2006; 229–234.

10. Zhan Y, Clark JA. The state problem for test generation in Simulink. In GECCO’06: Proceedings of the 8th Annual

Conference on Genetic and Evolutionary Computation. ACM Press: New York, USA, 2006; 1941–1948.

11. Tracey N, Clark J, Mander K, McDermid J. Automated test-data generation for exception conditions. Software

Practice and Experience 2000; 30(1):61–79.

12. Blanco R, Tuya J, Adenso-Díaz B. Automated test data generation using a scatter search approach. Information and

Software Technology 2009; 51(4):708–720.

13. Ahmed MA, Hermadi I. GA-based multiple paths test data generator. Computers and Operations Research 2008;

35(10):3107–3124.

14. Alshraideh M, Bottaci L. Search-based software test data generation for string data using program-specific search

operators. Software Testing, Verification and Reliability 2006; 16(3):175–203.

15. Xiao M, El-Attar M, Reformat M, Miller J. Empirical evaluation of optimization algorithms when used in

goal-oriented automated test data generation techniques. Empirical Software Engineering 2007; 12(2):183–239.

16. Díaz E, Tuya J, Blanco R, Dolado JJ. A tabu search algorithm for structural software testing. Computers and

Operations Research 2008; 35(10):3052–3072.

17. Harman M, Kim SG, Lakhotia K, McMinn P, Yoo S. Optimizing for the number of tests generated in search based

test data generation with an application to the oracle cost problem. In Proceedings of the 3rd International Workshop

on Search-Based Software Testing (SBST) in conjunction with ICST 2010. IEEE: Paris, France, 2010; 182–191.

18. Lakhotia K, Harman M, McMinn P. A multi-objective approach to search-based test data generation. In GECCO

’07: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. ACM: New York, NY,

USA, 2007; 1098–1105.

19. Deb KD, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE

Transactions on Evolutionary Computation 2002; 6(2):182–197.

20. Nebro AJ, Durillo JJ, Luna F, Dorronsoro B, Alba E. MOCell: A cellular genetic algorithm for multiobjective

optimization. International Journal of Intelligent Systems 2009; 24(7):726–746.

21. Nebro AJ, Durillo JJ, Luna F, Dorronsoro B, Alba E. Design issues in a multiobjective cellular genetic algorithm.

In Evolutionary Multi-Criterion Optimization. 4th International Conference, EMO 2007, Lecture Notes in Computer

Science, Vol. 4403, Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds). Springer: Heidelberg, Germany, 2007;

126–140.

22. Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm. Technical Report

103, Gloriastrasse 35, CH-8092 Zurich, Switzerland, 2001.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

1362 J. FERRER, F. CHICANO AND E. ALBA

23. Angeline PJ, Michalewicz Z, Schoenauer M, Yao X, Zalzala A, (eds.). In The Pareto Archived Evolution Strategy:

A New Baseline Algorithm for Pareto Multiobjective Optimisation, Vol. 1. IEEE Press: Mayflower Hotel: Washington

D.C., USA, 1999.

24. Yoo S, Harman M. Pareto efficient multi-objective test case selection. ISSTA ’07 Proceedings of the 2007

International Symposium on Software Testing and Analysis, 9-12 July 2007; 140–150.

25. Michael CC, McGraw G, Schatz MA. Generating software test data by evolution. IEEE Transactions on Software

Engineering 2001; 27(12):1085–1110.

26. Wegener J, Baresel A, Sthamer H. Evolutionary test environment for automatic structural testing. Information and

Software Technology 2001; 43(14):841–854.

27. Arcuri A. It really does matter how you normalize the branch distance in search-based software testing. Software

Testing, Verification and Reliability 2011. DOI: 10.1002/stvr.457.

28. McMinn P, Binkley D, Harman M. Empirical evaluation of a nesting testability transformation for evolutionary

testing. ACM Transactions on Software Engineering and Methodology 2009; 18:11:1–11:27.

29. Rechenberg I. Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution.

Fromman-Holzboog Verlag: Stuttgart, 1973.

30. Rudolph G. Evolutionary Computation 1. Basic Algorithms and Operators, vol. 1, chap. 9, Evolution Strategies. IOP

Publishing Lt: New York, USA, 2000; 81–88.

31. Knowles J, Thiele L, Zitzler E. A tutorial on the performance assessment of stochastic multiobjective optimizers.

TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, February 2006.

32. Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto

approach. IEEE Transactions on Evolutionary Computation 1999; 3(4):257–271.

33. Knowles J. A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjec-

tive optimizers. International Conference on Intelligent Systems Deisgn and Applications, 2005; 552–557.

34. Alba E, Chicano F. Observations in using parallel and sequential evolutionary algorithms for automatic software

testing. Computers and Operations Research 2008; 35(10):3161–3183.

35. King JC. A new approach to program testing. SIGPLAN Notices 1975; 10:228–233.

36. King JC. Symbolic execution and program testing. Communications of the ACM 1976; 19:385–394.

37. Dijkstra EW. A Discipline of Programming. Prentice Hall: New York, USA, 1976.

38. Gries D. The Science of Programming. Springer-Verlag: Secaucus, NJ, USA, 1981.

39. Kaldewaij A. Programming: The Derivation of Algorithms. Prentice-Hall: Upper Saddle River, NJ, USA, 1990.

40. May PS. Test data generation: two evolutionary approaches to mutation testing. PhD Thesis, Computing Laboratory,

2007.

41. Arcuri A. Evolutionary repair of faulty software. Applied Soft Computing 2011; 11:3494–3514.

42. Jones BF, Sthamer HH, Eyres DE. Automatic structural testing using genetic algorithms. Software Engineering

Journal 1996; 11(5):299–306.

43. Durillo JJ, Nebro AJ, Luna F, Dorronsoro B, Alba E. jMetal: a Java framework for developing multi-objective opti-

mization metaheuristics. Technical Report ITI-2006-10, Departamento de Lenguajes y Ciencias de la Computación,

University of Maálaga, E.T.S.I. Informática, Campus de Teatinos, December 2006.

44. Alba E, Dorronsoro B. Cellular Genetic Algorithms, Operations Research/Computer Science Interfaces, Vol. 42.

Springer-Verlag: Heidelberg, 2008.

Copyright © 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2012; 42:1331–1362

DOI: 10.1002/spe

