
Evolutionary approach to Quantum and Reversible Circuits
synthesis

Martin Lukac, Marek Perkowski, Hilton Goi, Mikhail Pivtoraiko+, Chung Hyo
Yu, Kyusik Chung, Hyunkoo Jee, Byung-guk Kim, Yong-Duk Kim

Department of Electrical Engineering and Computer Science,

Korea Advanced Institute of Science and Technology,
373-1 Guseong-dong,Yuseong-gu, Daejeon 305-701, Korea,

+Department of Electrical Engineering, Portland State University,

Portland, Oregon, 97207-0751, USA

lukacm@ece.pdx.edu
mperkows@ee.kaist.ac.kr

Abstract: The paper discusses the evolutionary computation approach to the problem of optimal

synthesis of Quantum and Reversible Logic circuits. Our approach uses standard Genetic Algorithm (GA) and its
relative power as compared to previous approaches comes from the encoding and the formulation of the cost and
fitness functions for quantum circuits synthesis. We analyze new operators and their role in synthesis and
optimization processes. Cost and fitness functions for Reversible Circuit synthesis are introduced as well as local
optimizing transformations. It is also shown that our approach can be used alternatively for synthesis of either
reversible or quantum circuits without a major change in the algorithm. Results are illustrated on synthesized
Margolus, Toffoli, Fredkin and other gates and Entanglement Circuits. This is for the first time that several
variants of these gates have been automatically synthesized from quantum primitives.

1. Introduction

Quantum computing is a flourishing and very attractive research area [7, 46,

48]. Inheriting properties from Quantum Mechanics, it allows theoretically to build
computers much more efficient than the existing ones. For instance, certain problems
non solvable in polynomial time in classical domain can be solved in polynomial time
in quantum domain. Similarly, the complexity of other problems can be reduced while
transforming them into the Quantum domain [48]. Moreover, Quantum Circuits (QC)
have an advantage of being able to perform massively parallel computations in one
time step [7,46,48]. The motivation to develop automated CAD tools for quantum
circuits becomes recently quite high because according to the results of
[37,38,39,40,41] such computers can be physically build and the progress of these
realizations is fast. It is already possible to perform quantum-mechanically simple
operations with trapped ions or atoms. Simplified but complete quantum circuits were
constructed using Nuclear Magnetic Resonance technology [48]. The state of the art
in year 2002 is a 7 qubit quantum computer [45]. For this size of computer the
problem of quantum circuit synthesis and optimization is not trivial and cannot be
solved by hand so some kind of design automation becomes necessary. While
quantum mechanics and quantum computing are established research areas,
systematic design methods of quantum computers, and especially logic circuit design
for such computers still remain only at the beginning stages of exploring available
possibilities. It can be compared to the state of the art of logic design in 1940’s when

mailto:mperkows@ee.kaist.ac.kr

the first standard binary computers were built and the minimization algorithms like
those from Quine and Shestakov started to appear. Currently, the works in quantum
logic design are on: designing new universal gates and investigating their properties,
creating methods of composing gates to circuits, and building elementary quantum
circuits for practical applications, for instance arithmetics. New algebraic models for
quantum logic and circuit design are also investigated. The Computer Aided Design
of Quantum Circuits is even less developed and there exist only few programs to
design such circuits automatically or with a limited user intervention. This paper is
related to new approaches for CAD of Quantum Circuits, the new research and
development area that we try to establish by our research
[1,2,10,28,29,30,31,32,33,42,43,55,56,57,58].

So far, analytic and search approaches have been used in quantum logic

synthesis. They are based on matrix decomposition, local circuit transformations,
mapping from various types of decision diagrams, spectral approaches, and on
adaptations of several EXOR logic, Reed-Muller, and other classical combinational
circuit design methods. Our approach combines some of them but fundamentally
belongs to the group of Evolutionary Algorithms. The approach has been also used to
a similar problem of Reversible Circuit (RC) Logic synthesis; such circuits can be
realized in CMOS, optical and nano-technologies [47].

Genetic Algorithms (GAs) are one of the well-known Evolutionary Algorithm

problem solving approaches to Soft Computing [9]. Their use is very popular in
problems with no identified structure and high level of noise, because: 1) a big
problem space can be searched, 2) the size of this space can be moderated by
parameters, 3) a variety of new solutions can be produced, and 4) with long enough
time a circuit can be obtained that is close to the optimal one. These advantages make
GAs useful in the initial phases of research and investigations of the design problem
space. GAs are very good candidates to be used in logic synthesis of new types of
circuits, investigating the usefulness of new gate types and new circuit structures.
The special cases of Evolutionary Algorithms include: Genetic Algorithms,
Evolutionary Programming, Evolution Strategies and Genetic Programming. So far, to
the best of our knowledge, only two of the four Evolutionary Algorithm types have
been applied to the QC or RC synthesis. Genetic programming was used to synthesize
EPR (Einstein-Podolsky-Rosen) pairs of qubits [5], while a growing number of works
uses a classical GA for QC and RC synthesis. For instance, [1,2,3,6,7,8,54] used GA
to evolve quantum and reversible gates and circuits, like the teleportation circuits. A
reversible circuit is one that has the same number of inputs and outputs and is a one-
to-one mapping between vectors of input and output values. Such circuits are related
to quantum circuits. An attempt at a general approach to encode both Quantum and
Reversible Circuits was presented in [1,2]. It is known that every quantum circuit is
reversible [7,46,48], so the researches on classical binary reversible synthesis and
quantum synthesis share many ideas. The Reversible Logic (RL) circuits [14,15,20]
are already technologically possible and have been implemented in CMOS technology
[47]. Thus, some of our results below are applicable also to such circuits. As
described later, most of gates with more than one input used in QC are derived and
originate from RC. Although this work is concerned with one approach to automated
synthesis, it is important to notice that a parallel research on new gates is also
explored by [10,20,21,22,23,24,25,26,27,28,29,50,51,52]. The search of new
Quantum gates (QG) and Reversible gates (RG) has two different aspects: invention

and generalization. The invention of new gates is mainly aimed toward an
optimization of a particular design in a specific technology or towards inventing new
universal gates. The generalization approach is the use of already known gates and
exending them to new gates of certain preferable properties. Usually there are also
new particular synthesis methods that come together with proposed new gates
[30,31,32,33,34,55,57,58].

This paper is organized as follows. Section 2 presents the minimal background
in quantum circuit design necessary to understand the paper. Examples are used to
illustrate the most important notions. Section 3 describes the general problem of
synthesis of quantum circuits (called also quantum arrays) from primitive quantum
gates, especially using evolutionary algorithms. Section 4 presents decomposition of
gates to smaller primitives related to the cost of these gates. More realistic cost
function for gates are one of main innovations of this paper. Section 5 presents our
entire minimization methodology for quantum arrays synthesis. The sixth section
describes local optimizing transformations used in the post-processing stage of GA.
Section 7 presents our variant of GA and its settings for this work. Section 8 gives
more details on the most important aspect: the fitness function design for GA and its
role. Section 9 presents other aspects of the Genetic Algorithm that we applied.
Section 10 describes experimental results and section 11 discusses issues and
advantages of this approach as well as our current and future research and open
questions. Section 12 concludes the paper.

2. Fundamentals of Quantum Logic

In quantum computation quantum bits (qubits) are used instead of classical

binary bits to represent information. These information units are derived from the
states of micro-particles such as photons, electrons or ions. These states are the basis
states (basis vectors, eigenstates) of the computational quantum system. Assume an
electron with two possible spin rotations: +1/2 and –1/2. Using Ket notation [12,13]
these distinguishable states will be represented as |0> and |1>, respectively. Each
particle in a quantum domain is represented by a wave function describing it as
having both properties of a wave and of a particle as introduced by [11,12,13,16].
Based on these properties, quantum computation inherited the powerful concept of
superposition of states. Assume a particle p1 be represented by a wave function ψ1 =
α1|0> + β1|1>. The coefficients α and β are complex numbers called the eigenvalues.
They must be in general complex because only having complex values in wave
functions allows to eliminate themselves in order to satisfy some experimentally
observed properties of quantum world, such as for instance in the Two-Slit
experiment [17]. It is not our goal here to explain such experiments or formulate
fundaments of quantum mechanics. (The reader can find information in literature,
especially [48]). Our goal is only to introduce the formal calculus of quantum
mechanics in order to explain the basic concepts of our CAD algorithms and
especially the genetic algorithm for quantum circuit synthesis. Similarly as an
engineer who has no understanding of electronic circuits, but knows only Boolean
Algebra, is able to develop logic circuits synthesis software, one with no
understanding of quantum phenomena and physics will be able to develop quantum
CAD if he will only learn some fundamental quantum notation and associated
algebraic properties and transformations. To teach these to the Reader is one of the
goals of this paper.

 The interpretation of wavefunction ψ1 is that |α1|2 is the probability of the
particle being measured in state |0> and |β1|2 is the probability of that particle being
measured in state |1>. Thus, the measurement or observation process transforms the
quantum world of complex wavefunctions to the macro-world of events that occur
with standard probabilities. The superposition of states is represented by these facts:
(1) each of these probabilities can be non-null, (2) |α1|2+|β1|2=1, and (3) if another
particle p2 with a wavefunction ψ2 = α2|0> + β2|1> is added to the system, then the
resulting wavefunction will be |ψ1ψ2> = α1α2|00> + α1β2|01> + β1α2|10> + β1β2|11>.
The system can be in any possible state of the wavefunction and will collapse to one
of the eigenstates when measured [19]. The space of quantum computing is thus much
larger than in classical computing, which causes that efficient algorithms for synthesis
and analysis of quantum circuits are more difficult to develop. However, certain
similarities exist which will be useful for us to explain the synthesis issues, especially
to the readers with a digital design engineering background. The equations introduced
above are the result of the Kronecker product [18] on matrices of elementary quantum
gates that operate “in parallel”. The Kronecker Product of Matrices is defined as
follows:



















=





















































=







⊗









dvdzcvcz
dydxcycx
bvbzavaz
bybxayax

vz
yx

d
vz
yx

c

vz
yx

b
vz
yx

a

vz
yx

dc
ba

Mathematically, it is the Kronecker Product operation that allows the quantum
logical system to grow dimensionally much faster than classical logics. Observe that
in a quantum system n qubits represent a superposition of 2n states while in a classical
system n bits represent only 2n distinct states. Operations over a set of qubits are
defined as matrix operations and map the physical states into the Hilbert space.
[13,46,48]. The concept of Hilbert space will be used below only in the most
elementary way necessary to understand the calculations. States of the wave function
are eigenvalues of this space. Each matrix-operator represents a modification to the
complex coefficients of the wave function. The new coefficients result in the
modification of probabilities to find the system in a particular basic state. But we do
not have to worry about classical probabilities in this paper since the operation of a
quantum circuit is purely deterministic, so we will always deal with eigenvalues
(complex probability) rather than standard probabilities in circuit design.
Consequently a quantum gate will be a matrix having for input the vector of complex
coefficients of the waveform and producing a vector of complex coefficients as the
output. An illustrative example can be seen in equation 1.









+
+

=















10
10

1
0

βα
βα

β
α

dc
ba

dc
ba

 (1)

where a, b, c, and d are complex coefficients of the matrix indicating the (complex)
probability to transit from one state to another, and α|0>, β|1> are the (complex)
wavefunction coefficients to be propagated through the matrix-operator. Less
formally, we can think about this matrix as a quantum equivalent of a classical gate
such as AND which transforms its input states into output states. The designer of

quantum algorithms has to deal with standard probabilities, but the designer of
quantum circuits, which is our interest here, deals only with operations in quantum
world because his input problem is described in such a way.

 Assume j to be the square root of –1. Let us denote by U+ a hermitian matrix of
matrix U, which means the complex conjugate of the transposed matrix U (the matrix
U is first transposed and next each of its complex numbers is replaced with its
conjugate, thus a – jb replaces a +jb). We say that gate U is unitary when U*U+ = I,
where I is an identity matrix. It can be shown that because the probabilities must be
preserved at the output of the quantum gate, all matrices representing quantum gates
are unitary. Thus every quantum gate, block and the entire circuit is described by a
unitary matrix. Every quantum gate has therefore exactly one inverse matrix –
quantum computing is reversible; quantum gate matrices represent logically reversible
gates. Some of those gates are exactly the same as in classical reversible computing,
which allows to use some results of binary reversible computing in quantum
computing. While in general the coefficients in unitary matrices of quantum circuits
are complex numbers, there are some special and important gates for which unitary
matrices are just permutation matrices. (Let us recall that a permutation matrix has
exactly one “1” in every row and in every column and all other entries are zeros – it
describes therefore an input-output permutation of value vectors). The gates whose
unitary matrices are permutation matrices are called permutation gates and they
correspond to gates of classical reversible logic. There exist, however, other important
gates whose unitary matrices are not permutation matrices. Rotational operators
(gates) and gates such as Hadamard gate (denoted by H) and Square Root of Not Gate
(denoted by V) belong to this second category which we will call “truly quantum
primitives”. These gates are responsible for superposition, entanglement and all
peculiarities of quantum computing, although they may constitute only a small
fraction of gates in a quantum circuit. A Hadamard gate is an example of a gate that
has a unitary matrix which is not a permutation matrix. Here are some useful
matrices:









−

−+
==








=








−

=−








 −
=−








==−








−

=

1
1

2
1,

0
01

,
10

01

,
0

0
,

01
10

,
11

11
2

1

j
jjNOTV

j
PhaseZPauli

j
j

YPauliNOTXPauliHadamard

We will denote these gates by H, X, Y, Z, S and V, respectively. Only X is
permutative. It can be easily checked by the reader that multiplying the matrix of gate
V by itself produces the matrix of Pauli-X which is an inverter or NOT gate. The
reader can find interesting identities by multiplying these matrices by themselves and
also by their inverse matrices. Such identities in quantum logic are used to simplify
the quantum circuits that come directly from evolutionary algorithms (section 6).
They play a role analogous to Boolean algebra identities such as De Morgan used in
classical logic synthesis.
Below we will pay special attention to circuits composed of only permutation gates
(these are the so-called permutation circuits, because their unitary matrices are
permutation matrices). An example of a permutation gate is the Feynman gate (called
also CNOT gate or Quantum XOR). This gate can be described by the following logic
expressions: (A,B) => (P, Q) = (A, A⊕B), see Figure 1a. This equation means that the

output bit P is just the same as its input A, while on the output of the second wire Q
the operation A ⊕ B is performed. This operation (EXOR of A and B) is a standard
logic operation. Sometimes notation A’= P and B’= Q is used (Figure 1c,d,e). (In
other papers notation A’=A, and B’=B is used to underlie the fact that the result
occurs on the same quantum wire A or B). These expressions are also related to the
quantum matrix. For instance, the permutation matrix and the equations from Figure
1c describe the Feynman operator from Figure 1a,b. The careful reader may verify
that this is indeed a unitary matrix and that it satisfies the definition of a permutation
matrix as well. Observe that each of its rows and columns corresponds to one of
possible states of input and output values: 00, 01, 10, and 11. The binary states are
encoded to natural numbers as follows: 00=0, 01=1, 10=2, 11=3. We will use natural

numbers to address rows and columns in matrices. Let us observe that when A = 0
and B = 0, then A’=B’=0. Thus, input combination 00 is transformed to output
combination 00. This is represented by a value of “1” at the intersection of row 0 and
column 0 of the matrix. Similarly, input combination 11 is transformed to output
combination 10, which is represented by a value of “1” at the intersection of row 3
and column 2 (Figure 1c). Another variant of Feynman gate is in Figure 1d,e.

Figure 1: Feynman gates: (a) the circuit in quantum array notation, (b) the
transformation between states executed by this gate, (c) the unitary matrix with
binary enumeration of rows and columns and the corresponding Boolean equation
of outputs, (d) Feynman EXOR up circuit scematics, (e) its unitary matrix and
Boolean equations

Figure 2: Swap gate: (a) unitary matrix and corresponding Boolean equations, (b)
realization using Feynman gates, (c) a schematic, (d) another realization using
two Feynman gates and one Feynman EXOR up gate.

Figure 2 presents another permutation gate called a Swap gate. Observe that
this gate just swaps the wires A and B, since input state 01 is transformed to output
combination 10, input vector 10 is transformed to output vector 01 and the remaining
combinations are unchanged (Figure 2a). Swap gate is not necessary in classical
CMOS reversible computing, where it is just a crossing of connecting wires that can
be for instance in two layers of metallization. However, in quantum computing
technology like NMR, every unitary matrix other than identity is realized by NMR
electromagnetic pulses so its realization has a cost. High cost of swap gates in
quantum realization is one of main differences between quantum and reversible
circuit synthesis (in reversible computing these gates are free). Thus quantum circuit
design covers some aspects of not only logic synthesis but also physical design
(placement and routing) of standard CAD.

Let us introduce now few more gates that we will use. There are several 2*2
gates in binary reversible logic and they are all linear. A linear gate is one that all its
outputs are linear functions of input variables. Let a, b, and c be the inputs and P, Q
and R the outputs of a gate. Assuming 2*2 Feynman gate, P = a, Q = a ⊕ b, when a
= 0 then Q =b; when a = 1 then Q = ¬ b. (Sometimes the negation of a is also denoted
by a’). With b=0 the 2*2 Feynman gate is used as a fan-out (or copying) gate. It can
be shown that a swap gate can be built as a cascade of three Feynman gates – Figure 2
(the reader can check it by multiplying matrices or by transforming Boolean equations
of gates). Figure 2b shows realization of Swap gate with three Feynman gates, and
Figure 2c its schematics. Observe that there is also another realization of the Swap
gate (Figure 2d). Circuits from Figure 2b and Figure 2d are then called equivalent or
tautological. Every linear reversible function can be built by composing only 2*2
Feynman gates and inverters. There exist 8! = 40,320 3*3 reversible logic gates, some
of them with interesting properties, but here we are not interested in types of gates but
in synthesis methods using arbitrary permutation gates, so we will restrict ourselves
to only few gate types (many other gate types have been defined in our software).
There exist two well-known universal 3*3 reversible gates: Fredkin gate [14] and

Toffoli gate. Toffoli gate is also called 3*3 Feynman gate or Controlled-Controlled–
NOT (Figure 3). The 3*3 Toffoli gate is described by these equations:

 P = a, Q = b, R = ab ⊕ c.
Toffoli gate is an example of two-through gates, because two of its inputs are given to
the output. Similarly, the concept of k-through gates can be introduced, as well as the
concept of k*k Toffoli Gates. In general, for a reversible gate with n inputs and n
outputs, the matrix is of size 2n * 2n.

The 3*3 Fredkin gate (Figure 4) is described by these equations:

 P = a, Q = if a then c else b, R = if a then b else c.
As we see, in terms of classical logic this gate is just two multiplexers controlled in a
flipped (permuted) way from the same control input a. The symbol notation for a 3*3
Fredkin Gate is shown in Figure 4a. Qubit a is the controlling qubit. A classical
schematics of this gate that uses multiplexers is shown in Figure 4b. As we see, the
3*3 Fredkin gates are permutation gates, they permute the data inputs b,c of the
multiplexers under control of the control input a of these multiplexers that is also
outputted from the gate. The fact that output P replicates input a is very useful
because it allows to avoid fanout gates for the same level of the circuit (let us recall
that fanout is not allowed in reversible logic). Copying of arbitrary signals is not
allowed in quantum circuits (no cloning principle) [48], so the replication using
Feynman gates can be applied only to basis states. Figure 4c presents a Fredkin gate
controlled with qubit c. In Figure 4d qubit b is the controlling qubit. Realization of
Fredkin gates using Toffoli and Feynman gates is shown in Figure 5.

Figure 3. Toffoli gates: (a) a schematic of Toffoli gate (EXOR down), (b) Toffoli
gate (EXOR middle), (c) realization of schematics from Figure 3b using the Toffoli
EXOR down and two Swap gates, (d) realization of Toffoli EXOR middle with
permuted input order

Fredkin gates are examples of what we define here as one-through gates, which
means gates in which one input variable is also an output.

Figure 4. Fredkin gates: (a) Schematics with controlled qubit a, (b) the classical
schematics of this gate using multiplexers, (c) Fredkin gate controlled by qubit c
(Fredkin Down), (d) Fredkin gate controlled by qubit b (Fredkin middle).

 Figure 6 presents the well-known realization of Toffoli gate from [21].
According to the figure in right (Figure 6b), there are five 2-qubit primitives. Let us

explain how the quantum primitives cooperate to create correct gate behavior. The
non-permutation matrices of quantum primitives are composed to create permutation

ac⊕ba’

a

c

b

a

 Toffoli

a

ac⊕ba’

ca’⊕ac c

b

a

=

Figure 5: Fredkin gate realization using one Toffoli and two Feynman gates. (a)
Toffoli shown schematically, (b) Toffoli with EXOR-down schematics

Toffoli
b

ab⊕c

a

c

b

a a a

b

ab⊕c c

b

V+VV

=

Figure 6: Toffoli gate synthesized using only 2-qubit primitives as proposed by
Smolin.

behavior of the entire gate. Observe that Controlled-V and Controlled-V+ quantum
primitives are used. V is the unitary matrix called Square-Root-of-Not, thus a serial
connection of gates V realizes an inverter: V*V = NOT. Matrix V+ is the hermitian of
V. As we remember from the definition of hermitian, we have that V * V+ = I which
is the identity matrix (describing a quantum wire). The Controlled-U gate (Figure 7)
works as follows: when the controlling signal a (upper signal in gate Controlled-U) is
0, the output Q of the lower gate repeats its input b. When the controlling signal a is
1, the output of the lower gate is the operator of this gate (matrix U) applied to its
input b (Figure 7). Therefore, in case of the Controlled-V gate, the output is operator
V applied to the input. In case of Controlled-V+ gate, the output is operator V+ applied
to the input of the gate. The reader can verify in Figure 6b that when a=1, b=0, the
operation V * V+ = I is executed in line c, thus the output of this gate repeats the value
of c. When a = 1 and b = 1, the operation V * V =NOT is executed in line c, thus the

lowest output is a negation of input c. Which is the same as ab ⊕ c executed in on the
corresponding qubit in Toffoli (Figure 6a). Other output values are also the same as in
the Toffoli gate equations. The reader is asked to analyze the operation of this gate on
the remaining input combinations to verify its correctness. Let us also remember that
Feynman gate has two variants. The EXOR gate can be on an upper or on a lower
wire. Similarly, there are three 3-qubit Toffoli gates, EXOR-up, EXOR-down and
EXOR-middle (Figure 3). Observe that these gates have all different unitary matrices
so they are formally different quantum gates.

Figure 7. A general-purpose Controlled Gate. When a = 0 then Q = b, when a = 1,
then Q = U(b).

3. Evolutionary Approaches to Synthesis of Quantum Arrays

There are basically two methods of designing and drawing quantum circuits. In the
first method you draw a circuit from gates and you connect these gates by standard
wires. This is like in classical circuit design, but your gates are reversible or
quantum gates. The rules to design a reversible circuit using this approach are the
following: (1) no loops allowed in the circuit and no loops internal to gates, (2) fan-
out of every gate is one (which means, every output of a gate can be connected only to
one input terminal). These rules preserve the reversible characteristic of gates thus
the resulting circuit is also completely reversible. Next, when you draw the circuit, the
gates are placed on a 2-dimensional space and the connections between them are
routed. Every crossing of two wires in the schematics is replaced with the quantum
Swap gate making the schematics planar, which means, no more two wires intersect

in it. The schematics is thus rewritten to a quantum array notation illustrated below. It
is relatively easy to transform a quantum array to its corresponding unitary matrix, as
will be illustrated in the sequel. Kronecker and standard matrix multiplications are
used in this transformation. A unitary matrix of a parallel connection of gates A and B
is the Kronecker product A⊗B of matrices A and B. A unitary matrix of a serial
connection of gates A and B is the standard matrix product A * B of matrices A and
B. Transformation of quantum array to its unitary matrix is done for analysis or
verification and is a part of our evolutionary algorithm. The approaches that use this
first design method of reversible circuits are closer to those of the classical digital
CAD where the phases of logic synthesis and physical (geometrical) design are
separated.

The second design method for quantum circuits is to synthesize directly the
quantum array of a circuit that was initially specified by a unitary matrix. This is
done without involving additional graph-based or equation-based representations. The
synthesis is done by one of two approaches:

(a) composing matrices of elementary gates in series or in parallel until the
matrix of the entire circuit becomes the same as the specification matrix,

(b) decomposing the specification matrix of the entire circuit to parallel and
serial connections of unitary matrices until all matrices correspond to
matrices of elementary gates directly realizable in the given technology.
For simplification, from now on we will talk interchangeably about a gate
and its unitary matrix.

 In another synthesis variant, called the approximate synthesis, it is not required that
the circuit specification matrix and the matrix of composed gates are exactly the same.
They can differ by small allowed values or/and differ in some matrix coordinates
only.

The synthesis problem of a quantum array has therefore a simple formulation
as a composition or decomposition problem, but practical realization of synthesis
algorithms for quantum circuits is extremely hard. Observe that even in the case of
standard (irreversible) binary logic these composition and decomposition approaches
are computationally very difficult and it is only very recently that they are becoming
practical in CAD software, because of their high computational complexity. In the
case of quantum logic the situation is much more difficult, because of the fast
increase of data sizes and because so far the mathematics of description
transformations is limited, heuristics are not known and there are no counterparts in
quantum logic of such familiar notions as Karnaugh Maps, prime implicants or
reductions to covering/coloring combinatorial approaches. Therefore most authors
turned to evolutionary algorithms as the fast prototyping methods for quantum arrays
[1,2,3,5,6,8,54]. These approaches seem to be good for introductory investigations of
the solution space and its properties, with the hope that by analyzing solutions we will
learn more about the search space and ultimately create more efficient algorithms. As
we will see below, this phenomenon actually happened in case of our research.

In the evolutionary computation approach to quantum synthesis, two key
elements strongly influence the convergence of the search. These are: (1) the
evaluation function (called also the fitness function), and (2) the encoding of the
individuals [9]. Genetic programming uses the encoding of data to trees so the
operations on them are very time-consuming [36]. Here we propose a new way to
calculate costs of gates and circuits as a part of the fitness function. Also proposed is a
new method of QC and RL circuit encoding in a GA. Since we use the same encoding

for QC and RL and for many variants of algorithms, design parameters and cost
functions, we can easily compare respective synthesis results under strictly the same
conditions. This has been not accomplished by previous authors.

The synthesis of quantum logic circuits using evolutionary approaches has two

fundamental aspects.
First, it is necessary to find the circuit that either (A) exactly corresponds to

the specification, or (B) differs only slightly from the specification. Case (A) is
verified by a tautology of the specification function and solution function. In case of a
truly quantum circuit this is done by a comparison of unitary matrices. In case of
permutation functions this can be also done by comparing the truth tables. Observe
that non-permutation matrices cannot be represented by truth tables which leaves the
representation of unitary matrices as the only canonical function representation. This
representation is responsible for less efficient tautology verification during fitness
function calculations, which considerably slows down the software. Case (B) for
permutation circuits is verified by an incomplete tautology (tautology with accuracy
to all combinations of input values and with arbitrary logic values for don’t care
combinations). In some applications such as robot control or Machine Learning it is
sufficient that the specification and the solution are close, like, for instance, differing
only in few input value combinations.

Second fundamental aspect of quantum logic synthesis is that the size (cost) of
the circuit has to be minimal, in order to allow the least expensive possible quantum
hardware implementation (like the minimum number of electromagnetic pulses in
NMR technology). The cost differs for various technologies, but some approximate
costs functions will be formulated here that are still more accurate than those
previously proposed in the literature.

Consequently, the fitness function of the GA should take into account both the
above-mentioned aspects, which means the GA should be designed so as to minimize
both the distance from the specification and the final circuit cost simultaneously.
Sometimes we are not interested only in those solutions that meet the specification
exactly. Usually we are not interested in the solution that would have the exact
minimal cost. Multiple designs of a GA are tested here and their results are compared
in order to select the minimum cost solution. This approach not only improves the
cost of any solution found, but also helps us to develop gradually better generations of
our evolutionary/algorithmic/heuristic programming tools for QC CAD.

In our software the fitness function is optimized for the minimal cost, speed of
synthesis or precision of synthesis. In case of designing a reversible circuit, the fitness
function can be also optimized for the speed of synthesis, the cost of the circuit or for
the total number of wires (insertion of a minimum number of constants). These two
methods of optimization for each technology and logic type allow to formulate
precise constraints for the synthesis method in use.

In this paper we derive more precise cost functions for gates to be used in the
optimization algorithm. We will follow the footsteps of some previous papers in
quantum computing and we will realize all gates from 1* 1 gates (called also 1-qubit
gates) and 2*2 gates (i.e. 2-qubit gates). Moreover, according to [21] we will assume
that the cost of every 2*2 gate is the same. Although our methods are general, to be
more specific we assume Nuclear Magnetic Resonance (NMR) quantum computers
[4,49,50,51,52], for which we approximately assume costs of all 1-qubit gates to be 1,
and 2-qubit gates to be 5. Thus, every quantum gate (particularly, every permutation
quantum gate) will be build from only 1-qubit and 2-qubit primitives and its cost

respectively calculated as the total cost of these primitives used in the circuit.
Obviously, this approach can be used for both QC and RC, since in evolutionary
approaches we can always arbitrarily restrict the gates used for synthesis, and in case
of RC only a subset of permutation gates can be selected.

4. Costs of quantum gates.

An important problem, not discussed so far by other authors, is the selection of

the cost function to evaluate the QC (or RC) designs. Although the detailed costs
depend on any particular realization technology of quantum logic, so that the cost
ratios between for instance Fredkin and Toffoli gates can differ in NMR and ion trap
realizations, the assumptions used in several previous papers [2,3,4,5,6,8]; that each
gate costs the same, or that the cost of a gate is proportional to the number of
inputs/outputs, are both far too approximate. These kinds of cost functions do not
provide any basis for the synthesis optimization and as shown by us [1, 2] can lead to
quantum sequences for NMR that are far from the minimum. In this section some of
the well-known decompositions of known 3-qubit quantum permutation gates, as well
as the new gates, will be discussed to illustrate this problem.

The cost of quantum gates in synthesis methods can be seen from as many
points of view as there are possible technologies. Previous researches used specific
cost to minimize the number of wires per gate, the number of gates in the circuit or
other task-specific criteria. Assume a random function to be synthesized in QL and
defined over a set of basic variables a, b, c and d. This function will use 4 qubits and
the unitary matrix representation of the circuit will be of size 24 * 24. The matrix
representation can be also called the evolution matrix of the system [10] but this name
has nothing to do with evolutionary synthesis algorithms. Defined as quantum
evolutionary processes, there is theoretically an infinity of possible quantum gates. In
the present work only well-known and widely used unitary quantum gates, as those
listed above, will be used. The user of our software can however very easily extend
the system by defining arbitrary gates as 256-character symbols together with their
unitary matrices and natural numbers for costs. This applies also to multi-qubit gates
and multi-valued quantum gates [55].

Based on NMR literature [49,50,51,52] we assume the 1-qubit gates to have a
cost of 1 and the 2-qubit gates to have the cost of 5. This leads to 3-qubit gate costs of
about 25. From this cost attribution it is evident that the optimization should be aimed
toward the use of gates with as few qubits as possible. The cost of the circuit is the
total cost of gates used. Of course, especially using GAs, the search might not always
be successful but a solution will have always two evaluation criteria: the final circuit
error and the final cost calculated after the optimizing “local equivalence”
transformations being applied to the initial circuit produced by a GA. (Sometimes we
use in GA more precise gate costs if they are known from the literature, but the costs
given above will be used for illustration purposes here).

In the ideal case the GA will find an optimal circuit; i.e. the circuit with the
smallest possible cost and with the correct matrix representation. Two worse
alternatives are: (1) a circuit with a higher cost than the minimum but still with a
correct matrix, (2) a circuit with not completely correct matrix but with a smaller cost.
For future use let’s refer to these three groups of alternatives as Co (optimal cost), Ca
(average cost) and Cw (worst cost), respectively. In the case of RL circuit synthesis
the differences in results can occur on one more level: as mentioned before, input
constants insertion is allowed in RL synthesis. However, we want to minimize the

number of such constants in order to reduce the circuit’s width. Once again, as will be
shown below, this parameter can be also taken into account by our software as part of
the cost function. Consequently, one can obtain a correct circuit with a small cost of
gates but with a higher number of wires.

Cost of the result in gates
Cg

Function
found

Total Cost Ct

1. Min ≤ Cg YES Min ≤ Ct
2. Min < Cg < Max YES Min < Ct < Max
3. Cg ≤ Max YES Min < Ct < Max

4. Min ≤ Cg NO Min < Ct < Max

5. Min < Cg < Max NO Min < Ct < Max

6. Cg ≤ Max NO Ct ≤ Max

Table 1: Illustration of possible results using a combination of cost function per gate
Cg and a global evaluation cost function Ct. The column in the middle indicates if the
searched function was found or not found.

Table 1 systematizes possible results of a Quantum Circuit synthesis. In the
table possible search solutions are characterized with respect to the combinations of
the two cost functions.
 The cost Cg is the cost of the circuit based on the sum of costs of all gates. Ct is
the total cost where the correctness of the result is also included, based on one of the
previously explained verification methods between the specification and the obtained
circuit descriptions. As will be seen, both of these two cost functions can be handled
in order to accelerate or moderate the speed of convergence of the entire synthesis
process. A closer look at the table will reveal three categories of results as previously
described. These are circuits with small, average and high total costs, respectively.
These types can be again separated in two, depending whether the final solution was
found or not. Groups 1, 2, and 3 are for exact design, groups 4, 5, and 6 for
approximate. Groups 1 and 4 correspond to C0, Groups 2 and 4 to Ca, and groups 3
and 6 to Cw. The category with the most circuits is the one with an average cost, and
as will be seen later it is this category that needs particular attention while selecting
and adapting a fitness function for a synthesis problem. Min and Max in the table are
some parameters set by the user and based on experience.

Now let us continue the discussion of the circuit decomposition into
primitives. Let us consider one practical example. The Toffoli or Fredkin gates
introduced in section 2 are both universal quantum logic gates that are well-known.
They have been built in several quantum and reversible technologies. The problem is
to find an optimal decomposition of the universal gates into smaller parts, especially
the directly realizable quantum primitives such as Feynman, NOT or Controlled-V
(C_V) gates. As mentioned earlier, the gates with one and two qubits have costs 1 and
5, respectively. Consequently the assumption of using only 1-qubit and 2-qubits gates
will be observed since only such gates are directly realizable in quantum hardware.
Other gates are only abstract concepts useful in synthesis and not necessarily the best

gates for any particular quantum technology (like NMR in our case). Figure 6
presented the well-known realization of Toffoli gate from [21]. According to Figure
6b there are five 2-qubit primitives, so the cost is 5 * 5 = 25.

Now that we learned in section 2 how Toffoli gate works internally based on
the operation of its component quantum primitives, we will realize the Fredkin gate
from the Toffoli gate. Using a GA [1,2] or the synthesis method from this paper, we
can synthesize the Fredkin gate using two Feynman gates and one Toffoli gate as in
Figure 5. The cost of this gate is 2*5 + 25 = 35.
 Substituting the Toffoli design from Figure 6b to Figure 5 we obtain the circuit
from Figure 8a. Now we can apply an obvious EXOR-based transformation to
transform this circuit to the circuit from Figure 8b. This is done by shifting the last
gate at right (Feynman with EXOR up) by one gate to left. The reader can verify that
this transformation did not change logic functions realized by any of the outputs.
Observe that a cascade of two 2*2 gates is another 2*2 gate, so by combining a
Feynman with EXOR-up gate (cost of 5), followed by controlled-V gate (cost of 5)
we obtain a new gate C_V with the cost of 5. Similarly gate C_V+ with cost 5 is
created. This way, a circuit from Figure 8c is obtained with the cost of 25. (This
transformation is based on the method from [21] and the details of cost calculation of
C_V and C_V+ are not necessary here). Thus, the cost of Toffoli gate is exactly the
same as the cost of Fredkin gate, and not half of it, as previously assumed and as may
be suggested by classical binary equations of such gates.

c)
C_V+

V

C_V

b)

a)

V+VV

V+VV
Figure 8: Example of reducing cost in the Fredkin gate realized with quantum
primitives. Gates C_V and C_V+ in Figure 8c are created by combining respective
quantum primitives from Figure 8b which are shown in dotted lines.
Encouraged with the above observation that sequences of gates on the same
quantum wires have the cost of only single gate on these wires, we used the same
method to calculate costs of other well-known gates. Let us first investigate a function
of three majorities investigated by Miller [22,23,56]. This gate is described by
equations: P = ab ⊕ ac ⊕ bc, Q = a’b ⊕ a’c ⊕ bc, P = ab’ ⊕ ac ⊕ b’c. Where a’ is a
negation of variable a. Function P is a standard majority and Q, R are majorities on
negated input arguments a and b, respectively [56]. We realized this function with

quantum primitives, found it useful in other designs and thus worthy to be a stand-
alone quantum gate. We call it the Miller gate [56]. As seen in Figure 9a, the Miller
gate requires 4 Feynman gates and a Toffoli gate, which would suggest a cost of 4*5
+ 25 = 45. However, performing transformations as in Figure 9b, we obtain a solution
with cost 35. Another solution obtained by the same method has cost 35 and is shown
in Figure 9c. It is also based on simple EXOR transformation (x⊕y) ⊕ z = (x⊕z) ⊕ y
applied to three rightmost Feynman gates from Figure 9a, with EXOR in the middle
wire y. (More on optimizing equivalence-based transformations in section 6). Again,
the Miller gate, based on its binary equations, looks initially much more complicated
than the Toffoli gate, but a closer inspection using quantum logic primitives proves
that it is just slightly more expensive.

5. Our Entire minimization methodology of quantum arrays
synthesis.

Based on examples from section 4, let us observe that a new permutation

quantum gate with equations:

P = a,
Q = a ⊕ b,
R = ab ⊕ c

can be realized with cost 20. It is just like a Toffoli gate from Figure 6b but without
the last Feynman gate from the right. This is the cheapest quantum realization known
to us of a complete (universal) gate for 3-qubit permutation gate (Figure 10). It is thus
worthy further investigations. We found that the equation of this gate was known to
Peres [35], but it has not been used in practical designs of quantum or reversible
circuits. We propose here to consider the Peres gate as a base of synthesis and
transforms, similarly as 2-input NAND gates are used in technology mapping phase
of classical Boolean CAD.

 Observe that assuming the availability of Peres gate, the algorithms from
literature (for instance [25,26]) will not lead to a quantum array with minimum
quantum costs formulated as above. When given the unitary matrix of the Peres gate,
these algorithms would return the solution of cost 30 composed from one Toffoli gate
and one Feynman gate, which would lead to clearly non-minimal electromagnetic
pulse sequence. Thus, improved synthesis algorithms should be created to minimize
the realistic quantum gate costs introduced in [21] and in this paper. Observe please
also, that if a post-processing stage were added to the algorithms from
[22,23,24,25,26] (or to the result of the GA from section 7), then the optimum
solution (of a single Peres gate and cost of 20) would be found for this example.

 Therefore our entire synthesis and optimization approach to quantum arrays is
the following.

1. First create the circuit by some approximate synthesis method
(evolutionary algorithm in our case),

2. Apply macro-generation of complex gates to quantum primitives,
3. Apply the optimizing equivalence-based transformations.

The application of this procedure to our example will have the following stages:
(a) the initial solution is a Toffoli gate followed by a Feynman gate (with EXOR

down) on quantum wires 1,2 (Figure 10b).
(b) the macro-generation of the Toffoli gate leads to a Peres gate followed by the

Feynman gate (with EXOR down) on quantum wires 1,2.
(c) the equivalence-based transformation (presented below) will find a pattern of two

Feynman gates of the same type (EXOR down) in sequence, which is replaced
with two quantum wires, 1 and 2 (Figure 10c).

(d) thus the two right Feynman gates are cancelled, the same way as two inverters in
series are cancelled in standard logic synthesis.

(e) the resultant circuit, a final solution, will have just one Peres gate of cost 20
(Figure 10d).

a)

c)

b)

V V V+

V V V+

V V V+
z

y

x

Figure 9: Reducing the cost of realization of Miller gate using quantum primitives:
Feynman EXOR up, Feynman EXOR down, Controlled-V (V down), and Controlled
V+ (V+ down)

. As can be seen from previous examples, the gates matrices have infinity of possible
representations in QL. The above samples of synthesis are situated in the Co category
of Table 1, because if eventually a smaller circuit of a Fredkin gate were found, then
the one presented here will remain very close to the minimal cost. Consequently the
group that needs the closest inspection is the Ca because it includes circuits of great
interest. As the number of circuits is infinite, the circuits in the last group can be
considered as being too far from the searched solution. However the circuits in the
group having average cost (not too far from the solution and not too big) can be
simplified to better ones, and also they can already include parts of the optimal
circuits.

6. Local Transformations.
The transformations are grouped in 12 transformation sets. There are the following
sets:
S1. 1-qubit transformations,

S2. 2-qubit transformations,
S3. 3-qubit transformations,
S4. 4-qubit transformations,
S5. n-qubit transformations,
S6. Ternary transformations,
S7. Mixed binary/ternary transformations,
S8. Macro-generations,
S9. Macro-cell creations,
S10. Peres Base transformations,
S11. Toffoli Base transformations,
S12. Controlled-V Base transformations,
S13. Input/Output permutting transformations.

Many transformations are shared between sets. In addition, in each of the above base
sets, there are subsets to be chosen for any particular run of the optimizer program.
Most of them are taken from [22-26,49,53] but some other are based on our research
or general quantum literature. Different groups of transformations are used in various
stages of circuit optimization. The 1-qubit transformations are related to 1-qubit gates

(Tables 2,3 and 4). They can precede and also follow the 2-qubit, 3-qubit and other
transformations. The 2-qubit transformations are for 2-qubit circuits or 2-qubit
subcircuits of larger quantum circuits, similarly the 3-qubit transformations are for 3-
qubit circuits or subcircuits of larger circuits (Table 5). The n-qubit transformations
are general transformation patterns applicable to circuits with more than 3 qubits.
They are less computationally efficient and they use internally transforms S1 – S4.
Ternary transformations (only 1-qubit, 2-qubit and 3-qubit) are used for ternary
quantum logic synthesis and mixed transformations for mixed binary/ternary quantum

Figure 10. Peres gate: (a) Peres gate as a block using Toffoli Base notation, (b)
Solution to Peres gate in Toffoli Base with cost 30, (c) Result of macro-generation
of circuit from Figure 10b to Peres base, (d) After applying the optimizing
transform that removes a successive pair of Feynman gates. The cost is now 20.

logic synthesis [57]. Macro-generations are transformations that convert higher order
gates such as Fredkin, Margolus, DeVos, Kerntopf or Perkowski gates to standard
bases. Macro-cell creations from set S9 are inverse to those from set S8. There are
three standard bases of transformations: Toffoli Base, Peres Base, and Controlled-V
Base. In Toffoli Base all permutation gates are converted to X (i.e. NOT), 3-qubit
Toffoli and 2-qubit Feynman gates. This is the standard synthesis base used by all
other authors in literature [22-26,48]. The Peres Base has been introduced originally
by us based on the observation of superiority of this base in NMR realizations (and
perhaps other realizations as well). It includes only X, 3-qubit Peres and 2-qubit
Feynman gates. Controlled-V Base is another new base that is very useful to
synthesize new low-cost permutation gates from truly quantum primitives of limited
type [55,57]. This base includes Controlled-V, Controlled-V+, V, V+, X and Feynman
gates. In all bases the gates like Feynman, Toffoli, Controlled-V are stored in all
possible permutations of quantum wires. Thus in 2-qubit base there are “Feynman
EXOR up” and “Feynman EXOR down” gates and transformations respective to each
of these gates. For simplification, in the tables below only some of the
transformations are shown, for instance related only to “Feynman EXOR down” or
“Toffoli EXOR down gates”. Other transformations are completely analogous. The
output permutting transformations lead in principle to a circuit that has an unitary
matrix which is different from the original unitary matrix. Observe that each
transformation can be applied forward or backward, so the software should have some
mechanisms to avoid infinite loops of transformations. The matrix of the new circuit
is the matrix of the original circuit with permuted output signals. In some applications
the order of output functions is not important, so if the circuit is simplified by
changing the output order, the output permutting transformation is applied.

In addition to operators defined earlier, we define now the following operators:

ZjIZYjIY

XjIXIeP
e

T
j

j

2
sin

2
cos)(,

2
sin

2
cos)(

,
2

sin
2

cos)(,)(,
0

01
2

4

φφφφφφ

φφφφ
φ

π

−=−=

−==











=

X,Y,Z defined earlier are Pauli spin matrices and X(φ),Y(φ), Z(φ) are the
corresponding exponential matrices, giving rotations on the Bloch sphere [48]. P is a
phase rotation by φ/2 to help match identities automatically [53].
 The transformation software operates on sequences of symbols that represent
gates and their parts. Symbol * is used to create sequences from subsequences. This
symbol thus separates two serially connected gates or blocks. Numerically, it
corresponds to standard matrix multiplication. Gate symbols within a parallel block
may be separated by spaces, but it is necessary only if lack of space will lead to a
confusion, otherwise space symbol can be omitted. So for instance symbols of macro-
cells should be separated by spaces. There are four types of symbols: simple,
rotational, parameterized and controlled. Simple symbols are just names (here – single
characters, in software – character strings). The names of simple symbols (used also
in other types of symbols) are the following: D – standard control point (a black dot in
an array), E – control with negated input, F – control with negated output, G – control

with negated input and output, X – Pauli-X, Y – Pauli-Y, Z – Pauli-Z, H – Hadamard,
S – phase, T – Π/8 (although Π/4 appears in it). Symbols A, B and C are auxiliary
symbols that can match several gate symbol definitions. They do not correspond to
any particular gates but to groups of gates and are useful to decrease the set of rules
and thus speed-up transformations. Other simple symbols will be explained below. As
we see, characters are used here not only for gates but also for parts of gates, such as
D – standard control used in gates. Thus we can combine these symbols to create gate
descriptions: DX (Feynman with EXOR down), XD (Feynman with EXOR up),
DDX (Toffoli or Toffoli with EXOR down), DXD (Toffoli with EXOR in middle),
XDD (Toffoli with EXOR up), and so on. Names of macro-cells are for instance: FE
(Feyman), TOD (Toffoli with EXOR down), SW (swap), FRU (Fredkin controlled
with upper wire), MA (Margolus), KED (Kerntopf with Shannon expansion in lowest
wire), etc. Symbols like φ, θ, π denote angles and other parameters. Parameterized
symbols have the syntax:
simple_name [parameter1,…parametern], where parameteri are parameters. For
instance, X[4Π/8], Y[3Π/2], Z[φ], etc. Rotational symbols are composed of the
(simple) rotation operator symbol such as X, Y, Z, or P, and a number. X[φi], Y[φi],
Z[φi], P[φi], where φi = 4Π/8 * i , i = 1,2,…,7. We assume here that all rotational
operators have period 4Π and equal identity when their argument is 0, thus the
choices for φI . In these operators the notation is like this, Xr = X[4Π/8 * r], r =
1,2,…,7, and so on for Yr, Zr and Pr. Controlled symbols have the syntax
simple_name [sequence of simple,rotational or parameterized symbols]
Example 1: D[X*X] is a symbol of a controlled gate that is created from two
subsequent Feynman gates. Observe that DX*CX = D[X*X] = D[I] = I I, which
means that two controlled-NOT gates in sequence are replaced by two parallel
quantum wires denoted by I I. Example 2. D[S*T*H] is a sequence S*T*H controlled
by single qubit. Example 3. DD[X1*Y2*Y2] is a sequence of rotational gates
controlled by a logic AND of two qubits (this is a generalization of a Toffoli gate).
Observe that controlled symbols are created only as a transitional step during the
optimization process – such gates do not physically exist. Using the concept of
controlled symbols, n-qubit circuits can be optimized using 1-qubit transformations
without duplicating all the 1-qubit identity rules. Similarly the parameterized and
rotational symbols allow the reduction and hierarchization of the set of rules, which
causes more efficient and effective run of the optimization software.

 The simplified algorithm SA for performing rule-based optimization of 3-qubit
quantum arrays is the following:

1. Apply all the 1-qubit transformations, until no more applications of
such rules becomes possible.

2. Apply all the 2-qubit transformations and 1-qubit transformations
induced by them (for instance using the controlled symbols).

3. Apply all the 3-qubit transformations until possible.
4. Iterate steps 1,2 and 3 until no changes in the circuit.
5. Apply inverse transformations that locally optimize the array.
6. Repeat steps 1,2,3,4 until possible.
7. Apply inverse transformations that do not worsen the cost of the array.
8. Repeat steps 1,2,3,4 until possible.

Several similar variants of this heuristic algorithm can be created. In general, none of
these versions gives a warranty of the optimal or even sub-optimal solution, as known
from the theory of Post/Markov algorithms.

As an example, we present 1-qubit transformation algorithm A1q:

A1. Combine modulo-8 the same types of rotational operators P,X,Y,Z.
 For instance X2*X3 becomes X5, X2*X3*X3 becomes I,
 and Y3*Y3*Y3 becomes I*Y1=Y1.
A2. Apply directly applicable rules that do not include symbols A and B.
A3. Iterate 1 and 2 until no more changes possible.
A4. Starting from the left of the sequence, find a grouping pattern such
 as A2 = - BC
A5. Substitute symbols X,Y,Z for A,B and C from the pattern.
A6. Apply in forward directions the standard simplifying transformations
 such as I*A=A
A7. Repeat steps A1 to A6 until possible.

Example 4. [53]. Given is an identity Y = - X*Y*X. Let us try to verify this identity
using algorithm A1q. We have therefore to simplify the sequence X*Y*X. (A1)
There are no patterns of the same rotational operators to combine, (A2) There are no
directly applicable rules, (A4) We take pattern -X*Y and match it with the rule A2 =
C*B. This leads to – Z2*X. (A1) no, (A2) no, (A3) no, (A4) we find pattern A2 = CB
which leads to –Y*X*X. (A6) X*X is replaced with I, Y*I is replaced with Y. No
further optimization steps are possible, so the sequence was simplified to –Y, proving
that Y = -Y*Y*X.

Example 5. Simplify HXH. (A2) Use rule H = X*Y1 twice. This leads to
X*Y1*X*X*Y1. (A2) Use rule I=AA in reverse direction. This leads to X*Y1*Y1.
(A1) Y1*Y1 is replaced by Y2. This leads to X*Y2. (A4) Use pattern A=B*C2. This
leads to Z. No further optimization steps are possible. Thus we proved that HXH = Z.
More optimization examples of algorithm SA will be given in the sequel.
In our runs of GA we look for solutions with the accuracy of: (1) permutation of
quantum wires, (2) permutation of inputs, (3) permutation of outputs (transformation
group S13). In addition we can also generate solution sets with accuracy of inverting
input, output or input/output signals (the NPN classification equivalent circuits).
Therefore, for each unitary matrix we generate therefore many logically equivalent
solutions. We can generate solution sets also for the same set of Boolean functions, or
for the same NPN classification class. One interesting aspect of such approach is that
one can create new local equivalence transformations for circuits in each of these
classes. Finding these transformations and applying them exhaustively to particularly
interesting gates leads to levellized “onion-like” structures of gates, as the one shown
in Figure 11. This Figure shows the layered structure of gates created by adding only
Feynman gates to a seed composed of other gate types, in this case a Toffoli gate.
Figure 12 shows the layered structure with Peres gate as a seed, in which Toffoli,
Fredkin and Miller gates are created. These transformations are used to find efficient
realizations of new gates from known gate realizations [55,57].

Figure 11. The layered structure of gates. Fredkin from Toffoli and Toffoli from
Fredkin.

 I1. I = A*A
I2. I = -A*C2*B
I3. I = HH
I4. I = - H*Y3*X
I5. I = P2*A2*A
I6. I = P2*H*X2*Y1
I7. I = - P2*H*Y3*X2
I8. I = - P2*H*Z2*Y3
I9. I = P2*Y1*Z2*H
I10. I = P2*Y2*Y
I11. I = - P2*Y3*H*Z2
I12. I = - P2*Y3*X2*H
I13. I = P2*Z2*Z
I14. I = P3*Z3*S
I15. I = P4*A4
I16. I = - Y*X2*Z
I17. I = - Z*Y2*X
I18. I = - Z*Y3*H

 A1. A = B*C2
A2. A = B2*C
A3. A = B3*A*B3
A4. A = B3*C*B1
A5. A = - C*B2
A6. A = C1*B*C3
A7. A = - C2*B
A8. A = C3*A*C3
A9. A = P2*A2

A1.1. A1 = - B*A1*C
A1.2. A1 = - B*A3*B
A1.3. A1 = - C*A3*C
A1.4. A1 = P2*A3*A

A2.1. A2 = - B*C
A2.2. A2 = CB
A2.3. A2 = - P2*A

A3.1. A3 = B*A3*C
A3.2. A3 = - C*A3*B
A3.3. A3 = - P2*A1*A

A4.1. A4 = P4

 X1. X = - H*Y3
X2. X = S*X2*S
X3. X = Y1*H
X4. X = Y3*H*Y2
X5. X = Z1*X*Z1
X6. X = - Z3*Y*Z1

X1.1. X1 = H*Z1*H
X1.2. X1 = Z*X1*Y

X2.1. X2 = H*Z2*H
X2.2. X2 = P2*H*Y3
X2.3. X2 = - S*X*S
X2.4. X2 = - Y3*H*Y
X2.5. X2 = Y3*Y*H

X3.1. X3 = H*Z3*H
X3.2. X3 = - S*H*S
X3.3. X3 = - Y*X1*Y
X3.4. X3 = - Z*X1*Z

 Table 2: 1-qubit transformations for I, A and X groups.

 Y1. Y = - H*X2*Y3
Y2. Y = H*Y3*Z2
Y3. Y = - H*Z2*Y1
Y4. Y = P2*Y2
Y5. Y = S*Y2*S
Y6. Y = X1*Y*X1
Y7. Y = X2*Y3*H
Y8. Y = X3*Y*X3
Y9. Y = - X3*Z*X1
Y10. Y = -Y1*X2*H
Y11. Y = -Y3*H*X2
Y12. Y = - Y3*Z2*H
Y13. Y = - Z1*X*Z3
Y13. Y = Z1*Y*Z1
Y14. Y = - Z2*H*Y3
Y15. Y = Z3*Y*Z3

Y1.1. Y1 = - H*Y*X2
Y1.2. Y1 = - H*Y2*X
Y1.3. Y1 = - H*Y3*H
Y1.4. Y1 = H*Z
Y1.5. Y1 = P2*H*Z2
Y1.6. Y1 = P2*Y3*Y
Y1.7. Y1 = X*H
Y1.8. Y1 = Y*H*X2
Y1.9. Y1 = - Z*Y2*H
Y1.10. Y1 = Z2*H*Y
Y1.11. Y1 = - Z2*Y*H

 Y2.1. Y2 = - H*Y2*H
Y2.2. Y2 = - H*Y3*Z
Y2.3. Y2 = - P2*Y
Y2.4. Y2 = - S*Y*S
Y2.5. Y2 = - X*Y3*H

Y3.1. Y3 = H*Z2*Y
Y3.2. Y3 = - H*X
Y3.3. Y3 = - P2*H*X2
Y3.4. Y3 = - P2*Y1*Y
Y3.5. Y3 = X2*H*Y
Y3.6. Y3 = Y*H*Z2
Y3.7. Y3 = Y*X2*H
Y3.8. Y3 = - ZH

Z1. Z = H*Y1
Z2. Z = P2*Z2
Z3. Z = S*S
Z4. Z = - X1*Y*X3
Z5. Z = X1*Z*X1
Z6. Z = X3*Z*X3
Z7. Z = Y2*H*Y3
Z8. Z = - Y3*H

 Z1.1. Z1 = H*X1*H
Z1.2. Z1 = P2*Z3*Z
Z1.3. Z1 = - P3*S
Z1.4. Z1 = - X*Z3*X
Z1.5. Z1 = Y*Z1*X
Z1.6. Z1 = - Y*Z3*Y

Z2.1. Z2 = H*X2*H
Z2.2. Z2 = H*Y3*Y
Z2.3. Z2 = P2*Y3*H
Z2.4. Z2 = - P2*Z
Z2.5. Z2 = - P3*Z1*S
Z2.6. Z2 = - Y*H*Y3
Z2.7. Z2 = Y1*Y*H

Z3.1. Z3 = H*X3*H
Z3.2. Z3 = - P1*Z*S
Z3.3. Z3 = - P2*Z1*Z
Z3.4. Z3 = - P3*Z2*S
Z3.5. Z3 = - X*Z1*X
Z3.6. Z3 = X*Z3*Y
Z3.7. Z3 = - Y*Z1*Y

 S1. S = P1*Z1
S2. S = P3*Z3*Z
S3. S = T*T
S4. S = X1*S*Y1
S5. S = X2*S*Y2
S6. S = X3*S*Y3
S7. S = Y*S*X
S8. S = - Y1*S*X3
S9. S = - Y2*S*X2
S10. S = - Y3*S*X1

 H1. H = P2*Y1*Z2
H2. H = - P2*Y3*X2
H3. H = S*X1*S
H4. H = X*Y1
H5. H = - X1*H*Z3
H6. H = - X2*H*Z2
H7. H = - X2*Y3*Y
H8. H = - X3*H*Z1
H9. H = Y*X2*Y3
H10. H = - Y1*Y*X2
H11. H = - Y1*Z
H12. H = Y2*H*Y2
H13. H = Y2*X*Y3
H14. H = Y3*H*Y3
H15. H = -Y3*X
H16. H = Y3*Z*Y2
H17. H = Y3*Z2*Y
H18. H = - Z*Y3
H19. H = - Z1*H*X3
H20. H = - Z2*H*X2
H21. H = - Z2*Y1*Y
H22. H = - Z3*H*X1

X[Π] *Y[φ] = Y[- φ]*X[Π]
X[-Π]*Y[φ] = Y[- φ]*X[-Π]
X[φ] *Y[Π] = Y[Π] *X[-φ]
X[φ]*Y[-Π] = Y[-Π]*X[- φ]
X[Π/2]*Y[φ] = Z[φ] *X[Π/2]
X[-Π/2]*Y[φ] = Z[-φ]*X[-Π/2]
X[φ] *Y[Π/2] = Y[Π/2]*Z[φ]
X[φ] *Y[-Π/2] = Y[-Π/2]*Z[-φ]
X[3Π/2]*Y[φ] = Z[-φ] *X[3Π/2]
X[-3Π/2]*Y[φ] = Z[φ] *X[-3Π/2]
X[φ] *Y[3Π/2] = Y[3Π/2]*Z[-φ]
X[φ] *Y[-3Π/2] = Y[-3Π/2]*Z[φ]

Y[Π] *Z[φ] = Z[- φ]*Y[Π]

Table 3: 1-qubit transformations for Y and Z groups.

 Table 4: 1-qubit transformations for S, H and parameterized rotation groups.

R3.11. DDA*DDB = DD[A*B]
R3.12. DIX*DDX = DDX * DIX
R3.21. DDX*DXI*DDX = DXI *DIX
R3.22. DXI * DDX = DDX * DXI * DIX
R3.24. IXI*DDX*IXI = DDX*DIX
R3.25. DDX*XII*DDX = XII*IDX
R3.28. DXI*DIX*DDX = DDX*DXI
R3.43. IXD*DDX = DDX * DXD * DDX * IXD
R3.44. IIX*DDX = DDX * IIX
R3.48. DDX*DXD*DDX = IDX*DXD*IDX
R3.49. IXI*DIX*DDX = DDX*IXI
R3.54. IDX*DIX*DXI = DXI*IDX
R3.55. IDX*DXI*IDX = DXI*DIX
R3.57. XII * DDX = DDX * X DX
R3.58. DXI*DDX*DXI = DDX*DIX
R3.59. DXI*IDX*DXI = IDX*DIX

R4.1. DIIX*IDDX = IDDX* DIIX
R4.2. XIID*IDDX = IDDX*XDII*XIID
R4.3. DXII*IDDX = IDDX*DIDX*DXII

R2.1. IX*DX = DX * IX
R2.2. DX*XD = XD * SW
R2.3. DX*XD*DX = SW
R2.4. DX*XX = XI*DX
R2.8. DA*DB = D[A*B]
R2.9. DZ = ZD
R2.12. HH*DX*HH = XD
R2.13. IH*DZ*IH = DX
R2.15. DX*XI*DX = XX
R2.18. DX*YI*DX = YX
R2.19. DX*ZI*DX = ZI
R2.27. DX*IX*DX = IX
R2.29. DX*IY*DX = ZY
R2.35. DX*IZ*DX = ZZ
R2.43. Z[θ] I *DX = DX* Z[θ] I
R2.44. I X[θ] *DX = DX* I X[θ]

(a)

(b)

(c)

R3.11. DDA*DDB = DD[A*B]
R3.12. DIX*DDX = DDX * DIX
R3.21. DDX*DXI*DDX = DXI *DIX
R3.22. DXI * DDX = DDX * DXI * DIX
R3.24. IXI*DDX*IXI = DDX*DIX
R3.25. DDX*XII*DDX = XII*IDX
R3.28. DXI*DIX*DDX = DDX*DXI
R3.43. IXD*DDX = DDX * DXD * DDX * IXD
R3.44. IIX*DDX = DDX * IIX
R3.48. DDX*DXD*DDX = IDX*DXD*IDX
R3.49. IXI*DIX*DDX = DDX*IXI
R3.54. IDX*DIX*DXI = DXI*IDX
R3.55. IDX*DXI*IDX = DXI*DIX
R3.57. XII * DDX = DDX * X DX
R3.58. DXI*DDX*DXI = DDX*DIX
R3.59. DXI*IDX*DXI = IDX*DIX

R4.1. DIIX*IDDX = IDDX* DIIX
R4.2. XIID*IDDX = IDDX*XDII*XIID
R4.3. DXII*IDDX = IDDX*DIDX*DXII

R2.1. IX*DX = DX * IX
R2.2. DX*XD = XD * SW
R2.3. DX*XD*DX = SW
R2.4. DX*XX = XI*DX
R2.8. DA*DB = D[A*B]
R2.9. DZ = ZD
R2.12. HH*DX*HH = XD
R2.13. IH*DZ*IH = DX
R2.15. DX*XI*DX = XX
R2.18. DX*YI*DX = YX
R2.19. DX*ZI*DX = ZI
R2.27. DX*IX*DX = IX
R2.29. DX*IY*DX = ZY
R2.35. DX*IZ*DX = ZZ
R2.43. Z[θ] I *DX = DX* Z[θ] I
R2.44. I X[θ] *DX = DX* I X[θ]

(a)

(b)

(c)

Table 5: Examples of 2-qubit and 3-qubit transformations: (a) 2-qubit
transformations, (b) 3-qubit transformations; observe a space between X and DX in
rule R3.57 that signifies that D control the lower X, (c) 4-qubit transformations

Figure 12: Internal part of a layered structure with Peres gate as a seed.

7. Genetic Algorithm for Quantum Logic Synthesis

Now that we understand all the basic prerequisites for our approach to

quantum array synthesis and we have a general plan for it, let us finally discuss the
Genetic Algorithm itself. Similarities with genetic information and its transmission in
Nature are applied and constitute the core of the evolutionary approach. The
application of GA is well known in problems with high noise because their
convergence can be moderated according to the fitness function. GAs are widely used
optimization algorithms, however only few authors present their application programs
for QC synthesis [1,2,3,6].

General steps of using our GA variant for QC (and RL) are the following:

1. Initiate a random population of individuals (here each individual is a

Quantum or Reversible circuit). An individual is an encoding of a
chromosome of a circuit for fitness function evaluation. The size of
the population is generally between 50 and 500 individuals. A too
small population will yield a too fast convergence while a too big
population will uselessly search a too large problem space.

2. Steps describing the search using the GA are called generations. The
search stops when a condition is attained, generally this is a result of
having fitness greater than a limit, or that certain number of
generations has been attained.

3. Pick n pseudo-randomly selected individuals. The rules of selecting
individuals can speed up the convergence of the search, however if
the selection operator is too “greedy” (selecting only the best
individuals) the algorithm can get stuck in a local minimum. We
experimented with several rules, some presented below. They are
based on fitness function.

4. For all the individuals of the new population apply two genetic
operators:

a. Crossover – operator allows to recombine two individuals by
exchanging parts of their respective chromosomes. This operation
is the main power of the search with GAs.

b. Mutation – operator introducing noise into the GA in order to avoid
local minima. Generally applied with a very small probability
[0.01, 0.1] (compared to the one of Crossover [0.3, 0.85]) modify
randomly a chromosome of a randomly selected individual.

5. Replace the old generation of individuals by the new one.
6. If solution is found then exit, else go to step 2.

All individuals in the GA are quantum circuits partitioned into parallel blocks.

Our representation allows describing any Quantum or Reversible circuit [1,2]. This
partitioning of the circuit was in our case induced from the representation of any QC
such as one in Figure 14. Each block has as many inputs and outputs as the quantum
array width (for instance three in Figures 3 – 6). The chromosome of each individual
is a string of characters with two types of tags. To indicate to the algorithm where a
parallel block begins and ends, a special tag different than any gate was required.
This special tag is named here R-tag or ‘r’. Gates’ tags are characters from the
alphabet and in our examples tags are the first letter(s) of gates’ names. An example
of a chromosome can be seen on Figure 13. The circuit corresponding to the parent 1

from Figure 13 can be seen on Figure 14. In this particular encoding each space
(empty wire or a gate) is represented by a tag. Our problem-specific encoding was
applied to allow the definition of as simple genetic operators as possible. The
advantage of these strings is that they allow encoding an arbitrary QL or RL circuit
without any additional parameters known from previous research [5,6]. And only the
possibility to move gates, remove and add them to the chromosome consequently
make it possible to construct and arbitrarily modify a circuit.

To speed-up the search the crossover operator has only one restriction. Both
crossover candidates are restricted to have the same number of wires. This
considerably simplifies this operation because it allows to avoid the case when the
two circuits are cut in incompatible locations. Consequently, for any circuit with a
number of wires higher than one, the crossover is done only between parallel blocks.
This assures that all children are well formed and eliminates also the necessity of a
repair algorithm. In the case of individuals having only one wire in the circuit, the
crossover is executed at a random location in the chromosome.

The mutation is more delicate. Its results should be: adding a gate, replacing a
gate by another one, or a removal of a gate. All these operations can be easily
implemented except for the replacement operator. Assume the Hadamard gate from
circuit in Figure 14 is to be changed to a Feynman gate. It is a particular gate where
we need to create a new parallel block because we want to preserve the remaining of
the current circuit and also not to create a block with more wires than the circuit
actually has. In the remaining cases: (1) the removing of a gate can easily be seen as
replacing it by wires, (2) the adding of a gate implies a creation of a new parallel
block. The results of genetic operators are shown in Figure 13. In the middle are two
parents which yield two children on the left side as a result of a crossover. On the
right side are the results of mutation (removal of a gate, adding a new gate and
changing of a gate, respectively) on parent 2. As can be seen, the operation of adding
a gate results in a creation of a new parallel block, but as will be shown later this
operation is not equivalent to the operation of adding one block.

Crossover
 Mutation

 AG

5
r
F
C
r
r
F
I
I
r
 r
H
T
H
r

 CG

5
r
F
I
I
r
r
T
I
I
r
r
H
T
H
r

5
r
F
C
r r
H
I
I
I
H
r

 RG

5 rI SW I Ir rH I Tr rI SW I Ir
Parent 1: circuit from Fig 14

5 rF Cr rH T Hr

Parent 2

Child 2

5
r
F
C
r
r
H
I
T
r
r
I
SW
I
I
r

Child 1

5
r
I
SW
I
I
r
r
H
T
H
r

Figure 13: Chromosome representing the circuit on figure 14 and genetic operations
as example. On the left is a result of crossing-over and on the right is are results of
mutation Removal of a gate (RG), Adding of a gate (AG) and Replacing of a gate
(CG).

The evaluation of a QC is part of fitness function calculation. In the context of
our encoding it is done in two steps. First for each parallel block a matrix representing
the part of the circuit is calculated. Then each such a unitary matrix is multiplied with
its neighbor so as at the end a matrix representing the whole circuit is obtained. An
example of this calculation can be seen in Figure 15. Inside of each parallel block
only Kronecker matrix products are used, while standard matrix multiplications are
used to multiply these blocks.

In the case of our software variant for RC synthesis the evaluation is similar to
the one used in QC but no matrix operations are required and truth tables of
(in)complete multi-output functions are used instead. As mentioned earlier, constants
insertion is possible in RC logic synthesis. Consequently a function defined over 3
wires can be searched on a circuit with 4, 5 or even more wires. The evaluation of a
RC circuit consists in finding logical equation for each wire and then testing all
input/output combinations on the searched wires. In this case the constants are
alternatively tested for each wire.

As can be seen, the length of the chromosome is proportional to the size of the
circuit. Also the time required to calculate each circuit is proportional to this size. A
circuit with seven gates will have seven blocks if each gate cannot be connected in
parallel with another one. In such case, the chromosome with seven blocks encoding a
circuit for 3 qubits can encode maximally 7*3 = 21 one-qubit gates.

 8. The Fitness Function

The fitness function used was multiple times modified in order to observe
improvements or changes in the search for the new optimized circuits. For dydactic
reasons we will explain some of these variants. The fitness function evaluates each
individual and assigns to it a fitness value, representing the quality of the encoded
circuit, and the encoding is a direct mapping from genotype to phenotype. The
original GA was defined as GA with Darwinian learning. It means, the fitness
function evaluates the genotype. In Baldwinian GA the genotype is converted to the
phenotype and the fitness function evaluates the phenotype. The objective of our
experiments was consequently to modify the fitness function in order to observe the
impact on the “evolution” of the desired solution. The fitness function does not
modify the circuits but only biases the selection operator. This mechanism, according
to the fitness function value of each circuit, will be able to select better or worse
circuits. For example, a fitness function weighted too strongly towards the length of a
circuit will prefer circuits with higher length, even if they are not correct. This kind of
flexibility allows the GA to explore regions of the problem space that are inaccessible
to classical computational methods without an extreme time and computational
resources consumption.

The equation (7.1) represents the basic fitness function.

Error
F

+
=

1
1 (7.1)

where Error is the evaluation of the correctness of the circuit. Although we found this
fitness function very useful in space exploration, it is however too generic and does
not take into account the cost of the circuit. An improved function is shown in
equation 7.2. As can be seen in the equation, two parameters are sufficient to create a
more sophisticated fitness function

Cost

tMin
Error

F cos_
1

1
−

+
= (7.2)

where the first right hand element is the evaluation of the correctness of the solution
from equation (7.1) and the next one is an additional constraint forcing the selection
operator to select circuits with a smaller number of gates or with gates having a
smaller total cost. In the case of the QC search the error evaluation is based on the
comparison of the resultant matrix with the unitary matrix of the evaluated circuit.
The equation (7.3) describes the Error calculation

 ∑∑ −=

j
ijij

i
SOError (7.3)

where Oxy is an element from the expected synthesized unitary matrix and Sxy is an
element from the matrix of the current circuit (for speed a truth table is used in case of
RL). The error generated by this function is exact because it reflects any differences
in the whole matrix of the circuit. In the case of an exact match, this error substituted
in the equation (7.2) gives a fitness of 1. As can be seen in Table 6, the error has
always value 128 in the denominator, since there are 64 (23x 23) units in the
evaluation matrix of a 3-qubit gate and each of them is a complex number. The
representation of complex numbers in computers is done via a definition of complex
numbers as one number for the real part and one for the imaginary. Consequently one
can scale the error either versus the complete set of real and imaginary parts of the
matrix coefficients either versus the number of coefficients in the matrix of the
resulting circuit.

Figure 14: Transformation of a QC from the encoded chromosome (on the left) to
a final quantum circuit notation representation of this QC (on the right). Here S is a
Swap gate, H is a Hadamard gate and W is a wire. In the middle there is one
CCNOT (Toffoli) gate.

Although useful in several runs of our program, the equation (7.2) has still a slight
imperfection. In the case one wants to measure the fitness in the interval [0, 1] the
second element of the equation (7.2) will in some marginal cases output a fitness of 0
while the correct result was found. Consequently a modification of the fitness
function is required. Equation (7.4) shows one possible form of a function producing
fitness in the interval [0, 1].

Cost
tMinError

F
cos_

1

+
= (7.4)

However, this equation assumes that Min_Cost is the cheapest possible circuit. In the
case a cheaper correct circuit is found the fitness will be of course smaller than 1.

This fitness function is centered in the point of the optimal circuit (Min_Cost
and correct result) similarly to a Gaussian curve. It is clear from this example that the
Min_Cost parameter should be also set to 1 which leads to the next version of the
fitness function from equation (7.5):

CostError
F

+
=

1 (7.5)

This equation then should be only maximized because the value of 1 is
practically impossible to find. It is subsumed in the Cost parameter. The value of used
gates varies as previously introduced in this paper. Consequently a circuit realized
with only 1-qubit gates will always have higher fitness than one realized with gates of
two and more qubits if for each more-than-one-qubit gate a cheaper variant with only
1-qubit gates is found. Important point to notice is the numerical non-compatibility of
the Error and Length parameters. The Error is in the range [0, 21+(2*n)] while the range
of the Length parameter is in [Min, ∞]. This ill-scaled ratio would in consequence
make the selection pressure mainly with respect to the length of the circuit and not to
its correctness. As a solution to this problem, the final variant of the fitness function
scales these two variables as shown in equation (7.6):

CosterrorMax
ErrorF 1)

_
1(βα +−= (7.6)

where α and β are scaling parameters that allow to modify the selection pressure
either towards cheaper or more correct circuits.

Another possible approach induced from the previous fitness function was the
introduction of the Pareto optimality (PO) fitness function [9]. PO is used for multiple
objectives optimization problems such as here the Cost and the Error. A GA using PO
uses a different evaluation for the fitness of each individual. This approach is the
following:

- Each individual is compared with all others and is
assigned with a rank.

- The rank of an individual depends on the number of
wins while compared to all other individuals.

- The comparison is made on all parameters. Example: an
individual with the highest rank will have all of its
parameters higher (for maximization) or lower (for
minimization) than most of all other individuals.

Such a comparison forces the selection process of the GA to reproduce mainly
the globally optimal individuals. Similarly to equation (7.5) one needs to scale
parameters of comparison when they are not equivalent.

Figure 15: Examples of Kronecker product ⊕, and of Matrix product * on a sample
of a circuit.

9. Other parameters of GA

In the following discussion of our results, Stochastic Universal Sampling

(SUS) was used as the selection operator, although we experimented also with
Roulette Wheel and other selection approaches. A decision for using SUS instead of
Roulette Wheel (RW) was implied from the following demonstration of high non-
linearity in circuit design. Consequently an operator allowing a selection of less
locally optimal circuits such as SUS was needed in order to obtain good experimental
results.

Circuit
(blocks)

Error (3) Cost
ΣCg

Fitness (6)
α = 0.9
β = 0.1

1 5/128 5 0.8815

2, 3, 4 18/128 12, 18, 24 0.78,
0.778,
0.777

5, 6 4/128 30, 36 0.875,
0.874

7 (circuit
completed)

0/128 42 1

Table 6: Results of sequential evaluation of Fredkin gate from Figure 5a.
An implication of the previous part of this paper, one of the goals of the

presented work was to “reinvent” gates such as those in Figures 2, 3 and 4, or to
synthesize smaller ones with the same functionality. Consequently, the analysis of a
circuit can give more precise explanation of possible non-monotonicity in the

synthesis process evaluation. For this purpose let’s have a closer look at the circuit
from Figure 8a. This circuit has seven gates. The measurement of Error as from
equation (7.3) and fitness from equation (7.6) are recorded in columns of Table 6.

A closer look at the above table will reveal non-monotonicity in the evaluation
of this circuit. The first “trap” for GA is between the first gate and the adding of the
second. Because both the error and the cost increase, the fitness is significantly
reduced and creates a relatively big local minimum. Consequently this step is difficult
for any automated synthesis without heuristics. Two next “smaller” problems are that
between steps 2, 3, 4 and 5, 6 the error remains constant while the cost of the circuit is
linearly growing with each segment. A monotonic growth of the cost can be observed
in the third column. It is important to notice that all gates have a cost including the
wire gate (identity gate). Such a setting allows the algorithm to avoid some local
minima and constructing a circuit with only empty wires. From the above example an
important modification to the algorithm can be derived and is discussed below.

A solution to this non-monotonicity problem can be a modification of the
above presented genetic operators. In this work an extension of the mutation operator
was created. Its result is the addition of a complete parallel block to the circuit. Also
the mutation is tested for each gate of the circuit because multiple mutations can occur
on one chromosome. Such a “bitwise” mutation or noise introduction into the circuit
can avoid such local minima as those in Table 6. The modification of the operator is
required to override such traps as in Table 6. Moreover, as already mentioned, in each
of the groups of steps {2, 3, 4} and {5, 6} the cost increases while the fitness
decreases. It is possible to use a fitness function such as (7.1), however then the
solution can have an arbitrary length and no parameters force the selection of a shorter
circuit. The results and their comparison is described in the next section.

10. Experimental results

As was shown earlier, several well-known gates can be synthesized in

different manners depending on the cost function selection. There exist already a
variety of implementations of universal gates, especially Fredkin or Toffoli. Our goal,
however, is to obtain the gates of the smallest possible cost for realistic physical
realizations. In section 2 of this paper few variations of Toffoli and Fredkin gates
were given and we discussed possible minimization of their cost by realizing them
with smaller, truly quantum, primitives. The two important properties allowing the
minimization operation are the commutability and concatenation properties of gates in
QL. The first property, whether order of two subsequent gates can be changed, is
purely mathematical and can be studied in any literature on Quantum Computing. In
general AB ≠ BA, but some operators (gates) do commute. This can be used in
synthesis, for instance as part of local optimization algorithms from section 6. The
second property is more problematic because there are no any theoretical basis
allowing or not this operation to be applied. It is only a heuristic useful to calculate
approximate cost functions of composed gates [21] and the issue of concatenation
should be further investigated.

All runs of the GA have these generic settings. The mutation probability was
in the range of [0.01,0.1], the crossover probability was in interval [0.75, 0.9], and the
size of the population was [100, 200] individuals. All runs were done on a Pentium
500Mhz with 64 megs of ram.

We reiterate again the non-monotonicity issue discussed previously. Because
of two contrary flows of values in the evaluation function (growing a cost and

reducing an error) the modifications to the fitness function and selection operator
needed to be done. The first possible and already introduced modification is the
scaling of the fitness function with the coefficients α and β. Such a use of scaling
coefficients allows to eliminate the too small negative modifications due to the
linearly increasing cost of the circuit. It is advised and experimentally proven in
following results that the α coefficient should be in the interval of 0.9 to 0.99 while β
should be a complement to it; 1 - α. Similarly these coefficients should be used in a
PO selection operator to scale the ranking of individuals.

Figure 16: Various realizations of Toffoli gate obtained from GA before optimizing
transformations.

Before comparing available results one needs to define the input gates for the
GA. In this case a distinction between a complete starting set and a biased starting set
has to be made. A complete starting set of gates is one containing all available gates
for synthesis, excluding the resulting gate. In a complete starting set of gates the
following gates were available: Wire, Hadamard, Pauli X (NOT), Pauli Y, Pauli Z,
Phase, V, Feynman, Swap, Controlled-V (C-V), Controlled-V-Hermitian (C-V+),
Fredkin, Toffoli, and Margolus. From these the resulting one was removed. A biased
starting set of gates is one based on some constraints, for instance only 2-qubit gates
are used, or only an arbitrary subset of gates is available. In figures representing
results of the search following letters represent these gates: Z – Pauli Z, V –

controlled V, V+- controlled V+.

Figure 17: Results of synthesis of Fredkin gate. a) is result of application of fitness
7.1 and a complete set and b) the result of fitness 7.6 and a complete set.

 Let us compare results of different runs using various fitness functions. Figure
16 presents the results of search for the Toffoli gate. The first circuit (Figure 16a) is

the result of a run where fitness from equation 7.1 was used and a complete starting
set of gates. As can be seen, this result is very expensive because includes three
Fredkin gates and four Feynman gates. This circuit can be simplified by removing two
of the three subsequent identical Feynman gates based on the fact that Feynman gate
is its own inverse. The next one, Figure 16b, is a result of the same setting as with the
previous one but the starting set was a biased one. The available gates in this biased
set were only the ones with number of inputs smaller or equal to 2 qubits. Similarly to
the previous circuit, the group of gates in dash-squares can be concatenated in order to
reduce the cost of the circuit. Moreover two pairs of consecutive identical Feynman
gates (in dotted groups) can be removed. Thus, the second from left dotted group is
removed entirely and the first from right dotted group is replaced by a single Feynman
gate. The rightmost Feynman gate can be moved before the last Controlled-V gate and

added to the dotted rectangle. Although this circuit is longer than the first one its cost
is the same. It is composed only from 2-qubit or 1-qubit gates. The first circuit has
cost 55 (15*3 + 5*2) after minimization and the second circuit also after minimization
has cost of 45 (9*5). The two circuits below in Figure 16 were found using the
improved fitness function from equation 7.6. The circuit from Fig. 16c was found
using a complete starting set and the one from Figure 16c using the biased set similar
to the one used for the circuit from Figure 16b. The major improvement using the
equation 7.6 as a fitness function is that the results are reproducible, because they are
driven as already mentioned by two opposite flows of evaluation. Observe that by
flipping over two Feynman gates from Figure 16c and removing the swap gates a
solution with one Fredkin and two Feynman is used, which is close to a known
realization of Toffoli gate from Fredkin gate. The only difference are two Pauli-Z
rotation gates, which can be removed, as analysis shows. Interestingly, our software
reinvented also the famous circuit of Smolin, since the sequence of two Pauli-X (NOT
gates) can be removed, and the sequence of two Controlled-V is equivalent to

Figure 18. Simplification of Fredkin gate based on local transformations: (a) the gate
found by the GA, (c) result of macro-generation to Toffoli Base, (d) circuit from
Fig.18b rewritten to show left-side patterns, (d) result of macro-cell creation, (e) final
circuit after permutative Swap removals, (f) another result of 2-qubit transformations
in Toffoli Base applied to the initial circuit.

Feynman gate. After these transformations, our gate is composed from the same basic
quantum primitives as the Smolin’s solution, but in a different order. The analysis of
unitary matrices shows however that the circuits are equivalent. These examples show
that not only can our software “reinvent” the realization of the known gates but it can
also create similar minimum cost realizations of other gates, as will be presented
below. We were not able to find a better solution to Toffoli and Fredkin gates from
quantum primitives, since perhaps they do not exist.

Figure 17 presents two of many found realizations of the Fredkin gate. Again,
observe that the consecutive Pauli-Z gates can be cancelled since this gate is its own
inverse (a standard local transformation). Next, two Feynman gates can be flipped
over and corresponding swap gates removed, leading to the known (minimal)
realization Fredkin gate using one Toffoli and two Feynman gates. Figure 18a shows
step-by-step simplification of the circuit from Figure 17b after removal of Pauli-Z
gates. Applying macrogeneration of gates to Toffoli Base the circuit from Figure 18b
is created which is the same as one from Figure 18c, in which gates were differently
grouped to satisfy the left-hand-side patterns of rules. Then macro-cell creation leads
to the schematics from Figure 18d. Finally, permutative transforms from set S13 that
remove Swap gates lead to the classical realization of Fredkin gate from Figure 18e.
Observe that the same solution is found when 2-qubit transformations are applied to
Figure 18a (leading to the circuit from Figure 18f) and next the macro-cell generation
is applied to the array from Figure 18f.

The circuit from Figure 17a is the result of using the equation 7.1 and a
complete starting set. Fig. 17b is the result of fitness equation 7.6 and the same
starting set as in Fig. 17a. The realization of the Margolus gate from Figure 19a is
elegant and new. By applying the swap-related transformations of the Fredkin gates
(Figure 19b, Figure 19c) two circuits with two Fredkin gates each are created that are

not known from the literature. The 3-qubit Kerntopf gate family includes gates with
one Shannon expansion (of the form v’u+vx, where v,u,x ∈{a,b,c,a’,b’,c’}and the
expression cannot be simplified) and two Davio expansions (these expansions have
the form v ⊕ ux, where v,u,x ∈{a,b,c,a’,b’,c’}and the expression cannot be

Figure 19. Margolus gate: (a) Original gate obtained directly from GA, (b)
Removal of the right Swap gate permuted the order of output wires Q and R, (c)
removal of the first Swap gate permuted output wires P and R.

simplified). Figure 20a presents a gate from this family in Toffoli Base, and Figure
20b shows a gate from the Margolus gate family (NPN class), also realized in Toffoli
Base. Based on these and other results, we can claim that our program invented
several realizations of basic gates that have been not created yet by humans and are
perhaps patentable.

Figure 20. Kerntopf-like and Margolus-like gates in Toffoli Base after optimizing
transformations. These are the best reported results for such gates.

Figure 21. Entanglement and teleportation circuits from the literature found also by
our program.

Figure 21 shows the entanglement and teleportation circuits found also by the
GP approach from [5]. Finally, Figure 22 illustrates the using of transformations to
prove that Fredkin gate is its own inverse. Transformations of this type lead often to
significant reductions of long arrays found intially by the GA.

One of the striking observations of the obtained results is the respective

presence in Fredkin or Toffoli gates in the synthesis of each of them. As can be seen
in the results of synthesis using the complete starting set, the Fredkin gate is present
in all Toffoli implementations and vice versa. It can be concluded that there is a local

minimum that our algorithm was unable to override. Overriding this local minimum
can be done using only basic quantum primitives such as controlled-V.

 An interesting difference between our results of synthesis of Fredkin or Toffoli
gate and those shown in Figures 5 and 6, is that our algorithm found circuits with
generally slightly higher cost (in the case of improved fitness function). To
understand this point one needs to look at the evolution of the search during a run of a
GA. Figure 23 shows the recording of one run searching for a gate using the fitness
function 7.1. For illustration the fitness 7.6 is also drawn. The figure shows the best
result of each hundred generations. First curve Error shows the evolution of the scaled
error as used in the fitness function. Second curve is the cost (1/Cost) and it is to be
maximized to increase the global fitness function. The larger a circuit the more the
cost is reduced. The last three curves show the values for fitness from equation 7.1
and 7.6. Fitness function 7.6 is shown by two curves; first with parameters α = 0.99
and β = 0.01 then with α = 0.9 and β = 0.1. Moreover for more clarity all fitness
functions are mapped on the secondary y-axis on the left. Since there are many
solutions to a gate at a higher cost, it is more likely that GA finds those solutions, but
hopefully running the local optimizing transformations on each of these non-minimal
solutions leads to the same optimal solution, as was the case with the solutions
discussed above.

Figure 22. Using simplifying transformations to prove that Fredkin gate is its own
inverse.

Figure 23 illustrates the problem of fitness function used in quantum logic
synthesis. While both variants of the fitness function are globally stable or stuck in a
local minimum, the parameter having the greatest variation is the cost of the circuit.
This is because, as mentioned before, an infinity of circuits exist theoretically in QL
for a certain unitary matrix. This is illustrated by the fact that while the error is
constant all along the run, the cost oscillates. Moreover, once the correct circuit is
found, the fitness function 7.1 is at its maximum but the fitness function 7.6 is
relatively smaller because the circuit is larger than the local minima shown in the
graph. For this reason while using the fitness function 7.6, once a correct circuit was
found its fitness was set up to 1 and the run was over. The presented curves capture
also different levels of detail while searching for a correct circuit. The Fitness

function (fitness-7.6 (0.9)) captures strongly the size of the circuit but the final jump
to the correct solution is very large in the value of fitness (≈0.1). Such a fitness
function can be used to minimize the size constraints. However, the best fitness
function to capture global properties during a search for a circuit is the fitness
function (fitness-7.6 (0.99)), because on one hand it is mainly influenced by the
correctness of the circuit and on the other hand it takes into account the size of it.
Consequently, comparing it to the fitness function (fitness-7.1) one can observe

similar result but with small oscillations in the fitness function (fitness-7.6 (0.99)).

Figure 23: An example of evolution of the fitness function and its related
parameters during a run. For more precision the two fitness function curves are
shown on a secondary y-axis on the left.

An important point to be discussed is the improvement of the results obtained
with the hereby proposed cost functions and fitness functions variants. Intuitively one
could think that the cost of gates reducing the global cost of the solution will only
improve the results. However, as can be seen in Table 6 and Figure 23 the reasoning
is not so simple. The duration of runs using normal fitness function as in equation 7.1
has generated solutions in less than 2000 generations. These results were not optimal;
either too long and too expensive, or not correct at all. On the other hand the
parameter that forces the selection operator to pick the individuals with smaller gate
costs drives the evolutionary process deeper into the problem space. As the
consequence, the search time using the improved fitness function increases. Also,
when using the fitness function 7.6, the parameters α and β can be set to values in the
interval [0, 1]. Ultimately when using α = 1 and β = 1 - α, this leads to similar results
as using the fitness 7.1. The problem remains the same: “What are the correct
parameters for an optimal relation between the error evaluation and the cost of the
circuit in order to find the optimal representation of the searched function?”

Problem
searched

Solution found
F7.1/F7.6

Time of search
in number of
generations
F7.1/F7.6

Toffoli YES/YES <2000 / <50000
Fredkin YES/YES <1000 / <75000
Margolus YES/NO <1000 /

<100000

Table 7: Comparison of Fitness Function variants
Table 7 presents a summary of some results in QC search. The first column is

the function searched, the second column shows if the solution was found using either
the non-optimized fitness function (F7.1), or the optimized one (F7.6). The last
column shows, for each circuit, the time in generations necessary to arrive at a
solution. Each run was stopped after 100000 generations in the case no solution was
found previously in the run. The above presented argument that the improved fitness
function increases the required time to find a solution can be argued here. As can be
seen in two cases out of the three problems, a significant time increase was observed.
The presented results are statistical averages over five runs for each problem. Out of
them only the best solutions are presented in Figures 16, 17, and 19. Two arguments
support the use of the improved fitness function. First, the solution was found in all
cases and it was found even when using a biased set. This implies that the cost
function allows the GA to explore parts of the problem space that were not accessible
to the GA which used the normal fitness function, i.e. without the cost of gates. Also
all results from Table 7 are from runs using the biased starting set of gates.

 The following observations can be made when using the GA proposed here
with variable length of chromosomes for quantum logic synthesis.

- No direct relation between the error and the cost values was observed. In
general this means that there is almost an infinity of solutions to a given
problem and the number of these solutions grows with increasing size of the
circuit. A solution of non-minimal length can be found easier because of the
variable length of chromosomes and next transformed to a shorter solution. It
should be further investigated if this a better strategy than restricting a size to
given value. When the length is short, such as 5, the second strategy works,
but for longer circuits the variable length of chromosomes seem to be more
powerful.

- When drawing the fitness of the best individual each (let’s say 100th)
generation we observe that there is no tendency of optimization
(convergence). This confirms our previous conclusion that the space of the
fitness function is non-monotonic with lot of flat space (local optima) and
some occasional peaks of good solutions.

- The best type of Mutation is Bitwise, and the best type of Replication is SUS.
The bitwise mutation operator seems to be more appropriate for such a high
noise space as the one explored here. Also, this observation is based on an
average measurement of fitness taken from the best individuals from each
100th generation but this approach does not necessary finds better solutions.

- Best type of GA observed from all previous results is Baldwinian, using SUS
and bitwise mutation operator.

To illustrate these mentioned problems and conclusions we set up a small
comparative experiment. In this experiment, three different parameterized GA were
used. Two types of comparative experiments are set up and are used to explore the

fitness landscape. In the first case all three configurations are using the same value of
parameters (mutation, crossover, etc.) and five different parametric settings are
modified. For this a binary encoding of each GA type was used. Each GA has a binary
signature such as 00000 or 10110 corresponding to a particular configuration. Each
digit in the binary signature represents if a certain feature is used or not. The five
positions in the signature correspond respectively to the following options: fitness
type, threshold, replication type, mutation type and Baldwinian. Fitness type means
that if it is set to zero, the fitness will be calculated individually and if it is set to one
the fitness will be calculated as a shared fitness in a group of 20 individuals.
Threshold set to one means only individuals having fitness higher than threshold (0.6)
will be used for replication. Replication type set to zero means the GA will be using
the Roulette Wheel type of selection and if it is set to one the stochastic universal
sampling is used. The mutation type set to zero controls the GA to use normal
mutation (once pre individual based on the mutation probability) while set to 1 selects
the bitwise mutation (applied to each element of the chromosome). And finally
Baldwinian bit indicates if the GA is using fitness calculated directly from the
chromosome or calculated from a minimized chromosome. The results are presented
on Figure 24. As can be seen the GA behaves differently for different parameters. In
the case where no fitness = 1 is attained the GA was not always successful in finding
the solution, while in the opposite case the GA found a good solution in at least in half

Figure 24: Results of the comparative tests with all 32 possible variations of the GA.
Results are all normalized over 20 runs for each. The X axis represents each of the 32
possible combinations of the 5 concerned parameters. Y axis is the fitness function as
from equation 7.6.

of runs. Each point on the figure is a result of a statistical mean over 20 runs. The
main result form this experimentation is the fact that some configuration of the GA is
more successful than others for the quantum search space search. This concerns
mainly GAs of types 01000, 01011, 01100 and 11100. These configurations were
experimental proofs of better adaptation and better search ability than others.

The second type of experiments comparing different GA settings is also based on
three groups. In this approach the settings from Table 8 were used.

Population Size 50-70-100 Calculation of fitness Individual
Mutation Probability Variable [0.01 - 0.3] Type of mutation Normal
Crossover Probability Variable [0.2 - 0.9] Type of crossover 1 point
Factor Alpha Variable [0 - 1] Type of replication RW
Factor Beta Variable [0 - 1] Type of fitness Complex

Table 8: Options and Parameters (Group 1)

Three GA were created; each with 50, 70 and 100 individuals in the population.
Each GA was configured as follows: no Baldwinian fitness calculation, normal (once
per individual) mutation, single point crossover and individual fitness calculation
were used. The parameters to be varied in this approach were: Alpha, Beta, mutation
and crossover probability. Only a resume of the characteristics of Alpha and Beta
factors and their best, worst and average values are listed in Table. 9. We have chosen
four sets of Alpha and Beta parameters, they are Alpha=0.7 Beta=0.3, Alpha=0.8
Beta=0.2, Alpha=0.9 Beta=0.1, and Alpha=0.97 Beta=0.03. Note that the relation
between Alpha and Beta is that Alpha + Beta = 1.0.

We observe from the results in Table 9 that the fitness value increases when the
Alpha value is increased. However, the best fitness of all generations is with the
smallest from the proposed Alpha values, thus there is a two-fold (advantage and
drawback) characteristic in increasing the factor Alpha. This confirms again the fact
that the relation between the measure of error and the circuit cost is not direct. Based
on solution analysis, it indicates that the size of the circuit should be controlled in a
more direct way and not to be left to the evolution alone.

F Group 1 Group 2 Group 3
α Best Worst Average Best Worst Average Best Worst Average
0.7 0.44 0.077

7778
0.14820
6074

0.3777
78

0.0636
364

0.14438
1594

0.1881
42

0.0333
704

0.14169
4126

0.8 0.163
663

0.072
7273

0.15927
4043

0.1636
63

0.0652
016

0.16063
4195

0.2727
27

0.0615
385

0.16124
8625

0.9 0.181
832

0.18 0.18007
352

0.28 0.18 0.18110
992

0.2167
88

0.18 0.18144
116

0.97 0.224 0.194 0.19431
102

0.1945
49

0.194 0.19403
843

0.1945
49

0.194 0.19403
294

Cro
 Table 9. Characteristic of Fitness F with relation to Factors Alpha and Beta

Next we analyzed also the influences of the Probabilities of Mutation and

ssover on the Fitness Value. Again, only a resume of the characteristics of

Mutation and Crossover Probabilities and their best, worst and average values are to
be listed in Tables 10 and 11, respectively.

F Group 1 Group 2 Group 3
MP Best Worst Average Best Worst Average Best Worst Average
0.01 0.194

549
0.194 0.19401

098
0.1945
49

0.194 0.19401
098

0.1945
49

0.194 0.19401
098

0.05 0.224 0.194 0.19431
102

0.1945
49

0.194 0.19403
843

0.1945
49

0.194 0.19403
294

0.1 0.224 0.194 0.19503
785

0.224 0.194 0.19491
647

0.224 0.194 0.19432
749

0.3 0.224 0.194 0.19491
651

1 0.194 0.19491
651

0.224 0.194 0.19465
308

Table 10 Characteristic of Fitness F with relation to Mutation Probability (MP)

F Group 1 Group 2 Group 3
CP Best Worst Average Best Worst Average Best Worst Average
0.5 0.194

549
0.194 0.19401

098
0.1945
49

0.194 0.19401
647

0.224 0.194 0.19491
647

0.6 0.224 0.194 0.19403
294

0.1945
49

0.194 0.19402
749

0.1945
49

0.194 0.19403
843

0.8 0.224 0.194 0.19432
749

0.1945
49

0.194 0.19403
843

0.1945
49

0.194 0.19403
294

0.9 0.194
549

0.194 0.19465
308

0.1945
49

0.194 0.19402
749

0.1945
49

0.194 0.19402
196

Table 11 Characteristic of Fitness F with relation to Crossover Probability (CP)

Comparing the obtained results from Tables 9, 10 and 11, we arrive at the
following conclusion: the quantum circuit synthesis is not extremely dependent on the
values of such parameters as mutation or crossover probability. Rather, it depends on
the types of selected operations on chromosomes that are used in various GA variants
in experiments. This means the structure of the quantum space is not sensitive to the
parameterization of genetic operators but is sensitive to the operations themselves.
This is mainly because the size of the circuit is variable and the space of possible
solutions available before and after one genetic operator is applied changes radically.
In other words this means that for example having a circuit with 6 blocks that will
have a group of solutions based on first four blocks equal to A, B, C, D with two
additional blocks that are required. Now application of the mutation operator that will
remove one block will completely modify the current outlook for success because it
can be assumed that the same sequence of first four blocks A, B, C, D does not lead to
a solution with 5 blocks. Consequently, the changes of length in the chromosome of
individuals in the GA are one constraint more for the GA to overcome.

The attentive reader will remark the Pareto optimal GA results were not

analysed. This results from a weak relation and non-equivalence of the two main
parameters of our fitness function; the error and the cost. The Pareto optimal GA can
be applied in the case the solution is on the intersection of best results of all
parameters evaluation. This is not the case here because the cost of the circuit will
never be minimal. A circuit representing a function will always have a cost equal to at

least one parallel block with gates. Moreover, because in the ranking of individuals
the error and cost are used to determine a win or a loss, the algorithm has the tendency
to fall too soon into a local minimum with a relatively small error and a very small
cost, from which there is no escape.

11. Important Research Issues.

The results of this work proved once again the “no free lunch theorem”. The

modifications of some parameters results in improvement in some runs but do not
provide optimal solutions. Consequently the optimization of any algorithm needs to
be specific to the proposed task. In our case, we have shown that the GA is well
situated to explore the problem space of RC and QC logic synthesis. However few
heuristics have been added to our algorithm and they provide us with a fresh look at
this new area of logic synthesis.

An important issue to be discussed is the representation and transformations of
circuits with more than 3 qubits. In the presented work we focused on 3-qubit
universal gates. Consequently, the number of possible permutations of used gates is
finite and a sufficient number of them can be defined in the starting set of gates. The
definition of larger elementary units can be directly implied from the design of our
individuals in the GA. As each circuit can be partitioned into parallel blocks, multiple
optimizations can be used to improve the results. An example is to define blocks of
predefined size bigger than two qubits, called complex blocks (CB). Consequently
multi-gate blocks will be used as simple gates and will be manipulated by the classical
genetic operators. One of such blocks can be seen in Figure 14. It was also illustrated
in Figure 14 that synthesis of Toffoli on wires 2, 4 and 5 was too complicated to
letting the GA to find such a gate. Particularly in QC there are many examples where
more than 1-qubit gates are required to be connected to non-adjacent wires or even the
wire order needs to be completely inverted. Consequently, our approach to solve this
problem that evolved in the course of this research was to insert larger elementary
units than simple gates. An example is the creation of a Feynman gate on wires 1 and
3. It can be argued that there are very many gates that could be defined such as this
one, so should we define them all? The counter argument is that most gates can be
synthesized from gates already used in our work. In our approach, the gate is
connected to wires according to its position in the parallel block so the
implementation of genetic operators is easy and can be executed quickly. The number
of defined gates relates also closely to the number of respective equivalence
transformations and the efficiency of rule-based optimizer decreases with too many
rules. We believe that a middle way is the best one – there should be the major
quantum primitives and basic gates defined on all wires and on all permutations of
inputs. The penalty we pay however, is a big number of stored unitary matrices of
basic gates. There is a solution though – declaring just subsets of available gates for
every run. Thus only some of permutations of gates like Toffoli are declared in each
run. With high speed of generating solutions and relatively high number of solutions
for each matrix, our approach is competitive and allows various types of
experimentations.

The approach presented here can be compared to a GA where each gate can be

defined over a set of wires, with control bits and other parameters [5]. In that case the

mutation operator needs to be redefined to be able to modify any of the gate
parameters. Consequently the number of possible variations of one gate grows quickly
with the number of parameters of this gate and the number of wires it can be
connected to. This makes genetic operators and evaluations of matrices in fitness
function more complicated and slower. In our method all these parameters disappear
and are replaced by the position of the gate itself in the parallel block. The negative
point is that we need to define a particular gate for most of the variations of one gate
in order to speed up the search. For 3-qubit and 4-qubit gates our approach is more
efficient than having a highly complex parameterized gates such as in [5]. A related
important problem is how the GA representation affects the speed of fitness function
calculations for larger circuits. The critical factor are definitely the calculations of
resultant unitary matrices in fitness function, and especially the Kronecker matrix
multiplications. In one approach, which is more flexible, the matrices are created in a
run by decoding the GA or GP operators. In another approach, used by us, all matrices
are calculated in advance and stored in the memory. They correspond to characters
used in chromosomes and do not need to be created in a run. It results from our
experiments that this approach is faster for small circuits since the gain of flexibility
of the other approach is practically useless as leading to a too large time increase. On
the other hand our approach does not scale well for a higher number of qubits than 5,
because it requires to define and store many matrices. So, although more efficient
than previous approaches, our encoding will not scale well for larger circuits and
further research on synthesis of such circuits is necessary.

Another useful idea related to gate and circuit design that we acquired in the

process of this work is the following. As can be seen from the examples, sometimes
the solution can be found which is a permutation of output wires with respect to the
initial specification. Because in many problems the order of output wires is not
important, there should be some mechanism in the software that would automatically
perform simplifications not to the circuit described by original order of output wires
but to some of its permutations. A theory of respective local transformations should
be developed to solve this problem.

12. Conclusions

In this paper we have presented an overview of a successful evolutionary

approach to QC and RC synthesis. Even without heuristics we were able to find
correct circuits representing universal gates, although perhaps non minimal ones. We
find solutions to all quantum circuit synthesis problems presented by previous
authors, such as entanglement and teleportation, and our programs reinvented several
realizations of known gates such as Toffoli or Fredkin. In addition, we found very
elegant solutions to gates such as Margolus, Miller and Peres. We believe that our
solution to the Peres gate is minimal. It is now a challenge for future research to find a
less expensive universal 3-qubit gate than the Peres gate using only 1-qubit and 2-
qubit gates. The solution to this problem is not yet known, but in any case, based on
our other studies, the Peres gate realization that we found seems to be very good, at
least for NMR computing.

We hope that multiple circuit solutions will become eventually available from

other authors for quantum circuit synthesis. We are compiling a library of
“Benchmark Quantum Functions and their Circuits” [44] so that the future quantum

software developers will be able to compare their results with those of our programs,
analogously as it is a standard in current binary CAD.

In the course of this research we found the importance and mutual relations of

four problems: circuit encoding, fitness function, cost function and local optimizing
transformations. It was thanks to running the program and analyzing its various
solutions that we found the sets of equivalence transformations and the heuristics for
their application [55,57]. Although most examples were for 3-qubit circuits, our
program allows in principle larger circuits. The RL variant is more efficient than the
QL one.

Acknowledgments

The authors would like to thank Professor Soonchil Lee from Physics

Department of KAIST in Korea for discussions about NMR computing and to Dr.
Andrzej Buller from ATR Japan for his critical remarks on the first draft of this
paper.

LITERATURE

1. M. Lukac, M. Pivtoraiko, A. Mishchenko, and M. Perkowski, “Automated
Synthesis of Generalized Reversible Cascades using Genetic Algorithms”,
Proc. Fifth Intern. Workshop on Boolean Problems, pp. 33-45, September 19-
20 2002, Freiberg, Sachsen, Germany.

2. M. Lukac, and M. Perkowski, “Evolving Quantum Circuits Using Genetic
Algorithms”, Proc. of 5th NASA/DOD Workshop on Evolvable Hardware
2002, pp. 177- 185.

3. Y. Z. Ge, L. T. Watson, and E. G. Collins, “Genetic algorithms for
optimization on a quantum computer,” In Unconventional Models of
Computation, pp. 218-227. Springer Verlag, London, 1998.

4. M.D. Price, S.S. Somaroo, C.H. Tseng, J.C. Core, A.H. Fahmy, T.F. Havel
and D.Cory, “Construction and Implementation of NMR Quantum Logic
Gates for Two Spin Systems,” Journal of Magnetic Resonance, 140, pp. 371-
378, 1999

5. B.I.P. Rubinstein, “Evolving quantum circuits using genetic programming”,
Proceedings of the 2001 Congress on Evolutionary Computation (CEC2001),
pp. 144-151, 2001.

6. C.W. Williams, A.G. Gray, "Automated Design of Quantum Circuits", ETC
Quantum Computing and Quantum Communication, QCQC '98, Palm
Springs, California, February 17-20, Springer-Verlag, pp. 113-125, 1999.

7. C.P. Williams, and S.H. Clearwater, "Explorations in Quantum Computing",
Springer-Verlag, New York Inc. (1998)

8. T. Yabuki and H. Iba. “Genetic algorithms and quantum circuit design,
evolving a simpler teleportation circuit,” In Late Breaking Papers at the 2000
Genetic and Evolutionary Computation Conference, pp. 421-425, 2000.

9. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison Wesley, 1989.

10. A. Al-Rabadi, L. Casperson, M. Perkowski, and X. Song, “Canonical
representation for Two-Valued Quantum Computing”, Proc. Fifth Intern.

Workshop on Boolean Problems, pp. 23-32, September 19-20 2002, Freiberg,
Sachsen, Germany.

11. R. Feynman, “Feynman Lectures on Computation”, Addison Wesley, 1996
12. P. A. M Dirac, “The Principles of Quantum Mechanics”, first edition, Oxford

University Press, 1930.
13. J. von Neumann, “Mathematical Foundations of Quantum Mechanics”,

Princeton University Press, 1950.
14. E. Fredkin, and T. Toffoli, “Conservative Logic”, Int. J. of Theoretical

Physics, #21, 1982, pp. 219-253.
15. C. Bennett, “Logically Reversible Computation”, I.B.M. J. Res. Dev., #17,

1973, pp. 525-632.
16. A. Einstein, B. Podolsky, N. Rosen, Physical Review #47,1935, p. 777.
17. M. Klay, “Einstein-Podolsky-Rosen Experiments: The Structure of the Sample

Space I, II”, Foundations of Physics Letters 1, 1988, pp. 205-232
18. A. Graham, “Kronecker Products and Matrix Calculus with Applications”,

Ellis Horwood Limited, Chichester, UK, 1981
19. J. A. Wheeler, W. H. Zurek, “Quantum Theory and Measurement”, Princeton

University Press, 1983.
20. P. Kerntopf, “A Comparison of Logical Efficiency of Reversible and

Conventional Gates”, Proc. of 3rd Logic Design and Learning Symposium
(LDL), Portland, Oregon, 2000.

21. J. Smolin, D. P. DiVincenzo, “Five two-qubit gates are sufficient to implement
the quantum Fredkin gate.” Physical Review A, Vol. 53, no. 4, April 1996, pp.
2855-2856.

22. Miller, D. M., “Spectral and Two-Place Decomposition Techniques in
Reversible Logic,” Proc. Midwest Symposium on Circuits and Systems, on
CD-ROM, August 2002.

23. D. M. Miller and G.W. Dueck, “ Spectral Techniques for Reversible Logic
Synthesis,” Proc. RM 2003, pp. 56-62.

24. G.W. Dueck and D. Maslov, “Garbage in Reversible Designs of Multiple-
Output Functions,” Proc. RM 2003, pp. 162 – 170.

25. K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation Rules for
Designing CNOT-based Quantum Circuits,” Proc. DAC 2002, New Orleans,
Louisiana, pp. 419-424.

26. V.V. Shende, A.K. Prasad, I.L. Markov, J.P. Hayes, “Reversible Logic Circuit
Synthesis,” Proc. 11th IEEE/ACM Intern. Workshop on Logic Synthesis
(IWLS), 2002, pp. 125 – 130.

27. A. Barenco et al., “Elementary Gates For Quantum Computation”, Physical
Review A 52, 1995, pp. 3457-3467

28. M.H.A. Khan, M. Perkowski, and P. Kerntopf, “Multi-Output Galois Field
Sum of Products Synthesis with New Quantum Cascades,” Proceedings of
33rd International Symposium on Multiple-Valued Logic, ISMVL 2003, 16-19
May 2003, Meiji University, Tokyo, Japan, pp. 146-153.

29. A. Al-Rabadi, “Novel Methods for Reversible Logic Synthesis and Their
Application to Quantum Computing,” Ph. D. Thesis, Portland State
University, Portland, Oregon, USA, October 24, 2002.

30. M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A.
Mishchenko, X. Song, A. Al-Rabadi, L. Jozwiak, A. Coppola, B. Massey,
“Regular realization of symmetric functions using reversible logic,”

Proceedings of EUROMICRO Symposium on Digital Systems Design, 2001,
pp. 245-252.

31. M. Perkowski, L. Jozwiak, P. Kerntopf, A. Mishchenko, A. Al-Rabadi, A.
Coppola, A. Buller, X. Song, M. M. H. A. Khan, S. Yanushkevich, V.
Shmerko, and M. Chrzanowska-Jeske, “A general decomposition for
reversible logic,” Proceedings of RM 2001. pp. 119 – 138.

32. A. Mishchenko and M. Perkowski, “Logic Synthesis of Reversible Wave
Cascades”, Proc. IEEE/ACM International Workshop on Logic Synthesis, June
2002, pp. 197 – 202

33. A. Khlopotine, M. Perkowski, and P. Kerntopf, “Reversible logic synthesis by
gate composition,” Proceedings of IWLS 2002, pp. 261 – 266.

34. P. Kerntopf, “Maximally efficient binary and multi-valued reversible gates,”
Proceedings of ULSI Workshop, Warsaw, Poland, May 2001, pp. 55-58.

35. A. Peres, “Reversible Logic and Quantum Computers,” Physical Review A,
32:3266-3276, 1985.

36. J. Koza, “Genetic Programming. On the Programming of computers by means
of natural selection,” The MIT Press, 1992.

37. J. I. Cirac, P. Zoller, “Quantum Computation with Cold Trapped Ions,”
Physical Review Letters 74, Issue 20, 15 May 1995, pp. 4091-4094.

38. C. Monroe, D. Leibfried, B.E. King, D.M. Meekhof, W.M. Itano, and D.J.
Wineland, “Simplified quantum logic with trapped ions,” Physical Review A
55, Issue 4, April 1997, pp. 2489-2491.

39. C. Monroe, D.M. Meekhof, B.E. King, and D.J. Wineland, “A ‘’Schroedinger
Cat’’ Superposition State of an Atom,” Science 272, May 24, 1996, pp. 1131-
1136.

40. D.P. DiVincenzo, “Quantum Computation,” Science 270, 1995, pp. 255-256.
41. A. Ekert, and R. Jozsa, “Quantum Computation and Shor’s factoring

algorithm,” Review of Modern Physics 68, Issue 3, July 1996, pp. 733-753.
42. G. Negotevic, M. Perkowski, M. Lukac, and A. Buller, “Evolving quantum

circuits and an FPGA based quantum computing emulator”, Proc. Fifth Intern.
Workshop on Boolean Problems, September 19-20 2002, Freiberg, Sachsen,
Germany, pp. 15-22.

43. K. Dill, and M. Perkowski, “Baldwinian Learning utilizing Genetic and
Heuristic for Logic Synthesis and Minimization of Incompletely specified data
with Generalized Reed-Muller (AND-EXOR) forms”, Journal of System
Architecture 47, Issue 6, 2001, pp. 477-489.

44. www.ece.pdx.edu/~lukacm/q-bench.html
45. L.M.K. Van Der Sypen, M. Steffen, G. Breyta, C.S. Yannoni, M. H.

Sherwood, and I.L. Chuang, “Experimental realization of Shor's quantum
factoring algorithm using nuclear magnetic resonance”,
Nature 414, 883–887 (20/27 December 2001)

46. M. Hirvensalo, “Quantum Computing,” Springer Verlag, 2001.
47. C. Vieri, M.J. Ammer, M. Frank, N. Margolus and T. Knight, A Fully

Reversible Asymptotically Zero Energy Microprocessor, MIT Artificial
Intelligence Laboratory, Cambridge, MA 02139, USA

48. M. A. Nielsen, and I.L. Chuang, “Quantum Computation and Quantum
Information,” Cambridge University Press, 2000.

49. J. Kim, J-S. Lee, and S. Lee, “Implementation of the refined Deutsch-Jozsa
algorithm on a three-bit NMR quantum computer,” Physical Review A,
Volume 62, 022312, 2000

http://www.ece.pdx.edu/~lukacm/q-bench.html

50. J. Kim, J-S. Lee and S. Lee, “Implementing unitary operators in quantum
computation, Physical Review A, 032312, 2000.

51. J-S. Lee, Y. Chung, J. Kim, and S.Lee, “A Practical Method of Constructing
Quantum Combinational Logic Circuits”, arXiv:quant-ph/9911053v1,12 Nov.
1999.

52. M.D. Price, S.S. Somaroo, A.E. Dunlop, T.F. Havel, and D.G. Cory,
“Generalized methods for the development of quantum logic gates for an
NMR quantum information processor,” Physical Review A, Vol. 60, No. 4,
October 1999, pp. 2777-2780

53. Ch. Lomont, “Quantum Circuit Identities,” arXiv:quant-ph/0307111v1 16 July
2003.

54. L. Spector, H. Barnum, H.J. Bernstein, and N.Swamy, “Finding a better-than-
classical quantum AND/OR algorithm using genetic programming,” Proc.
1999 Congress on Evolutionary Computation, Vol. 3, pp. 2239-2246,
Washington DC, 6-9 July 1999, IEEE, Piscataway, NJ.

55. M. Lukac, S. Lee and M. Perkowski, “Inexpensive NMR realizations of
quantum gates,” in preparation, 2003.

56. G. Yang, W.N.N. Hung, X.Song, and M. Perkowski, “Majority-Based
Reversible Logic Gate,” Proceedings of 6th International Symposium on
Representations and Methodology of Future Computing Technology, March
10-11, 2003, Trier, Germany, pp. 191-200.

57. M. Lukac, S. Lee and M. Perkowski, “Low cost NMR realizations of Ternary
and Mixed Quantum Gates and Circuits,” in preparation, 2003.

58. M. Perkowski, A. Al-Rabadi, and P. Kerntopf, “Multiple-Valued Quantum
Logic Synthesis,” Proc. of 2002 International Symposium on New Paradigm
VLSI Computing, Sendai, Japan, December 12-14, 2002, pp. 41-47.

	Evolutionary Approaches to Synthesis of Quantum Arrays
	
	
	LITERATURE

