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It has been claimed that proteins with more interaction partners (hubs) are both physiologically more important (i.e.,
less dispensable) and, owing to an assumed high density of binding sites, slow evolving. Not all analyses, however,
support these results, probably because of biased and less-than reliable global protein interaction data. Here we
provide the first examination of these issues using a comprehensive literature-curated dataset of well-substantiated
protein interactions in Saccharomyces cerevisiae. Whereas use of less reliable yeast two-hybrid data alone can reject
the possibility that local connectivity correlates with measures of dispensability, in higher quality datasets a relatively
robust correlation is observed. In contrast, local connectivity does not correlate with the rate of protein evolution even
in reliable datasets. This perhaps surprising lack of correlation with evolutionary rate appears in part to arise from the
fact that hub proteins do not have a higher density of residues associated with binding. However, hub proteins do have
at least one other set of unusual features, namely rapid turnover and regulation, as manifest in high mRNA decay rates
and a large number of phosphorylation sites. This, we suggest, is an adaptation to minimize unwanted activation of
pathways that might be mediated by adventitious binding to hubs, were they to actively persist longer than required
at any given time point. We conclude that hub proteins are more important for cellular growth rate and under tight
regulation but are not slow evolving.
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Introduction

Protein-interaction networks may be scale-free networks
[but see 1]. Unlike random networks in which the number of
connections between entities follows a Poisson distribution,
in a scale-free network the distribution of the number of
connections follows a power law, such that a few members
called hubs have very large numbers of connections. The
properties of these hub proteins are of particular interest,
not least because they may be good targets for antimicrobial
agents. How, if at all, are the hub proteins different from
other proteins? Intuitively, one might expect many differ-
ences. As some classes of protein–protein interaction sites are
slow evolving [2], proteins with many partners might be
expected to be slower evolving, as claimed [3–6]. Likewise, it
seems intuitive that hub proteins may be more likely to be
essential (i.e., knockout-inviable), also as claimed [7–10].
Similarly, we might expect there to be a correlation between
growth rate of cells lacking a given protein and the number of
partners of that protein.

To this list we should like to add a further possibility,
namely that to minimize potentially hazardous cross talk,
temporal control of the abundance and activity of hubs needs
to be regulated tightly to enable continuous equilibration
with binding partners and curb excessive flux through certain
pathways. As such, we expect the mRNAs might be adapted to
be quickly removed when synthesis of the protein is no longer
needed, and the hub proteins themselves should be regulated
by phosphorylation more than the average protein.

While the above features may appear intuitively reason-
able, it is far from clear that any of the prior claims are
robust. The main problem is the source of protein–protein
interaction data. The large datasets applied to these problems
have been derived from high-throughput experiments, which,

in the case of protein–protein interactions are known to have
both high false-positive [11,12] and high false-negative rates
[13]. More generally, use of yeast two-hybrid data often fail to
replicate results derived from alternative sources [see e.g., 14–
16]. As regards rates of protein evolution, expression level is
by far the strongest predictor of rates of evolution [17,18].
There remains debate as to whether, when controlling for
rates of expression, the more connected proteins have rates
of evolution any different from the average [3,15,19,20].
Similarly, while some studies suggest that protein–protein
interaction networks are scale-free and hubs tend more
commonly to be the essential parts of the network [7–10],
both the scale-free nature of yeast protein–protein inter-
action network [1] and the relationship between dispens-
ability and position in the network [14] may also be artifacts
of biased data.
Here we re-evaluate these issues, taking advantage of a

recent effort that assembled a set of 11,334 interactions
obtained by systematically curating the past 30 years of
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Saccharomyces cerevisiae primary literature [13]. This we refer to
as the literature-curated protein interaction (LC-PI) dataset.
Specifically, we examine three issues: are more highly
connected proteins more ‘‘important,’’ do they evolve at
lower rates, and are they more tightly regulated? Our premise
is that interactions reported in focused primary papers are
inherently more reliable than high-throughput interactions,
not least because low-scale experiments are done by experts
in the field and the validity of interactions are scrutinized by
peer review; moreover, multiple contextual information and
other self-consistency checks and validations normally sup-
port the demonstration of these physical interactions, there-
by reducing the false-positive error rate. For any correlation
to be real it should then be transparent in this dataset.

Comparing Literature-Curated and High-Throughput Data
The LC-PI and high-throughput protein interaction (HTP-

PI) datasets are in many regards rather different. While, for
example, the two are supposed to be measuring the same
attribute (i.e., the identity and number of different proteins a
given protein interacts with), the correlation between the two
sets as regards number of interactants of each protein,
although naturally highly significant, is relatively modest
(Spearman rank correlation r ¼ 0.37). The two datasets also
disagree substantially on which proteins are highly con-
nected. Comparing, for example, the top 10% by connectivity
in the two datasets we find only 29% in common (see Dataset
S1 for LC hubs and Dataset S2 for HTP-PI hubs). Restricting
to the top 5%, the figure drops to 24%. Moreover, among the
bait proteins common to both sets, ;70% of interactions
reported in the literature were absent in HTP-PI [13].

We can also ask if known biases affect both sets equally.
Some affinity methods (e.g., tandem affinity purification) will
preferentially capture interactions for highly expressed
proteins. As these dominate the HTP datasets, it is no
surprise that there exists a strong positive correlation
between abundance or rate of expression (measured by
codon adaptation index [CAI]) and connectivity (abundance:
connectivity, r¼ 0.19, n¼ 3,001, p , 0.0001; CAI: connectivity,
r¼ 0.19, n¼ 4,169, p , 0.0001). In the LC dataset, in contrast,

this effect is much diminished (abundance: connectivity, r ¼
0.046, n ¼ 2,464, p ¼ 0.02; CAI: connectivity, r ¼ 0.037, n ¼
4,169, p ¼ 0.034). Indeed, if we look at essential singleton
genes alone, for example, the effect goes away in the LC set
(abundance: connectivity, r ¼�0.006, n ¼ 185, p ¼ 0.93; CAI:
connectivity, r ¼�0.002, n ¼ 242, p ¼ 0.98), while remaining
relatively robust in the HTP set (abundance: connectivity, r¼
0.2, n¼ 204, p¼ 0.004; CAI: connectivity, r¼ 0.12, n¼ 260, p¼
0.05). As a correlation between abundance and connectivity is
an expected artifact of some affinity methods, the weakening
of this signal provides some reassurance that the LC dataset is
less biased. On an anecdotal level, consider, for example, the
chaperone Hsp70, which binds to and facilitates the correct
folding of many proteins. The Hsp70 family members Ssa1/
Yal005c and Ssa3/Ybl075c have very high connectivity in the
LC dataset (44 and 18 interactions, respectively) but not in
HTP dataset (two interactions for each).
In other regards, the two networks show similar properties.

For example, the LC-PI dataset shows a scale-free connectiv-
ity distribution [13], just as HTP datasets do [21–24]. While LC
interactions are more likely to be real, we note that there are,
nonetheless, inevitable selection biases present in curation
data. Although the LC dataset represent over half the genes in
yeast, it tends to favor more important or conserved proteins
[13], these in general being more closely scrutinized in
biology. Given the potentially confounding differences
between different datasets, we next examine how robust
various conclusions drawn to date from different data sources
might be.

Results

Highly Connected Proteins Are Less Dispensable
Recently there has been dispute as to whether more highly

connected proteins are more likely to be essential. Notably,
Coulomb et al. [14] have suggested that prior claims for such a
relationship [7–10] may be dataset artifacts. Intuitively, one
would expect that loss of a highly connected protein would be
more detrimental to the cell than the loss of lowly connected
proteins; as in the former case, more processes would be
affected than in the later case. Are then highly connected
proteins more likely to be essential and for those that are
nonessential do the relevant knockout strains show lower
growth rates? To address these issues we made use of
systematic knockout studies. As previously noted, use of
laboratory differential growth rate due to gene-knockout as
an estimate of dispensability may not be without faults: many
proteins are likely to perform functions that are important in
the environment relevant to yeast evolution, but superfluous
in the laboratory conditions in which growth rates are
measured [25]. With this caveat in mind, we define the
importance of a gene by the fitness reduction caused by the
deletion of the gene in standard laboratory conditions.

For Nonessential Genes, Connectivity Correlates with
Knockout Growth Rate
In both the LC and HTP datasets the more connected a

protein the lower the growth rate of the knockout strain,
assuming the strain is capable of growth (Figure 1). This effect
is also manifest for singleton genes (Figure 1 and Table 1).
However, if expression level for the analysis of singleton
genes in the LC dataset is accounted for by Spearman partial
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Synopsis

Why do some proteins evolve so very slowly? Why are only a few
proteins uniquely vital to the functioning of an organism? Under-
standing how proteins interact with other proteins may provide the
answers. Some proteins are, it is suggested, like hubs on a wheel
with multiple spokes (interacting partners) attached: take away a
spoke and the wheel works, take away the hub and the wheel is
useless. With so many proteins to bind with, hubs may also be as
slow evolving as some interaction sites are constrained in their
evolution. Unfortunately, prior analyses have been equivocal, not
least because of an uncertainty about which proteins interact with
which others. Here the authors employ an extensive literature-
curated dataset of reliable protein–protein interactions to address
the issue of essentiality, connectivity, and evolutionary rate. This
study finds that hubs are more likely to be essential, and if not
essential, at least have a larger impact on fitness. However, hub
proteins are not slow evolving, in part, because hubs do not have a
higher density of binding sites. Hub proteins do, however, appear to
be under strong regulation, an adaptation the authors suggest that
minimizes the risk of unwanted activation.
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correlation [26], the connectivity effect becomes non-signifi-
cant when controlled by protein abundance but not when
controlled by CAI [27]. This weakening of the result when
employing protein abundance as the controlling variable is
not, however, likely to be owing to the effects of the covariate,
as among the nonessential genes, connectivity and expression
parameters do not significantly correlate in the LC dataset
(unpublished data). Instead, this increase in p-value appears
to be owing to a reduced sample size in the covariate-
controlled analyses. Two pieces of evidence support this

suggestion. First, the value of r remains largely unaffected by
covariate control. Second, we performed simulations to
mimic the effects of reducing the sample size. If there were
N data points in the non-covariate controlled analysis and M
in the covariate controlled tests (i.e., N . M), we randomly
selected M from N, performed a Spearman rank correlation,
and asked how often the observed p-value was the same or
greater than that observed in the covariate-controlled
analysis. In both datasets of growth rate data, we failed to

Figure 1. Relationship between Connectivity and Dispensability

Scatter plots of growth defect upon homozygous deletion of a gene and the natural log of connectivity of the gene in the interaction network. Growth
rate data are from Steinmetz et al. [45].
DOI: 10.1371/journal.pcbi.0020088.g001
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reject the null hypothesis that the increase in p-value was
owing to a reduction in sample size (unpublished data).

Might the above results be dataset artifacts? The LC data
are, for example, enriched for functionally important
proteins that make up the translational machinery. The
ribosome and other components of the translational machi-
nery are highly expressed and central for almost all the
cellular functions. Removing translation-associated proteins
did not change the conclusion (Table S1A) but instead
increased the correlation strength. The stronger correlation
for non-ribosomal data can be explained because ribosomal
proteins have an average connectivity of 4.8 while the mean
connectivity of all proteins is approximately 7. Thus, loss of
these lowly connected, but functionally important proteins
increases the strength of the correlation.

The LC data contain interactions assessed using various
different experimental methods [13]; however, affinity puri-
fication and two-hybrid based methods account for most of
the interactions. These two protocols tend to capture
different sorts of proteins. Notably, for both sets of fitness
data, the mean fitness of knockouts for proteins in the yeast
two-hybrid data were on average higher than for proteins in
affinity purification data (p , 10�10 for each fitness dataset).
This may well reflect the greater cellular requirement for
proteins in stable complexes, which are more often being
captured by affinity methods. For instance, 196 out of 272
translation-related proteins are present in the affinity data,
but only 52 out of 272 of these proteins are present in the
two-hybrid data. It is then relevant to ask whether this biased
sampling might affect conclusions. To this end, we consider
only those proteins from the LC set that are found in both the
yeast two-hybrid and affinity capture assays. The negative
correlation between connectivity and fitness remains robust
(Table S1B). Indeed, in this instance the correlation increases
from an r2 of 1%–2% to approximately 10%.

All the above results suggest that the more connected a
protein might be, the greater the impact on fitness when
deleted, assuming the knockout can grow. However, to this
conclusion we add one note of caution. We can ask about two
sub datasets of the LC set: those being the proteins found
only by the yeast two-hybrid method and those found only by
the affinity purification method. Surprisingly, in both there is
a lack of correlation (Table S1A). One possible reason for the
appearance of correlation upon merging of the two types of
data is that the mean fitness and mean connectivity of the two
sets of data are different. As noted above, the mean fitness of
knockouts for proteins in the yeast two-hybrid data was on
average higher than for proteins in affinity purification data.

Likewise, for proteins only in yeast two-hybrid set, the mean
connectivity is 2.16, while for proteins only in the affinity set
the mean is 5.2 (p , 0.0001, Mann-Whitney U test). Hence, we
have one cluster of proteins of high average fitness and low
average connectivity and another of lower average fitness and
higher connectivity. Merging two such datasets would lead to
a negative correlation while none need be seen in either sub
datasets. To ask whether the correlation is then real or an
artifact of merging potentially biased data, we analyzed a high
confidence set of interactions based on the LC set but
requiring multi-validation. For those proteins found in the
affinity-derived set alone in the high confidence set, we again
find a robust negative correlation (r ¼�0.24 and p , 0.001).
We suggest therefore that the effect is real but easily lost
when the data are noisy.

Essential Genes Are More Highly Connected
As previously reported [13] in both the HTP and the LC

datasets, essential genes have on average more partners, i.e.,
higher connectivity (Mann-Whitney U test comparing essen-
tial and nonessential: LC-PI data mean natural log connec-
tivity essential¼ 1.945 6 0.03, for nonessentials mean¼ 1.062
6 0.02, p , 0.0001; for HTP-PI data, mean essentials¼ 1.55 6
0.04, for nonessentials, mean¼ 0.96 6 0.02, p , 0.0001). This
is also true if we analyze singleton genes alone (Mann Whitney
U test, p , 0.0001 for both datasets). Removal of ribosomal
proteins does not alter these conclusions (unpublished data).
Controlling for protein abundance, the essential genes have
higher connectivity than nonessential genes (ANCOVA of log
abundance versus natural log of connectivity between
essentials and nonessentials, for LC-PI set, F ¼ 40.7, p ,
0.0001, for HTP-PI set, F ¼ 14.4, p ¼ 0.002).
Curiously, if we restrict analysis to proteins found just in

the yeast two-hybrid analyses, there is only a weak tendency
for there to be a difference between the essentials and the
nonessentials in their connectivity (Essentials mean connec-
tivity: 2.333 6 0.267, n¼ 42; Nonessentials mean connectivity:
2.12 6 0.096, n ¼ 573; Mann Whitney U test, p ¼ 0.056). In
contrast, in the proteins identified by the affinity capture
methods alone, the result remains highly robust (essentials
mean connectivity: 7.85 6 0.554, n¼ 301, nonessentials mean
connectivity: 3.65 6 0.18, n¼ 754; Mann Whitney U test, p ,
0.0001). Control for abundance or expression measured by
CAI does not alter the later conclusion (ANCOVA: p ,
0.0001). This suggests that the inability of Coloumb et al. [14]
to detect an effect was a consequence of employing yeast two-
hybrid data. This would make sense as yeast two-hybrid
method is likely to miss many true interactions and so

Table 1. Correlations between Connectivity and Fitness

Variable HTPa HTP �aba HTP �CAIa HTPb HTP �abb HTP �CAIb LCa LC �aba LC �CAIa LCb LC �abb LC �CAIb

r �0.12 �0.11 �0.12 �0.13 �0.12 �0.13 �0.14 �0.1 �0.14 �0.14 �0.1 �0.14

p 1 3 10�3 0.015 0.001 2.5 3 10�4 0.005 0.0003 0.004 0.08 0.002 0.003 0.06 0.002

n 726 524 725 750 544 749 449 344 449 464 356 449

Spearman rank correlation between connectivity and fitness effect (i.e., growth rate of nonessential genes).�ab in the header denotes partialing-out of protein abundance.�CAI denotes
partialing-out of expression rate measured by CAI. Shown results are for singleton proteins only.
aSteinmetz fitness data in rich media for homozygous delete.
bDeutschbauer fitness data in rich media for homozygous delete.
DOI: 10.1371/journal.pcbi.0020088.t001
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underestimate the number of interactants of the more highly
connected proteins. As, moreover, the difference between
essentials and nonessentials is seen in all other datasets, we
suggest that the connectivity effect is real and is not owing to
covariance with expression rate.

Hubs Do Not Evolve Slower than Non-Hubs
The claim that highly connected proteins evolve slower

than others could be in large part an artifact of HTP datasets
[15], as these typically report more interactions for proteins
that are also highly expressed [11]; moreover, expression rate

is a robust predictor of rates of evolution [17]. As highly
connected proteins are more likely to be essentials and
essentials may evolve slower than nonessentials, we therefore
analyze the essential and nonessential genes separately so as
to account for any differences between these two in mean
rate of protein evolution. One reason many proteins may be
nonessential is because they have a duplicate gene (or genes)
present in the same genome. As duplicated genes may
themselves have unusual rates of evolution [28] (possibly
owing to relaxation of functional constraints or to positive
selection promoting diversification), it is most valuable to ask

Figure 2. Relationship between Connectivity and Evolutionary Rate

Scatter plots of natural log of connectivity and evolutionary rate of S. cerevisiae proteins. Shown here are the plots for singleton genes. For analysis of all
genes and those with duplicates see Figures S1 and S2.
DOI: 10.1371/journal.pcbi.0020088.g002
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whether any of the above results are robust to analysis of
singleton genes. For analysis of both duplicates and the
dataset en mass see Figures S1 and S2.

Of 3,289 proteins in the LC-PI dataset, evolutionary rate
data, i.e., rate of non-synonymous substitution per site, were
obtained for 306 singleton nonessentials. Spearman rank
correlation, a non-parametric measure that is robust to
outliers, between the connectivity and evolutionary rate for
these proteins, was not significant (r¼ 0.03, p¼ 0.58) (Figure 2
and Table 2A). The HTP-PI network had 4,474 proteins;
evolutionary rate data were obtained for 469 singleton
nonessentials (Table 2A). As originally claimed [3,4], a
significant negative correlation between the connectivity
and evolutionary rate was observed even after accounting
for expression level (Table 2A and Figure 2). Because large
fractions of protein complexes are essential, restriction of
our analysis to nonessentials weakens but does not eliminate
the previous correlation between connectivity and evolu-
tionary rate in the HTP-PI network. Similarly, the other two
HTP-based networks (Table 2A), including the recent data by
Gavin et al. [29] (for both full and a reduced version which
controlled for false- positives due to sticky proteins by
removing preys that occurred in more than 100 purifica-
tions), and another high confidence network, called filtered
yeast interactome (FYI), generated by intersecting interac-
tions from various sources [30], showed negative correlation
before accounting for expression level. However, in the Gavin
(2006) dataset, control for expression level, measured either
as protein abundance or by the CAI, removed any signifi-
cance. The same lack of significance in Gavin (2006) data,
after control for abundance, and in the LC data, before and
after covariate control, is also seen for singleton essential
genes (Table 2B). To account for potential biases in the LC
data we repeated the analysis on the LC data without
ribosomal proteins and on the subset of LC data that were
either two-hybrid based–interactions or affinity purification-
based interactions. For all three cases, the null hypothesis of
no correlation could not be rejected (Table S2). The lack of
correlation is robust to use of Ka/Ks rather than just the
protein evolutionary rate (Table S3).

The HTP-PI network may exhibit a negative correlation
between connectivity and evolutionary rate because HTP
methods preferentially detect interactions of abundant
proteins [15,19] that evolve slower than lowly expressed

genes [17]. Network data, such as the FYI network (generated
by taking intersections of various datasets), while a valid
means to enrich for real interactions, further bias HTP data
toward highly abundant proteins because interactions be-
tween such proteins are more likely to be replicated in HTP
datasets. In contrast, interactions that are well established in
the primary literature are often not re-published per se, and
are therefore not validated in a formal sense, despite being
highly controlled and reliable. In addition, HTP approaches
tend to recover interactions among proteins that are part of
multi-protein complexes, which also evolve more slowly [31].
Indeed, 74% of HTP-PI proteins, for which evolutionary rate
data are available, are part of a dedicated protein complex,
compared to 64% of LC-PI proteins. The observed negative
correlation in HTP datasets also derives from the fact that the
average connectivity of subunits of protein complexes is
almost two times higher than that of other proteins, in both
the LC-PI and HTP-PI networks (p , 10�100, Spearman).
In conclusion, while we recover the prior strong negative

correlation between connectivity and evolutionary rate in
various HTP datasets, we find no such correlation in the LC
dataset. We conclude that the prior claim that hub proteins
are intrinsically slower evolving derives from the nature of
the datasets used. This conclusion, however, raises a further
problem, namely why do not all highly connected proteins
have lower rates of evolution? It is known that sites of non-
temporary interaction between proteins are slow evolving [2].
However, do more highly connected proteins necessarily have
more such sites or more importantly, a higher density of such
sites? To address this issue we obtained the identity of
binding residues of yeast proteins for which structures have
been solved from the PRISM database [32,33] (see Materials
and Methods). Against expectations, the correlation between
connectivity and fraction residues associated with binding is
negative, albeit only weakly so (for LC data r¼�0.46, p¼ 0.02
and for HTP data r ¼ �0.3, p ¼ 0.02; both Spearman rank
correlation). This suggests that the underlying assumption
that highly connected proteins have a higher density of
binding sites does not hold and could explain why hub
proteins evolve no faster than average. In part, the negative
correlation arises from the fact that proteins with higher
connectivity also are longer, although this effect is weak
(Spearman rank correlation between protein length and

Table 2. Correlation between Connectivity and Evolutionary Rates

Category Variable HTP HTP

�ab

HTP

�CAI

FYI FYI

�ab

FYI

�CAI

Gavin 2006 Gavin 2006

�ab

Gavin 2006

�CAI

LC LC

�ab

LC

�CAI

Nonessentials r �0.17 �0.15 �0.13 �0.23 �0.14 �0.26 �0.18 �0.07 �0.11 0.03 0.08 �0.04

p 2 3 10�4 5 3 10�3 0.004 0.027 0.22 0.012 4 3 10�3 0.33 0.08 0.58 0.24 0.47

n 469 351 469 92 78 92 252 216 252 306 238 306

Essentials r �0.22 �0.18 �0.14 �0.3 �0.24 �0.34 �0.2 �0.11 �0.08 �0.08 �0.05 �0.09

p 0.005 0.038 0.07 0.005 0.059 0.001 0.03 0.28 0.37 0.34 0.6 0.24

n 169 134 169 86 66 86 122 102 122 156 121 156

Correlations for nonessentials and essentials were computed separately. dN (non-synonymous substitution per site) is used as a measure of evolution rate and Spearman’s rank correlation
is used. Datasets are described in Materials and Methods. Partialing-out fitness growth effect in rich media due to homozygous deletion did not reduce the negative correlations in any of
the data (unpublished data). Header with �ab represents the correlation computed after partialing-out protein abundance level [40]. Header with �CAI employs CAI as the covariate.
Statistically significant results are shown in bold.
DOI: 10.1371/journal.pcbi.0020088.t002

PLoS Computational Biology | www.ploscompbiol.org July 2006 | Volume 2 | Issue 7 | e880753

Evolution and Physiology of Hubs



connectivity: for LC-PI data r¼0.07, p , 0.0001, n¼3,256; for
HTP-PI data r ¼ 0.066, p , 0.0001, n ¼ 4,142).

Activity and Lifetime of Protein Hubs Are Under Tight
Regulation

The LC-PI network exhibits a highly interconnected
topology that links a large fraction of the proteome. To
minimize potentially hazardous cross talk, temporal control
on the abundance and activity of hubs may be needed to
ensure continuous equilibration with binding partners and
curb excessive flux through certain pathways. Consistent with
this expectation, we find that mRNAs of highly connected
proteins have shorter half-lives (r ¼ �0.2, p ¼ 1 3 10�22,
Spearman). This negative correlation is true even after
partialing-out abundance (r¼�0.17, p¼ 33 10�10, Spearman)
(abundance is negatively correlated with half-life) and even
when considering only nonessentials (r¼�0.14, p¼ 23 10�11,
Spearman) (essentials have shorter half-life than nonessen-
tials). As a proxy for protein regulation at a post-translational
level, we analyzed the phosphorylation status of highly
connected proteins. Phosphorylation often dictates regula-
tion through protein interactions and/or protein degradation
by the ubiquitin-proteasome system [34,35]. We find that
more connected proteins are more likely to be phosphory-
lated (r ¼ 0.06, p ¼ 9 3 10�4, Spearman). Thus, one trade-off
for broad specificity [36] may be the energetic cost of ‘‘just-in-
time’’ synthesis, which helps prevent entrainment of hubs by
a select set of interaction partners.

Discussion

Analysis of LC-PI data suggests that prior analyses of the
relationship between connectivity and rate of evolution were
a product of the biases inherent in HTP data. In contrast, the
relationship between dispensability and connectivity seems
more robust. In particular, the claim that more highly
connected proteins tend to be more likely to be essential is
reported in all datasets, although this is only a trend when the
data are derived exclusively from yeast two-hybrid assays.
Similarly, the yeast two-hybrid data fail to support the idea
that within the class of nonessential genes there is a
correlation between growth rate and connectivity. Otherwise,
we find reasonable support for this possibility, although in
some instances the correlation is weak.

That highly connected proteins do not evolve slowly is
intriguing given the simple intuition that the two attributes
should covary. However, the logic of this intuition relies on
the two interrelated assumptions: that sites of mutual
protein–protein binding should be slow evolving and that
proteins with numerous interactions should have a higher
density of binding sites as they have more partners. A third
implicit assumption is that the proportion of sequence
defined by binding sites is large enough to impact on rates
of evolution given high variation in rates of evolution outside
of pairing sites. The first assumption is partially upheld: sites
of non-temporary binding are indeed slow evolving [2]. Given
this, why are not more highly connected proteins slower
evolving? A key alternative possibility is that highly connected
proteins tend to re-use the same binding site when interact-
ing with multiple different proteins. Our analysis of well-
described binding domains suggests this to be so and
moreover, that genes with multiple interactants tend to be

longer proteins; hence, for a given number of binding sites,
the density of the sites will be lower in the longer proteins.
However, the data for estimating the density of sites are
limited and may also be biased, most especially toward
proteins in obligate complexes. Nonetheless, the unexpected
lack of a positive correlation between proportion of sequence
involved in binding and connectivity provides evidence to
support the conclusion that connectivity is not related to rate
of protein evolution.
The finding that hub proteins tend to be encoded by

mRNAs with rapid turnover rates provides an alternative
explanation for the lack of correlation between connectivity
and rate of evolution. From our data it would appear that
many hub proteins are adapted to rapid turnover and/or
regulation as they have both short half-lives and more
phosphorylation sites. The short half-life in particular
suggests that many hubs are not part of long-term stable
interactions and instead form dynamic complexes that are
readily removed from the system (or inactivated by phos-
phorylation) once a given task at a given time is performed.
Many dynamic interactions likely occur via weak interactions
at less conserved and hence less constrained binding surfaces,
such as in the instance of kinase-substrate interactions.
However, we note that dynamic interactions can also be
mediated via conserved binding pockets that bury large
surface areas of the interacting partners. In the latter
instance, subunits marked for rapid turnover by phosphor-
ylation, which often directs ubiquitin conjugation and
subsequent degradation, can be readily stripped from the
rest of the complex by the 26S proteasome and rapidly
degraded [37,38]. In this manner, the same dedicated binding
site may be used to link to many different interaction
partners. A definitive test of the ‘‘just-in-time’’ attribute of
hub interactions will require measurement of protein half-
lives on a proteome-wide scale and systematic determination
of the structural basis for transient protein interactions.

Materials and Methods

Interaction networks. The HTP dataset was created by union of
four HTP studies [21–24]. The LC-PI dataset [13] was obtained from
the BioGRID database (http://www.thebiogrid.org), and the FYI
dataset was obtained from Han et al. [30]. A dataset corresponding
to ;2,000 purified stable yeast protein complexes was created by
connecting each bait to its prey in a spoke model [29]. This latter

Table 3. Descriptive Statistics of Data Used in the Analysis

Data N Ness Nnoness Edges ,k/(N �1). ,cc. ,copies.

LC 3,289 878 2,411 11,334 0.0021 0.53 14,273

HTP 4,474 935 3,539 11,571 0.0012 0.38 12,573

FYI 1,375 528 847 2,491 0.0026 0.71 14,790

Gavin 2006 2,563 752 1,811 18,181 0.0055 0.46 16,286

N is the total number of proteins, Ness is number of essentials, and Nnoness is the number
of nonessential proteins. As connectivity, k, depends on the network size, we normalized
it by the maximum possible connectivity, i.e., N� 1, so that we can compare connectivity
in different networks (the mean relative connectivity is shown as ,k/ N � 1.). This
normalized degree should be interpreted as the percent of total proteins in the network
to which a protein interacts with on average.
cc, the clustering coefficient, a measure of local density; ,copies., the average protein
abundance per cell.
DOI: 10.1371/journal.pcbi.0020088.t003
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analysis was also repeated with a reduced dataset that controlled for
promiscuous interactions by removing preys that occurred in more
than 100 purifications. Descriptive statistics of these networks are
shown in Table 3.

Miscellaneous data. Evolutionary rate data (non-synonymous
substitution per site and synonymous substitution per site) for the
four-way stricto sensu species alignments for 3,036 genes [39],
proteome-wide protein abundance [40], and genome-wide yeast
mRNA half-life [41] datasets were as described. CAI values were
calculated as described [27] using 30 most highly expressed yeast
genes [42]. Predicted phosphorylation data were obtained from
Scansite database at: http://scansite.mit.edu [43] using a high
stringency cut-off. Scansite identifies short protein sequence motifs
that are recognized by modular signaling domains that are
phosphorylated by protein Ser/Thr- or Tyr-kinases, or that mediate
specific interactions with protein or phospholipid ligands. GO
component complex membership information was obtained from
the SGD database (http://www.yeastgenome.org) [44]. To identify
singleton genes, a yeast versus yeast BLASTP was done with E-value
threshold of 0.1 and percent identity cut-off of 20; those proteins
which did not return a hit using these parameters were considered to
be singletons. This procedure resulted in 1,558 singletons. Proteins
that were part of the ‘‘core’’ minus the ‘‘attachments’’ [29] were
considered to be stable complex subunits. Homozygous single-gene
deletion fitness data in rich media (YPD) were as described [45,46].
Average of the two-replicate growth rate fitness measure of the
homozygous deletion in rich media (YPD) was taken from the latter
dataset.

Protein interaction residues. Identity of binding residues data was
obtained from the PRISM database [32]. Identity of residues taking
part in protein–protein interactions were predicted using a computa-
tional approach that used structure information (mostly on multi-
protein complexes) from the Protein Data Bank (PDB) [33]. Briefly,
interfaces were defined as the set of residues that made non-covalent
contacts with residues on other chains or those that were in the
vicinity of these contacting residues. Two residues from the opposite
chains were marked as interacting if there was at least a pair of atoms,
one from each residue, at a distance smaller than the sum of their van
der Waals radii. Of the 166 S. cerevisiae proteins, for which interaction
residue information was available, only those proteins that had a
unique yeast ORF name were retained. Number of binding residues
in the pair-wise domain interfaces was normalized by protein length
to obtain the fraction of the sequence involved in binding. For all
data used in the analysis see Dataset S1.

Statistical methods. The partial Spearman correlation between two
variables, controlling for a third variable, was computed using the
standard formula [26]

Supporting information

Dataset S1. Data Used in This Analysis

Columns: Gene, ESS? (Essential genes, 1 nonessential 0), y2h_or_aff
(method used to find interaction in LC data, 1¼ y2h only, 2¼ affinity
only, 3 ¼ both, 0 ¼ neither), k_lc (number of interactants in LC
dataset, k_htp (number of interactants in HTP dataset), Abd (protein
abundance), CAI, Rib (ribosomal, 1 ¼ yes, 0 ¼ no), fr_bind (fraction

of residues involved in binding), mRNA_1/2 (mRNA half-life),
phosphorylation (number of phosphorylation sites).

Found at DOI: 10.1371/journal.pcbi.0020088.sd001 (980 KB XLS).

Dataset S2. Top 10% of Genes by Connectivity in the LC Dataset

Found at DOI: 10.1371/journal.pcbi.0020088.sd002 (55 KB TXT).

Dataset S3. Top 10% of Genes by Connectivity in the HTP Dataset

Found at DOI: 10.1371/journal.pcbi.0020088.sd003 (50 KB TXT).

Figure S1. The Relationship between Natural Log of Connectivity and
Rate of Protein Evolution for All Genes

NB the slopes on the regression lines are not significantly different
from zero for both LC datasets, but are highly significant (p , 0.0001)
for the HTP data. For the essential genes in the LC set the non-
parametric correlation is weakly significant (r ¼�0.12; p , 0.01) but
sensitive to control for protein abundance.

Found at DOI: 10.1371/journal.pcbi.0020088.sg001 (239 KB PDF).

Figure S2. The Relationship between Natural Log of Connectivity and
Rate of Protein Evolution for Genes with Duplicates

NB the slopes on the regression lines are not significantly different
from zero for both LC datasets, but are highly significant for the HTP
data. For the essential genes in the LC set the non-parameteric
correlation is weakly significant (r ¼�0.12; p , 0.05) but sensitive to
control for protein abundance.

Found at DOI: 10.1371/journal.pcbi.0020088.sg002 (141 KB PDF).

Table S1. Degree versus Fitness for Subsets of LC data (1A) and
Degree versus Fitness for Proteins Found in Both Y2h and Affinity
Purification Methods (1B)

Found at DOI: 10.1371/journal.pcbi.0020088.st001 (28 KB DOC).

Table S2. Degree versus Evolutionary Rate for Subsets of LC Data
(Using dN)

Found at DOI: 10.1371/journal.pcbi.0020088.st002 (25 KB DOC).

Table S3. Degree versus Evolutionary Rate for Subsets of LC Data
(Using dN/dS)

Found at DOI: 10.1371/journal.pcbi.0020088.st003 (25 KB DOC).
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