
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/84520

Please be advised that this information was generated on 2022-08-25 and may be subject to

change.

http://hdl.handle.net/2066/84520

Evolutionary Algorithms for the Satisfiability
Problem

Jens Gottlieb
SAP AG, Neurottstrasse 16,69190 Walldorf, Germany

Elena Marchiori
jens.gottlieb@sap.com

elena@cs.vu.nl

Department of Computer Science, Free University Amsterdam, de Boelelaan 1081a,
1081 HV Amsterdam, The Netherlands

Department of Computer Science, Ca' Foscari University of Venice, Via Torino 155,
31072 Mestre, Italy

Several evolutionary algorithms have been proposed for the satisfiability problem.
We review the solution representations suggested in literature and choose the most
promising one - the bit string representation - for further evaluation. An empirical
comparison on commonly used benchmarks is presented for the most successful evo­
lutionary algorithms and for WSAT, a prominent local search algorithm for the satisfi­
ability problem. The key features of successful evolutionary algorithms are identified,
thereby providing useful methodological guidelines for designing new heuristics. Our
results indicate that evolutionary algorithms are competitive to WSAT.

K eyw ord s
Satisfiability problem, evolutionary algorithm, local search, adaptive fitness function,
WSAT.

1 Introduction
The satisfiability problem (SAT) is a paradigmatic NP-complete problem (Cook, 1971)
with many relevant practical applications (Du et al., 1997), like Boolean circuit synthesis
(Brayton et al., 1985) and test pattern generation (Larrabee, 1992). SAT is based on a set
of Boolean variables x \ , xn and a Boolean formula ƒ : IB” —> IB, IB — {0,1}, and the
question is whether a variable assignment IB exists such that
1. A SAT instance is called satisfiable if such x exists, and unsatisfiable otherwise. The
formula is in conjunctive normal form if , where each clause

is a disjunction of literals, and a literal is a variable or its negation. SAT instances
can be assumed having conjunctive normal form without loss of generality (Tseitin,
1968), and the class -SAT contains those with each clause containing exactly distinct
literals. While 2-SAT is solvable in polynomial time, -SAT is NP-complete for

(Garey and Johnson, 1979).
Due to their theoretical and practical relevance, SAT and, in particular, 3-SAT have

been studied extensively, and many exact and heuristic algorithms have been intro­
duced (Battiti and Protasi, 1998; Du et al., 1997). Exact algorithms give a definite an­
swer to any problem instance (be it satisfiable or unsatisfiable) but have an exponential

Claudio Rossi rossi@dsi.unive.it

Abstract

©2002 by the Massachusetts Institute of Technology Evolutionary Computation 10(1): xxx-xxx

mailto:jens.gottlieb@sap.com
mailto:elena@cs.vu.nl
mailto:rossi@dsi.unive.it

J. Gottlieb, E. Marchiori, and C. Rossi

worst-case complexity, unless P = NP. Heuristic algorithms can find solutions to sat-
isfiable instances quickly, but they are not guaranteed to give a definite answer to all
problem instances.

Evolutionary algorithms (EAs) are heuristic algorithms that have been applied to

SAT and many other NP-complete problems. Some negative results question the ba­
sic ability of EAs to solve SAT. De Jong and Spears (1989) proposed a classical genetic
algorithm (GA) for SAT and observed that the GA may not outperform highly tuned,
problem-specific algorithms. This result was confirmed experimentally by Fleurent and
Ferland (1996), who reported scarce performance of pure GAs when compared to local
search. Furthermore, Rana and Whitley (1998) showed classical GAs being unsuitable
for the MAXSAT fitness function, which counts the number of satisfied clauses, because
the corresponding domain contains misleading low-order schema information, and the
search space tends to result in similar schema fitness averages. Recent results showed
that EAs can nevertheless yield good results for SAT if equipped with additional tech­
niques to overcome the weaknesses of classical GAs. These techniques include adaptive
fitness functions, problem-specific variation operators, and local optimization (Bäck
et al., 1998; Eiben and van der Hauw, 1997; Fleurent and Ferland, 1996; Folino et al.,
1998; Gottlieb and Voss, 1998a, 2000; Marchiori and Rossi, 1999; Rossi et al., 2000).

This paper reviews EAs for SAT, focusing on alternative solution representations

and different techniques to enhance the performance of classical GAs. The most
promising evolutionary algorithms, which employ the bit string representation, are
examined on three commonly used benchmark suites. The results identify the main
features of successful EAs for SAT, and they also demonstrate that EAs compare favor­
ably to WSAT, a popular local search heuristic for SAT.

The paper is organized as follows. Section 2 introduces solution representations
that have been proposed for SAT, and Section 3 describes selected EAs and WSAT. Per­
formance evaluation is discussed in Section 4. An experimental comparison on bench­
marks is presented in Section 5, which also includes a discussion of the relation to other
heuristics. Section 6 draws conclusions and addresses future research directions.

2 The Representation Issue
2.1 The Bit String Representation
The most obvious way to represent a solution candidate for SAT is a bit string of length
n, where every variable is associated to one bit. While this representation is self-
explanatory, the choice of an appropriate fitness function is important, which can be
observed by the great variety of distinct functions proposed in literature (De Jong and
Spears, 1989; Eiben and van der Hauw, 1997; Frank, 1994; Gottlieb and Voss, 1998a).
The original Boolean function itself might be used as fitness function since SAT solu­

tions correspond to global optima of . However, this approach typically fails because
the EA degenerates to pure random search as all solution candidates have fitness 0 un­

less a solution is found. Except for the fitness function proposed by De Jong and Spears
(1989) for arbitrary SAT instances, all other fitness functions assume conjunctive nor­
mal form. In the MAXSAT formulation, the fitness value is equivalent to the number of
satisfied clauses, i.e.,

Ímaxsat(x) = Ci (x) + ... + Cm{x),

where represents the truth value of the th clause. This fitness function is used in
most EAs for SAT (Fleurent and Ferland, 1996; Folino et al., 1998; Frank, 1994; Marchiori
and Rossi, 1999; Park, 1995; Rossi et al., 2000). As EAs based on this fitness function

2 Evolutionary Computation Volume 10, Number 1

Evolutionary Algorithms for the Satisfiability Problem

have difficulty solving even small SAT instances when classical variation operators are

used, alternative functions were suggested that rely on adaptation mechanisms to al­
low a fine-grained distinction of solution candidates (Eiben and van der Hauw, 1997;
Gottlieb and Voss, 1998a). Many different variation operators - ranging from standard
bit mutation and 2-point crossover (De Jong and Spears, 1989) to problem-specific op­
erators (Gottlieb and Voss, 1998a) and local optimization (Marchiori and Rossi, 1999) -
have been used within bit string based EAs. The most successful EAs for SAT use
this representation, together with non-standard variation operators or adaptive fitness
functions; Section 3 describes these approaches in greater detail.

2.2 The Floating Point Representation
The floating point representation was suggested by Bäck et al. (1998), who proposed
to transform SAT into a continuous optimization problem, which then can be tackled
by classical evolutionary techniques for numerical optimization. Solution candidates

are represented by continuous vectors , and the fitness function is designed
such that global optima directly correspond to feasible solutions for SAT. The transfor­
mation is based on replacing literals Xj and x j by (yj — l) 2 and (yj +1) 2 and substituting
the Boolean operators and by their arithmetical counterparts and , respectively.
To illustrate this approach, we consider the 3-SAT instance given by the formula

f(x) - (i i V Î 2 V X4) A (x! V X3 V xt) A (x2 VX3 V X4) . (1)

The function IB IB is transformed into the continuous function IR
according to

9(y) = (î / l - l) 2(î/2 + l) 2(î / 4 - l) 2 + (î/l + l) 2(î / 3 - l) 2(î/4 + l) 2 + (î/2 + l) 2(î/3 + l) 2(î / 4 - l) 2,

which is to be minimized. Note that the Boolean values 0 and 1 are associated with

and 1. In their implementation, Bäck et al. converted continuous vectors by rounding
negative and positive values to and 1 in order to check whether a solution for SAT

already is represented.
Although the experiments with standard variation operators used in evolution

strategies showed the basic ability of the floating point representation to find solu­
tions for SAT, the overall performance is clearly inferior to SAWEA, which uses the

bit string representation and an adaptive fitness function (Back et al., 1998; Eiben and
van der Hauw, 1997), and which we present in Section 3.1.

2.3 The Clausal Representation
Hao (1995) proposed the clausal representation that emphasizes the local effects of the
variables in the clauses. This representation selects feasible variable assignments for
each clause, and it aims at finding globally consistent partial variable assignments. Re­
calling the Boolean function ƒ from Equation (1), eight variable assignments exist for
the variables occurring in the first clause, and only one of them causes a clause vio­
lation: (xi,x2 ,x4) — (0,1,0). In the clausal representation, a solution candidate is a
combination of variable assignments, where each defines all variables contained in
one clause and only feasible variable assignments are allowed. The solution candidate

((xi,x2,x4) - (1 ,0 ,0) , (x i,x3,x4) - (l , l , 0) , (x 2, x 3, x 4) - (0 ,1 ,1))

combines feasible assignments for the clauses but also contains inconsistent assign­
ments for . If a solution candidate was globally consistent, a (complete) variable as­
signment could be derived directly. Therefore, an EA using the clausal representation

Evolutionary Computation Volume 10, Number 1 3

J. Gottlieb, E. Marchiori, and C. Rossi

must be guided by a fitness function reflecting the global amount of inconsistencies

among the variable assignments for the clauses. Hao (1995) made several proposals,
including fitness functions that count the number of inconsistencies and weighted vari­

ants of them. In contrast to the previously described variable-oriented approaches, this
representation implies a search process that focuses on the relations between variables
that are linked together by distinct clauses.

The clausal representation allows the use of classical variation operators as solu­
tions are also represented by bit strings; nevertheless care must be taken to ensure lo­
cal consistency. Hao (1995) argued the elimination of unfeasible variable assignments
yields a reduction of the search space. However, as bits are needed to represent
a solution candidate for -SAT, the representation induces much larger search spaces

for instances with many clauses when compared to the bit string representation. We
are not aware of extensive computational studies for this representation, but we ex­
pect a similar performance as for the path representation due to the similarity of both
representations' underlying ideas.

2.4 The Path Representation
The path representation was suggested by Gottlieb and Voss (1998b) and exploits the
fact that a feasible solution must satisfy at least one literal in each clause. In order to
determine a solution, we may select one literal in each clause, yielding a path through

all clauses that visits each clause exactly once. If there is no inconsistency between the
literals in such a path, a complete variable assignment can be constructed immediately.
Given the SAT instance (1), the path (x i,x 4 ,xä) is feasible and induces the complete
variable assignments x — (1,0,0,0) and x' — (1,1,0,0), while the path (x i,x ï,x4) con­
tains an inconsistency. A reasonable fitness function for this representation must mea­
sure the amount of inconsistencies. While this corresponds to the clausal representa­
tion, one relevant difference between both codings is the length of solution candidates.

As the choice of one literal in a clause can be encoded by bits, the total number of
bits needed is , which results in a more compact representation. Another dis­
tinguishing feature is that the clausal representation aims at determining exactly one

feasible solution, while a path is able to represent a family of feasible solutions.
The path representation was evaluated in an experimental study (Gottlieb and

Voss, 1998b) relying on problem-specific variation operators and fitness functions based
on the number of inconsistencies among the selected literals. As the obtained results

were discouraging compared to the bit string representation, no further attempts have
been made to improve this representation.

3 Selected Evolutionary Algorithms and WSAT
Effective EAs for SAT using bit string representation differ from each other on some
of the following main features: replacement scheme, parent selection, mutation,
crossover, and fitness function. Moreover, some EAs incorporate non-genetic features
like adaptation and local search. Table 1 summarizes the features of the EAs mainly re­

viewed in this paper; note that they all rely on pure random initial populations. While
the approaches sAw EA (Bäck et al., 1998; Eiben and van der Hauw, 1997) and RFEA
(Gottlieb and Voss, 1998a; Gottlieb and Voss, 2000) are based on adaptive fitness func­
tions, the other two EAs, FlipGA (Marchiori and Rossi, 1999) and ASAP (Rossi et al.,
2000), use the MAXSAT fitness function and incorporate local search.

4 Evolutionary Computation Volume 10, Number 1

Evolutionary Algorithms for the Satisfiability Problem

Table 1: Main features of selected evolutionary algorithms.

Feature SAWEA RFEA FlipGA ASAP

replacement (1,A*) steady-state generational (1 + 1)
parent

selection
- tournament fitness

proportional
-

fitness fsAW ÍREF fMAXSAT fMAXSAT
initialization random random random random

crossover - - uniform -

mutation MutOne
knowledge-

based
random

random

adaptive

local search - - flip heuristic flip heuristic
adaptation fitness fitness - tabu list

In addition to the EAs, we consider WSAT (Selman et al., 1994) for comparison

purposes. WSAT is a popular local search heuristic that evaluates solutions by the
number of satisfied clauses.

3.1 SAWEA: Using Stepwise Adaptation of Weights
Eiben and van der Hauw (1997) examined evolutionary algorithms for 3-SAT, which
use the stepwise adaptation of weights (SAW) principle and the fitness function

fsAw(x) = w1 -c1(x) + . . .+ w m - cm(x) .

The weights IN are adapted in order to identify those clauses that are difficult to
satisfy in the current search phase. In the beginning, all weights are initialized by

1, which means that the MAXSAT fitness function is used. After certain time periods
of 250 fitness evaluations, the weights are adjusted according to ,
where is the current fittest individual. This adaptation scheme increases only those

weights that correspond to unsatisfied clauses in , and therefore the weights reflect
the "hardness" of the associated clauses. This implicitly forces the evolutionary search
to focus on these "difficult" clauses, and hence the search process is guided by the
weights.

The SAW principle was further studied by Bäck et al. (1998), who identified the
most promising configuration as follows: They employed the MutOne operator, which
flips exactly one uniformly chosen bit, and an extinctive replacement scheme,

where the parameter was fine-tuned for each problem size . That evolutionary al­
gorithm, referred to as SAWEA, was further improved by de Jong and Kosters (1998),
who suggested applying an additional operator to one of the offsprings produced by
MutOne. This additional operator randomly selects some clauses and flips one uni­
formly chosen variable in each selected clause that is not satisfied yet. This approach
is called Lamarckian structural error assignment and has outperformed SAW on a large,
3-SAT benchmark suite; we refer to it as LSAWEA.

3.2 RFEA: Using Refining Functions
The original idea of refining functions was inspired by the observation that many differ­
ent bit strings exist having the same quality concerning the MAXSAT fitness formula­
tion, which makes it impossible for an EA to distinguish between them (Gottlieb and

Evolutionary Computation Volume 10, Number 1 5

J. Gottlieb, E. Marchiori, and C. Rossi

Voss, 1998b). Additional heuristic knowledge can be captured in a refining function
IB and used within the refined fitness function

where the influence of is controlled by . Using an influence level
allows discrimination between chromosomes satisfying the same number of clauses.
Higher influence levels bias the evolutionary search towards r, which can be helpful
if is designed and adapted in order to escape from local optima. Gottlieb and Voss
(1998a) introduced different kinds of refining functions and investigated the influence
of the parameter . Although adaptive parameter control of is promising, the results
presented in Section 5 are based on using a constant value for , which is determined by
some a priori experiments. Recently, Gottlieb and Voss (2000) presented improvements
that led to the best performing EA based on a refining function, which is called RFEA
and is described in the following.

RFEA uses population size 4, parent selection by tournaments of size 2, and a

steady-state replacement scheme based on eliminating the worst individual. Duplicate
elimination is used, i.e., the offspring is rejected if it is already contained in the current
population. The only variation operator is a mutation operator that selects an unsat­
isfied clause and flips exactly one randomly chosen variable contained in the clause.1
Besides this problem-specific mutation operator, the major component of the EA is the
refining function

where IB is defined by and , and IR is the
weight associated to the variable . High positive weights indicate that the corre­
sponding variables are favored to be 1, while negative weights express a preference to
0. Initially, the weights are set to 0 and then adapted such that strong preferences are
represented by high (absolute value) weights.

The adaptation of aims at escaping from local optima and is defined by
Vj -K(xj)-\Uj (x*) |, where x* is the current best individual, Uj(x*) represents the set of
unsatisfied clauses containing the corresponding variable, and denotes its car­
dinality. This scheme adjusts the weights towards the complement of the current best
individual and is referred to as AW2. In addition, we consider AW2+, a hybridized
scheme that incorporates SAW to accelerate the adaptation process. The scheme AW2+

applies , where the clause weights are adapted ac­

cording to SAW. Note that AW2 is a special case of AW2+ with . We refer the
reader to (Gottlieb and Voss, 2000) for more details on these adaptation mechanisms
and use RFEA2 and RFEA2+ to refer to the refining function based EAs employing the

adaptation schemes AW2 and AW2+, respectively.

3.3 FlipGA: Using the Flip Heuristic
Marchiori and Rossi (1999) introduced FlipGA, an evolutionary local search algorithm

that generates offspring by standard (blind) genetic operators and subsequent improve­
ment by means of local search. FlipGA employs population size 10, fitness proportional
parent selection, and a generational replacement scheme with elitism, copying the best

1 Note the equivalence to the additional operator used by de Jong and Kosters (1998) if restricted to one
unsatisfied clause only.

fREFfr) = ci(x) + ... + Cm{x) + a ■ r{x)

6 Evolutionary Computation Volume 10, Number 1

Evolutionary Algorithms for the Satisfiability Problem

two individuals of the current population into the population of the next generation

(De Jong, 1975). Uniform crossover (Syswerda, 1989) is always applied, and a highly
disruptive mutation operator is used with probability 0.9. This operator flips each gene
with probability .

The core of FlipGA is the flip heuristic applied to each individual after performing
crossover and mutation. The heuristic scans the genes in random order: each gene

is flipped, and the flip is accepted if the gain (that is, the number of clauses that are
satisfied after the flip minus the number of clauses that are satisfied before the flip) is

greater than or equal to zero. When all the genes have been considered, the process is
repeated if the fitness of the obtained chromosome has been increased with respect to
the previous scan of the genes.

The idea behind this approach is to accomplish exploitation and exploration by
means of two separate modules: local search and genetic operators, respectively. In
this way, one can better control the effect of the different modules and easily modify
them for experimental investigation.

3.4 ASAP: Using the Flip Heuristic and Adaptation
The variant of FlipGA introduced by Rossi et al. (2000) is called adaptive evolutionary

algorithm for the satisfiability problem (ASAP). It is obtained from FlipGA by considering
only 1 chromosome, (1 + 1) replacement that corresponds to classical local optimization,
and an adaptive mechanism to control diversification in the search path.

ASAP acts on the chromosome as follows. First, the mutation operator is always
applied and flips, for each j G [l..n], the value of the jth gene with probability ßj G
[0,0.5], where is adapted during the execution. Next, the resulting chromosome is
improved by the flip heuristic like in FlipGA. Moreover, an adaptive mechanism based

on tabu search is employed for prohibiting the flip of some variables and for controlling
the mutation rate .

This is realized by means of a table of fixed capacity that is dynamically filled

with chromosomes having best fitness. When the best fitness increases, then the table
is emptied. When the table is full, the chromosomes in the table are compared gene-
wise: those genes that do not have the same value in all the chromosomes are labeled

as "frozen." Frozen genes become clamped, that is they are not allowed to be flipped
either by mutation or by the flip heuristic. Furthermore, the mutation rate of the th
gene is set to , where is the number of frozen genes. Finally, the table is also
used for restarting the search, which happens when the chromosomes in the (full) table
are too similar, where similarity is measured by means of the Hamming distance.

The rationale behind this adaptive mechanism can be explained as follows. The ta­
ble is filled when the search path has found "capacity" times best chromosomes, which
represent local optima with equal fitness. In order to try to escape from the attraction
basins of these local optima, only those genes having the same value in all these chro­

mosomes will be allowed to be flipped. The mutation rate is chosen in such a way that
the lower the number of not frozen genes is, the higher the probability will be to flip
them. The term is used to keep the mutation rate into reasonable limits, since a too-
high mutation rate would lose too much information about the search so far, resulting
in an almost random jump.

3.5 WSAT: A Local Search Heuristic
Local search heuristics for SAT explore the search space of truth assignments in order to
find a solution that maximizes the number of satisfied clauses. Starting from an initial

Evolutionary Computation Volume 10, Number 1 7

J. Gottlieb, E. Marchiori, and C. Rossi

assignment, which is typically selected at random, local search proceeds by moving
from one assignment to another by flipping the truth value of one single variable. The
selection of the variable to flip is the crucial phase of the method, and heuristics are
used that may include randomness, greediness, and memory.

One of the most popular local search methods for SAT is WSAT (Selman et al.,
1994; McAllester et al., 1997). In WSAT, the selection of a variable to be flipped is
accomplished in two steps. First, a clause among those that are currently unsatis­
fied is randomly selected. Next, a variable appearing in is selected using a heuristic.
McAllester et al. (1997) proposed six heuristics for this selection task. In our experi­

ments, we use the heuristic BEST: with probability , a random variable appearing in
is selected, otherwise the variable that breaks the fewest number of other clauses when
flipped is chosen. The selected variable is flipped to obtain a new assignment. Recall
that a variable x breaks a clause if the clause becomes unsatisfied if x was flipped.

The probability is called noise, since, in general, it causes WSAT to perform non­
optimal moves, in the sense that they decrease or fail to increase the number of satisfied
clauses. Noise helps a local search procedure escape from local optima. In our experi­

ments, we use P — 0.5. We refer to Hoos (1998) and Singer et al. (2000) for a thorough
analysis of WSAT and related stochastic local search algorithms for SAT.

Observe that WSAT and FlipGA, and hence ASAP, adopt different search strate­

gies. An iteration of WSAT acts locally on one unsatisfied clause and tries to repair it
without affecting clauses that are already satisfied. An iteration of FlipGA acts globally
on the problem instance and tries to decrease the total number of unsatisfied clauses.

4 Phase Transition, Benchmarks, and Performance Measures
4.1 Phase Transition and Benchmark Instances
Random 3-SAT instances have been used in many studies on the cost of the search for

exact and heuristic algorithms, since they represent the challenges faced by an algo­
rithm in the absence of any assumption about the problem domain. In random 3-SAT,
the number of variables is fixed, and the control parameter is (is the number of

clauses). Varying m /n produces a sharp threshold or phase transition in the probability
of satisfiability and an associated cost peak for a range of complete algorithms (a phe­
nomenon discussed elsewhere (Mitchell et al., 1992; Larrabee and Tsuji, 1992)). There
is a critical value of the control parameter (about) such that instances generated
with the parameter in the region lower than the critical value (the underconstrained re­
gion) almost always have solutions. Those generated from the overconstrained region,
where the control parameter is higher than the critical value, almost always have no so­
lutions. Recent works have identified properties of hard random -SAT instances that

are related to their backbone, that is, the set of literals logically entailed by an instance.
The reader is referred to Singer et al. (2000) for a recent contribution on this subject.

In our experiments, we use random 3-SAT benchmark instances with

generated using the mkcnf generator2 using the forced option to ensure that they are
satisfiable. Table 2 presents an overview of these instances, which are grouped into
three test suites that are available online3.

2ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/
UCSC/instances

3 http://www.in.tu-clausthal.de/~gottlieb/benchmarks/3sat

8 Evolutionary Computation Volume 10, Number 1

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/
http://www.in.tu-clausthal.de/~gottlieb/benchmarks/3sat

Evolutionary Algorithms for the Satisfiability Problem

Table 2: Overview of test suites.

Suite
Total of

instances
Instances
for each n

Problem size n First reference

A 12 3 30,40,50,100 (Bäck et al., 1998)

B 150 50 50 (Gottlieb and Voss, 1998a)

75,100 (Marchiori and Rossi, 1999)

C 500 100 20,40,60,80,100 (de Jong and Kosters, 1998)

4.2 Measuring the Quality
In order to obtain statistically significant results, several runs are required for each
benchmark instance under consideration. The achieved quality is measured by the suc­

cess rate (SR), which represents the portion of runs where a solution has been found.
While its use is undisputed, the SR strongly depends on the computational effort al­
lowed by the termination criterion. Hence, care must be taken when comparing the SR

of structurally different EAs, which usually apply different termination conditions.
Another quality measure, mainly used for problems for which the global optimum

is unknown, takes into account all the outcomes of the algorithm. In this case, informa­

tion is provided about the best result obtained in each run, as well as the average and
standard deviation of the best results over all the runs. For the satisfiability problem,
this amounts to considering the MAXSAT fitness function of the best chromosome as a
result of a run (the satisfiability problem is then called MAXSAT instead of SAT).

4.3 Measuring the Computational Cost
In contrast to the quality issue where SR is dominant, different measures have been

proposed to quantify the computational cost of an EA. The computational cost of sim­
ple genetic algorithms can be estimated using the average number of evaluations to solu­

tion (AES), which considers the average number of fitness evaluations needed to find

a solution in successful runs. This measure does not depend on the machine used and
on the actual implementation. However, the applicability of AES is severely limited
in a comparison of EAs relying on structurally different fitness functions or variation

operators.
Marchiori and Rossi (1999) quantified the cost of FlipGA and ASAP by means of

the average flip cost in terms of number of fitness evaluations to solution (AFES), which also
takes into account the hidden cost of the flip heuristic. For random 3-SAT instances,
it was observed by Spears (1996) that the number of clauses that have to be processed
for computing the gain of one flip is (on the average) . As clauses must be
processed in a complete fitness evaluation, one complete evaluation corresponds to
partial evaluations caused by single flips. Based on this rationale, the average costs of
local search that needs single flips to find a solution can be related to complete
fitness evaluations, which yields the AFES index and thus allows a direct comparison
to the AES of algorithms relying only on complete fitness evaluations.

Instead of relating the computational costs to complete fitness evaluations, the ef­
forts can also be measured by the number of the basic moves in the search space, i.e.,
single bit flips, needed to find a solution. This has become the standard measure used
for studying the cost of SAT algorithms (Hoos, 1998; Singer et al., 2000). Gottlieb and
Voss (2000) used the average number of flips to solution (AFS) to compare EAs generat­

Evolutionary Computation Volume 10, Number 1 9

J. Gottlieb, E. Marchiori, and C. Rossi

ing new solution candidates by single bit flips. When local search is perceived as a
sequence of one-flip mutations, AFS allows a direct comparison of evolutionary local
search to other EAs that use mutation operators flipping exactly one bit. Note that AFS
is equivalent to AES in this case, and that AFS can be interpreted as the number of
partial fitness evaluations needed to find a solution. Comparisons of local search al­

gorithms to hybrid evolutionary algorithms (Folino et al., 1998; Rossi et al., 2000) were
based on the same idea as they consider the number of accepted flips and the total
number of flips.

The three measures (AES, AFES, and AFS) quantify important parts of the com­
putational costs, but none of them captures the whole cost of an EA involving fitness
evaluation, variation operators, and additional mechanisms like adaptation of param­
eters. We will use AFS in our empirical analysis, since it permits a direct comparison
with local search algorithms like WSAT.

We conclude by mentioning the average running time (and standard deviation) over
successful runs, an efficiency measure that is (almost) never used in EAs but is often
used in local search. This index is machine and implementation dependent, so compar­

ative tables must be interpreted carefully - for instance, by estimating execution times
of other machines according to the performances reported by Dongarra (1993). Further,
this approach requires the use of optimal data structures for each algorithm under con­
sideration, which might be too time-consuming, in particular, when the potential of an

algorithm prototype is to be evaluated. In this case, standard timing routines can be
applied to the problem at hand, as done in the experiments of the DIMACS Challenge

on Satisfiability (Trick and Johnson, 1996).

5 Evaluation of Evolutionary Algorithms for SAT
5.1 Empirical Results
We compare the algorithms presented in Section 3 on all three benchmark suites that

were introduced in Section 4.1. Most results are based on new experiments. However,
as some results - like those for SAWEA and LSAWEA - are taken from literature, the
number of runs per algorithm differs for some test instances. The results for WSAT are

based on 10 runs for each instance. For the EAs, the results for suite A are based on
50 independent runs for each instance. The same settings are used for suite B, except
for ASAP, which is run 10 times on each instance. On instances of suite C, SAWEA and
LSAWEA are run 3 times, RFEA2 and RFEA2+ 4 times, and FlipGA and ASAP 5 times.
All algorithms are terminated if a solution is found or the limit of bit flips

is reached.
Tables 3, 4, and 5 present the results for the suites A, B, and C, respectively. In

general, instances with up to variables are solved routinely by most algorithms.
For the largest instances under consideration (), the success rates significantly
deteriorate for the suites B and C. Note that suite A contains only 3 such large instances,
which seem to be easier than the average instances from suites B and C.

The worst success rates are obtained for SAWEA. Better results are achieved by its
enhanced variant LSAWEA, which consistently yields a higher SR and a lower AFS.
However, both SAWEA and LSAWEA are inferior to the other algorithms. The al­

gorithms FlipGA, ASAP, and WSAT yield comparable success rates but without clear
dominance relations concerning AFS. The best SR on larger instances () is ob­
tained by RFEA2 and RFEA2+, with the only exception of ASAP on suite A.

The results show that evolutionary algorithms can compete with WSAT, and that
some even exhibit higher success rates on all three benchmark suites.

10 Evolutionary Computation Volume 10, Number 1

Evolutionary Algorithms for the Satisfiability Problem

Table 3: Results for benchmark suite A: SR and AFS.

Algorithm

OCOile

n — 40

OkCile

n — 100
SR AFS SR AFS SR AFS SR AFS

SAWEA 1.00 34015 0.93 53289 0.85 60 743 0.72 86 631
RFEA2 1.00 3535 1.00 3 231 1.00 8 506 0.99 26 501
RFEA2+ 1.00 2 481 1.00 3 081 1.00 7822 0.97 34 780
FlipGA 1.00 25 490 1.00 17693 1.00 127900 0.87 116 653
ASAP 1.00 9 550 1.00 8 760 1.00 68483 1.00 52 276
WSAT 1.00 1631 1.00 3 742 1.00 15 384 0.80 19 680

Table 4: Results for benchmark suite B: SR and AFS.

Algorithm

OkCile

n — 75

OOrHile

SR AFS SR AFS SR AFS

RFEA2 1 .0 0 12 053 0.95 41478 0.77 71907
RFEA2+ 1 .0 0 11350 0.96 39 396 0.81 80 282

FlipGA 1 .0 0 103800 0.82 29 818 0.57 20675
ASAP 1 .0 0 61186 0.87 39 659 0.59 43 601
WSAT 0.95 16 603 0.84 33722 0.60 23853

Table 5: Results for benchmark suite C: SR and AFS.

Algorithm 3 li to o n — 40 n — 60

o00ile OOrHile

SR AFS SR AFS SR AFS SR AFS SR AFS

SAWEA 1 . 0 0 12 634 0.89 35 988 0.73 47131 0.52 62 859 0.51 69 657
LSAWEA 1 . 0 0 11478 0.92 24819 0.80 37439 0.58 46 337 0.57 46 497
RFEA2 1 . 0 0 365 1 . 0 0 3015 0.99 18 857 0.92 50199 0.72 68 053
RFEA2+ 1 . 0 0 365 1 . 0 0 2 951 0.99 19957 0.95 49 312 0.79 74459
FlipGA 1 . 0 0 1073 1 . 0 0 14320 1 . 0 0 127520 0.73 29 957 0.62 20319
ASAP 1 . 0 0 648 1 . 0 0 16 644 1 . 0 0 184419 0.72 45 942 0.61 34 548
WSAT 1 . 0 0 334 1 . 0 0 5 472 0.94 20999 0.72 30168 0.63 21331

5.2 Discussion
The experiments allow us to identify some features that contribute to the good perfor­

mance of an EA for SAT. Among the EAs with adaptive fitness functions, the worst
results are obtained for SAWEA, which is the only one that completely relies on a blind
mutation operator. This indicates that adaptive fitness functions are not the single driv­
ing force in the success of such EAs, and that problem-specific variation operators are

quite useful.
Nevertheless, adaptive fitness functions are very promising because classical GAs

with the static MAXSAT fitness are clearly inferior to SAWEA. A recent study revealed

that the constant weight growth in fsAW makes the adaptation slow down in later
stages of the search process, and that the introduction of decay factors helps to cope
with this problem (Gottlieb and Voss, 2000). Despite using these decay factors and

Evolutionary Computation Volume 10, Number 1 11

J. Gottlieb, E. Marchiori, and C. Rossi

RFEA's mutation operator inside SAWEA, the resulting EA was inferior to RFEA. This

underlines that the design of appropriate adaptive fitness functions is crucial.
EAs with the simple MAXSAT fitness function exhibit a satisfactory performance

when local search is used, in particular, together with adaptation mechanisms like in
ASAP. This, again, confirms what has already been recognized in previous works on
EAs for combinatorial optimization problems, namely that problem knowledge has to
be used in order to make EAs competitive with local search algorithms.

The use of local search together with the simple MAXSAT fitness function and
blind mutations yields a separation of exploration and exploitation of the search space.
While local search is mainly responsible for exploitation, blind genetic operators are

mainly responsible for exploration. Thus, knowledge is directly incorporated in the
EA as local search module, which can be adapted or changed without modifying the

genetic operators and fitness function.
Since local search forms the core of FlipGA and ASAP, these EAs achieve simi­

lar performance to the local search heuristic WSAT. Interestingly, WSAT is inferior to
RFEA2 and RFEA2+, which use guided mutations but no strict local optimization. This

indicates the usefulness of adaptive fitness functions that are explicitly designed to
guide the search away from local optima, where other algorithms may get trapped.

The above discussion raises the question whether one should use a combination
of local search with adaptive fitness functions. A preliminary experimental investiga­
tion of EAs for constraint satisfaction problems using both an adaptive fitness function

(based on sAW) and local search indicates that this combination is not beneficial (Crae-
nen et al., 2000).

Concerning general parameters used by the algorithms, it is striking that all use

population size 1, except for RFEA and FlipGA that use 4 and 10, respectively. Thus,
rather small values seem to work quite well. Further, only FlipGA makes use of

crossover; this indicates that crossover is not dominant, and that local search steps are
essential.

5.3 Further Results
Our experiments indicate that EAs are competitive with state-of-the-art heuristic al­
gorithms for SAT like WSAT. Here we present additional results from literature that
compare our selected EAs to other heuristics.

Bäck et al. (1998) experimentally compared SAWEA with a variant of GSAT (Sel-
man et al., 1992) called WGSAT (Frank, 1996) on test suite A. WGSAT is based on the
same basic idea as WSAT, but also uses clause weights to guide the search, as done in
SAWEA. The results of the experiments indicate SAWEA outperforming WGSAT on
the considered benchmark instances.

Rossi et al. (2000) tested ASAP on the DIMACS benchmark instances4 that were
also used by Resende and Feo (1996) to evaluate their GRASP (greedy randomized search

procedure). GRASP is a general search technique that constructs a set of potential so­
lutions by a randomized greedy heuristic and then improves them by a local search

procedure. The results reported in Rossi et al. (2000) indicate that ASAP is competitive
with GRASP concerning SR and running time, except for a few instances of the AIM
and of the PAR classes.

Folino et al. (1998) proposed a rather different EA called CGW (cellular genetic

WSAT), which employs a cellular genetic algorithm model (Whitley, 1993) and incor­
porates WSAT in the mutation operator. The individuals are organized as cells in a

4ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf

12 Evolutionary Computation Volume 10, Number 1

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf

Evolutionary Algorithms for the Satisfiability Problem

spatial lattice, and they are updated synchronously by crossover and a WSAT-like mu­
tation. Hard randomly generated 3-SAT problems, in particular tests with n — 256 up
to n — 2048 variables, have been considered in Folino et al. (1998) together with some
problems of the DIMACS test suite. The authors report CGW to have a better conver­
gence behavior than WSAT. Rossi et al. (2000) compared ASAP to CGW, indicating that
both EAs could solve all problems, except for one where ASAP failed. In all successful
runs, ASAP needed far fewer bit flips than CGW to obtain a solution.

6 Conclusion
Our results show that, despite the failure of classical genetic algorithms for SAT, evolu­
tionary algorithms can nevertheless be quite successful if equipped with additional
techniques; they can even compete with state-of-the-art heuristics like the popular
WSAT local search algorithm.

A list of promising options that should be considered when solving SAT by an
evolutionary algorithm is:

1. Bit string representation. This is the most natural representation that proved to be
superior to all other representations suggested in literature.

2. Adaptive fitness functions. They guide the evolution by information learned dur­
ing the previous search process. In particular, they help to focus on difficult clauses
and to escape from local optima.

3. Knowledge-based genetic operators. They are goal-oriented and thus more effec­
tive than blind operators like classical standard bit mutation.

4. Local search. This helps to concentrate the search on promising solutions - the
local optima.

5. Adaptive schemes for escaping local optima. As premature convergence at local
optima is a serious risk when using local search or knowledge-based operators,
local optima should be escaped (i) implicitly by adaptation of the fitness function
or (ii) explicitly by adaptation of the neighborhood (e.g., by means of a tabu list).

6. Promising parameter choices. A good starting point for a new EA for SAT would
be a small population size and the use of a mutation only scheme.

The above list presents a rich set of methodological guidelines; nevertheless there
remain several interesting issues that could be pursued in future research work. As
all reviewed EAs use random initialization, it would be interesting to check whether

biasing the initial population by some other heuristic could result in a better overall
performance. A candidate for such heuristic could be the randomized greedy phase of

GRASP from Resende and Feo (1996), because its randomized construction mechanism
permits generation of different candidate solutions.

Further, we need a better understanding of the properties that make some SAT

instances difficult for EAs, while others are relatively easy. A characterization of dif­
ferent classes of SAT instances could also lead to the development of specialized EAs
for these specific classes - like the approach of Warners (1999) that can solve the PAR
family of the DIMACS instances in very short time. Finally, it would be challenging to
design a multi-strategies framework consisting of specialized EAs based on different

(local search) methods and/or genetic operators, together with a supervisor module
responsible for sending the input SAT instance to selected EAs of the system that are

"specialized" for that instance, and for coordinating those different EAs.

Evolutionary Computation Volume 10, Number 1 13

J. Gottlieb, E. Marchiori, and C. Rossi

References
Back, T., Eiben, A., and Vink, M. (1998). A superior evolutionary algorithm for 3-SAT. In Sara-

vanan, N., Waagen, D., and Eiben, A., editors, Proceedings of the Seventh Annual Conference
on Evolutionary Programming. Lecture Notes in Computer Science, Volume 1477, pages 125-136,
Springer, Berlin, Germany.

Battiti, R. and Protasi, M. (1998). Approximate algorithms and heuristics for MAX-SAT. In Du,
D.-Z. and Pardalos, P., editors, Handbook of Combinatorial Optimization, pages 77-148, Kluwer,
Boston, Massachusetts.

Brayton, R. et al. (1985). Logic Minimization Algorithms for VLSI minimization, Kluwer, Boston,
Massachusetts.

Cook, S. (1971). The complexity of theorem-proving procedures. In Proceedings of Third Annual
ACM Symposium on Theory of Computing, pages 151-158, ACM, New York, New York.

Craenen, B. et al. (2000). Combining local search and fitness function adaptation in a GA for solv­
ing binary constraint satisfaction problems. In Whitley, D. et al., editors, Proceedings of Ge­
netic and Evolutionary Computation Conference, page 381, Morgan Kaufmann, San Francisco,
California.

De Jong, K. (1975). An analysis of the behaviour of a class of genetic adaptive systems. Doctoral
Dissertation, University of Michigan, Ann Arbor, Michigan. Dissertation Abstract Interna­
tional 36(10), 5140B.

De Jong, K. and Spears, W. (1989). Using genetic algorithms to solve NP-complete problems. In
Schaffer, J. D., editor, Proceedings of the Third International Conference on Genetic Algorithms,
pages 124-132, Morgan Kaufmann, San Mateo, California.

de Jong, M. and Kosters, W. (1998). Solving 3-SAT using adaptive sampling. In Poutre, H. L.
and van den Herik, J., editors, Proceedings of the Tenth Dutch/Belgian Artificial Intelligence
Conference, pages 221-228.

Dongarra, J. (1993). Performance of various computers using standard linear equations soft­
ware. Technical Report CS89-85, Computer Science Department, University of Tennessee,
Knoxville, Tennessee.

Du, D., Gu, J., and Pardalos, P., editors (1997). Satisfiability Problem: Theory and Applications, vol­
ume 35 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, AMS,
Providence, Rhode Island.

Eiben, A. and van der Hauw, J. (1997). Solving 3-SAT with adaptive genetic algorithms. In Pro­
ceedings of the Fourth IEEE Conference on Evolutionary Computation, pages 81-86, IEEE Press,
Piscataway, New Jersey.

Fleurent, C. and Ferland, J. (1996). Object-oriented implementation of heuristic search methods
for graph coloring, maximum clique, and satisfiability. In Trick, M. and Johnson, D. S., edi­
tors. Second DIMACS Challenge, special issue, Volume 26 of DIMACS Series in Discrete Mathe­
matics and Theoretical Computer Science, pages 619-652, AMS, Providence, Rhode Island.

Folino, G., Pizzuti, C., and Spezzano, G. (1998). Combining cellular genetic algorithms and local
search for solving satisfiability problems. In Proceedings of Tenth IEEE International Conference
on Tools with Artificial Intelligence, pages 192-198, IEEE, Piscataway, New Jersey.

Frank, J. (1994). A study of genetic algorithms to find approximate solutions to hard 3CNF prob­
lems. In Yfantis, A., editor, Proceedings of Golden West International Conference on Artificial
Intelligence, Kluwer, Boston, Massachusetts.

Frank, J. (1996). Weighting for Godot: Learning heuristics for GSAT. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence and the Eighth Innovative Applications of Artificial
Intelligence Conference, pages 338-343, AAAI Press, Menlo Park, California.

14 Evolutionary Computation Volume 10, Number 1

Evolutionary Algorithms for the Satisfiability Problem

Garey, M. and Johnson, D. (1979). Computers and Intractability: a Guide to the Theory of NP-
completeness, Freeman, San Francisco, California.

Gottlieb, J. and Voss, N. (1998a). Improving the performance of evolutionary algorithms for the
satisfiability problem by refining functions. In Eiben, A. et al., editors, Proceedings of the
Fifth International Conference on Parallel Problem Solving from Nature. Lecture Notes in Computer
Science, Volume 1498, pages 755-764, Springer, Berlin, Germany.

Gottlieb, J. and Voss, N. (1998b). Representations, fitness functions and genetic operators for the
satisfiability problem. In Hao, J.-K. et al., editors, Proceedings of Artificial Evolution. Lecture
Notes in Computer Science, Volume 1363, pages 55-68, Springer, Berlin, Germany.

Gottlieb, J. and Voss, N. (2000). Adaptive fitness functions for the satisfiability problem. In Schoe-
nauer, M., editors, Proceedings of the Sixth International Conference on Parallel Problem Solving
from Nature. Lecture Notes in Computer Science, Volume 1917, pages 621-630, Springer, Berlin,
Germany.

Hao, J.-K. (1995). A clausal genetic representation and its evolutionary procedures for satisfia­
bility problems. In Pearson, D., Steele, N., and Albrecht, R., editors, Proceedings of the Inter­
national Conference on Artificial Neural Nets and Genetic Algorithms, pages 289-292, Springer,
Vienna, Austria.

Hoos, H. (1998). Stochastic Local Search - Methods, Models, Applications. PhD thesis, Darmstadt
University of Technology, Germany.

Larrabee, T. (1992). Efficient generation of test patterns using Boolean satisfiability. IEEE Transac­
tions on Computer-Aided Design, 11(1):4-15.

Larrabee, T. and Tsuji, Y. (1992). Evidence for a satisfiability threshold for random 3CNF formu­
las. Technical Report UCSC-CRL-92-42, University of California, Santa Cruz, California.

Marchiori, E. and Rossi, C. (1999). A flipping genetic algorithm for hard 3-SAT problems. In
Banzhaf, W. et al., editors, Proceedings of Genetic and Evolutionary Computation Conference,
pages 393-400, Morgan Kaufmann, San Francisco, California.

McAllester, D., Selman, B., and Kautz. H. (1997). Evidence for invariants in local search. In Pro­
ceedings of the National Conference on Artificial Intelligence, pages 321-326, AAAI Press, Menlo
Park, California.

Mitchell, D., Selman, B., and Levesque, H. (1992). Hard and easy distributions of SAT problems.
In Proceedings of the Tenth National Conference on Artificial Intelligence, pages 459-465, AAAI
Press, Menlo Park, California.

Park, K. (1995). A comparative study of genetic search. In Eshelman, L., editor, Proceedings of the
Sixth International Conference on Genetic Algorithms, pages 512-519, Morgan Kaufmann, San
Francisco, California.

Rana, S. and Whitley, D. (1998). Genetic algorithm behavior in the MAXSAT domain. In Eiben,
A. et al., editors, Proceedings of the Fifth International Conference on Parallel Problem Solving
from Nature. Lecture Notes in Computer Science, Volume 1498, pages 785-794, Springer, Berlin,
Germany.

Resende, M. and Feo, T. (1996). A GRASP for satisfiability. In Trick, M. and Johnson, D. S., editors
(1996). Second DIMACS Challenge, special issue, Volume 26 of DIMACS Series in Discrete Math­
ematics and Theoretical Computer Science, pages 499-520, AMS, Providence, Rhode Island.

Rossi, C., Marchiori, E., and Kok, J. (2000). An adaptive evolutionary algorithm for the satisfiabil­
ity problem. In Carroll, J. et al., editors, Proceedings of ACM Symposium on Applied Computing,
pages 463-469, ACM, New York, New York.

Selman, B., Kautz, H., and Cohen, B. (1994). Noise strategies for improving local search. In Pro­
ceedings of the Twelfth National Conference on Artificial Intelligence, pages 337-343, AAAI Press,
Menlo Park, California.

Evolutionary Computation Volume 10, Number 1 15

J. Gottlieb, E. Marchiori, and C. Rossi

Selman, B., Levesque, H., and Mitchell. D. (1992). A new method for solving hard satisfiability
problems. In Proceedings of the Tenth National Conference on Artificial Intelligence, pages 440­
446, AAAI Press, Menlo Park, California.

Singer, J., Gent, I., and Smaill, A. (2000). Backbone fragility and the local search cost peak. Journal
of Artificial Intelligence Research, 12:235-270.

Spears, W. (1996). Simulated annealing for hard satisfiability problems. In Trick, M. and Johnson,
D. S., editors. Second DIMACS Challenge, special issue, volume 26 of DIMACS Series in Dis­
crete Mathematics and Theoretical Computer Science, pages 533-558, AMS, Providence, Rhode
Island.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Schaffer, J., editor, Proceedings
of the Third International Conference on Genetic Algorithms, pages 2-9, Morgan Kaufmann, San
Mateo, California.

Trick, M. and Johnson, D. S., editors (1996). Second DIMACS Challenge, special issue, Volume 26
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, AMS, Providence,
Rhode Island.

Tseitin, G. (1968). On the complexity of derivation in propositional calculus. Studies in Construc­
tive Mathematics and Mathematical Logic, 2:115-125.

Warners, J. (1999). Nonlinear Approaches to Satisfiability Problems. PhD thesis, Eindhoven Univer­
sity of Technology, The Netherlands.

Whitley, D. (1993). Cellular genetic algorithms. In Forrest, S., editor, Proceedings of the Fifth Interna­
tional Conference on Genetic Algorithms, page 658, Morgan Kaufmann, San Mateo, California.

16 Evolutionary Computation Volume 10, Number 1

