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Abstract  In this paper, evolutionary algorithms are 
proposed to compute the optimal parameters of Gaussian 
Radial Basis Adaptive Backstepping Control (GRBABC) for 
chaotic systems. Generally, parameters are chosen arbitrarily, 
so in several cases this choice can be tedious. Also, stability 
cannot be achieved when the parameters are inappropriately 
chosen. The optimal design problems are to introduce 
optimization algorithms like Genetic Algorithms (GA), 
Particle Swarm Optimization (PSO) in order to find the 
optimal parameters which minimize a cost function defined 
as an error quadratic function. These methods are applied to 
two chaotic systems; Duffing Oscillator and Lü systems. 
Simulation results verify that our proposed algorithms can 
achieve enhanced tracking performance regarding similar 
methods. 

Keywords  Chaotic Systems, Adaptive Backstepping 
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1. Introduction 
Chaotic phenomena can be found in many scientific and 

engineering fields such as biological systems, electronic 
circuits, power converters, chemical systems, etc [1]. Since 
the pioneering work of Ott, Grebogi, and Yorke proposed the 
well-known OGY control method, the control of chaotic 
systems has been widely studied [2]. In the past two decade, 
backstepping design procedures have been intensively 
introduced [3–6]. The backstepping control is a systematic 
and recursive design methodology for nonlinear systems to 
offer a choice to accommodate the un-modeled nonlinear 
effects and parameter uncertainties.  

A GRBABC system [7] combines the GRBFNN 
identification and adaptive backstepping control techniques. 

The neural backstepping controller containing a GRBFNN 
identifier is designed in the sense of the backstepping control 
technique. An adaptive law of the GRBABC system is 
derived in the sense of Lyapunov function [7]. Recently, the 
evolutionary algorithms like GA [8], PSO [9] are very 
interesting to solve optimization problems. 

In this paper, the evolutionary algorithms are applied for 
computing the optimal parameters of GRBABC for chaotic 
systems. Generally, parameters are chosen arbitrary, so in 
several cases this choice can be tedious, even the stability 
cannot attain when the parameters are inappropriate chosen. 
The GA and PSO algorithms are used for finding the optimal 
parameters which minimize a cost function defined as the 
Lyapunov function. 

This paper is organized as follows. In section 2, adaptive 
backstepping control consisting of ideal backstepping 
control and GRBABC is designed. The evolutionary 
algorithms are described in section 3. In section 4, 
evolutionary algorithms to compute the optimal parameters 
of GRBABC are designed. Finally, to show the effectiveness 
of these methods, they are applied to two chaotic systems, 
Duffing system and Lü system in section 5. The paper is 
concluded in section 6. 

2. Adaptive Backstepping Control 
Adaptive backstepping control consists of ideal 

backstepping control and GRBABC is designed in this 
section.  

2.1. Ideal Backstepping Control 

Consider a class of n-order nonlinear systems 
( ) ( 1)( , , ,..., )n nx f x x x x u−= +             (1) 

where x is the state trajectory of the system, which is 
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assumed to be available for measurement,  
( 1)( , , ,..., )nf x x x x −

   is an unknown real continuous function, 
and u is the input of the system. The control objective is to 
find a control law so that the state trajectory x tracks a 
trajectory command closely.   

Eq. (1) can be rewritten as the following state equations: 
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Assuming that the parameters of the system (2) are known, 
the design of ideal backstepping controller is described 
step-by-step as follows [7]. 

Step 1) Define the tracking error 

dxxe −= 11                           (3) 

the derivative of tracking error is defined as 

1 1 1 1( )d de x x x xα= − = −                     (4) 

The 1α  can be viewed as a virtual control in the equation. 
Define a Lyapunov function as 

2
1 1

1
2

V e=                             (5) 

Differentiating (5) with respect to time and using (4), it is 
obtained that 

1 1 1 1 1. ( )dV e e e xα= = −

                    (6) 

Let  
1 1 1 1( ) dx c e xα = − +                        (7) 

Then 
2

1 1 1V c e= −                              (8) 

where 1c  is a positive constant. 
Step k) (2 1)k n≤ ≤ −  
Define 

1k k ke x α −= −                        (9) 

and the derivative of ke  is defined as 

1 1k k k k ke x α α α− −= − = −                  (10) 

The kα can be viewed as a virtual control in the equation. 
Define a Lyapunov function as 

2
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2

1
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k

k i k
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V V e−
=

= +∑                      (11) 

Differentiating (11) with respect to time and using (10), we 
have: 
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V V e e V e α α− − −
= =

= + = + −∑ ∑  

        (12) 

Let  

1 2 1( , ,..., )k k k k kx x x c eα α −= − +              (13) 

Then 

2

2

k

k i i
i

V c e
=

= −∑                         (14) 

where 1 2, ,..., kc c c  are positive constant. 
Step n)   Define  

1n n ne x α −= −                          (15) 

and the derivative of ne  is defined as 

1 1 2 3 1( , , ,..., )n n n n ke x f x x x x uα α− −= − = + −         (16) 

Define a Lyapunov function as 

2
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1
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n i n
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= +∑                        (17) 

Differentiating (17) with respect to time and using (16), it is 
obtained that 
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k n

n i n n i k n
i i

V V e e V e f u α− − −
= =

= + = + + −∑ ∑  

    (18) 

Let  

1n n nu c e f α −= − − +                     (19) 

Then 

2

2

n

n i i
i

V c e
=

= −∑                         (20) 

where 1 2, ,..., nc c c  are positive constant which called design 
parameters.  
Therefore, the ideal backstepping controller in (19) will 
asymptotically stabilize the system. 

2.2. Gaussian Radial Basis Adaptive Backstepping 
Control 

Since the system dynamic function 1 2 3( , , ,..., )nf x x x x  
may be unknown in practical application, the ideal 
backstepping controller (19) cannot be precisely achieved. 
To solve this problem, a GRBFNN identifier is utilized to 
approximate the system’s dynamic function.  

The neural backstepping controller is chosen as[7]: 

1
ˆ

n n n nu f c eα −= − + −                      (21) 

where the GRBFNN identifier f̂ is designed to online 
estimate the system dynamic function f .  
Define a Lyapunov function as[7]: 

2

1

1 1
2 2

n
T

n i
i

V e w w
=

= +∑                   (22) 
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where w represents the tuning parameter of GRBFNN and 
w∗  is the optimal parameter vector of w . 
Define 

ˆw w w∗= −                        (23) 

An adaptive law of the GRBABC system is derived in the 
sense of (22) which is obtained as follow [7]: 

ˆ nw w e G= − =


                      (24) 

Thus, the system can be guaranteed to be asymptotically 
stable. 

3. Evolutionary Algorithms 
Most of optimization algorithms are based on the gradient 

of the cost function. Thus, in case of an inappropriate choice 
for the initial point or the search interval, these algorithms 
can be mislead to the locally optimum and cannot obtain the 
globally optimum. Hence, optimization algorithms like GA, 
and PSO are developed to avoid this constraint. 

3.1. Genetic Algorithms 

Genetic Algorithms refer to a family of computational 
models inspired by evolution. This algorithm starts with 
many initial points in order to cover all search intervals and 
encode a potential solution to a specific problem on a simple 
chromosome like data structure and apply recombination 
operators to these structures so as to preserve critical 
information. 

An implantation of GA begins with a population of 
chromosomes randomly bred; each chromosome is evaluated 
by using the objective function called Fitness function. In 
order to apply the genetic reproductive operations called 
crossover and mutation, two individuals called parents are 
randomly selected and the crossover operation is applied. If 
its probability is reaches, between parents by exchanging 
some of their bits to produce to children. The mutation is the 
second operator applied on the single children by inverting 
its bit if the probability is reaches. After these stages two 
populations is obtained: a parent population and a children 
population, the individual who has a goodness solution is 
preserved [8]. 

3.2. Particle Swarm Optimization 

Particle Swarm Optimization is an evolutionary algorithm 
developed by James Kannedy and Russell Eberhart [10]. The 
objective of the method is to find optimal regions of a 
complex search space through interaction of individuals in 
population of particles. The algorithm starts with an initial 
population representing a candidate solution of the problem 
represented by positions randomly chosen within the search 
space. Each individual of the population has an adaptable 
velocity (position change), according to which it moves in 

the search space. 
Moreover, each individual has a memory, remembering 

the best position of the search space it has ever visited. 
Therefore, its movement is an aggregated acceleration 
toward its best previously visited position. This location is 
called pbest. Another best value that is tracked by PSO is the 
best value obtained so far by any particle in the its 
neighborhood. This location is called gbest. The main idea is 
to change the velocity of each particle toward its pbest and 
gbest positions at each time step. This means that each 
particle tries to modify its current position and velocity 
according to the directions and distances of its current 
position to pbest and gbest.  

4. Evolutionary Algorithms to Compute 
Optimal Parameters of GRBABC 

The architecture of proposed evolutionary algorithm to 
compute the optimal parameters of GRBABC for nonlinear 
systems is shown in Fig.1.  

 
Figure 1.  proposed evolutionary algorithm to compute the optimal 
parameters of GRBABC for nonlinear systemsThe evolutionary algorithms 
which are described in the previous section are applied to search the optimal 
parameters 1 2, ,..., nc c c  called design parameters in section 2. This is to 
guarantee the stability of systems by ensuring negativity of the Lyapunov 
function and having a suitable time response. 

The fitness function which is used for minimizing the 
evolutionary algorithms, described in the previous section, is 
defined as: 

2
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i

f e t
=

=∑                          (25) 

The GA parameters are shown in Table I and the PSO 
parameters are shown in Table II.
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Table I.  GA parameters 

Parameters values 
Size Population 20 

Maximum of generation 1000 
Prob. Crossover 0.2 
Prob. Mutation 0.01 

ic  search interval 150] 

Table II.  PSO parameters 

Parameters values 

Size Population 20 

Maximum of generation 1000 

ic  search interval  (0 150] 

5. Simulation Results 
In this section, the proposed technique is applied to control 

two nonlinear chaotic systems: a Duffing Oscillator system 
(Example-1) and a Lü system (Example-2). It should be 
emphasized that development of the GRBABC does not 
require the knowledge of the system dynamic function and 
also, the design parameters are set via evolutionary 
algorithms. 

5.1. Example (1): Duffing Oscillator System 

Consider a second-order chaotic system such as well 
known Duffing's equation describing a special nonlinear 
circuit or a pendulum moving in a viscous medium under 
control [11]: 

3
1 2 cos( ) ( , )x px p x p x q t u f x x uω= − − − + + = +        (26) 

where  1 2, ,p p p   and q  are real constants.  t  is the time 
variable and ω  is the frequency. ( , )f x x  is the system 
dynamic function where 

1 20.4, 1.1, 1.0, 1.8p p p ω= = − = =  and 7q = . u is the 
control effort.  

The system dynamic function would be online estimated 
by the GRBFNN identifier. A GRBFNN identifier with five 
hidden nodes is utilized to approach the system dynamic 
function of the chaotic system. 

The trajectory command is set as cos( )dx t=  . The 
performance index I is defined as 2 2

1 2I e e= + . The 
performance index I is shown that the proposed method can 
achieve the favorable tracking performance.  

The optimal parameters, minimum of fitness function and 
time of reach obtained via GA are shown in Table III. 

Table III.  Optimization results based on GA algorithm 

 C1 C2 Min f Treach (sec) 

GA  26.9795 98.4360 5.7614 510−×  0.124 

The simulation results of GRBABC using optimal 
parameters obtained via GA for Duffing oscillator system are 

shown in Fig. 2. 

 
Figure 2.  simulation results of Duffing oscillator system using optimal 
parameters obtained via GA. 

The optimal parameters, minimum of fitness function and 
time of reach obtained via PSO are shown in Table IV. 

Table IV.  Optimization results based on PSO 

 C1 C2 Min f Treach (sec) 

PSO  18.7952 99.2720 5.7045
510−×  0.102 

The simulation results of GRBABC using optimal 
parameters obtained via PSO for Duffing oscillator system 
are shown in Fig. 3. 

 

Figure 3.  simulation results of Duffing oscillator system using optimal 
parameters obtained via PSO. 
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Figure 2 and Figure 3 show that the results have good 
performance compared with other papers like [7] and [11]. 
These results are converged to desirable trajectory command 
before 0.2 sec. However, the results of other papers are 
converged to that desirable trajectory command in 4sec.  

5.2. Example (2): Lü System 

Consider a third -order chaotic system such as well known 
Lü equation describing in [12]: 

1 2 1

2 1 3 2

2 1 3 2

( )x a x x
x x x cx
x x x cx

= −
 = − +
 = − +







              (27) 

where 36a = , 3b = , 20c =   and u is the control effort.  
The system (27) can be rewritten as the following: 

1 2

2

3 1 2 3

3
( , , )

x x
x x
x f x x x U

=
 =
 = +







       (28) 

and 
2

1 2 3 1 1 2 2 3 1 3 4 2 3 5 1 2( , , )f x x x a x a x a x x a x x a x x= + + + +       (29) 

where 1 46656a = − , 2 35136a = , 3 1980a = , 4 1296a = − and 
5 36a = − . U is as the following 

5 1U a x u=                       (30) 

The system dynamic function would be online estimated 
by the GRBFNN identifier. A GRBFNN identifier with five 
hidden nodes is utilized to approach the system dynamic 
function of the chaotic system. 

The trajectory command is set as cos( )dx t=  .  
The performance index I is defined as  2 2 2

1 2 3I e e e= + + . 
The performance index I shows that the proposed method 
can achieve favorable tracking performance. 

The optimal parameters, minimum of fitness function and 
time of reach obtained via GA are shown in Table V. 

Table V.  Optimization results based on GA algorithm 

 C1 C2 C3 Min f Treach (sec) 

GA  42.2345 66.0835 68.0384 6.5943 5 10−×  0.16 

The simulation results of GRBABC using optimal parameters obtained via GA for Lü system are shown in Fig. 4. 

 

Figure 4.  simulation results of Lü system using optimal parameters obtained  via GA. 
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Table VI.  Optimization results based on PSO 

 C1 C2 C3 Min f Treach (sec) 

PSO 106.0333 82.2834 141.7942 1.2390 610−×  0.095 

 

The simulation results of GRBABC using optimal parameters obtained via PSO for Lü system are shown in Fig. 5. 

 

Figure 5.  simulation results of Lü system using optimal parameters obtained via PSO. 

Figure 4 and Figure 5 show that the results have good 
performance compared with other papers like [7], [12].  

These results are converged to desirable trajectory 
command before 0.2 sec. However, the results of other 
papers are converged to that desirable trajectory command in 
2sec.  

6. Conclusion 
In this paper, evolutionary algorithms are proposed to 

compute the optimal parameters of GRBABC for chaotic 
systems. The GA and PSO algorithms are used for finding 
the optimal parameters which minimize a cost function 
defined as the Lyapunov function. Design parameters are 
chosen based on the evolutionary algorithms, so the stability 
can be obtained when the parameters are appropriately 
selected. The proposed technique has been successfully 
applied to Duffing oscillator system and Lü like system. 
Simulation results verify that these proposed methods can 
achieve the favorable tracking performance. 
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