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Abstract: The paper discusses the evolutionary computation approach to the problem of optimal 

synthesis of Quantum and Reversible Logic circuits. Our approach uses standard Genetic Algorithm (GA) and its 
relative power as compared to previous approaches comes from the encoding and the formulation of the cost and 
fitness functions for quantum circuits synthesis. We analyze new operators and their role in synthesis and 
optimization processes. Cost and fitness functions for Reversible Circuit synthesis are introduced as well as local 
optimizing transformations. It is also shown that our approach can be used alternatively for synthesis of either 
reversible or quantum circuits without a major change in the algorithm. Results are illustrated on synthesized 
Margolus, Toffoli, Fredkin and other gates and Entanglement Circuits. This is for the first time that several 
variants of these gates have been automatically synthesized from quantum primitives. 

 
1. Introduction 

 
Quantum computing is a flourishing and very attractive research area [7, 46, 

48]. Inheriting properties from Quantum Mechanics, it allows theoretically to build 
computers much more efficient than the existing ones. For instance, certain problems 
non solvable in polynomial time in classical domain can be solved in polynomial time 
in quantum domain. Similarly, the complexity of other problems can be reduced while 
transforming them into the Quantum domain [48]. Moreover, Quantum Circuits (QC) 
have an advantage of being able to perform massively parallel computations in one 
time step [7,46,48]. The motivation to develop automated CAD tools for quantum 
circuits becomes recently quite high because according to the results of 
[37,38,39,40,41] such computers can be physically build and the progress of these 
realizations is fast. It is already possible to perform quantum-mechanically simple 
operations with trapped ions or atoms. Simplified but complete quantum circuits were 
constructed using Nuclear Magnetic Resonance technology [48]. The state of the art 
in year 2002 is a 7 qubit quantum computer [45]. For this size of computer the 
problem of quantum circuit synthesis and optimization is not trivial and cannot be 
solved by hand so some kind of design automation becomes necessary. While 
quantum mechanics and quantum computing are established research areas, 
systematic design methods of quantum computers, and especially logic circuit design 
for such computers still remain only at the beginning stages of exploring available 
possibilities. It can be compared to the state of the art of logic design in 1940’s when 
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the first standard binary computers were built and the minimization algorithms like 
those from Quine and Shestakov started to appear. Currently, the works in quantum 
logic design are on: designing new universal gates and investigating their properties, 
creating methods of composing gates to circuits, and building elementary quantum 
circuits for practical applications, for instance arithmetics. New algebraic models for 
quantum logic and circuit design are also investigated. The Computer Aided Design 
of Quantum Circuits is even less developed and there exist only few programs to 
design such circuits automatically or with a limited user intervention. This paper is 
related to new approaches for CAD of Quantum Circuits, the new research and 
development area that we try to establish by our research 
[1,2,10,28,29,30,31,32,33,42,43,55,56,57,58].  

 
So far, analytic and search approaches have been used in quantum logic 

synthesis. They are based on matrix decomposition, local circuit transformations, 
mapping from various types of decision diagrams, spectral approaches, and on 
adaptations of several EXOR logic, Reed-Muller, and other classical combinational 
circuit design methods. Our approach combines some of them but fundamentally 
belongs to the group of Evolutionary Algorithms. The approach has been also used to 
a similar problem of Reversible Circuit (RC) Logic synthesis; such circuits can be 
realized in CMOS, optical and nano-technologies [47]. 

 
Genetic Algorithms (GAs) are one of the well-known Evolutionary Algorithm 

problem solving approaches to Soft Computing [9]. Their use is very popular in 
problems with no identified structure and high level of noise, because: 1) a big 
problem space can be searched, 2) the size of this space can be moderated by 
parameters,  3) a variety of new solutions can be produced, and 4) with long enough 
time a circuit can be obtained that is close to the optimal one. These advantages make 
GAs useful in the initial phases of research and investigations of the design problem 
space. GAs are very good candidates to be used in logic synthesis of new types of 
circuits, investigating the usefulness of new gate types and new circuit structures.  
The special cases of Evolutionary Algorithms include: Genetic Algorithms, 
Evolutionary Programming, Evolution Strategies and Genetic Programming. So far, to 
the best of our knowledge, only two of the four Evolutionary Algorithm types have 
been applied to the QC or RC synthesis. Genetic programming was used to synthesize 
EPR (Einstein-Podolsky-Rosen) pairs of qubits [5], while a growing number of works 
uses a classical GA for QC and RC synthesis. For instance,  [1,2,3,6,7,8,54] used GA 
to evolve quantum and reversible gates and circuits, like the teleportation circuits. A 
reversible circuit is one that has the same number of inputs and outputs and is a one-
to-one mapping between vectors of input and output values. Such circuits are related 
to quantum circuits. An attempt at a general approach to encode both Quantum and 
Reversible Circuits was presented in [1,2]. It is known that every quantum circuit is 
reversible [7,46,48], so the researches on classical binary reversible synthesis and 
quantum synthesis share many ideas. The Reversible Logic (RL) circuits [14,15,20] 
are already technologically possible and have been implemented in CMOS technology 
[47]. Thus, some of our results below are applicable also to such circuits.  As 
described later, most of gates with more than one input used in QC are derived and 
originate from RC. Although this work is concerned with one approach to automated 
synthesis, it is important to notice that a parallel research on new gates is also 
explored by [10,20,21,22,23,24,25,26,27,28,29,50,51,52]. The search of new 
Quantum gates (QG) and Reversible gates (RG) has two different aspects: invention 



and generalization. The invention of new gates is mainly aimed toward an 
optimization of a particular design in a specific technology or towards inventing new 
universal gates. The generalization approach is the use of already known gates and 
exending them to new gates of certain preferable properties. Usually there are also 
new particular synthesis methods that come together with proposed new gates 
[30,31,32,33,34,55,57,58]. 

This paper is organized as follows. Section 2 presents the minimal background 
in quantum circuit design necessary to understand the paper. Examples are used to 
illustrate the most important notions. Section 3 describes the general problem of 
synthesis of quantum circuits (called also quantum arrays) from primitive quantum 
gates, especially using evolutionary algorithms. Section 4 presents decomposition of 
gates to smaller primitives related to the cost of these gates. More realistic cost 
function for gates are one of main innovations of this paper. Section 5 presents our 
entire minimization methodology for quantum arrays synthesis. The sixth section 
describes local optimizing transformations used in the post-processing stage of GA. 
Section 7 presents our variant of GA and its settings for this work. Section 8 gives 
more details on the most important aspect: the fitness function design for GA and its 
role.  Section 9 presents other aspects of the Genetic Algorithm that we applied. 
Section 10 describes experimental results and section 11 discusses issues and 
advantages of this approach as well as our current and future research and open 
questions. Section 12 concludes the paper. 

 
2.  Fundamentals of Quantum Logic 
 
In quantum computation quantum bits (qubits) are used instead of classical 

binary bits to represent information. These information units are derived from the 
states of micro-particles such as photons, electrons or ions. These states are the basis 
states (basis vectors, eigenstates) of the computational quantum system. Assume an 
electron with two possible spin rotations: +1/2 and –1/2. Using Ket notation [12,13] 
these distinguishable states will be represented as |0> and |1>, respectively. Each 
particle in a quantum domain is represented by a wave function describing it as 
having both properties of a wave and of a particle as introduced by [11,12,13,16]. 
Based on these properties, quantum computation inherited the powerful concept of 
superposition of states. Assume a particle p1 be represented by a wave function ψ1 = 
α1|0> + β1|1>. The coefficients α and β are complex numbers called the eigenvalues. 
They must be in general complex because only having complex  values in wave 
functions  allows to eliminate themselves in order to satisfy some experimentally 
observed properties of quantum world, such as for instance in the Two-Slit 
experiment [17]. It is not our goal here to explain such experiments or formulate 
fundaments of quantum mechanics. (The reader can find information in literature, 
especially [48]). Our goal is only to introduce the formal calculus of quantum 
mechanics in order to explain the basic concepts of our CAD algorithms and 
especially the genetic algorithm for quantum circuit synthesis. Similarly as an 
engineer who has no understanding of electronic circuits, but knows only Boolean 
Algebra,  is able to develop logic circuits synthesis software, one with no 
understanding of quantum phenomena and physics will be able to develop quantum 
CAD if he will only learn some fundamental quantum notation and associated 
algebraic properties and transformations. To teach these to the Reader is one of the 
goals of this paper. 

 



  The interpretation of wavefunction ψ1 is that  |α1|2 is the probability of the 
particle being measured in state |0> and |β1|2 is the probability of that particle being 
measured in state |1>. Thus, the measurement or observation process transforms the 
quantum world of complex wavefunctions to the macro-world of events that occur 
with standard probabilities.  The superposition of states is represented by these facts: 
(1) each of these probabilities can be non-null, (2) |α1|2+|β1|2=1, and  (3) if another 
particle p2 with a wavefunction ψ2 = α2|0> + β2|1> is added to the system, then the 
resulting wavefunction will be |ψ1ψ2> = α1α2|00> + α1β2|01> + β1α2|10> + β1β2|11>. 
The system can be in any possible state of the wavefunction and will collapse to one 
of the eigenstates when measured [19]. The space of quantum computing is thus much 
larger than in classical computing, which causes that efficient algorithms for synthesis 
and analysis of quantum circuits are more difficult to develop. However, certain 
similarities exist which will be useful for us to explain the synthesis issues, especially 
to the readers with a digital design engineering background. The equations introduced 
above are the result of the Kronecker product [18] on matrices of elementary quantum 
gates that operate “in parallel”. The Kronecker Product of Matrices is defined as 
follows: 
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Mathematically, it is the Kronecker Product operation that allows the quantum 
logical system to grow dimensionally much faster than classical logics. Observe that 
in a quantum system n qubits represent a superposition of 2n states while in a classical 
system n bits represent only 2n distinct states. Operations over a set of qubits are 
defined as matrix operations and map the physical states into the Hilbert space. 
[13,46,48]. The concept of Hilbert space will be used below only in the most 
elementary way necessary to understand the calculations. States of the wave function 
are eigenvalues of this space. Each matrix-operator represents a modification to the 
complex coefficients of the wave function. The new coefficients  result in the 
modification of probabilities to find the system in a particular basic state. But we do 
not have to worry about classical probabilities in this paper since the operation of a 
quantum circuit is purely deterministic, so we will always deal with eigenvalues 
(complex probability) rather than standard probabilities in circuit design. 
Consequently a quantum gate will be a matrix having for input the vector of complex 
coefficients of the waveform and producing a vector of complex coefficients as the 
output. An illustrative example can be seen in equation 1. 
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where a, b, c, and d are complex coefficients of the matrix indicating the (complex) 
probability to transit  from one state to another, and α|0>, β|1> are the (complex) 
wavefunction coefficients to be propagated through the matrix-operator. Less 
formally, we can think about this matrix as a quantum equivalent of a classical gate 
such as AND which transforms its input states into output states. The designer of 



quantum algorithms has to deal with standard probabilities, but the designer of 
quantum circuits, which is our interest here, deals only with operations in quantum 
world because his input problem is described in such a way. 
 
          Assume j to be the square root of  –1. Let us denote by U+ a hermitian matrix of 
matrix U, which means the complex conjugate of the transposed matrix U (the matrix 
U is first transposed and next each of its complex numbers is replaced with its 
conjugate, thus a – jb replaces a +jb). We say that gate U is unitary when  U*U+ = I, 
where I is an identity matrix. It can be shown that because the probabilities must be 
preserved at the output of the quantum gate, all matrices representing  quantum gates 
are unitary.  Thus every quantum gate, block and the entire circuit is described by a 
unitary matrix. Every quantum gate has therefore exactly one inverse matrix – 
quantum computing is reversible; quantum gate matrices represent logically reversible 
gates. Some of those gates are exactly the same as in classical reversible computing, 
which allows to use some results of binary reversible computing in quantum 
computing. While in general the coefficients in unitary matrices of quantum circuits 
are complex numbers, there are some special and important gates for which unitary 
matrices are just permutation matrices. (Let us recall that a permutation matrix has 
exactly one “1” in every row and in every column and all other entries are zeros – it 
describes therefore an input-output permutation of value vectors). The gates whose 
unitary matrices are permutation matrices are called permutation gates and they 
correspond to gates of classical reversible logic. There exist, however, other important 
gates whose unitary matrices are not permutation matrices. Rotational operators 
(gates) and gates such as Hadamard gate (denoted by H) and Square Root of Not Gate 
(denoted by V) belong to this second category which we will call “truly quantum 
primitives”. These gates are responsible for superposition, entanglement and all 
peculiarities of quantum computing, although they may constitute only a small 
fraction of gates in a quantum circuit. A Hadamard gate is an example of a gate that 
has a unitary matrix which is not a permutation matrix. Here are some useful 
matrices: 
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We will denote these gates by H, X, Y, Z, S and V, respectively. Only X is 
permutative. It can be easily checked by the reader that multiplying the matrix of gate 
V by itself produces the matrix of  Pauli-X which is an inverter or NOT gate. The 
reader can find interesting identities by multiplying these matrices by themselves and 
also by their inverse matrices. Such identities in quantum logic are used to simplify 
the quantum circuits that come directly from evolutionary algorithms (section 6). 
They play a role analogous to Boolean algebra identities such as De Morgan used in 
classical logic synthesis. 
Below we will pay special attention to circuits composed of only permutation gates 
(these are the so-called permutation circuits, because their unitary matrices are 
permutation matrices). An example of a permutation gate is the Feynman gate (called 
also CNOT gate or Quantum XOR). This gate can be described by the following logic 
expressions: (A,B) => (P, Q) = (A, A⊕B), see Figure 1a. This equation means that the 



output bit P is just the same as its input A, while on the output of the second wire Q 
the operation A ⊕ B is performed. This operation (EXOR of A and B) is a standard 
logic operation. Sometimes notation A’= P and B’= Q is used (Figure 1c,d,e). (In 
other papers notation A’=A, and B’=B is used to underlie the fact that the result 
occurs on the same quantum wire A or B). These expressions are also related to the 
quantum matrix. For instance, the permutation matrix and the equations from Figure 
1c  describe the Feynman operator from Figure 1a,b. The careful reader may verify 
that this is indeed a unitary matrix and that it satisfies the definition of a permutation 
matrix as well. Observe that each of its rows and columns corresponds to one of 
possible states of input and output values: 00, 01, 10, and 11. The binary states are 
encoded to natural numbers as follows: 00=0, 01=1, 10=2, 11=3. We will use natural 

numbers to address rows and columns in matrices. Let us observe that when A = 0 
and B = 0, then A’=B’=0. Thus, input combination 00 is transformed to output 
combination 00. This is represented by a value of “1” at the intersection of row 0 and 
column 0 of the matrix. Similarly, input combination 11 is transformed to output 
combination 10, which is represented by a value of “1” at the intersection of row 3 
and column 2 (Figure 1c). Another variant of Feynman gate is in Figure 1d,e. 

Figure 1: Feynman gates: (a) the circuit in quantum array notation, (b) the 
transformation between states executed by this gate, (c) the unitary matrix with 
binary enumeration of rows and columns and the corresponding Boolean equation 
of outputs, (d) Feynman EXOR up circuit scematics, (e) its unitary matrix and 
Boolean equations 

 
      
 
 
 
 
                    
 
                                             



 
 
 

Figure 2: Swap gate: (a) unitary matrix and corresponding Boolean equations, (b) 
realization using Feynman gates, (c) a schematic, (d) another realization using 
two Feynman gates and one Feynman EXOR up gate. 

Figure 2 presents another permutation gate called a Swap gate. Observe that 
this gate just swaps the wires A and B, since input state 01 is transformed to output 
combination 10, input vector 10 is transformed to output vector 01 and the remaining 
combinations are unchanged (Figure 2a).  Swap gate is not necessary in classical 
CMOS reversible computing, where it is just a crossing of connecting wires that can 
be for instance in two layers of metallization. However, in quantum computing 
technology like NMR, every unitary matrix other than identity is realized by NMR 
electromagnetic pulses so its realization has a cost. High cost of swap gates in 
quantum realization is one of main differences between quantum and reversible 
circuit synthesis (in reversible computing these gates are free). Thus quantum circuit 
design covers some aspects of not only logic synthesis but also physical design 
(placement and routing) of standard CAD. 

Let us introduce now few more gates that we will use. There are several 2*2 
gates in binary reversible logic and they are all linear. A linear gate is one that all its 
outputs are linear functions of input variables. Let a, b, and c be the inputs and P, Q 
and R the outputs of a gate. Assuming  2*2 Feynman gate, P = a, Q = a ⊕ b, when a 
= 0 then Q =b; when a = 1 then Q = ¬ b. (Sometimes the negation of a is also denoted 
by a’). With b=0 the 2*2  Feynman gate is used as a fan-out (or copying) gate. It can 
be shown that a swap gate can be built as a cascade of three Feynman gates – Figure 2 
(the reader can check it by multiplying matrices or by transforming Boolean equations 
of gates). Figure 2b shows realization of Swap gate with three Feynman gates, and 
Figure 2c its schematics. Observe that there is also another realization of the Swap 
gate (Figure 2d). Circuits from Figure 2b and Figure 2d are then called equivalent or 
tautological.  Every linear reversible function can be built by composing only 2*2 
Feynman gates and inverters. There exist 8! = 40,320 3*3 reversible logic gates, some 
of them with interesting properties, but here we are not interested in types of gates but 
in synthesis methods using arbitrary permutation gates, so we will restrict ourselves 
to only few gate types (many other gate types have been defined in our software). 
There exist two well-known universal 3*3 reversible gates: Fredkin gate [14] and 



Toffoli gate. Toffoli gate is also called 3*3 Feynman gate or Controlled-Controlled–
NOT (Figure 3). The 3*3 Toffoli gate is described by these equations:  

 P = a,        Q = b,      R = ab  ⊕  c.  
Toffoli gate is an example of two-through gates, because two of its inputs are given to 
the output. Similarly, the concept of k-through gates can be introduced, as well as the 
concept of k*k Toffoli Gates. In general, for a reversible gate with n inputs and n 
outputs, the matrix is of size 2n * 2n. 

 
The 3*3 Fredkin gate (Figure 4) is described by these equations:  

 P = a,        Q = if a then c  else b,         R = if a then b  else c.  
As we see, in terms of classical logic this gate is just two multiplexers controlled in a 
flipped (permuted) way from the same control input a. The symbol notation for a 3*3 
Fredkin Gate is shown in Figure 4a. Qubit a is the controlling qubit. A classical 
schematics of this gate that uses multiplexers is shown in Figure 4b. As we see, the 
3*3 Fredkin gates are permutation gates, they permute the data inputs b,c of  the 
multiplexers under control of the control input a of these multiplexers that is also 
outputted from the gate. The fact that output  P replicates input a is very useful 
because it allows to avoid  fanout gates for the same level of the circuit (let us recall 
that fanout is not allowed in reversible logic). Copying of arbitrary signals is not 
allowed in quantum circuits (no cloning principle) [48], so the replication using 
Feynman gates can be applied only to basis states. Figure 4c presents a Fredkin gate 
controlled with qubit c. In Figure 4d qubit b is the controlling qubit. Realization of 
Fredkin gates using Toffoli and Feynman gates is shown in Figure 5. 
 

Figure 3. Toffoli gates: (a) a schematic of Toffoli gate (EXOR down), (b) Toffoli 
gate (EXOR middle), (c) realization of schematics from Figure 3b using the Toffoli 
EXOR down and two Swap gates, (d) realization of Toffoli EXOR middle with 
permuted input order 



 
Fredkin gates are examples of what we define here as one-through gates, which 
means gates in which one input variable is also an output.  

Figure 4. Fredkin gates: (a) Schematics with controlled qubit a, (b) the classical 
schematics of this gate using multiplexers, (c) Fredkin gate controlled by qubit c 
(Fredkin Down), (d) Fredkin gate controlled by qubit b (Fredkin middle). 

         Figure 6 presents the well-known realization of Toffoli gate from [21]. 
According to the figure in right (Figure 6b), there are five 2-qubit primitives.  Let us 

explain how the quantum primitives cooperate to create correct gate behavior. The 
non-permutation matrices of  quantum primitives are composed to create permutation 

 

ac⊕ba’ 

a 

c 

b 

a  
 
 Toffoli 

a 

ac⊕ba’ 

ca’⊕ac c 

b

a 

=
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Figure 6: Toffoli gate synthesized using only 2-qubit primitives as proposed by 
Smolin.



behavior of the entire gate. Observe that Controlled-V and Controlled-V+ quantum 
primitives are used. V is the unitary matrix called Square-Root-of-Not, thus a serial 
connection of gates V realizes an inverter: V*V = NOT. Matrix V+ is the hermitian of 
V. As we remember from the definition of hermitian, we have that V * V+ = I which 
is the identity matrix (describing a quantum wire). The Controlled-U gate (Figure 7) 
works as follows: when the controlling signal a (upper signal in gate Controlled-U) is 
0, the output Q of the lower gate repeats its input b. When the controlling signal a is 
1, the output of the lower gate is the operator of this gate (matrix U) applied to its 
input  b (Figure 7). Therefore, in case of the Controlled-V gate, the output is operator 
V applied to the input. In case of Controlled-V+ gate, the output is operator V+ applied 
to the input of the gate.  The reader can verify in Figure 6b that when a=1, b=0, the 
operation V * V+ = I is executed in line c, thus the output of this gate repeats the value 
of c. When a = 1 and  b = 1, the operation V * V =NOT is executed in line c, thus the 

lowest output is a negation of input c.  Which is the same as ab ⊕ c executed in on the 
corresponding qubit in Toffoli (Figure 6a). Other output values are also the same as in 
the Toffoli gate equations. The reader is asked to analyze the operation of this gate on 
the remaining input combinations to verify its correctness. Let us also remember that 
Feynman gate has two variants. The EXOR gate can be on an upper or on a lower 
wire. Similarly, there are three 3-qubit Toffoli gates, EXOR-up, EXOR-down and 
EXOR-middle (Figure 3). Observe that these gates have all different unitary matrices 
so they are formally different quantum gates. 

Figure  7. A general-purpose Controlled Gate. When a = 0 then Q = b, when a = 1, 
then Q = U(b). 

 
 

3. Evolutionary Approaches to Synthesis of Quantum Arrays 
 
There are basically two methods of designing and drawing quantum circuits. In the 
first method you draw a circuit from gates and you connect these gates by standard 
wires. This is like in classical circuit design, but your gates are reversible or 
quantum gates. The rules to design a reversible circuit using this approach are the 
following: (1) no loops allowed in the circuit and no loops internal to gates, (2) fan-
out of every gate is one (which means, every output of a gate can be connected only to 
one input terminal). These rules preserve the reversible characteristic of gates thus  
the resulting circuit is also completely reversible. Next, when you draw the circuit, the 
gates are placed on a 2-dimensional space and the connections between them are 
routed. Every crossing of two wires in the schematics is replaced with the quantum 
Swap gate making the schematics planar, which means, no more two wires intersect 



in it. The  schematics is thus rewritten to a quantum array notation illustrated below. It 
is relatively easy to transform a quantum array to its corresponding unitary matrix, as 
will be illustrated in the sequel. Kronecker and standard matrix multiplications are 
used in this transformation. A unitary matrix of a parallel connection of gates A and B 
is the Kronecker product A⊗B of matrices A and B. A unitary matrix of a serial 
connection of gates A and B is the standard matrix product A * B of matrices A and 
B.  Transformation of quantum array to its unitary matrix is done for analysis or 
verification and is a part of our evolutionary algorithm. The approaches that use this 
first design method of reversible circuits are closer to those of the classical digital 
CAD where the phases of logic synthesis and physical (geometrical) design are 
separated. 

The second design method for quantum circuits is to synthesize directly the 
quantum array of a circuit that was initially specified by a unitary matrix.  This is 
done without involving additional graph-based or equation-based representations. The 
synthesis is done by one of two approaches:    

(a) composing matrices of elementary gates in series or in parallel until the 
matrix of the entire circuit becomes the same as the specification matrix, 

(b) decomposing the specification matrix of the entire circuit to parallel and 
serial connections of unitary matrices until all matrices correspond to 
matrices of elementary gates directly realizable in the given technology.  
For simplification, from now on we will talk interchangeably about a gate 
and its unitary matrix. 

 In another synthesis variant, called the approximate synthesis, it is not required that 
the circuit specification matrix and the matrix of composed gates are exactly the same. 
They can differ by small allowed values or/and differ in some matrix coordinates 
only.  
 

The synthesis problem of a quantum array has therefore a simple formulation 
as a composition or decomposition problem, but practical realization of synthesis 
algorithms for quantum circuits is extremely hard.  Observe that even in the case of 
standard (irreversible) binary logic these composition and decomposition approaches 
are computationally very difficult and it is only very recently that  they are becoming 
practical in CAD software, because of their high computational complexity. In the 
case of quantum logic the situation is much more difficult,  because of the fast 
increase of data sizes and because so far the mathematics of description 
transformations is limited, heuristics are not known and there are no counterparts in 
quantum logic of such familiar notions as Karnaugh Maps, prime implicants or 
reductions to covering/coloring combinatorial approaches. Therefore most authors 
turned to evolutionary algorithms as the fast prototyping methods for quantum arrays 
[1,2,3,5,6,8,54]. These approaches seem to be good for introductory investigations of 
the solution space and its properties, with the hope that by analyzing solutions we will 
learn more about the search space and ultimately create more efficient algorithms. As 
we will see below, this phenomenon actually happened in case of our research.  

In the evolutionary computation approach to quantum synthesis, two key 
elements strongly influence the convergence of the search.  These are:  (1) the 
evaluation function (called also the fitness function), and (2) the encoding of the 
individuals [9].  Genetic programming uses the encoding of data to trees so the 
operations on them are very time-consuming [36]. Here we propose a new way to 
calculate costs of gates and circuits as a part of the fitness function. Also proposed is a 
new method of QC and RL circuit encoding in a GA. Since we use the same encoding 



for QC and RL and for many variants of algorithms, design parameters and cost 
functions, we can easily compare respective synthesis results under strictly the same 
conditions.  This has been not accomplished by previous authors. 

 
The synthesis of quantum logic circuits using evolutionary approaches has two 

fundamental aspects.  
First, it is necessary to find the circuit that either (A) exactly corresponds to 

the specification, or (B) differs only slightly from the specification. Case (A) is 
verified by a tautology of the specification function and solution function. In case of a 
truly quantum circuit this is done by a comparison of unitary matrices. In case of 
permutation functions this can be also done by comparing the truth tables. Observe 
that non-permutation matrices  cannot be represented by truth tables which leaves the 
representation of unitary matrices as the only canonical function representation. This 
representation is responsible for less efficient tautology verification during fitness 
function calculations, which considerably slows down the software. Case (B) for 
permutation circuits is verified by an incomplete tautology (tautology with accuracy 
to all combinations of input values and with arbitrary logic values for don’t care 
combinations). In some applications such as robot control or Machine Learning it is 
sufficient that the specification and the solution are close, like, for instance, differing 
only in few input value combinations.  

Second fundamental aspect of quantum logic synthesis is that the size (cost) of 
the circuit has to be minimal, in order to allow the least expensive possible quantum 
hardware implementation (like the minimum number of electromagnetic pulses in 
NMR technology). The cost differs for various technologies, but some approximate 
costs functions will be formulated here that are still more accurate than those 
previously proposed in the literature. 

Consequently, the fitness function of the GA should take into account both the 
above-mentioned aspects, which means the GA should be designed so as to minimize 
both the distance from the specification and the final circuit cost simultaneously. 
Sometimes we are not interested only in those solutions that meet the specification 
exactly.  Usually we are not interested in the solution that would have the exact 
minimal cost. Multiple designs of a GA are tested here and their results are compared 
in order to select the minimum cost solution. This approach not only improves the 
cost of any solution found, but also helps us to develop gradually better generations of 
our evolutionary/algorithmic/heuristic programming tools for QC CAD.  

In our software the fitness function is optimized for the minimal cost, speed of 
synthesis or precision of synthesis. In case of designing a reversible circuit, the fitness 
function can be also optimized for the speed of synthesis, the cost of the circuit or for 
the total number of wires (insertion of a minimum number of constants). These two 
methods of optimization for each technology and logic type allow to  formulate 
precise constraints for the synthesis method in use.   

In this paper we derive more precise cost functions for gates to be used in the 
optimization algorithm. We will follow the footsteps of some previous papers in 
quantum computing and we will realize all gates from 1* 1 gates (called also 1-qubit 
gates) and 2*2 gates (i.e. 2-qubit gates). Moreover, according to [21] we will assume 
that the cost of every 2*2 gate is the same.  Although our methods are general, to be 
more specific we assume Nuclear Magnetic Resonance (NMR) quantum computers 
[4,49,50,51,52], for which we approximately assume costs of all 1-qubit gates to be 1, 
and 2-qubit gates to be 5. Thus, every quantum gate (particularly, every permutation 
quantum gate) will be build from only 1-qubit and 2-qubit primitives and its cost 



respectively calculated as the total cost of these primitives used in the circuit. 
Obviously, this approach can be used for both QC and RC, since in evolutionary 
approaches we can always arbitrarily restrict the gates used for synthesis, and in case 
of RC only a subset of permutation gates can be selected. 

 
4. Costs of quantum gates. 

 
An important problem, not discussed so far by other authors, is the selection of 

the cost function to evaluate the QC (or RC) designs.  Although the detailed costs 
depend on any  particular realization technology of quantum logic, so that the cost 
ratios between for instance Fredkin and Toffoli gates can differ in NMR and ion trap 
realizations, the assumptions used in several previous papers [2,3,4,5,6,8]; that each 
gate costs the same, or that the cost of a gate is proportional to the number of 
inputs/outputs, are both far too approximate.  These kinds of cost functions do not 
provide any basis for the synthesis optimization and as shown by us [1, 2] can lead to 
quantum sequences for NMR that are far from the minimum.  In this section some of 
the well-known decompositions of known 3-qubit quantum permutation gates, as well 
as the new gates, will be discussed to illustrate this problem.  

The cost of quantum gates in synthesis methods can be seen from as many 
points of view as there are possible technologies. Previous researches used specific 
cost to minimize the number of wires per gate, the number of gates in the circuit or 
other task-specific criteria. Assume a random function to be synthesized in QL and 
defined over a set of basic variables a, b, c and d. This function will use 4 qubits and 
the unitary matrix representation of the circuit will be of size 24 * 24. The matrix 
representation can be also called the evolution matrix of the system [10] but this name 
has nothing to do with evolutionary synthesis algorithms. Defined as quantum 
evolutionary processes, there is theoretically an infinity of possible quantum gates. In 
the present work only well-known and widely used unitary quantum gates, as those 
listed above,  will be used. The user of our software can however very easily extend 
the system by defining arbitrary gates as 256-character symbols together with their 
unitary matrices and natural numbers for costs. This applies also to multi-qubit gates 
and multi-valued quantum gates [55]. 

Based on NMR literature [49,50,51,52] we assume the 1-qubit gates to have a 
cost of 1 and the 2-qubit gates to have the cost of 5. This leads to 3-qubit gate costs of 
about 25.  From this cost attribution it is evident that the optimization should be aimed 
toward the use of gates with as few qubits as possible. The cost of the circuit is the 
total cost of gates used. Of course, especially using GAs, the search might not always 
be successful but a solution will have always two evaluation criteria:  the final circuit 
error and the final cost calculated after the optimizing “local equivalence” 
transformations being applied to the initial circuit produced by a GA. (Sometimes we 
use in GA more precise gate costs if they are known from the literature, but the costs 
given above will be used for illustration purposes here). 

In the ideal case the GA will find an optimal circuit; i.e. the circuit with the 
smallest possible cost and with the correct matrix representation. Two worse 
alternatives are: (1) a circuit with a higher cost than the minimum but still with a 
correct matrix, (2) a circuit with not completely correct matrix but with a smaller cost. 
For future use let’s refer to these three groups of alternatives as Co (optimal cost), Ca 
(average cost) and Cw (worst cost), respectively. In the case of RL circuit synthesis 
the differences in results can occur on one more level: as mentioned before, input 
constants insertion is allowed in RL synthesis. However, we want to minimize the 



number of such constants in order to reduce the circuit’s width. Once again, as will be 
shown below, this parameter can be also taken into account by our software as part of 
the cost function. Consequently, one can obtain a correct circuit with a small cost of 
gates but with a higher number of wires.  

  
 

Cost of the result in gates 
Cg 

Function 
found 

Total Cost Ct 

   
1.   Min ≤ Cg YES Min ≤ Ct 
2.   Min < Cg < Max YES Min < Ct < Max 
3.    Cg ≤ Max YES Min < Ct < Max 

   
4.    Min ≤ Cg NO Min < Ct < Max 

5.     Min < Cg < Max NO Min < Ct < Max 

6.     Cg ≤ Max NO Ct ≤ Max 

Table 1: Illustration of possible results using a combination of cost function per gate 
Cg and a global evaluation cost function Ct. The column in the middle indicates if the 
searched function was found or not found.  

Table 1 systematizes possible results of a Quantum Circuit synthesis. In the 
table possible search solutions are characterized with respect to the combinations of 
the two cost functions.  
         The cost Cg is the cost of the circuit based on the sum of costs of all gates. Ct is 
the total cost where the correctness of the result is also included, based on one of the 
previously explained verification methods between the specification and the obtained 
circuit descriptions. As will be seen, both of these two cost functions can be handled 
in order to accelerate or moderate the speed of convergence of the entire synthesis 
process. A closer look at the table will reveal three categories of results as previously 
described. These are circuits with small, average and high total costs, respectively. 
These types can be again separated in two, depending whether the final solution was 
found or not. Groups 1, 2, and 3 are for exact design, groups 4, 5, and 6 for 
approximate. Groups 1 and 4 correspond to C0, Groups 2 and 4 to Ca, and groups 3 
and 6 to Cw. The category with the most circuits is the one with an average cost, and 
as will be seen later it is this category that needs particular attention while selecting 
and adapting a fitness function for a synthesis problem. Min and Max in the table are 
some parameters set by the user and based on experience. 

Now let us continue the discussion of the circuit decomposition into 
primitives. Let us consider one practical example. The Toffoli or Fredkin gates 
introduced in section 2 are both universal quantum logic gates that are well-known. 
They have been built in several quantum and reversible technologies. The problem is 
to find an optimal decomposition of the universal gates into smaller parts, especially 
the directly realizable quantum primitives such as Feynman, NOT or Controlled-V 
(C_V) gates. As mentioned earlier, the gates with one and two qubits have costs 1 and 
5, respectively. Consequently the assumption of using only 1-qubit and 2-qubits gates 
will be observed since only such gates are directly realizable in quantum hardware. 
Other gates are only abstract concepts useful in synthesis and not necessarily the best 



gates for any particular quantum technology (like NMR in our case). Figure 6 
presented the well-known realization of Toffoli gate from [21]. According to Figure 
6b there are five 2-qubit primitives, so the cost is 5 * 5 = 25. 

Now that we learned in section 2 how Toffoli gate works internally based on 
the operation of its component quantum primitives, we will realize the Fredkin gate 
from the Toffoli gate. Using a GA [1,2] or the synthesis method from this paper, we 
can synthesize the Fredkin gate using two Feynman gates and one Toffoli gate as in 
Figure 5. The cost of this gate is 2*5 + 25 = 35. 
           Substituting the Toffoli design from Figure 6b to Figure 5 we obtain the circuit 
from Figure 8a. Now we can apply an obvious EXOR-based transformation to 
transform this circuit to the circuit from Figure 8b. This is done by shifting the last 
gate at right (Feynman with EXOR up) by one gate to left. The reader can verify that 
this transformation did not change logic functions realized by any of the outputs. 
Observe that a cascade of two 2*2 gates is another 2*2 gate, so by combining a 
Feynman with EXOR-up gate (cost of 5), followed by controlled-V gate (cost of 5) 
we obtain a new gate C_V with the cost of  5. Similarly gate C_V+ with cost 5 is 
created. This way, a circuit from Figure 8c is obtained with the cost of 25. (This 
transformation  is based on the method from [21] and the details of cost calculation of 
C_V and C_V+ are not necessary here).  Thus, the cost of Toffoli gate is exactly the 
same as the cost of Fredkin gate, and not half of it, as previously assumed and as may 
be suggested by classical binary equations of such gates.  

c)  
C_V+ 

V

 
C_V

b) 

a)

V+VV

V+VV
Figure 8: Example of reducing cost in the Fredkin gate realized with quantum 
primitives.  Gates C_V and C_V+ in Figure 8c are created by combining respective 
quantum primitives from Figure 8b which are shown in dotted lines. 
Encouraged with the above observation  that sequences of gates on the same 
quantum wires have the cost of only single gate on these wires, we used the same 
method to calculate costs of other well-known gates. Let us first investigate a function 
of three majorities investigated by Miller [22,23,56]. This gate is described by 
equations: P = ab ⊕ ac ⊕ bc, Q = a’b ⊕ a’c ⊕ bc, P = ab’ ⊕ ac ⊕ b’c. Where a’ is a 
negation of variable a. Function P is a standard majority and Q, R are majorities on 
negated input arguments a and b, respectively [56]. We realized this function with 



quantum primitives, found it useful in other designs and thus worthy to be a stand-
alone quantum gate. We call it the Miller gate [56]. As seen in Figure 9a, the Miller 
gate requires 4 Feynman gates and a Toffoli gate, which would suggest a cost of 4*5 
+ 25 = 45. However, performing transformations as in Figure 9b, we obtain a solution 
with cost 35. Another solution obtained by the same method has cost 35 and is shown 
in Figure 9c. It is also based on simple EXOR transformation (x⊕y) ⊕ z = (x⊕z) ⊕ y 
applied to three rightmost Feynman gates from Figure 9a, with  EXOR in the middle 
wire y. (More on optimizing equivalence-based transformations in section 6). Again, 
the Miller gate, based on its binary equations, looks initially much more complicated 
than the Toffoli gate, but a closer inspection using quantum logic primitives proves 
that it is just slightly more expensive.  

 
 

5. Our Entire minimization methodology of quantum arrays 
synthesis. 

 
Based on examples from section 4, let us observe that a new permutation 

quantum gate with equations: 
 
P = a, 
Q = a ⊕ b, 
R = ab ⊕ c   
 

can be realized with cost 20. It is just like a Toffoli gate from Figure 6b but without 
the last Feynman gate from the right. This is the cheapest quantum realization known 
to us of a complete (universal) gate for 3-qubit permutation gate (Figure 10). It is thus 
worthy further investigations. We found that the equation of this gate was known to 
Peres [35], but it has not been used in practical designs of quantum or reversible 
circuits.  We propose here to consider the Peres gate as a base of synthesis and 
transforms, similarly as 2-input NAND gates are used in technology mapping phase 
of classical Boolean CAD. 
 
         Observe that assuming the availability of Peres gate, the algorithms from 
literature (for instance [25,26]) will not lead to a quantum array with minimum 
quantum costs formulated as above. When given the unitary matrix of the Peres gate, 
these algorithms would return the solution of cost 30 composed from one Toffoli gate 
and one Feynman gate, which would lead to clearly non-minimal electromagnetic 
pulse sequence. Thus, improved synthesis algorithms should be created to minimize 
the realistic quantum gate costs introduced in [21] and in this paper. Observe please 
also, that if a post-processing stage were added to the algorithms from 
[22,23,24,25,26] (or to the result of the GA from section 7), then the optimum 
solution (of a single Peres  gate and cost of  20) would be found for this example.  
 
        Therefore our entire synthesis and optimization approach to quantum arrays is 
the following.  

1. First create the circuit by some approximate synthesis method 
(evolutionary algorithm in our case),  

2. Apply macro-generation of complex gates to quantum primitives, 
3. Apply the optimizing equivalence-based  transformations. 
 



The application of this procedure to our example will have the following stages: 
(a) the initial solution is a Toffoli gate followed by a Feynman gate (with EXOR 

down) on quantum wires 1,2  (Figure 10b). 
(b) the macro-generation of the Toffoli gate leads to a Peres gate followed by the 

Feynman gate (with EXOR down) on quantum wires 1,2.  
(c) the equivalence-based transformation (presented below) will find a pattern of two 

Feynman gates of the same type (EXOR down) in sequence, which is replaced 
with two quantum wires, 1 and 2 (Figure 10c). 

(d) thus the two right Feynman gates are cancelled, the same way as two inverters in 
series are cancelled in standard logic synthesis.  

(e) the resultant circuit, a final solution, will have just one Peres gate of cost 20 
(Figure 10d). 

a)

c)

b) 

V V V+

V V V+

V V V+
z 

y 

x 

Figure 9: Reducing the cost of realization of Miller gate using quantum primitives: 
Feynman EXOR up, Feynman EXOR down, Controlled-V (V down), and Controlled 
V+ (V+ down) 

. As can be seen from previous examples, the gates matrices have infinity of possible 
representations in QL. The above samples of synthesis are situated in the Co category 
of Table 1, because if eventually a smaller circuit of a Fredkin gate were found, then 
the one presented here will remain very close to the minimal cost. Consequently the 
group that needs the closest inspection is the Ca because it includes circuits of great 
interest. As the number of circuits is infinite, the circuits in the last group can be 
considered as being too far from the searched solution. However the circuits in the 
group having average cost (not too far from the solution and not too big) can be 
simplified to better ones, and also they can already include parts of the optimal 
circuits. 

 
 
 

  
 

6. Local Transformations. 
The transformations are grouped in 12 transformation sets. There are the following 
sets: 
S1.  1-qubit transformations, 



S2.  2-qubit transformations, 
S3.  3-qubit transformations, 
S4.  4-qubit transformations, 
S5.  n-qubit transformations, 
S6.  Ternary transformations, 
S7.  Mixed binary/ternary transformations, 
S8.  Macro-generations, 
S9.  Macro-cell creations, 
S10. Peres Base transformations, 
S11. Toffoli Base transformations, 
S12. Controlled-V Base transformations, 
S13. Input/Output permutting transformations. 
 
 
Many transformations are shared between sets. In addition, in each of the above base 
sets, there are subsets to be chosen for any particular run of the optimizer program. 
Most of them are taken from [22-26,49,53] but some other are based on our research 
or general quantum literature. Different groups of transformations are used in various 
stages of circuit optimization. The 1-qubit transformations are related to 1-qubit gates 

(Tables 2,3 and 4). They can precede and also follow the 2-qubit, 3-qubit and other 
transformations. The 2-qubit transformations are for 2-qubit circuits or 2-qubit 
subcircuits of larger quantum circuits, similarly the 3-qubit transformations are for 3-
qubit circuits or subcircuits of larger circuits (Table 5). The n-qubit transformations 
are general transformation patterns applicable to circuits with more than 3 qubits. 
They are less computationally efficient and they use internally transforms S1 – S4. 
Ternary transformations (only 1-qubit, 2-qubit and 3-qubit) are used for ternary 
quantum logic synthesis and mixed transformations for mixed binary/ternary quantum 

Figure 10. Peres gate: (a) Peres gate as a block using Toffoli Base notation,  (b) 
Solution to Peres gate in Toffoli Base with cost 30, (c) Result of macro-generation 
of circuit from Figure 10b to Peres base, (d) After applying the optimizing 
transform that removes a successive pair of Feynman gates. The cost is now 20. 



logic synthesis [57]. Macro-generations are transformations that convert higher order 
gates such as Fredkin, Margolus, DeVos, Kerntopf or Perkowski gates to standard 
bases. Macro-cell creations from set S9 are inverse to those from set S8. There are 
three standard bases of transformations: Toffoli Base, Peres Base, and Controlled-V 
Base. In Toffoli Base all permutation gates are converted to X (i.e. NOT), 3-qubit 
Toffoli and 2-qubit Feynman gates. This is the standard synthesis base used by all 
other authors in literature [22-26,48]. The Peres Base has been introduced originally 
by us based on the observation of superiority of this base in NMR realizations (and 
perhaps other realizations as well). It includes only X, 3-qubit Peres and 2-qubit 
Feynman gates. Controlled-V Base is another new base that is very useful to 
synthesize new low-cost permutation gates from truly quantum primitives of limited 
type [55,57]. This base includes Controlled-V, Controlled-V+, V, V+, X and Feynman 
gates. In all bases the gates like Feynman, Toffoli, Controlled-V are stored in all 
possible permutations of quantum wires. Thus in 2-qubit base there are “Feynman 
EXOR up” and “Feynman EXOR down” gates and transformations respective to each 
of these gates. For simplification, in the tables below only some of the 
transformations are shown, for instance related only to “Feynman EXOR down” or 
“Toffoli EXOR down gates”. Other transformations are completely analogous. The 
output permutting transformations lead in principle to a circuit that has an unitary 
matrix which is different from the original unitary matrix. Observe that each 
transformation can be applied forward or backward, so the software should have some 
mechanisms to avoid infinite loops of transformations. The matrix of the new circuit 
is the matrix of the original circuit with permuted output signals. In some applications 
the order of output functions is not important, so if the circuit is simplified by 
changing the output order, the output permutting transformation is applied. 
 
In addition to operators defined earlier, we define now the following operators: 
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X,Y,Z defined earlier are Pauli spin matrices and X(φ),Y(φ), Z(φ) are the 
corresponding exponential matrices, giving rotations on the Bloch sphere [48]. P is a 
phase rotation by φ/2 to help match identities automatically [53].  
       The transformation software operates on sequences of symbols that represent 
gates and their parts. Symbol * is used to create sequences from subsequences. This 
symbol thus separates two serially connected gates or blocks. Numerically, it 
corresponds to standard matrix multiplication.  Gate symbols within a parallel block 
may be separated by spaces, but it is necessary only if lack of space will lead to a 
confusion, otherwise space symbol can be omitted. So for instance symbols of macro-
cells should be separated by spaces. There are four types of symbols: simple, 
rotational, parameterized and controlled. Simple symbols are just names (here – single 
characters, in software – character strings). The names of simple symbols (used also 
in other types of symbols) are the following: D – standard control point (a black dot in 
an array), E – control with negated input, F – control with negated output, G – control 



with  negated input and output, X – Pauli-X, Y – Pauli-Y, Z – Pauli-Z, H – Hadamard, 
S – phase, T – Π/8 (although Π/4 appears in it). Symbols A, B and C are auxiliary 
symbols that can match several gate symbol definitions. They do not correspond to 
any particular gates but to groups of gates and are useful to decrease the set of rules 
and thus speed-up transformations. Other simple symbols will be explained below. As 
we see, characters are used here not only for gates but also for parts of gates, such as 
D – standard control used in gates. Thus we can combine these symbols to create gate 
descriptions:  DX (Feynman with EXOR down), XD (Feynman with EXOR up), 
DDX (Toffoli or Toffoli with EXOR down), DXD (Toffoli with EXOR in middle), 
XDD (Toffoli with EXOR up), and so on. Names of macro-cells are for instance: FE 
(Feyman), TOD (Toffoli with EXOR down), SW (swap), FRU (Fredkin controlled 
with upper wire), MA (Margolus), KED (Kerntopf with Shannon expansion in lowest 
wire), etc. Symbols like φ, θ, π denote angles and other parameters. Parameterized 
symbols have the syntax: 
simple_name [parameter1,…parametern], where parameteri are parameters. For 
instance, X[4Π/8], Y[3Π/2], Z[φ], etc. Rotational symbols are composed of the 
(simple) rotation operator symbol such as X, Y, Z, or P,  and a number. X[φi], Y[φi], 
Z[φi], P[φi], where φi  = 4Π/8 * i , i = 1,2,…,7. We assume here that all rotational 
operators have period 4Π and equal identity when their argument is 0, thus the 
choices for φI . In these operators the notation is like this, Xr = X[4Π/8 * r], r = 
1,2,…,7, and so on for Yr, Zr and Pr. Controlled symbols have the syntax 
simple_name [ sequence of simple,rotational or parameterized symbols  ] 
Example 1: D[X*X] is a symbol of a controlled gate that is created from two 
subsequent Feynman gates. Observe that DX*CX = D[X*X] = D[I] = I I, which 
means that two controlled-NOT gates in sequence are replaced by two parallel 
quantum wires denoted by I I. Example 2.  D[S*T*H] is a sequence S*T*H controlled 
by single qubit. Example 3. DD[X1*Y2*Y2] is a sequence of rotational gates 
controlled by a logic AND of two qubits (this is a generalization of a Toffoli gate). 
Observe that controlled symbols are created only as a transitional step during the 
optimization process – such gates do not physically exist. Using the concept of 
controlled symbols, n-qubit circuits can be optimized using 1-qubit transformations 
without duplicating all the 1-qubit identity rules. Similarly the parameterized and 
rotational symbols allow the reduction and hierarchization of the set of rules, which 
causes more efficient and effective run of the optimization software. 
 
    The simplified algorithm SA for performing rule-based optimization of 3-qubit 
quantum arrays is the following: 

1. Apply all the 1-qubit transformations, until no more applications of 
such rules becomes possible. 

2. Apply all the 2-qubit transformations and 1-qubit transformations 
induced by them (for instance using the controlled symbols). 

3. Apply all the 3-qubit transformations until possible. 
4. Iterate steps 1,2 and 3 until no changes in the circuit. 
5. Apply inverse transformations that locally optimize the array. 
6. Repeat steps 1,2,3,4 until possible. 
7. Apply inverse transformations that do not worsen the cost of the array. 
8. Repeat steps 1,2,3,4 until possible. 

 



Several similar variants of this heuristic algorithm can be created. In general, none of 
these versions gives a warranty of the optimal or even sub-optimal solution, as known 
from the theory of Post/Markov algorithms. 
 
As an example, we present 1-qubit transformation algorithm A1q:  

A1.    Combine modulo-8 the same types of rotational operators P,X,Y,Z.  
          For instance X2*X3 becomes X5,  X2*X3*X3 becomes I,  
          and Y3*Y3*Y3 becomes I*Y1=Y1. 
A2.    Apply directly applicable rules that do not include symbols A and B. 
A3.    Iterate 1 and 2 until no more changes possible. 
A4.    Starting from the left of the sequence, find a grouping pattern such 
         as A2 = - BC 
A5.    Substitute symbols X,Y,Z for A,B and C from the pattern. 
A6.   Apply in forward directions the standard simplifying transformations   
         such as I*A=A 
A7.   Repeat steps A1 to A6 until possible. 

 
 
Example 4.  [53].  Given is an identity Y = - X*Y*X. Let us try to verify this identity 
using algorithm A1q. We have therefore to simplify the sequence  X*Y*X. (A1) 
There are no patterns of the same rotational operators to combine, (A2) There are no 
directly applicable rules, (A4) We take pattern -X*Y and match it with the rule A2 = 
C*B.  This leads to – Z2*X. (A1) no, (A2) no, (A3) no, (A4) we find pattern A2 = CB 
which leads to –Y*X*X. (A6) X*X is replaced with I, Y*I is replaced with Y. No 
further optimization steps are possible, so the sequence was simplified to –Y, proving 
that Y = -Y*Y*X. 
 
Example 5.  Simplify HXH. (A2) Use rule H = X*Y1 twice. This leads to 
X*Y1*X*X*Y1. (A2) Use rule I=AA in reverse direction. This leads to X*Y1*Y1. 
(A1) Y1*Y1 is replaced by Y2. This leads to X*Y2. (A4) Use pattern A=B*C2. This 
leads to Z. No further optimization steps are possible. Thus we proved that HXH = Z. 
More optimization examples of algorithm SA will be given in the sequel. 
In our runs of GA we look for solutions with the accuracy of:  (1) permutation of 
quantum wires, (2) permutation of inputs, (3) permutation of outputs (transformation 
group S13). In addition we can also generate solution sets with accuracy of inverting 
input, output or input/output signals (the NPN classification equivalent circuits). 
Therefore, for each unitary matrix we generate therefore many logically equivalent 
solutions. We can generate solution sets also for the same set of Boolean functions, or 
for the same NPN classification class. One interesting aspect of such approach is that 
one can create new local equivalence transformations for circuits in each of these 
classes. Finding these transformations and applying them exhaustively to particularly 
interesting gates leads to levellized “onion-like” structures of gates, as the one shown 
in Figure 11. This Figure shows the layered structure of gates created by adding only 
Feynman gates to a seed composed of other gate types, in this case a Toffoli gate. 
Figure 12 shows the layered structure with Peres gate as a seed, in which Toffoli, 
Fredkin and Miller gates are created. These transformations are used to find efficient 
realizations of new gates from known gate realizations [55,57]. 
 
 
 



Figure 11. The layered structure of gates. Fredkin from Toffoli and Toffoli from 
Fredkin.

         

      I1.       I = A*A
I2.      I = -A*C2*B
I3.      I = HH
I4.      I = - H*Y3*X
I5.      I = P2*A2*A
I6.      I = P2*H*X2*Y1
I7.      I = - P2*H*Y3*X2
I8.      I = - P2*H*Z2*Y3
I9.      I = P2*Y1*Z2*H
I10.    I = P2*Y2*Y
I11.    I = - P2*Y3*H*Z2
I12.    I = - P2*Y3*X2*H
I13.    I = P2*Z2*Z
I14.    I = P3*Z3*S
I15.    I = P4*A4
I16.    I = - Y*X2*Z
I17.    I = - Z*Y2*X
I18.    I = - Z*Y3*H

       A1.    A = B*C2
A2.    A = B2*C
A3.    A = B3*A*B3
A4.    A = B3*C*B1
A5.    A = - C*B2
A6.    A = C1*B*C3
A7.    A = - C2*B
A8.    A = C3*A*C3
A9.    A = P2*A2

A1.1.    A1 = - B*A1*C
A1.2.    A1 = - B*A3*B
A1.3.    A1 = - C*A3*C
A1.4.       A1 = P2*A3*A

A2.1.       A2 = - B*C
A2.2.       A2 = CB
A2.3.       A2 = - P2*A

A3.1.       A3 = B*A3*C
A3.2.       A3 = - C*A3*B
A3.3.       A3 = - P2*A1*A

A4.1.       A4 = P4

       X1.         X = - H*Y3
X2.         X = S*X2*S
X3.         X = Y1*H
X4.         X = Y3*H*Y2
X5.         X = Z1*X*Z1
X6.         X = - Z3*Y*Z1

X1.1.       X1 = H*Z1*H
X1.2.       X1 = Z*X1*Y

X2.1.       X2 = H*Z2*H
X2.2.       X2 = P2*H*Y3
X2.3.       X2 = - S*X*S
X2.4.       X2 = - Y3*H*Y
X2.5.       X2 = Y3*Y*H

X3.1.       X3 = H*Z3*H
X3.2.       X3 = - S*H*S
X3.3.       X3 = - Y*X1*Y
X3.4.       X3 = - Z*X1*Z

 
 Table 2: 1-qubit transformations for I, A and X groups.  
 
 
 
 
 
 
 
 
 
 



 

        

        Y1.         Y = - H*X2*Y3
Y2.         Y = H*Y3*Z2
Y3.          Y = - H*Z2*Y1
Y4.          Y = P2*Y2
Y5.          Y = S*Y2*S
Y6.          Y = X1*Y*X1
Y7.          Y = X2*Y3*H
Y8.          Y = X3*Y*X3
Y9.          Y = - X3*Z*X1
Y10.        Y = -Y1*X2*H
Y11.        Y = -Y3*H*X2
Y12.        Y = - Y3*Z2*H
Y13.        Y = - Z1*X*Z3
Y13.        Y = Z1*Y*Z1
Y14.        Y = - Z2*H*Y3
Y15.        Y = Z3*Y*Z3

Y1.1.      Y1 = - H*Y*X2
Y1.2.      Y1 = - H*Y2*X
Y1.3.      Y1 = - H*Y3*H
Y1.4.      Y1 = H*Z
Y1.5.      Y1 = P2*H*Z2
Y1.6.      Y1 = P2*Y3*Y
Y1.7.      Y1 = X*H
Y1.8.      Y1 = Y*H*X2
Y1.9.      Y1 = - Z*Y2*H
Y1.10.    Y1 = Z2*H*Y
Y1.11.    Y1 = - Z2*Y*H

      Y2.1.     Y2 = - H*Y2*H
Y2.2.     Y2 = - H*Y3*Z
Y2.3.     Y2 = - P2*Y
Y2.4.     Y2 = - S*Y*S
Y2.5.     Y2 = - X*Y3*H

Y3.1.   Y3 = H*Z2*Y
Y3.2.   Y3 = - H*X
Y3.3.   Y3 = - P2*H*X2
Y3.4.   Y3 = - P2*Y1*Y
Y3.5.   Y3 = X2*H*Y
Y3.6.   Y3 = Y*H*Z2
Y3.7.   Y3 = Y*X2*H
Y3.8.   Y3 = - ZH

Z1.      Z = H*Y1
Z2.      Z = P2*Z2
Z3.      Z = S*S
Z4.      Z = - X1*Y*X3
Z5.      Z = X1*Z*X1
Z6.      Z = X3*Z*X3
Z7.      Z = Y2*H*Y3
Z8.      Z = - Y3*H

       Z1.1.   Z1 = H*X1*H
Z1.2.   Z1 = P2*Z3*Z
Z1.3.   Z1 = - P3*S
Z1.4.   Z1 = - X*Z3*X
Z1.5.   Z1 = Y*Z1*X
Z1.6.   Z1 = - Y*Z3*Y

Z2.1.   Z2 = H*X2*H
Z2.2.   Z2 = H*Y3*Y
Z2.3.   Z2 = P2*Y3*H
Z2.4.   Z2 = - P2*Z
Z2.5.   Z2 = - P3*Z1*S
Z2.6.   Z2 = - Y*H*Y3
Z2.7.   Z2 = Y1*Y*H

Z3.1.   Z3 = H*X3*H
Z3.2.   Z3 = - P1*Z*S
Z3.3.   Z3 = - P2*Z1*Z
Z3.4.   Z3 = - P3*Z2*S
Z3.5.   Z3 = - X*Z1*X
Z3.6.   Z3 = X*Z3*Y
Z3.7.   Z3 = - Y*Z1*Y

 

      S1.      S = P1*Z1
S2.      S = P3*Z3*Z
S3.      S = T*T
S4.      S = X1*S*Y1
S5.      S = X2*S*Y2
S6.      S = X3*S*Y3
S7.      S = Y*S*X
S8.      S = - Y1*S*X3
S9.      S = - Y2*S*X2
S10.    S = - Y3*S*X1

      H1.     H = P2*Y1*Z2
H2.     H = - P2*Y3*X2
H3.     H = S*X1*S
H4.     H = X*Y1
H5.     H = - X1*H*Z3
H6.     H = - X2*H*Z2
H7.     H = - X2*Y3*Y
H8.     H = - X3*H*Z1
H9.     H = Y*X2*Y3
H10.   H = - Y1*Y*X2
H11.   H = - Y1*Z
H12.   H = Y2*H*Y2
H13.   H = Y2*X*Y3
H14.   H = Y3*H*Y3
H15.   H = -Y3*X
H16.   H = Y3*Z*Y2
H17.   H = Y3*Z2*Y
H18.   H = - Z*Y3
H19.   H = - Z1*H*X3
H20.   H = - Z2*H*X2
H21.    H = - Z2*Y1*Y
H22.    H = - Z3*H*X1

X[Π] *Y[φ] = Y[- φ]*X[Π]
X[-Π]*Y[φ] = Y[- φ]*X[-Π]
X[φ] *Y[Π] = Y[Π]  *X[-φ]
X[φ]*Y[-Π] = Y[-Π]*X[- φ]
X[Π/2]*Y[φ] =  Z[φ] *X[Π/2]
X[-Π/2]*Y[φ] = Z[-φ]*X[-Π/2]
X[φ] *Y[Π/2] =  Y[Π/2]*Z[φ]
X[φ] *Y[-Π/2] = Y[-Π/2]*Z[-φ]
X[3Π/2]*Y[φ] =   Z[-φ] *X[3Π/2]
X[-3Π/2]*Y[φ] =  Z[φ] *X[-3Π/2]
X[φ] *Y[3Π/2] = Y[3Π/2]*Z[-φ]
X[φ] *Y[-3Π/2] = Y[-3Π/2]*Z[φ]

Y[Π] *Z[φ] = Z[- φ]*Y[Π]

 

Table 3: 1-qubit transformations for Y and Z groups. 

 Table 4: 1-qubit transformations for S, H and parameterized rotation groups.  
 



 

R3.11. DDA*DDB = DD[A*B]
R3.12.   DIX*DDX = DDX * DIX
R3.21.     DDX*DXI*DDX = DXI *DIX
R3.22.     DXI * DDX = DDX * DXI * DIX
R3.24.     IXI*DDX*IXI = DDX*DIX
R3.25.     DDX*XII*DDX = XII*IDX
R3.28.     DXI*DIX*DDX = DDX*DXI
R3.43.     IXD*DDX = DDX * DXD * DDX * IXD
R3.44.     IIX*DDX = DDX * IIX
R3.48.     DDX*DXD*DDX = IDX*DXD*IDX
R3.49.     IXI*DIX*DDX = DDX*IXI
R3.54.     IDX*DIX*DXI = DXI*IDX
R3.55.     IDX*DXI*IDX = DXI*DIX
R3.57.     XII * DDX = DDX * X DX
R3.58.     DXI*DDX*DXI = DDX*DIX
R3.59.     DXI*IDX*DXI = IDX*DIX

R4.1.      DIIX*IDDX = IDDX* DIIX
R4.2.   XIID*IDDX = IDDX*XDII*XIID 
R4.3.      DXII*IDDX = IDDX*DIDX*DXII

R2.1.     IX*DX = DX * IX
R2.2.     DX*XD = XD * SW
R2.3. DX*XD*DX = SW
R2.4.     DX*XX = XI*DX
R2.8.     DA*DB = D[A*B]
R2.9.       DZ = ZD
R2.12.   HH*DX*HH = XD
R2.13.   IH*DZ*IH = DX
R2.15.     DX*XI*DX = XX
R2.18.   DX*YI*DX = YX
R2.19.  DX*ZI*DX = ZI
R2.27.     DX*IX*DX = IX
R2.29.  DX*IY*DX = ZY
R2.35.   DX*IZ*DX = ZZ
R2.43. Z[θ] I *DX = DX* Z[θ]  I
R2.44.     I X[θ] *DX = DX* I X[θ]  

(a)

(b)

(c)

R3.11. DDA*DDB = DD[A*B]
R3.12.   DIX*DDX = DDX * DIX
R3.21.     DDX*DXI*DDX = DXI *DIX
R3.22.     DXI * DDX = DDX * DXI * DIX
R3.24.     IXI*DDX*IXI = DDX*DIX
R3.25.     DDX*XII*DDX = XII*IDX
R3.28.     DXI*DIX*DDX = DDX*DXI
R3.43.     IXD*DDX = DDX * DXD * DDX * IXD
R3.44.     IIX*DDX = DDX * IIX
R3.48.     DDX*DXD*DDX = IDX*DXD*IDX
R3.49.     IXI*DIX*DDX = DDX*IXI
R3.54.     IDX*DIX*DXI = DXI*IDX
R3.55.     IDX*DXI*IDX = DXI*DIX
R3.57.     XII * DDX = DDX * X DX
R3.58.     DXI*DDX*DXI = DDX*DIX
R3.59.     DXI*IDX*DXI = IDX*DIX

R4.1.      DIIX*IDDX = IDDX* DIIX
R4.2.   XIID*IDDX = IDDX*XDII*XIID 
R4.3.      DXII*IDDX = IDDX*DIDX*DXII

R2.1.     IX*DX = DX * IX
R2.2.     DX*XD = XD * SW
R2.3. DX*XD*DX = SW
R2.4.     DX*XX = XI*DX
R2.8.     DA*DB = D[A*B]
R2.9.       DZ = ZD
R2.12.   HH*DX*HH = XD
R2.13.   IH*DZ*IH = DX
R2.15.     DX*XI*DX = XX
R2.18.   DX*YI*DX = YX
R2.19.  DX*ZI*DX = ZI
R2.27.     DX*IX*DX = IX
R2.29.  DX*IY*DX = ZY
R2.35.   DX*IZ*DX = ZZ
R2.43. Z[θ] I *DX = DX* Z[θ]  I
R2.44.     I X[θ] *DX = DX* I X[θ]  

(a)

(b)

(c)

 
 
 
 
 

Table 5: Examples of 2-qubit and 3-qubit transformations: (a) 2-qubit 
transformations, (b) 3-qubit transformations; observe a space between X and DX in 
rule R3.57 that signifies that D control the lower X, (c) 4-qubit transformations 

Figure 12: Internal part of a layered structure with Peres gate as a seed. 



7.       Genetic Algorithm for Quantum Logic Synthesis 
 
Now that we understand all the basic prerequisites for our approach to 

quantum array synthesis and we have a general plan for it, let us finally discuss the 
Genetic Algorithm itself. Similarities with genetic information and its transmission in 
Nature are applied and constitute the core of the evolutionary approach. The 
application of GA is well known in problems with high noise because their 
convergence can be moderated according to the fitness function. GAs are widely used 
optimization algorithms, however only few authors present their application programs 
for QC synthesis [1,2,3,6].  

General steps of using our GA variant for QC (and RL) are the following: 
 
1. Initiate a random population of individuals (here each individual is a 

Quantum or Reversible circuit). An individual is an encoding of a 
chromosome of a circuit for fitness function evaluation. The size of 
the population is generally between 50 and 500 individuals. A too 
small population will yield a too fast convergence while a too big 
population will uselessly search a too large problem space. 

2. Steps describing the search using the GA are called generations. The 
search stops when a condition is attained, generally this is a result of 
having fitness greater than a limit, or that certain number of 
generations has been attained. 

3. Pick n pseudo-randomly selected individuals. The rules of selecting 
individuals can speed up the convergence of the search, however if 
the selection operator is too “greedy” (selecting only the best 
individuals) the algorithm can get stuck in a local minimum. We 
experimented with several rules, some presented below. They are 
based on fitness function. 

4. For all the individuals of the new population apply two genetic 
operators: 

a. Crossover – operator allows to recombine two individuals by 
exchanging parts of their respective chromosomes. This operation 
is the main power of the search with GAs. 

b. Mutation – operator introducing noise into the GA in order to avoid 
local minima. Generally applied with a very small probability 
[0.01, 0.1] (compared to the one of Crossover [0.3, 0.85]) modify 
randomly a chromosome of a randomly selected individual. 

5. Replace the old generation of individuals by the new one. 
6. If solution is found then exit, else go to step 2. 
 
All individuals in the GA are quantum circuits partitioned into parallel blocks. 

Our representation allows describing any Quantum or Reversible circuit [1,2]. This 
partitioning of the circuit was in our case induced from the representation of any QC 
such as one in Figure 14. Each block has as many inputs and outputs as the quantum 
array width (for instance three in Figures 3 – 6). The chromosome of each individual 
is a string of characters with two types of tags. To indicate to the algorithm where a 
parallel block begins and ends,  a special tag different than any gate was required. 
This special tag is named here R-tag or ‘r’. Gates’ tags are characters from the 
alphabet and in our examples tags are the first letter(s) of gates’ names. An example 
of a chromosome can be seen on Figure 13.  The circuit corresponding to the parent 1 



from Figure 13 can be seen on Figure 14. In this particular encoding each space 
(empty wire or a gate) is represented by a tag. Our problem-specific encoding was 
applied to allow the definition of as simple genetic operators as possible. The 
advantage of these strings is that they allow encoding an arbitrary QL or RL circuit 
without any additional parameters known from previous research [5,6]. And only the 
possibility to move gates, remove and add them to the chromosome consequently 
make it possible to construct and arbitrarily modify a circuit. 

To speed-up the search the crossover operator has only one restriction. Both 
crossover candidates are restricted to have the same number of wires. This 
considerably simplifies this operation because it allows to avoid the case when the 
two circuits are cut in incompatible locations. Consequently, for any circuit with a 
number of wires higher than one, the crossover is done only between parallel blocks. 
This assures that all children are well formed and eliminates also the necessity of a 
repair algorithm. In the case of individuals having only one wire in the circuit, the 
crossover is executed at a random location in the chromosome.  

The mutation is more delicate. Its results should be: adding a gate, replacing a 
gate by another one, or a removal of a gate. All these operations can be easily 
implemented except for the replacement operator. Assume the Hadamard gate from 
circuit in Figure 14 is to be changed to a Feynman gate. It is a particular gate where 
we need to create a new parallel block because we want to preserve the remaining of 
the current circuit and also not to create a block with more wires than the circuit 
actually has. In the remaining cases: (1) the removing of a gate can easily be seen as 
replacing it by wires, (2) the adding of a gate implies a creation of a new parallel 
block. The results of genetic operators are shown in Figure 13. In the middle are two 
parents which yield two children on the left side as a result of a crossover. On the 
right side are the results of mutation (removal of a gate, adding a new gate and 
changing of a gate, respectively) on parent 2. As can be seen, the operation of adding 
a gate results in a creation of a new parallel block, but as will be shown later this 
operation is not equivalent to the operation of adding one block.  
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Figure 13: Chromosome representing the circuit on figure 14 and genetic operations 
as example. On the left is a result of crossing-over and on the right is are results of 
mutation Removal of a gate (RG), Adding of a gate (AG) and Replacing of a gate 
(CG). 



The evaluation of a QC is part of fitness function calculation. In the context of 
our encoding it is done in two steps. First for each parallel block a matrix representing 
the part of the circuit is calculated. Then each such a unitary matrix is multiplied with 
its neighbor so as at the end a matrix representing the whole circuit is obtained. An 
example of this calculation can be seen in Figure 15. Inside of each parallel block 
only Kronecker matrix products are used, while standard matrix multiplications are 
used to multiply these blocks.  

In the case of our software variant for RC synthesis the evaluation is similar to 
the one used in QC but no matrix operations are required and truth tables of 
(in)complete multi-output functions are used instead. As mentioned earlier, constants 
insertion is possible in RC logic synthesis. Consequently a function defined over 3 
wires can be searched on a circuit with 4, 5 or even more wires. The evaluation of a 
RC circuit consists in finding logical equation for each wire and then testing all 
input/output combinations on the searched wires. In this case the constants are 
alternatively tested for each wire. 

As can be seen, the length of the chromosome is proportional to the size of the 
circuit. Also the time required to calculate each circuit is proportional to this size. A 
circuit with seven gates will have seven blocks if each gate cannot be connected in 
parallel with another one. In such case, the chromosome with seven blocks encoding a 
circuit for 3 qubits can encode maximally 7*3 = 21 one-qubit gates.  
 
            8.   The Fitness Function 
 

The fitness function used was multiple times modified in order to observe 
improvements or changes in the search for the new optimized circuits. For dydactic 
reasons we will explain some of these variants. The fitness function evaluates each 
individual and assigns to it a fitness value, representing the quality of the encoded 
circuit,  and the encoding is a direct mapping from genotype to phenotype. The 
original GA was defined as GA with Darwinian learning. It means, the fitness 
function evaluates the genotype. In Baldwinian GA the genotype is converted to the 
phenotype and the fitness function evaluates the phenotype. The objective of our 
experiments was consequently to modify the fitness function in order to observe the 
impact on the “evolution” of the desired solution. The fitness function does not 
modify the circuits but only biases the selection operator. This mechanism, according 
to the fitness function value of each circuit, will be able to select better or worse 
circuits. For example, a fitness function weighted too strongly towards the length of a 
circuit will prefer circuits with higher length, even if they are not correct. This kind of 
flexibility allows the GA to explore regions of the problem space that are inaccessible 
to classical computational methods without an extreme time and computational 
resources consumption. 

The equation (7.1) represents the basic fitness function.  
 

Error
F

+
=

1
1    (7.1) 

 
where Error is the evaluation of the correctness of the circuit. Although we found this 
fitness function very useful in space exploration, it is however too generic and does 
not take into account the cost of the circuit. An improved function is shown in 
equation 7.2. As can be seen in the equation, two parameters are sufficient to create a 
more sophisticated fitness function  
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where the first right hand element is the evaluation of the correctness of the solution 
from equation (7.1) and the next one is an additional constraint forcing the selection 
operator to select circuits with a smaller number of gates or with gates having a 
smaller total cost. In the case of the QC search the error evaluation is based on the 
comparison of the resultant matrix with the unitary matrix of the evaluated circuit. 
The equation (7.3) describes the Error calculation 
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where Oxy is an element from the expected synthesized unitary matrix and Sxy is an 
element from the matrix of the current circuit (for speed a truth table is used in case of 
RL). The error generated by this function is exact because it reflects any differences 
in the whole matrix of the circuit. In the case of an exact match, this error substituted 
in the equation (7.2) gives a fitness of 1. As can be seen in Table 6, the error has 
always value 128 in the denominator, since there are 64 (23x 23) units in the 
evaluation matrix of a 3-qubit gate and each of them is a complex number. The 
representation of complex numbers in computers is done via a definition of complex 
numbers as one number for the real part and one for the imaginary. Consequently one 
can scale the error either versus the complete set of real and imaginary parts of the 
matrix coefficients either versus the number of coefficients in the matrix of the 
resulting circuit. 

Figure 14: Transformation of a QC from the encoded chromosome  (on the left) to 
a final quantum circuit notation representation of this QC (on the right). Here S is a 
Swap gate, H is a Hadamard gate and W is a wire. In the middle there is one 
CCNOT (Toffoli) gate. 

Although useful in several runs of our program, the equation (7.2) has still a slight 
imperfection. In the case one wants to measure the fitness in the interval [0, 1] the 
second element of the equation (7.2) will in some marginal cases output a fitness of 0 
while the correct result was found. Consequently a modification of the fitness 
function is required. Equation (7.4) shows one possible form of a function producing 
fitness in the interval [0, 1]. 
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However, this equation assumes that Min_Cost is the cheapest possible circuit. In the 
case a cheaper correct circuit is found the fitness will be of course smaller than 1. 

This fitness function is centered in the point of the optimal circuit (Min_Cost 
and correct result) similarly to a Gaussian curve. It is clear from this example that the 
Min_Cost parameter should be also set to 1 which leads to the next version of the 
fitness function from equation (7.5): 
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This equation then should be only maximized because the value of 1 is 
practically impossible to find. It is subsumed in the Cost parameter. The value of used 
gates varies as previously introduced in this paper. Consequently a circuit realized 
with only 1-qubit gates will always have higher fitness than one realized with gates of 
two and more qubits if for each more-than-one-qubit gate a cheaper variant with only 
1-qubit gates is found. Important point to notice is the numerical non-compatibility of 
the Error and Length parameters. The Error is in the range [0, 21+(2*n)] while the range 
of the Length parameter is in [Min, ∞]. This ill-scaled ratio would in consequence 
make the selection pressure mainly with respect to the length of the circuit and not to 
its correctness. As a solution to this problem, the final variant of the fitness function 
scales these two variables as shown in equation (7.6): 
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where α and β are scaling parameters that allow to modify the selection pressure 
either towards cheaper or more correct circuits. 

Another possible approach induced from the previous fitness function was the 
introduction of the Pareto optimality (PO) fitness function [9]. PO is used for multiple 
objectives optimization problems such as here the Cost and the Error. A GA using PO 
uses a different evaluation for the fitness of each individual. This approach is the 
following:  

- Each individual is  compared with all others and is 
assigned with a rank. 

- The rank of an individual depends on the number of 
wins while compared to all other individuals. 

- The comparison is made on all parameters. Example: an 
individual with the highest rank will have all of its 
parameters higher (for maximization) or lower (for 
minimization) than most of all other individuals. 

 



Such a comparison forces the selection process of the GA to reproduce mainly 
the globally optimal individuals. Similarly to equation (7.5) one needs to scale 
parameters of comparison when they are not equivalent.  

 

Figure 15: Examples of Kronecker product ⊕, and of Matrix product * on a sample 
of a circuit. 

9.    Other parameters of GA 
 
In the following discussion of our results, Stochastic Universal Sampling 

(SUS) was used as the selection operator, although we experimented also with 
Roulette Wheel and other selection approaches. A decision for using SUS instead of 
Roulette Wheel (RW) was implied from the following demonstration of high non-
linearity in circuit design. Consequently an operator allowing a selection of less 
locally optimal circuits such as SUS was needed in order to obtain good experimental 
results. 

 

Circuit 
(blocks) 

Error  (3) Cost  
ΣCg 

Fitness  (6) 
α = 0.9  
β = 0.1 

1 5/128 5 0.8815 

2, 3, 4 18/128 12, 18, 24 0.78, 
0.778, 
0.777 

5, 6 4/128 30, 36 0.875, 
0.874 

7 (circuit 
completed) 

0/128 42 1 

Table 6: Results of sequential evaluation of Fredkin gate from Figure 5a. 
An implication of the previous part of this paper, one of the goals of the 

presented work was to “reinvent” gates such as those in Figures 2, 3 and 4, or to 
synthesize smaller ones with the same functionality. Consequently, the analysis of a 
circuit can give more precise explanation of possible non-monotonicity in the 



synthesis process evaluation. For this purpose let’s have a closer look at the circuit 
from Figure 8a.  This circuit has seven gates. The measurement of Error as from 
equation (7.3) and fitness from equation (7.6) are recorded in columns of Table 6.  

A closer look at the above table will reveal non-monotonicity in the evaluation 
of this circuit. The first “trap” for GA is between the first gate and the adding of the 
second. Because both the error and the cost increase, the fitness is significantly 
reduced and creates a relatively big local minimum. Consequently this step is difficult 
for any automated synthesis without heuristics. Two next “smaller” problems are that 
between steps 2, 3, 4 and 5, 6 the error remains constant while the cost of the circuit is 
linearly growing with each segment. A monotonic growth of the cost can be observed 
in the third column. It is important to notice that all gates have a cost including the 
wire gate (identity gate). Such a setting allows the algorithm to avoid some local 
minima and constructing a circuit with only empty wires. From the above example an 
important modification to the algorithm can be derived and is discussed below.  

A solution to this non-monotonicity problem can be a modification of the 
above presented genetic operators. In this work an extension of the mutation operator 
was created. Its result is the addition of a complete parallel block to the circuit. Also 
the mutation is tested for each gate of the circuit because multiple mutations can occur 
on one chromosome. Such a “bitwise” mutation or noise introduction into the circuit 
can avoid such local minima as those in Table 6. The modification of the operator is 
required to override such traps as in Table 6. Moreover, as already mentioned, in each 
of the groups of steps {2, 3, 4} and {5, 6} the cost increases while the fitness 
decreases. It is possible to use a fitness function such as (7.1), however then the 
solution can have an arbitrary length and no parameters force the selection of a shorter 
circuit. The results and their comparison is described in the next section. 

 
10.     Experimental results  
 
As was shown earlier, several well-known gates can be synthesized in 

different manners depending on the cost function selection. There exist already a 
variety of implementations of universal gates, especially Fredkin or Toffoli. Our goal, 
however, is to obtain the gates of the smallest possible cost for realistic physical 
realizations. In section 2 of this paper few variations of Toffoli and Fredkin gates 
were given and we discussed possible minimization of their cost by realizing them 
with smaller, truly quantum, primitives. The two important properties allowing the 
minimization operation are the commutability and concatenation properties of gates in 
QL. The first property, whether order of two subsequent gates can be changed, is 
purely mathematical and can be studied in any literature on Quantum Computing. In 
general AB ≠ BA, but some operators (gates) do commute. This can be used in 
synthesis, for instance as part of local optimization algorithms from section 6. The 
second property is more problematic because there are no any theoretical basis 
allowing or not this operation to be applied. It is  only a heuristic useful to calculate 
approximate cost functions of composed gates [21] and the issue of concatenation 
should be further investigated.  

All runs of the GA have these generic settings. The mutation probability was 
in the range of [0.01,0.1], the crossover probability was in interval [0.75, 0.9], and the 
size of the population was [100, 200] individuals. All runs were done on a Pentium 
500Mhz with 64 megs of ram.  

We reiterate again the non-monotonicity issue discussed previously. Because 
of two contrary flows of values in the evaluation function (growing a cost and 



reducing an error) the modifications to the fitness function and selection operator 
needed to be done. The first possible and already introduced modification is the 
scaling of the fitness function with the coefficients α and β. Such a use of scaling 
coefficients allows to eliminate the too small negative modifications due to the 
linearly increasing cost of the circuit. It is advised and experimentally proven in 
following results that the α coefficient should be in the interval of 0.9 to 0.99 while β 
should be a complement to it; 1 - α. Similarly these coefficients should be used in a 
PO selection operator to scale the ranking of individuals.  

 

Figure 16: Various realizations of Toffoli gate obtained from GA before optimizing 
transformations. 

Before comparing available results one needs to define the input gates for the 
GA. In this case a distinction between a complete starting set and a biased starting set 
has to be made. A complete starting set of gates is one containing all available gates 
for synthesis, excluding the resulting gate. In a complete starting set of gates the 
following gates were available: Wire, Hadamard, Pauli X (NOT), Pauli Y, Pauli Z, 
Phase, V, Feynman, Swap, Controlled-V (C-V), Controlled-V-Hermitian (C-V+), 
Fredkin, Toffoli, and Margolus. From these the resulting one was removed. A biased 
starting set of gates is one based on some constraints, for instance only 2-qubit gates 
are used, or only an arbitrary subset of gates is available. In figures representing 
results of the search following letters represent these gates: Z – Pauli Z, V – 

controlled V, V+- controlled V+. 

Figure 17: Results of synthesis of Fredkin gate. a) is result of application of fitness 
7.1 and a complete set and b) the result of fitness 7.6 and a complete set. 

 Let us compare results of different runs using various fitness functions. Figure 
16 presents the results of  search for the Toffoli gate. The first circuit (Figure 16a) is 



the result of a run where fitness from equation 7.1 was used and a complete starting 
set of gates. As can be seen, this result is very expensive because includes three 
Fredkin gates and four Feynman gates. This circuit can be simplified by removing two 
of the three subsequent identical Feynman gates based on the fact that Feynman gate 
is its own inverse. The next one, Figure 16b, is a result of the same setting as with the 
previous one but the starting set was a biased one. The available gates in this biased 
set were only the ones with number of inputs smaller or equal to 2 qubits. Similarly to 
the previous circuit, the group of gates in dash-squares can be concatenated in order to 
reduce the cost of the circuit. Moreover two pairs of consecutive identical Feynman 
gates (in dotted groups) can be removed. Thus, the second from left dotted group is 
removed entirely and the first from right dotted group is replaced by a single Feynman 
gate. The rightmost Feynman gate can be moved before the last Controlled-V gate and 

added to the dotted rectangle. Although this circuit is longer than the first one its cost 
is the same. It is composed only from 2-qubit or 1-qubit gates. The first circuit has 
cost 55 (15*3 + 5*2) after minimization and the second circuit also after minimization 
has cost of 45 (9*5). The two circuits below in Figure 16 were found using the 
improved fitness function from equation 7.6. The circuit from Fig. 16c was found 
using a complete starting set and the one from Figure  16c using the biased set similar 
to the one used for the circuit from Figure 16b. The major improvement using the 
equation 7.6 as a fitness function is that the results are reproducible, because they are 
driven as already mentioned by two opposite flows of evaluation. Observe that by 
flipping over two Feynman gates from Figure 16c and removing the swap gates a 
solution with one Fredkin and two Feynman is used, which is close to a known 
realization of Toffoli gate from Fredkin gate. The only difference are two Pauli-Z 
rotation gates, which can be removed, as analysis shows. Interestingly, our software 
reinvented also the famous circuit of Smolin, since the sequence of two Pauli-X (NOT 
gates) can be removed, and the sequence of two Controlled-V is equivalent to 

Figure 18. Simplification of Fredkin gate based on local transformations: (a) the gate 
found by the GA, (c) result of macro-generation to Toffoli Base, (d) circuit from 
Fig.18b rewritten to show left-side patterns, (d) result of macro-cell creation, (e) final 
circuit after permutative Swap removals, (f) another result of 2-qubit transformations 
in Toffoli Base applied to the initial  circuit. 



Feynman gate. After these transformations, our gate is composed from the same basic 
quantum primitives as the Smolin’s solution, but in a different order. The analysis of 
unitary matrices shows however that the circuits are equivalent. These examples show 
that not only can our software “reinvent” the realization of the known gates but it can 
also create similar minimum cost realizations of other gates, as will be presented 
below. We were not able to find a better solution to Toffoli and Fredkin gates from 
quantum primitives, since perhaps they do not exist.  

Figure 17 presents two of many found realizations of the Fredkin gate. Again, 
observe that the consecutive Pauli-Z gates can be cancelled since this gate is its own 
inverse (a standard local transformation). Next, two Feynman gates can be flipped 
over and corresponding swap gates removed, leading to the known (minimal) 
realization Fredkin gate using one Toffoli and two Feynman gates. Figure 18a shows 
step-by-step simplification of the circuit from Figure 17b after removal of Pauli-Z 
gates. Applying macrogeneration of gates to Toffoli Base the circuit from Figure 18b 
is created which is the same as one from Figure 18c, in which gates were differently 
grouped to satisfy the left-hand-side patterns of rules. Then macro-cell creation leads 
to the schematics from Figure 18d. Finally, permutative transforms from set S13 that 
remove Swap gates lead to the classical realization of Fredkin gate from Figure 18e. 
Observe that the same solution is found when 2-qubit transformations are applied to 
Figure 18a (leading to the circuit from Figure 18f) and next the macro-cell generation 
is applied to the array from Figure 18f. 

The circuit from Figure 17a is the result of using the equation 7.1 and a 
complete starting set. Fig. 17b is the result of fitness equation 7.6 and the same 
starting set as in Fig. 17a. The realization of the Margolus gate from Figure 19a is 
elegant and new. By applying the swap-related transformations of the Fredkin gates 
(Figure 19b, Figure 19c) two circuits with two Fredkin gates each are created that are 

not known from the literature. The 3-qubit Kerntopf gate family includes gates with 
one Shannon expansion (of the form v’u+vx, where v,u,x ∈{a,b,c,a’,b’,c’}and the 
expression cannot be simplified) and two Davio expansions (these expansions have 
the form v ⊕ ux, where v,u,x ∈{a,b,c,a’,b’,c’}and the expression cannot be 

Figure 19. Margolus gate: (a) Original gate obtained directly from GA, (b) 
Removal of the right Swap gate permuted the  order of output wires Q and R, (c) 
removal of the first Swap gate permuted output wires P and R. 



simplified). Figure 20a presents a gate from this family in Toffoli Base, and Figure 
20b shows a gate from the Margolus gate family (NPN class), also realized in Toffoli 
Base. Based on these and other results, we can claim that our program invented 
several realizations of basic gates that have been not created yet by humans and are 
perhaps patentable. 

 

Figure 20. Kerntopf-like and Margolus-like gates in Toffoli Base after optimizing 
transformations. These are the  best reported results for such gates. 

Figure 21. Entanglement and teleportation circuits from the literature found also by 
our program. 

Figure 21 shows the entanglement and teleportation circuits found also by the 
GP approach from [5]. Finally, Figure 22 illustrates the using of transformations to 
prove that Fredkin gate is its own inverse. Transformations of this type lead often to 
significant reductions of long arrays found intially by the GA. 

 
One of the striking observations of the obtained results is the respective 

presence in Fredkin or Toffoli gates in the synthesis of each of them. As can be seen 
in the results of synthesis using the complete starting set,  the Fredkin gate is present 
in all Toffoli implementations and vice versa. It can be concluded that there is a local 



minimum that our algorithm was unable to override. Overriding this local minimum 
can be done using only basic quantum primitives such as controlled-V. 

 

         An interesting difference between our results of synthesis of Fredkin or Toffoli 
gate and those shown in Figures 5 and 6, is that our algorithm found circuits with 
generally slightly higher cost (in the case of improved fitness function). To 
understand this point one needs to look at the evolution of the search during a run of a 
GA. Figure 23 shows the recording of one run searching for a gate using the fitness 
function 7.1. For illustration the fitness 7.6 is also drawn. The figure shows the best 
result of each hundred generations. First curve Error shows the evolution of the scaled 
error as used in the fitness function. Second curve is the cost (1/Cost) and it is to be 
maximized to increase the global fitness function. The larger a circuit the more the 
cost is reduced. The last three curves show the values for fitness from equation 7.1 
and 7.6. Fitness function 7.6 is shown by two curves; first with parameters α = 0.99 
and β = 0.01 then with α = 0.9 and β = 0.1. Moreover for more clarity all fitness 
functions are mapped on the secondary y-axis on the left. Since there are many 
solutions to a gate at a higher cost, it is more likely that GA finds those solutions, but 
hopefully running the local optimizing transformations on each of these non-minimal 
solutions leads to the same optimal solution, as was the case with the solutions 
discussed above. 

Figure 22. Using simplifying transformations to prove that Fredkin gate is its own 
inverse. 

Figure 23 illustrates the problem of fitness function used in quantum logic 
synthesis. While both variants of the fitness function are globally stable or stuck in a 
local minimum, the parameter having the greatest variation is the cost of the circuit. 
This is because, as mentioned before, an infinity of circuits exist theoretically in QL 
for a certain unitary matrix. This is illustrated by the fact that while the error is 
constant all along the run, the cost oscillates. Moreover, once the correct circuit is 
found, the fitness function 7.1 is at its maximum but the fitness function 7.6 is 
relatively smaller because the circuit is larger than the local minima shown in the 
graph. For this reason while using the fitness function 7.6, once a correct circuit was 
found its fitness was set up to 1 and the run was over. The presented curves capture 
also different levels of detail while searching for a correct circuit. The Fitness 



function (fitness-7.6 (0.9)) captures strongly the size of the circuit but the final jump 
to the correct solution is very large in the value of fitness (≈0.1). Such a fitness 
function can be used to minimize the size constraints. However, the best fitness 
function to capture global properties during a search for a circuit is the fitness 
function (fitness-7.6 (0.99)), because on one hand it  is mainly influenced by the 
correctness of the circuit and on the other hand it takes into account the size of it. 
Consequently, comparing it to the fitness function (fitness-7.1) one can observe 

similar result but with small oscillations in the fitness function (fitness-7.6 (0.99)). 

Figure 23: An example of evolution of the fitness function and its related 
parameters during a run. For more precision the two fitness function curves are 
shown on a secondary y-axis on the left.  

An important point to be discussed is the improvement of the results obtained 
with the hereby proposed cost functions and fitness functions variants. Intuitively one 
could think that the cost of gates reducing the global cost of the solution will only 
improve the results. However, as can be seen in Table 6 and Figure 23 the reasoning 
is not so simple. The duration of runs using normal fitness function as in equation 7.1 
has generated solutions in less than 2000 generations. These results were not optimal; 
either too long and too expensive, or not correct at all. On the other hand the 
parameter that forces the selection operator to pick the individuals with smaller gate 
costs drives the evolutionary process deeper into the problem space. As the 
consequence, the search time using the improved fitness function increases. Also,  
when using the fitness function 7.6, the parameters α and β can be set to values in the 
interval [0, 1]. Ultimately when using α = 1 and β = 1 - α, this leads to similar results 
as using the fitness 7.1. The problem remains the same: “What are the correct 
parameters for an optimal relation between the error evaluation and the cost of the 
circuit in order  to find the optimal representation of the searched function?” 

 
 
 
 
 



Problem 
searched 

Solution found 
F7.1/F7.6 

Time of search 
in number of 
generations 
F7.1/F7.6 

Toffoli YES/YES <2000 / <50000 
Fredkin YES/YES <1000 / <75000 
Margolus YES/NO <1000 / 

<100000 
 

Table 7: Comparison of Fitness Function variants  
Table 7 presents a summary of some results in QC search. The first column is 

the function searched, the second column shows if the solution was found using either 
the non-optimized fitness function (F7.1), or the optimized one (F7.6). The last 
column shows,  for each circuit, the time in generations necessary to arrive at a 
solution. Each run was stopped after 100000 generations in the case no solution was 
found previously in the run. The above presented argument that the improved fitness 
function increases the required time to find a solution can be argued here. As can be 
seen in two cases out of the three problems, a significant time increase was observed. 
The presented results are statistical averages over five runs for each problem. Out of 
them only the best solutions are presented in Figures 16, 17, and 19. Two arguments 
support the use of the improved fitness function. First, the solution was found in all 
cases and it was found even when using a biased set. This implies that the cost 
function allows the GA to explore parts of the problem space that were not accessible 
to the GA which used the normal fitness function, i.e. without the cost of gates. Also 
all results from Table 7 are from runs using the biased starting set of gates.  
 
          The following observations can be made when using the GA proposed here 
with variable length of chromosomes for quantum logic synthesis. 

- No direct relation between the error and the cost values was observed. In 
general this means that there is almost an infinity of solutions to a given 
problem and the number of these solutions grows with increasing size of the 
circuit. A solution of non-minimal length can be found easier because of the 
variable length of chromosomes and next transformed to a shorter solution. It 
should be further investigated if this a better strategy than restricting a size to 
given value. When the length is short, such as 5, the second strategy works, 
but for longer circuits  the variable length of chromosomes seem to be more 
powerful. 

- When drawing the fitness of the best individual each (let’s say 100th) 
generation we observe that there is no tendency of optimization 
(convergence). This confirms our previous conclusion that the space of the 
fitness function is non-monotonic with lot of flat space (local optima) and 
some occasional peaks of good solutions. 

- The best type of Mutation is Bitwise, and the best type of Replication is SUS. 
The bitwise mutation operator seems to be more appropriate for such a high 
noise space as the one explored here. Also, this observation is based on an 
average measurement of fitness taken from the best individuals from each 
100th generation but this approach does not necessary finds better solutions. 

- Best type of GA observed from all previous results is Baldwinian, using SUS 
and bitwise mutation operator.  

 



To illustrate these mentioned problems and conclusions we set up a small 
comparative experiment. In this experiment, three different parameterized GA were 
used. Two types of comparative experiments are set up and are used to explore the 

fitness landscape. In the first case all three configurations are using the same value of 
parameters (mutation, crossover, etc.) and five different parametric settings are 
modified. For this a binary encoding of each GA type was used. Each GA has a binary 
signature such as 00000 or 10110 corresponding to a particular configuration. Each 
digit in the binary signature represents if a certain feature is used or not. The five 
positions in the signature correspond respectively to the following options: fitness 
type, threshold, replication type, mutation type and Baldwinian. Fitness type means 
that if it is set to zero, the fitness will be calculated individually and if it is set to one 
the fitness will be calculated as a shared fitness in a group of 20 individuals. 
Threshold set to one means only individuals having fitness higher than threshold (0.6) 
will be used for replication. Replication type set to zero means the GA will be using 
the Roulette Wheel type of selection and if it is set to one the stochastic universal 
sampling is used. The mutation type set to zero controls the GA to use normal 
mutation (once pre individual based on the mutation probability) while set to 1 selects 
the bitwise mutation (applied to each element of the chromosome). And finally 
Baldwinian bit indicates if the GA is using fitness calculated directly from the 
chromosome or calculated from a minimized chromosome. The results are presented 
on Figure 24. As can be seen the GA behaves differently for different parameters. In 
the case where no fitness = 1 is attained the GA was not always successful in finding 
the solution, while in the opposite case the GA found a good solution in at least in half 

Figure 24: Results of the comparative tests with all 32 possible variations of the GA. 
Results are all normalized over 20 runs for each. The X axis represents each of the 32 
possible combinations of the 5 concerned parameters. Y axis is the fitness function as 
from equation 7.6. 



of runs. Each point on the figure is a result of a statistical mean over 20 runs. The 
main result form this experimentation is the fact that some configuration of the GA is 
more successful than others for the quantum search space search. This concerns 
mainly GAs of types 01000, 01011, 01100 and 11100. These configurations were 
experimental proofs of better adaptation and better search ability than others. 

The second type of experiments comparing different GA settings is also based on 
three groups. In this approach the settings from Table 8 were used. 

 
Population Size 50-70-100 Calculation of fitness Individual 
Mutation Probability Variable [0.01 - 0.3] Type of mutation Normal 
Crossover Probability Variable [0.2 - 0.9] Type of crossover 1 point 
Factor Alpha Variable [0 - 1] Type of replication RW 
Factor Beta Variable [0 - 1] Type of fitness Complex 
    

 
Table 8: Options and Parameters (Group 1)  

Three GA were created; each with 50, 70 and 100 individuals in the population. 
Each GA was configured as follows: no Baldwinian fitness calculation, normal (once 
per individual) mutation, single point crossover and individual fitness calculation 
were used. The parameters to be varied in this approach were: Alpha, Beta, mutation 
and crossover probability. Only a resume of the characteristics of Alpha and Beta 
factors and their best, worst and average values are listed in Table. 9. We have chosen 
four sets of Alpha and Beta parameters, they are Alpha=0.7 Beta=0.3, Alpha=0.8 
Beta=0.2, Alpha=0.9 Beta=0.1, and Alpha=0.97 Beta=0.03. Note that the relation 
between Alpha and Beta is that Alpha + Beta = 1.0. 

We observe from the results in Table 9 that the fitness value increases when the 
Alpha value is increased. However, the best fitness of all generations is with the 
smallest from the proposed Alpha values, thus there is a two-fold (advantage and 
drawback) characteristic in increasing the factor Alpha. This confirms again the fact 
that the relation between the measure of error and the circuit cost is not direct. Based 
on solution analysis, it indicates that the size of the circuit should be controlled in a 
more direct way and not to be left to the evolution alone. 

F Group 1 Group 2 Group 3 
α Best Worst Average Best Worst Average Best Worst Average 
0.7 0.44 0.077

7778 
0.14820
6074 

0.3777
78 

0.0636
364 

0.14438
1594 

0.1881
42 

0.0333
704 

0.14169
4126 

0.8 0.163
663 

0.072
7273 

0.15927
4043 

0.1636
63 

0.0652
016 

0.16063
4195 

0.2727
27 

0.0615
385 

0.16124
8625 

0.9 0.181
832 

0.18 0.18007
352 

0.28 0.18 0.18110
992 

0.2167
88 

0.18 0.18144
116 

0.97 0.224 0.194 0.19431
102 

0.1945
49 

0.194 0.19403
843 

0.1945
49 

0.194 0.19403
294 

 

Cro
 Table 9. Characteristic of Fitness F with relation to Factors Alpha and Beta
 
Next we analyzed also the influences of the Probabilities of Mutation and 

ssover on the Fitness Value. Again, only a resume of the characteristics of 



Mutation and Crossover Probabilities and their best, worst and average values are to 
be listed in Tables 10 and 11,  respectively.  

F Group 1 Group 2 Group 3 
MP Best Worst Average Best Worst Average Best Worst Average 
0.01 0.194

549 
0.194 0.19401

098 
0.1945
49 

0.194 0.19401
098 

0.1945
49 

0.194 0.19401
098 

0.05 0.224 0.194 0.19431
102 

0.1945
49 

0.194 0.19403
843 

0.1945
49 

0.194 0.19403
294 

0.1 0.224 0.194 0.19503
785 

0.224 0.194 0.19491
647 

0.224 0.194 0.19432
749 

0.3 0.224 0.194 0.19491
651 

1 0.194 0.19491
651 

0.224 0.194 0.19465
308 

 
 

Table 10 Characteristic of Fitness F with relation to Mutation Probability (MP) 

F Group 1 Group 2 Group 3 
CP Best Worst Average Best Worst Average Best Worst Average 
0.5 0.194

549 
0.194 0.19401

098 
0.1945
49 

0.194 0.19401
647 

0.224 0.194 0.19491
647 

0.6 0.224 0.194 0.19403
294 

0.1945
49 

0.194 0.19402
749 

0.1945
49 

0.194 0.19403
843 

0.8 0.224 0.194 0.19432
749 

0.1945
49 

0.194 0.19403
843 

0.1945
49 

0.194 0.19403
294 

0.9 0.194
549 

0.194 0.19465
308 

0.1945
49 

0.194 0.19402
749 

0.1945
49 

0.194 0.19402
196 

 
 

Table 11 Characteristic of Fitness F with relation to Crossover Probability (CP) 

Comparing the obtained results from Tables 9, 10 and 11, we arrive at the 
following conclusion: the quantum circuit synthesis is not extremely dependent on the 
values of such parameters as mutation or crossover probability. Rather, it depends on 
the types of selected operations on chromosomes that are used in various GA variants 
in experiments. This means the structure of the quantum space is not sensitive to the 
parameterization of genetic operators but is sensitive to the operations themselves. 
This is mainly because the size of the circuit is variable and the space of possible 
solutions available before and after one genetic operator is applied changes radically. 
In other words this means that for example having a circuit with 6 blocks that will 
have a group of solutions based on first four blocks equal to A, B, C, D with two 
additional blocks that are required. Now application of the mutation operator that will 
remove one block will completely modify the current outlook for success because it 
can be assumed that the same sequence of first four blocks A, B, C, D does not lead to 
a solution with 5 blocks. Consequently, the changes of length in the chromosome of 
individuals in the GA are one constraint more for the GA to overcome. 

 
The attentive reader will remark the Pareto optimal GA results were not  

analysed.  This results from  a weak relation and non-equivalence of the two main 
parameters of our fitness function; the error and the cost. The Pareto optimal GA can 
be applied in the case the solution is on the intersection of best results of all 
parameters evaluation. This is not the case here because the cost of the circuit will 
never be minimal. A circuit representing a function will always have a cost equal to at 



least one parallel block with gates. Moreover, because in the ranking of individuals 
the error and cost are used to determine a win or a loss, the algorithm has the tendency 
to fall too soon into a local minimum with a relatively small error and a very small 
cost, from which there is no escape. 

 
 
11.    Important Research Issues. 
 
The  results of this work proved once again the “no free lunch theorem”. The 

modifications of some parameters results in improvement in some runs but do not 
provide optimal solutions. Consequently the optimization of any algorithm needs to 
be specific to the proposed task. In our case,  we have shown that the GA is well 
situated to explore the problem space of RC and QC logic synthesis. However few 
heuristics have been added to our algorithm and they provide us with a fresh look at 
this new area of logic synthesis.  
 

An important issue to be discussed is the representation and transformations of 
circuits with more than 3 qubits. In the presented work we focused on 3-qubit 
universal gates. Consequently, the number of possible permutations of used gates is 
finite and a sufficient number of them can be defined in the starting set of gates. The 
definition of larger elementary units can be directly implied from the design of our 
individuals in the GA. As each circuit can be partitioned into parallel blocks, multiple 
optimizations can be used to improve the results. An example is to define blocks of 
predefined size bigger than two qubits, called complex blocks (CB). Consequently 
multi-gate blocks will be used as simple gates and will be manipulated by the classical 
genetic operators. One of such blocks can be seen in Figure 14. It was also illustrated 
in Figure 14 that synthesis of Toffoli on wires 2, 4 and 5 was too complicated to 
letting the GA to find such a gate. Particularly in QC there are many  examples where 
more than 1-qubit gates are required to be connected to non-adjacent wires or even the 
wire order needs to be completely inverted. Consequently, our approach to solve this 
problem that evolved in the course of this research was to insert larger elementary 
units than simple gates. An example is the creation of a Feynman gate on wires 1 and 
3. It can be argued that there are very many gates that could be defined such as this 
one, so should we define them all? The counter argument is that most gates can be 
synthesized from gates already used in our work. In our approach,  the gate is 
connected to wires according to its position in the parallel block so the 
implementation of genetic operators is easy and can be executed quickly. The number 
of defined gates relates also closely to the number of respective equivalence 
transformations and the efficiency of rule-based optimizer decreases with too many 
rules. We believe that a middle way is the best one – there should be the major 
quantum primitives and basic gates defined on all wires and on all permutations of 
inputs. The penalty we pay however, is a big number of stored unitary matrices of 
basic gates. There is a solution though – declaring just subsets of available gates for 
every run. Thus only some of permutations of gates like Toffoli are declared in each 
run. With high speed of generating solutions and relatively high number of solutions 
for each matrix, our approach is competitive and allows various types of 
experimentations. 

 
The approach presented here can be compared to a GA where each gate can be 

defined over a set of wires, with control bits and other parameters [5]. In that case the 



mutation operator needs to be redefined to be able to modify any of the gate 
parameters. Consequently the number of possible variations of one gate grows quickly 
with the number of parameters of this gate and the number of wires it can be 
connected to. This makes genetic operators and evaluations of matrices in fitness 
function more complicated and slower. In our method all these parameters disappear 
and are replaced by the position of the gate itself in the parallel block. The negative 
point is that we need to define a particular gate for most of the variations of one gate 
in order to speed up the search. For 3-qubit and 4-qubit gates our approach is more 
efficient than having a highly complex parameterized gates such as in [5]. A related 
important problem is how the GA representation affects the speed of fitness function 
calculations for larger circuits. The critical factor are definitely the calculations of 
resultant unitary matrices in fitness function, and especially the Kronecker matrix 
multiplications. In one approach, which is more flexible, the matrices are created in a 
run by decoding the GA or GP operators. In another approach, used by us, all matrices 
are calculated in advance and stored in the memory. They correspond to characters 
used in chromosomes and do not need to be created in a run. It results from our 
experiments that this approach is faster for small circuits since the gain of flexibility 
of the other approach is practically useless as leading to a too large time increase. On 
the other hand our approach does not scale well for a higher number of qubits than 5, 
because it requires to define and store many matrices. So, although more efficient 
than previous approaches, our encoding will not scale well for larger circuits and 
further research on synthesis of such circuits is necessary.  

 
Another useful idea related to gate and circuit design that we acquired in the 

process of this work is the following. As can be seen from the examples, sometimes 
the solution can be found which is a permutation of output wires with respect to the 
initial specification. Because in many problems the order of output wires is not 
important, there should be some mechanism in the software that would automatically 
perform simplifications not to the circuit described by original order of output wires 
but to some of its permutations. A theory of respective local transformations should 
be developed to solve this problem. 

 
12.     Conclusions 

 
In this paper we have presented an overview of a successful evolutionary 

approach to QC and RC synthesis. Even without heuristics we were able to find 
correct circuits representing universal gates, although perhaps non minimal ones. We 
find solutions to all quantum circuit synthesis problems presented by previous 
authors, such as entanglement and teleportation, and our programs reinvented several 
realizations of known gates such as Toffoli or Fredkin. In addition, we found very 
elegant solutions to gates such as Margolus, Miller and Peres. We believe that our 
solution to the Peres gate is minimal. It is now a challenge for future research to find a 
less expensive universal 3-qubit gate than the Peres gate using only 1-qubit and 2-
qubit gates. The solution to this problem is not yet known, but in any case, based on 
our other studies, the Peres gate realization that we found seems to be very good, at 
least for NMR computing.  

 
We hope that multiple circuit solutions will become eventually available from 

other authors for quantum circuit synthesis. We are compiling a library of 
“Benchmark Quantum Functions and their Circuits” [44]  so that the future quantum 



software developers will be able to compare their results with those of our programs, 
analogously as it is a standard in current binary CAD. 

 
In the course of this research we found the importance and mutual relations of 

four problems: circuit encoding, fitness function, cost function and local optimizing 
transformations. It was thanks to running the program and analyzing its various 
solutions that we found the sets of equivalence transformations and the heuristics for 
their application [55,57]. Although most examples were for 3-qubit circuits, our 
program allows in principle larger circuits. The RL variant is more efficient than the 
QL one. 
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