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Abstract 

 

Data mining techniques have been used widely in many areas such as business, science, 

engineering and medicine. The techniques allow a vast amount of data to be explored in 

order to extract useful information from the data. One of the foci in the health area is 

finding interesting biomarkers from biomedical data. Mass throughput data generated 

from microarrays and mass spectrometry from biological samples are high dimensional 

and is small in sample size. Examples include DNA microarray datasets with up to 

500,000 genes and mass spectrometry data with 300,000 m/z values. While the 

availability of such datasets can aid in the development of techniques/drugs to improve 

diagnosis and treatment of diseases, a major challenge involves its analysis to extract 

useful and meaningful information. The aims of this project are: 1) to investigate and 

develop feature selection algorithms that incorporate various evolutionary strategies, 2) 

using the developed algorithms to find the “most relevant” biomarkers contained in 

biological datasets and 3) and evaluate the goodness of extracted feature subsets for 

relevance (examined in terms of existing biomedical domain knowledge and from 

classification accuracy obtained using different classifiers). The project aims to generate 

good predictive models for classifying diseased samples from control. 
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1. Introduction 

 

Recently, mass throughput technologies such as microarrays and mass spectrometry 

(MS) have been developed and widely used in the biomedical domain. A large number 

of biological datasets involving different types of diseases such as cancer and 

Alzheimer’s disease (AD) have been generated using these technologies (Ma & Huang, 

2008; Stoeckel & Fung, 2007). Microarrays allow thousands of genes to be measured 

simultaneously in a single experiment. MS technology produces enormous amounts of 

high-dimensional datasets about cellular functions. Examples of DNA microarray 

datasets include gene arrays with up to 500,000 genes and MS datasets with 300,000 

m/z (a unit of measure) values (Aliferis, Statnikov, & Samrdinos, 2006). 

 

Typically, biomedical research involving the above mentioned techniques is linked to 

prevention, diagnosis and drug development for treatment of diseases; with a focus in 

diseases such as cancer and Alzheimer’s disease.  According to Cancer Research UK 

and American Cancer Society, globally cancer is a leading cause of disease and cause of 

death. In 2008, 12.7 million new cancer cases and 7.6 million people died of cancer. 

The worldwide trend is predicted to be a significant increase of 22 million new cases 

each year by 2030 (American Cancer Society, 2011; Cancer Research UK, 2012), that is 

about 286 million people will be diagnosed to have cancer by 2030.  

 

According to the World Alzheimer 2012 Report, globally, about 36 million people have 

Alzheimer’s Disease or dementia and this number will increase to 66 million and 115 

million by 2030 and 2050 respectively, that is about one new case every four seconds 

(Alzheimer's Association, 2012; Alzheimer's Australia, 2012). There are no early 

diagnostic tests that are definitive for this disease, with a definitive diagnosis only 

possible following a post-mortem examination of the brain for evidence of the disease’s 

characteristic neuropathology  (MayoClinic, 2013).  However, the pathogenic processes 

of Alzheimer’s disease are likely to begin years before clinical symptoms are observed. 

Therefore, the need for biological markers (biomarkers) defined as “a substance, 

physiological characteristic or gene, that indicates, or may indicate, the presence of 

disease, a physiological abnormality or a psychological condition” (Biological marker, 

n.d.), whose measurable levels are altered prior to clinical symptoms is of paramount 
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importance. The need to detect Alzheimer’s disease via an “equivalent pregnancy test “ 

has been repeatedly stated in the literature (Trojanowskl, 2004). The ideal diagnostic 

test is one that is inexpensive, has a high specificity and can be carried out as easily and 

accurately as a “pregnancy test”; enabling diagnosis as early as possible (Hooper, 

Lovestone, & Sainz-Fuertes, 2008)  

 

While the availability of such datasets can aid in the development of techniques and drugs 

to improve diagnosis and treatment of diseases, the nature and the enormous volume of 

such mass throughput data challenge the power of data mining (DM) in terms of their 

analysis to extract useful and meaningful information. A fundamental problem in 

identifying biomarkers from high dimensional data involves a systematic search for 

relevant features; to reduce the dimensionality of the dataset to a small, yet highly reliable 

and discriminative subset that is representative, improving the classification accuracy and 

reducing the computational cost (Hanczar et al., 2003; Somorjai, Dolenko, & 

Baumgartner, 2003).  

 

1.1. Statement of the Problem 

 

Analysis of high dimensional data, in general, have problems that arise from ‘the curse 

of dimensionality’  (R. Clarke et al., 2008), which relates to a very large number of 

attributes (features) and ‘the curse of dataset sparsity’ (Somorjai et al., 2003), which 

relates to the small number of samples (e.g. in the case of  a  prostate cancer dataset 

with 12600 features and only 102 samples) in the dataset. These problems result in 

overfitting, inaccurate classification and high computational cost in searching through 

the feature subspace (Kim, Kim, Lim, & Kim, 2010). Owing to the complexity of the 

data it is very important that the number of features be reduced in order to improve 

classification accuracy and to perform the analysis with less computational cost (Liu, Li 

& Wong, 2002). Additionally, owing to the curse of dimensionality, traditional 

statistical approaches and machine learning techniques are not effective in analysing 

these types of datasets (Yu & Liu, 2004). 

 

One approach to find biomarkers is to use feature selection (FS) techniques to select the 

most relevant feature subsets. “Feature selection can be defined as a problem of finding 

a set of minimum number of relevant features that describe the dataset.” (Kim et al., 
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2009, p.2). It is the process of going through the vast amount of data, including a large 

number of features in the dataset, to select relevant feature subsets (possibly an optimal 

subset), which improve the classification accuracy in terms of sensitivity (a probability 

that the prediction is positive when the disease is present, i.e., true positive prediction) 

and specificity (a probability that the prediction is negative when the disease is not 

present, i.e., true negative prediction) (Dash & Liu, 1997, 2003). In addition the 

identification of an optimal subset of features, capable of providing absolute 

discriminatory information, can lead to the development of inexpensive diagnostic 

assays with a few features (genes) and which subsequently can be widely deployed in 

clinical settings. 

 

Another consideration in addressing the problem of finding relevant biomarkers is 

related to characteristics typically associated with biological datasets that make the DM 

task especially challenging. These include the following: 

 

 Noisy data: This can be attributed to differences in experimental setups; 

technologies and impression with their associated devices and software; and 

variances in biological observations.  

 Datasets typically are of small sample size but high dimensional: Unlike 

traditional domains associated with DM applications, biological datasets 

typically have only a small number of samples (at best in the hundreds), while 

the number of features, is typically in tens of thousands. This characteristic leads 

to the phenomena, curse of dimensionality and over-fitting in classification 

tasks. Algorithms developed to carry out DM in traditional domains are not 

suitable to be used to analyse these datasets. In addition, this characteristic will 

also create a scenario where there is a high likelihood of finding false positives 

in classification tasks owing to chance, and robust methods to validate the 

classification models are vital. 

 Complexities of interactions amongst features in a biological dataset. 

Features in the biological datasets are not independent; their correlation structure 

is not fully understood in many cases. Many data analysis approaches only 

involved evaluating each feature separately and do not consider possible 

correlations amongst features. However, from a biomedical perspective, groups 
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of features are known to work together as pathway components in a biological 

process. 

 Biological and diagnostic relevance 

Another point to note is that data obtained via mass throughput technologies 

such as microarray serves 2 functions:  

o biological relevance - by providing measurements related to mechanisms 

underlying the disease  and   

o diagnostic relevance  - as relevant features in the construction of accurate 

diagnostic classifiers for prediction. 

 

It is vital to understand the interplay between diagnostic and biological 

relevance -- that the former is neither a necessary nor a sufficient condition for 

the latter. First, high correlation between disease status and specific features do 

not necessarily imply that they have a causal relationship with the specific 

disease. Likewise, in constructing accurate diagnostic classifiers it is highly 

unlikely that all biologically relevant features may be utilized.  The outcome is 

that selected features on the basis of their diagnostic relevance need be validated 

for biological relevance by examination of the literature for relevance to the 

specific disease and by subsequent experimental analysis. Second, biological 

evidence suggest that typically multiple sets, each with a finite number of 

features, are responsible for a specific disease (i.e. multiple causes -- features 

can be combined in many different ways, all leading to a specific disease).  The 

outcome here is that identifying multiple sets of biomarkers is important for 

discovering correlations among features and to support evaluation of different 

combinations in the diagnostic phase. 

 Validation of results from data analysis and absolute ground truth:  

Absolute ground truths are not available in this field for validation of results 

associated with the data analysis. In other disciplines, experts can be readily 

available to provide ground truths but in the areas of proteomics and genomics, 

biomedical knowledge in terms of differential physiological behaviour pertinent 

to specific biological states is currently inadequate. The ultimate judge for 

validation would involve biological validation (e.g. clinical trials), for which one 

will have to focus on some specific subsets of minimal size. Results from data 
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analysis are also likely to be useful if they are position in context and can be 

subsequently followed up with more focused studies by biomedical researchers. 

 

Many FS algorithms have already been developed and used in various areas such as 

business, science, engineering, and in recent times, increasingly applied in the area of 

bioinformatics. Cho et al. (2003) used a genetic algorithm (GA) together with a neural 

network classifier to select relevant features from Alzheimer’s disease datasets. A 

Support Vector Machine (SVM) classifier was used in Mukerjee et al.’s study (1998) to 

select features from a Leukemia microarray cancer dataset.   

 

Existing work involving evolutionary approaches include Li, Liu and Bai (2008) 

incorporated a GA into filter and wrapper methods to search for feature subsets from a 

Prostate MS dataset; Deb and Reddy(2003) incorporated the method of weighted voting 

into a multi-objective evolutionary algorithm (MOEA) called non-dominated sorting 

algorithm (NSGA2) to search for multiple sets of optimal features for Leukemia, Colon, 

Lymphoma, GCM and NCI60 cancer data.   

 

Rough set theory (RST) (Pawlak, 1982) was developed on a mathematical basis and  

has been used in DM to analyse vague, uncertain or incomplete data in datasets and to 

remove redundant features effectively (Pawlak, 1997). RST has also already been used 

to select features for biomedical data in numerous studies (Punitha & Santhanam, 

2008). However approaches incorporate RST with an evolutionary algorithm (EA) such 

as MOEA (NSGA2) or GA to search for optimal set of features for high dimensional 

biological data are limited. For example, Banerjee et al. (2007) proposed an 

evolutionary Rough Set based FS technique for analysing gene expression data.  

 

The Nearest Shrunken Centroid (NSC) algorithm (Tibshirani, Hastie, Narasimhan, & 

Chu, 2002) with its most well-known software implementation being known as 

Prediction Analysis for Microarrays (PAM), has been widely used as a FS and 

classification method for high dimensional biomedical data in numerous studies (Ray et 

al., 2007). NSC selects features by shrinking a class centroid for each feature toward its 

overall centroid for all classes using a shrinkage threshold value.  
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Shrinkage threshold values associated with the application of NSC have usually been 

selected via 2 approaches, Cross Validation (CV)  (Tibshirani et al., 2002; S. Wang & 

Zhu, 2007; K. Yeung & R. Bumgarner, 2003) and empirical approach (Klassen & Kim, 

2009; Levner, 2005; Ray et al., 2007).  With the CV approach, the dataset is divided 

randomly equal into k parts, each part consists of approximate proportion of a number 

of samples and classes. One part takes turn to be the test set while the other k-1 parts are 

used as the training set. The procedure is repeated n times to obtain the prediction error 

rate for each time.  The overall prediction error rate is then calculated by averaging the 

errors from all iterations. The selected optimal threshold value is based on the CV 

prediction errors associated with the different threshold values. With the empirical 

approaches, the optimal shrinkage threshold was selected based on the lowest 

classification error over a range of shrinkage thresholds. However, threshold values 

selected using CV and empirical approaches are not precisely tuned for the specific 

dataset to obtain optimal classification results. This is due to the fact that these 

approaches are limited in terms of exploring the entire search space of threshold values 

in relation to the dataset, resulting in threshold values that may not be the optimal. 

Optimal shrinkage threshold values used in the NSC algorithm would make a vital 

difference in selecting optimal feature sets and subsequently, improving the 

classification accuracy.  

 

To address the challenges in the analysis of mass throughput data such as microarray 

data, FS is seen as a vital first step to identify relevant features for classification. 

Although many FS techniques have been developed and used for analysis of such high 

dimensional biological data, most of the existing work typically involved deterministic 

approaches, attempting to find a unique set of biomarkers. The development of 

techniques capable of extracting multiple potential sets of biomarkers for subsequent 

analysis and the incorporation of evolutionary algorithms, especially MOEA in these FS 

techniques is limited.  Following this direction, this research study aimed to develop 

evolutionary based FS techniques for analysis of high dimensional biological data 

generated from molecular biology techniques such as microarrays, metabolite profiling 

and mass spectrometry and to evaluate these techniques, both in terms of their 

performances and the validity of the extracted information. 
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1.2. The purpose of the study 

 

The aims of this project are:  

 to investigate and develop FS algorithms that  incorporate various evolutionary 

strategies, specifically investigating the use of  evolutionary strategies in 

conjunction with RST and NSC; 

 to evaluate  the developed algorithms in terms of finding the “most relevant” 

biomarkers contained in biological datasets and  

 to evaluate the goodness of extracted feature subsets for relevance (examined in 

terms of existing biomedical domain knowledge and classification accuracy 

form the perspectives of sensitivity and specificity associated with different 

classifiers). The project aims to generate sets of features for construction of good 

predictive models for classifying diseased samples from control. 

 

1.3. The contributions of this study  

 

The area of bioinformatics is “data rich”, as the breakthroughs in the development of 

mass throughput technologies resulted in huge volumes of data being produced. 

However, this area increasingly suffers from a situation where biomedical researchers 

lack the time and the appropriate tools to complete a sound and comprehensive analysis 

of these huge volumes of data in order to make biological sense and to use the data 

optimally.  The study contributes in the area of bioinformatics, in the development of 

FS techniques that aid in the analysis of datasets acquired using mass throughput 

technologies. Specifically, the study examines the development of FS techniques that 

incorporates evolutionary algorithms, especially MOEA. Unlike existing techniques, the 

developed approaches support FS by simultaneously considering tradeoffs between a 

number of criteria (e.g. high classification accuracy and a small number of features). 

Additionally, the developed techniques is cost and time effective, allowing researchers 

to use  computer time  to analyse realms of data as the output from the techniques are 

multiple sets of potential features (biomarkers) that can be further investigated to 

explore both diagnostic and biological relevance. The following section details the 

contributions of the study. 
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  A FS technique incorporating the use of GA, K-means and RST for 

analysis of high-dimensional biomedical data  

Use of RST as a FS technique in bioinformatics has been limited and this study 

investigated an approach of combining RST with a GA. The first step in this 

approach, RST-GA, employed the k-means algorithm to generate class centroids 

from the training data. The class centroids are used as initial seed values for RST 

to partition the data that subsequently led to the reduction of a large number of 

features. GA was then utilised as a search method to find sets of optimal 

features.  Unlike deterministic approaches that produce the same set of optimal 

features, this approach produced a different set of features from each run of 

RST-GA. Identification of multiple sets of biomarkers with high diagnostic 

relevance is important as it allows biomedical researchers to examine these sets 

using existing biological knowledge to determine sets to validate for biological 

relevance in subsequent clinical studies.  

  

 Use of evolutionary algorithms for enhancement of the NSC algorithm  

The NSC algorithm has been widely used as a FS and classification method for 

high dimensional biomedical data in many studies  (Bair & Tibshirani, 2004; 

Klassen & Kim, 2009; Lee, Lee, Park, & Song, 2005; Ravetti & Moscato, 2008; 

Ray et al., 2007; K. Y. Yeung & R. E. Bumgarner, 2003).  A shrinkage threshold 

value must also be provided to the NSC and this is normally selected via a 

manual “trial and error” process which can be very time consuming. The 

resulting shrinkage threshold value from this manual process may be limited by 

the granularity of the initial pre-determined values. In this study, evolutionary 

based approaches, NSC-GA, NSC-MA and NSC-NSGA2 involving GA, 

memetic algorithm (MA) and MOEA (NSGA2) respectively, were developed to 

find shrinkage threshold values automatically. These approaches eliminate the 

need to find the shrinkage threshold value manually and produced more precise 

shrinkage threshold values. For NSC-GA described in Chapter 5 and NSC-MA 

in Chapter 6, the shrinkage threshold value is determined on the basis of a single 

objective function which is an aggregation of 2 separate objective functions (i.e. 

evaluation criteria).  For NSC-NSGA2 described in Chapter 8, multiple optimal 
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shrinkage threshold values are obtained while simultaneously considering 

different tradeoffs amongst multiple objective functions.  

 

Unlike approaches (e.g. S. Wang and Zhu (2007)) that attempted to improve the 

performance of NSC by modifying it, the original NSC algorithm (Tibshirani et 

al., 2002)  is used here, thus potentially the proposed techniques can also be 

incorporated into any modified NSC. 

 

A point to note with regards to the nature of shrinkage thresholds is that rather 

than being an exact value, a narrow range of values maps to the same set of 

features. This implies that owing to the stochastic nature of evolutionary 

approaches, these approaches produced different results (i.e. different shrinkage 

threshold values resulting in different sets of features) from each run of the 

technique. However if these shrinkage threshold values are only slightly 

different, they mapped to the same set of features, thus in some cases, producing 

identical sets of features from a number of different runs. While having less 

variability, these approaches still produce multiple sets of biomarkers from the 

analysis of a dataset. 

 

Lastly, another advantage associated with the proposed approaches being able to 

produce more precise shrinkage threshold values is obtaining better 

classification accuracy when the corresponding optimal set of features is 

employed in NSC to classify unseen test datasets. 

 

 Investigate the impact of using different distance measures in the NSC 

algorithm  

The study investigated the impact of using different distance measures: 

Mahalanobis, Pearson and Mass Distance (MD), in the NSC algorithm 

employed in NSC-GA for analysis of high dimensional biological data. In the 

NSC (Tibshirani et al., 2002), Euclidean distance is employed as an evaluation 

measure in determining the score used to classify sample points. The Euclidean 

distance is not an effective nor a robust measure for classification when 

compared to other similarity measures such as Mahalanobis, Pearson and MD 

(Datta & Datta, 2003; Ding & Peng, 2005; Yona, Dirks, Rahman, & Lin, 2006). 
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This investigation contributes to a better understanding of using the different 

distance measures in NSC and the impact these have on the task of finding the 

most relevant features that can lead to higher classification accuracy for 

biological data.   

 

 Identification of a number of subsets of relevant features for Alzheimer’s 

disease, Colon, Leukemia, Lung, Lymphoma, Ovarian and Prostate cancer 

data.  

Approaches developed in this study were evaluated using seven datasets. 

Indirectly, each of these datasets was analysed for finding optimal sets of 

biomarkers, by considering tradeoffs between high classification accuracy and 

minimum number of features.  Most existing studies (Banerjee et al., 2007; Fan 

& Fan, 2008; Foss, 2010; Tai & Pan, 2007; S. Wang & Zhu, 2007) evaluate their 

developed techniques using various datasets and only reported their findings in 

terms of the size of the optimal feature sets and associated classification 

accuracy. However, besides examining the classification performance of a set of 

features, its relevance to its corresponding domain is crucial. Unlike previous 

work, this study lists the extracted features from the analysis of each datasets 

and where possible, examines the relevance of these features by searching the 

literature.  These subsets of relevant features can be used by biomedical 

researchers for further clinical investigation to validate their biological relevance 

to the specific disease. 

 

 Impact of using specific classifiers on sensitivity and specificity 

Sensitivity and specificity associated with classification are two measures that 

are of great interest to the biomedical community in their efforts to find 

biomarkers and to assess them as to how well they can predict relevant 

outcomes.  Sensitivity represents the probability of correctly diagnosing a 

condition (i.e. the proportion of truly affected (i.e. diseased)) in a sample 

population that is identified by the test as being diseased). On the other hand, 

specificity represents the proportion of truly non-diseased that the test identified 

as such. This study demonstrated that different classifiers constructed using the 

same set of features produced different sensitivity and specificity in the 
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classification of test data. In other words, there can be classifier-bias – for 

example,   classifier C, constructed using a set of features demonstrates high 

sensitivity  and low specificity; when in actual  fact, there may exists a number 

of other classifiers  constructed using the same set of features and demonstrating 

both high sensitivity  and high specificity. 

 

Thus in a DM analysis for finding suitable sets of biological markers, a number 

of classifiers should be used instead of just using one. This will avoid cases of 

missing out on sets of features with high discriminatory capabilities that should 

be further investigated in early diagnostic test developments but were rejected 

on the basis of their sensitivity/specificity obtained via a specific classifier. 

 

 A set of techniques for comprehensive analysis of biological datasets 

As mentioned previously, data from mass throughput technologies typically 

consists of a small number of samples where each is composed of thousands of 

features. Additionally these features have correlation relationships that are still 

not fully understood.  From a biomedical perspective, groups of features are also 

known to work together as components in a biological pathway. Given these 

complexities in the data, manual evaluation to find sets of features would be 

intractable.  Many existing data analysis approaches in bioinformatics only 

involved evaluating each feature separately (univariate analysis) and do not 

consider possible correlations amongst features nor the joint behavior of a 

combination of features. The set of techniques developed in this study attempts 

to address this limitation where the basis of the selection involved the evaluation 

of different combinations of features by simultaneously considering two or more 

selection criteria.  

 

Owing to the stochastic nature of the evolutionary based approaches developed in this 

study, multiple optimal sets, consisting of a varying number of features, and of high 

diagnostic relevance are obtained.  While the multiple sets of features obtained via RST-

GA (described in Chapter 4) showed a varying degree of overlap (in other words, 

different numbers of common features), NSC-based approaches, namely NSC-GA, 

NSC-MA, NSC-NSGA2 produced feature sets where a smaller set is always a subset of 

a larger set from analysis of a specific dataset. 
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An interesting consequence of this characteristic is seen when all these different sets of 

features obtained via a NSC-based approach (e.g. NSC-GA) is used to construct 

classifiers for classifying unseen test data. The domain expert can make informed 

decision based on the tradeoffs between classification accuracy and size of a feature set. 

For example, in the event where a set with 6 features produced the same classification 

accuracy as a set with 7 features,  the domain expert can examine the 7
th

 feature and use 

domain knowledge to decide on it potential relevance and make a decision about its 

inclusion in subsequent analysis. Equally in another scenario, if sets with 1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 21 and 23 features respectively resulted in classifiers producing the same 

classification accuracy on the unseen test dataset, it would then appear that a major 

contributing factor relates to 1 feature and the domain expert may validate this in a 

subsequent clinical trial. This sort of information from the analysis is important as 

reducing the number of features to a smaller promising set, for further investigations, 

would reduce costs associated with future experiments and development of diagnostic 

toolkits. 

 

In summary, this thesis contributes towards a better understanding of incorporating 

evolutionary approaches in the development of techniques for analysing biological data 

from mass throughput technologies. The techniques developed here can be used for a 

comprehensive analysis of a dataset, extracting information that biomedical researchers 

can use to make informed decisions with regards to evaluation of sets of biomarkers for 

biological relevance. The thesis also contributed to an increased understanding of the 

impact of employing different similarity measure in NSC and demonstrated the need to 

be aware of the possibility of classifier-biased when examining the sensitivity and 

specificity associated with a specific set of features. 

 

1.4. Significance 

 

 The developed techniques improves NSC and allows researchers using NSC to 

be able to obtain shrinkage thresholds automatically, thus reducing time and 

effort required. 
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 The developed techniques can be used for a comprehensive analysis of high 

dimensional biological dataset, extracting information that biomedical 

researchers can use to make informed decisions for subsequent investigations of 

sets of biomarkers.  Instead of traditional univariate analysis, the developed 

techniques allowed biomedical researchers to examine the joint classification 

behaviour of different sets of features in the development of diagnostic toolkits. 

 

1.5. Structure of the thesis 

 

The thesis consists of nine chapters. The primary theme in this thesis is the investigation 

of evolutionary approaches for feature selection in biological data and this thread of 

investigation starts with the pilot study described in Chapter 4, progressing to 

investigation of GA for automatically obtaining the shrinkage thresholds for NSC in 

Chapter 5, followed by the investigation involving memetic algorithms in Chapter 6 and 

culminating in the multi-objective approaches described in Chapter 8. Chapter 7 

described the investigations to examine the impact of different the secondary theme 

being the impact of different similarity measures in NSC. Some preliminary concepts 

and descriptions of the datasets for evaluation of the developed approaches are 

described in Chapter 3. 

 

The following section gives an overview of each of the remaining chapters in the study. 

 

Chapter 2 describes a literature review consisting of 2 major sections 1) a review of 

DM techniques and algorithms that have been previously developed by other 

researchers for FS and classification in the domain of bioinformatics; and 2) technical 

descriptions of algorithms that have been employed in the proposed approaches in this 

study. These include RST, NSC, GA, NSGA2, MA and different similarity distance 

measures (Euclidean, Mahalanobis, Pearson and MD) algorithms are discussed. 

 

Chapter 3 describes 7 biological datasets, Alzheimer’s disease, Colon, Leukemia, 

Lung, Lymphoma, Ovarian and Prostate cancer data, used in the study. Data 

configurations for training and test sets, 10 fold cross validation (CV) strategy, as well 

as general information of how the datasets were used to evaluate the developed 

algorithms are also detailed in this chapter. 
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Chapter 4 describes the proposed approach RST-GA, which incorporated RST and GA. 

K-means clustering method is used to find the centroid for partitioning data in the 

reduction of features using RST approach with a non-deterministic algorithm, GA. The 

results of evaluating the proposed are described using Colon and Leukemia cancer data. 

 

Chapter 5 describes the proposed approach of incorporating NSC into GA (NSC-GA) 

to automatically search for optimal shrinkage threshold values for NSC. In this chapter, 

the details of the proposed approach, NSC-GA that utilised the training dataset for 

obtaining optimal shrinkage threshold values for NSC automatically are described. Also 

in this chapter, the details of the proposed approach that employed NSC as an evaluator 

to evaluate the goodness of the feature subsets and GA as a search strategy to find 

optimal shrinkage threshold values for NSC are described. 

 

Chapter 6 describes the proposed approach of incorporating NSC into MA (NSC-MA) 

to improve the search for finding optimal shrinkage threshold values for NSC 

automatically. The details of a local search implemented in MA are also described in 

this chapter. 

 

Chapter 7 describes the proposed approach of incorporating different similarity 

distance measures (Mahalanobis, Pearson and MD), into the NSC-GA framework to 

improve the search for finding smaller sets of relevant features that lead to higher 

classification accuracy. 

 

Chapter 8 describes the proposed approach of incorporating the NSGA2 algorithm as a 

MOEA into NSC to find multiple solution sets of optimal shrinkage threshold values 

automatically for NSC. In this chapter, the details of the proposed approach, NSC-

NSGA2 that employed the NSC algorithm as an evaluator are also described. 

 

Chapter 9 summarises the main findings from the thesis and outlined the proposed 

approaches that have been developed in the study. Future work is also discussed at the 

end of this chapter. 
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1.6. Summary 

 

This chapter has provided the background and highlights some important aspects that 

lead to the use of FS algorithms and DM as necessary tools to select relevant features 

and analyse biological data. The purpose of the study and contributions from the study 

were also discussed. In the next chapter, previous studies associated with FS in 

bioinformatics are described. Techniques applicable to this study are reviewed.  

 

  



16 

 

2. Literature review 

 

This chapter consists of 3 sections: 1) Review of DM and FS techniques; 2) review of 

some existing work which applied FS techniques to select relevant feature subsets and 

classify data in the area of bioinformatics; 3) review of techniques which were 

incorporated in the implementation of proposed approaches in this study.  

 

2.1. Data mining and feature selection techniques 

 

As mentioned earlier in Chapter 1, microarrays and mass spectrometry techniques 

generate massive amounts of high dimensional data. It is good in terms of data 

enrichment and availability, but at the same time challenging in terms of selecting the 

most relevant features for classifying the data accurately. DM and FS are approaches 

that have been widely used for analysing high dimensional data. FS techniques are used 

to select optimal (of minimal size) sets of relevant features from a high dimensional 

dataset efficiently. The following sections describe the general concepts of DM and FS, 

and specially the three categories of FS methods: filter, wrapper and embedded.  

 

2.1.1. Data mining 

 

The task of automatically finding interesting patterns from large data repositories is 

known as DM, and it can be categorized into predictive and descriptive tasks (Tan, 

Steinbach, & Kumar, 2006). Classification techniques are associated with predictive 

tasks where the aim is to predict the target variable using values of other attributes of 

the dataset. This is known as a supervised learning classification technique because the 

classification algorithm has to be trained in the training phase to produce the predictive 

model which is then evaluated for its performance in the testing phase. For descriptive 

tasks, techniques like clustering, also known as an unsupervised learning classification 

technique, are used to classify data that do not have class labels. Thus, the classification 

model does not need to be trained prior to perform the predictive task. The unsupervised 

classification technique classifies data based on their similarity measures into a group 

(class), e.g., similar distance measures, similar gene profiles. General concepts of 

classification techniques are described in the following section.  
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2.1.1.1. Classification 

 

As mentioned earlier, classification is a type of supervised learning. The classifier needs 

to be trained with a training data, and evaluated with test data before being used for the 

classification on an unknown data (Tan et al., 2006).  The process of supervised 

learning may be illustrated by the following figure: 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 A general process of supervised learning for classification 

 

As seen in Figure 2-1, in the process of supervised learning, a dataset is split into a 

training set and a test set. The training dataset is used to train the classifier, generating a 

classification model, whilst the unseen test dataset (not seen in the training phase) is 

used to evaluate the classification model for its accuracy on prediction.  

 

One measure of the performance of the training model is the accuracy of its prediction. 

A smaller error rate in prediction indicates better and a more reliable a model. A 

confusion matrix table is used to show the number of correct and incorrect predictions 

for each class. Classification accuracy and error rates are calculated using Equation 

(2.1) and (2.2) (Tan et al., 2006), as follows. 

 

Accuracy        number of correct predictions
Total number of predictions

    (2.1) 

 

Error rate   number of wrong predictions
Total number of predictions

    (2.2) 

   Classification Algorithm 

   Classification model 

   Model evaluation 

   Training data 

   Unseen test data 
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According to Han, Kamber and Pei (2006), Tan et al. (2006) and Witten and Frank 

(2005), the performance of a classifier is evaluated by using one of the following: 

holdout, random subsampling, cross-validation and bootstrap techniques.  

 

 Holdout technique with stratification: the dataset is stratified into training data 

and test data (e.g. ½ for training and ½ for testing or 2/3 for training and 1/3 for 

testing). Stratification is the process where samples in the dataset are divided 

proportionally into the training and test datasets with balance in classes. The 

training data is used to build a classification model and the test data is used to 

evaluate the accuracy of the model. 

 Random subsampling: the principle is similar to the holdout method but the 

training and test process are repeated a number of times to obtain classification 

accuracy accordingly. Each time the data are splitted randomly into the training 

set and the test set (Dieterle, 2003). The average classification accuracy over a 

number of iterations is the overall result for the classifier’s accuracy. 

 Cross-validation (CV): is the method to divide the dataset into a number (k) of 

subsets, e.g. 10 fold CV where k=10. Each subset consists of a proportional 

number of samples with balanced number in classes (stratification). K-1 subsets 

are used as training data to train the classification model and the remaining 

subset is used as test data to evaluate the model. This procedure is repeated k 

times, e.g., for 10 fold CV the procedure repeated 10 times, therefore every 

subset, in turn, is used as a test set. The average accuracy over k times is the 

overall classification accuracy of the model. K-fold CV methods are normally 

used in conjunction with the stratified holdout method as a standard method for 

evaluating classification results, e.g., stratified 10 fold CV (Witten & Frank, 

2005). 

 Bootstrap: similar to random subsampling, but samples that have been selected 

for the training data still remained in the original dataset, so that they have a 

chance to be chosen again. Bootstrap 0.632 is a popular approach used to 

evaluate the classifier. With the Bootstrap 0.632 approach, the training set 

consisting of 63.2% of the samples and the test set consisting of 36.8% of the 

samples (Dieterle, 2003). The calculation of bootstrap .632 is shown in Equation 

(2.3) (Tan et al. (2006), as follows. 
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            ∑                        )  (2.3) 

 

2.1.1.2. Feature selection 

 

Generic Steps in FS 

 

According to Dash and Liu (1997) and  Hall (1999) FS techniques consist of 3 major 

steps: 

 

Step 1: Apply a search strategy to obtain subsets of features. The search strategies 

include: evolutionary algorithms, e.g., GAs or MOEAs, greedy, best first search with 

forward search selection (FSS) and backward search selection (BSS). 

 

Step 2: Employ evaluation criteria such as distance measures, information measures, 

dependence measures or consistency measures. These measures are considered as a 

filtering mechanism, because they are independent processes to evaluate the candidate 

sunsets. Another measure is classifier error rate if a classifier is involved in the process 

of evaluating the candidate subsets. 

 

Step 3: Determine a stopping criterion to stop the iteration process of selecting subsets. 

Stopping criteria might be based on a pre-defined maximum number of generations to 

run the algorithm or the convergence of the algorithm or a solution is found 

(Lancashire, Rees, & Ball, 2008). The following figure illustrates the above steps: 
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Figure 2-2 Steps in a FS process 

  

Many FS techniques have been developed and applied to a variety of fields such as DM, 

bioinformatics and health related areas (Portinale & Saitta, 2002; Saeys, Inza, & 

Larranaga, 2007). In general, these techniques fall into three categories: filter methods, 

wrapper methods or embedded methods, which are described in the following sections. 

 

Filter methods 

 

Filter methods are performed prior to the use of a learning algorithm. Filter methods use 

separate independent techniques such as T-test, Kolmogorov Smirnov (KS) test and P-

test to rank individual features (Levner, 2005). Filter methods select relevant features by 

calculating scores for each feature. Features with low scores are eliminated from the list. 

Thus only a number of high scoring features are retained and considered as relevant 

features. At the end of the filtering process, only one feature subset is generated and 

used to construct the classifier.  

 

 

 

Feature Evaluation 

No Yes 
Optimal 

solution  

Feature subsets 

FS algorithm 

Dataset 

Stopping 
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Wrapper methods 

 

Wrapper methods are different from the filter methods described above. Instead of 

finding a relevant feature subset by a separate independent process, the wrapper method 

has its own machine learning algorithm (classifier) employed as part of the FS process. 

Unlike the filter method, numerous feature subsets are generated in the wrapper method 

and each of them evaluated using the machine learning algorithm. The process iterates a 

number of times until the best feature subset is found (Guyon, 2007; Guyon & Elisseeff, 

2006; Inza, Larranaga, Blanco, & Cerrolaza, 2004; Saeys et al., 2007).  The number of 

iterations depends on the total number of features in the dataset (i.e., more features, 

more subsets generated and thus more iterations are needed to obtain an optimal feature 

subset).  

 

According to Kohavi and John (1997), and Hall (1999), the learning algorithm 

(wrapper) is considered as a “black box” due to components of the black box, including 

FS, feature evaluation and the learning algorithm (classifier) itself, are not known from 

the outside. The way the method works is that the “black box” generates feature subsets 

using the training dataset and evaluates them using the classifier error or accuracy rate. 

The process stops when the termination condition(s) is met and the best feature subset is 

selected, and subsequently it is used for constructing the classifier.  

 

Embedded methods 

 

Embedded methods are methods that have a FS algorithm built into their classifiers, so 

that the search for relevant attributes can be done within the classifier itself using the 

dataset. As a result, a set of features is selected, and then a predictive model is generated 

and evaluated by the classifier.  

 

Due to the importance of relevant (optimal) features in classification of high 

dimensional data, developing an advanced FS technique that can select the most 

relevant features from this type of data is one of the foci of DM community. A large 

number of search strategies have been developed by many DM researchers for finding 

optimal feature subsets that can be used in the investigations for biomarkers. The 
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following sections describe some FS techniques that have been proposed in previous 

studies.  

 

2.2. Feature selection approaches have been developed in the area of bioinformatics 

 

The following sections describe some existing work related to FS approaches in the 

domain of bioinformatics. This section consists of 4 sub sections that described FS 

approaches involving evolutionary algorithms, rough set theory (RST), nearest shrunken 

centroid (NSC) and hybrid FS approaches, respectively.  

 

2.2.1. Feature selection using EAs 

 

2.2.1.1. Genetic algorithm  

 

The GA has been employed for FS as a standalone approach or as a hybrid approach 

which incorporates other algorithms such as SVM, k-Nearest Neighbor (k-NN) for 

finding feature subsets for high dimensional biological data. The following section 

describes some of these approaches. 

  

The GA was used in the study of  Yang and Honavar (1998) to select relevant features 

for the Wisconsin diagnostic breast cancer data. The overall fitness of sets of features is 

evaluated based on the aggregation of 2 objective functions: classification accuracy 

obtained from neural networks and the cost of performing the classification for each 

candidate feature subset (solution). The study has demonstrated that GA selected a set 

of features which is half the size of the entire feature space and still retained the same 

accuracy of 92.1% as to the case of using all the features. In the study of Handels, Rob, 

Kreusch, Wolf, & Poppl (1998), GA was also employed to select features for a tumour 

skin cancer dataset. Similarly, the fitness of candidate solutions are also evaluated based 

the aggregation of 2 objective functions, one for a number of features selected in the set 

and another one for its associated classification accuracy. That is, one objective function 

is employed for maximizing the minimal set of set features and another objective 

function is employed for maximizing the classification accuracy of the selected feature 

set. This study also showed GA selected a small subset of 5 features with the resulting 
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classification accuracy of 97.7% and GA outperformed other search methods such as 

the greedy and the ranking algorithms.  

 

Another approach using the GA in the process of selecting relevant features was carried 

out Jourdan, Dhaenens, & Talbi (2001). In this approach, the procedure of FS was 

carried out using GA and k-means in 2 steps: 1) The GA was utilized for searching 

optimal features with the aim to select a small subset of features from datasets with a 

large number of features, 2) selected features from step 1 are used as initial input 

features for a k-means clustering algorithm to cluster the data. As a result, the execution 

time of the algorithm is much faster than using k-means without GA; from 7500 

minutes down to 1 minute, and data were clustered effectively (Jourdan et al., 2001). 

 

In the study of Sun, Babbs and Delp (2005), the GA was compared to Adaptive 

Sequential Forward floating search (ASFFS) method for FS. Both methods were 

evaluated using a small dataset of images of Breast cancer that consisted of 296 normal 

regions and 164 cancerous regions. As a result, ASFFS outperform GA in terms of ROC 

(Receiver Operating Characteristic) analysis (Az). ASFFS achieved Az = 0.964 and the 

GA achieved Az = 0.917. The study concluded that, the GA application was more 

suitable for a large dataset, while ASFFS performed better for a small or medium 

dataset (Sun et al., 2005). 

 

The GA was also applied to select a relevant set of features for a prostate protein MS 

dataset in the study of Li et al (2008). Multivariate filter and wrapper methods were 

used as objective functions in the GA to determine the fittest individual. With the 

multivariate filter method, an evaluation criterion is built based on the scatter matrix and 

Bhattachayya distance. With the wrapper method, an evaluation function is built based 

on classification error rate and the posterior probability. This study achieved 92.7% 

classification accuracy for the multivariate filter method and 97.75% for the wrapper 

method. These results showed that the GA based multivariate filter and wrapper 

methods as its objective functions improved the classification accuracy when compared 

to other  FS methods such as PCA and sequential selection methods (Y. Li et al., 2008).  
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2.2.1.2. Multi-objective evolutionary algorithms 

 

In the study of Deb and Reddy (2003), a MOEA, called non-dominated genetic 

algorithm (NSGA2), was implemented with binary encoding representation to find 

multiple optimal feature sets for microarray cancer datasets: Colon, Leukemia and 

Lymphoma. Three objective functions, f1, f2, f3, were implemented in their approach. f1 

is for the size of gene subsets, f2 is for the number of mismatches (errors) in the training 

dataset and f3 is for the number of mismatches (errors) in the test dataset. The proposed 

approach, NSGA2, obtained 352 different three-gene sets that gave 100% classification 

accuracy. In addition, NSGA2 was employed in an approach where a local search 

strategy was incorporated into a MOEA in the study of Mitra and Banka (2006) for 

performing biclustering on yeast and human B-cells datasets. 

 

Rough sets and fuzzy set-based approaches for FS have also been combined with 

MOEAs to select features and classify high dimensional datasets in the domain of 

bioinformatics (Banerjee et al., 2007; S. Mitra & Hayashi, 2006). Banerjee et al. (2007) 

proposed an evolutionary rough set based FS technique for analysing gene expression 

data. The new FS approach was based on the RST with the application of MOEA to 

search for optimal subsets. NSGA2 was employed as a MOEA to optimize 2 objective 

functions simultaneously and generated a set of multiple optimal solutions. RST was 

employed to generate a distinction table of smaller sets of relevant features and used as 

initial inputs for NSGA2 to search for multiple optimal solution sets. This approach was 

evaluated using Colon, Lymphoma and Leukemia microarray cancer datasets. As a 

result, the number of relevant selected genes was smaller compared when to other 

selection methods, such as neural networks, t-test based FS and SVM, and also the 

accuracy of the classification was still retained at a very high level. This achievement is 

due to the fact that, RST was used to generate reducts  in the form of small subsets of 

relevant features initially and then NSGA2 optimized the reducts to find the best subset 

(minimal reducts) of relevant features with highest classification accuracy  (Banerjee et 

al., 2007). 
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2.2.1.3. Memetic algorithms (MAs) 

 

Zhu, Ong and Dash (2007) used a MA to search for relevant features for the Colon, 

Central Nervous System, Leukemia, Breast, Lung and Ovarian microarray cancer 

datasets.  They proposed the Wrapper-Filter Feature Selection Algorithm (WFFSA) and 

Markov Blanket-Embedded Genetic Algorithm (MBEGA) which involves MA. Both 

approaches were based on the traditional GA and a local search (LS) algorithm such as 

ranking filter method for WFFSA and Markov Blanket for MBEGA. In these 

approaches, binary representation was used for encoding chromosomes and the SVM 

classifier was employed to evaluate the fitness of individuals in the population. The MA 

based approach outperformed GA in terms of a faster convergence and smaller feature 

subsets with higher classification accuracies. 

 

Recently, Kannan and Ramaraj (2010) employed MA with a correlation based filter 

ranking method as the LS algorithm and the Naïve Bayes classifier as a fitness evaluator 

to evaluate the fitness of feature subsets. In their approach, binary representation was 

used for encoding chromosomes, Subset Size-Oriented Common Feature method was 

used for crossover and random bit flip method was used for mutation. The proposed 

approach outperformed the other search algorithm such as GA and ReliefF-based GA in 

terms of obtaining smaller feature subsets and higher classification accuracy. 

 

2.2.2. Feature selection using RST  

 

An approach incorporating a greedy search algorithm into RST for selecting relevant 

features was proposed by Zhong, Dong, and Ohsuga (2001). In their approach, RST was 

first used to generate reducts (sets of minimal features), which were evaluated using the 

Generalization Distribution Table and the Rough Set theory (GDT-RS) rules discovery 

system (Dong, Zhong, & Ohsuga, 1999; Zhong, Dong, & Ohsuga, 1998). GDT is used 

to evaluate the goodness of a rule and the RS theory is used to find the best rule. A set 

of indispensable features is called “CORE” and cannot be eliminated from the feature 

list, and can be also used to classify data.  (Zhong et al., 2001). A greedy search strategy 

was employed to search for optimal reducts from the reducts generated from the RST 

step. Firstly, features (reducts) obtained from the RST step were used as initial feature 

inputs for the  greedy search algorithm, and then the greedy algorithm finds relevant 
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features from the feature list using GDT-RS rules for feature evaluation. Features 

selected are then added to the reduct until the set of optimal features are obtained. As a 

result, the proposed approach selected the optimal set with 4 features for the Breast 

cancer data, and 17 and 19 features for gastric cancer data (Zhong et al., 2001). 

 

Midelfart et al. (2002) applied RST to select relevant feature sets and classify 

microarray gene expression data. High dimensional microarray data might contain 

irrelevant features that affect RST in terms of generating a large number of reducts of 

irrelevant features and therefore less accuracy in class prediction. In order to address 

this problem,  Midelfart et al. (2002) used t-test statistics to measure features; first by 

calculating the centroid of each class for each attribute and then to measure the 

difference between them for any significance. Only the features with highest t-test 

statistics were selected as significant features and subsequently used as feature inputs 

for RST. The approach was applied to the gastric cancer data and the number of features 

obtained in the selected subsets are from this approach range from 17-161 features 

(Midelfart et al., 2002). 

 

A new RST approach, called roughfication, was proposed to handle real values for 

microarray data in the study of Ślezak and Wróblewski (2007). In the traditional RST 

approach, real data values must be discretised prior to applying RST to generate reducts 

and to classify data. The Roughfication approach creates a new information system (IS) 

which based on the original IS. The new system used symbolic values (instead of real 

values in the original system) during rule generation processes. The symbols are used to 

form decision rules and subsequently used to predict the class for new samples. This 

approach was evaluated using the Breast cancer dataset and results obtained were 

compatible with other classification approaches (Ślezak & Wróblewski, 2007). 

 

2.2.3. Feature selection using NSC 

 

One of the popular FS and classification algorithms in bioinformatics is the NSC 

algorithm (Tibshirani et al., 2002) (due to its algorithm is simple and effective). It is 

also known as Prediction Analysis for Microarrays (PAM) which is a software 

implementation of the NSC. The NSC has been used in numerous studies (Arai & 

Barakbah, 2007; Klassen & Kim, 2009; Levner, 2005; Ray et al., 2007; Rocha de Paula, 
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Gómez Ravetti, Berretta, & Moscato, 2011; Tibshirani, Hastie, Narasimhan, & Chu, 

2003).  

 

Tibshirani et al. (2003) used the NSC to analyse the Small Blue Round Cell Tumours 

(SRBCT) and Leukemia datasets and obtained the set of 43 genes and 21 genes, 

respectively. The set of 43 genes constructed a classifier that achieved the classification 

accuracy of 100% and the set of 21 genes resulted in a higher classification accuracy 

when compared to analysis involving the same datasets in Golub et al. (1999) using 50 

genes (Tibshirani et al., 2003).  

 

Arai and Barakbah (2007) compared the NSC method with other classification methods 

such as Fisher’s Linear Discriminant Analysis (FLDA), Logistic regression 

(LOGISTIC), k-NN, SVM, Penalized Discriminant Analysis (PDA) using the SRBCT, 

Lung NSCI60 and Yeast datasets they showed that the NSC algorithm outperformed 

these other methods in terms of classification accuracy. 

 

In the study of Klassen and Kim (2009), the NSC algorithm was used to select features 

for 7 different microarray cancer datasets namely, the SRBCT, Acute Leukemia, 

Prostate, Lymphoma, Colon, Lung and MLL Leukemia datasets. From the analysis 

involving the application of NSC, 43 features were selected for SRBCT, 21 features for 

Acute Leukemia, 6 features for Prostate, 25 features for Lymphoma, 16 features for 

Colon, 5 features for Lung, and 52 features for the MML Leukemia datasets with 100%, 

94.11%, 90.91%, 86.6%, 75%, 93.7% and 95.4% test classification accuracy, 

respectively.  

 

Levner (2005) used the NSC algorithm to classify Ovarian (OC-H4, OC-WCX2a, OC-

WCX2b) and Prostate (PC-H4, PC-IMAC-Cu) MS cancer datasets. The study 

experimented with the use of 20 different shrinkage threshold values ranging from 0.5 

to 10 in increments of 0.5 to find the optimal shrinkage threshold. From their analysis, 

the average classification accuracy for the five datasets were 62.1% for OC-H4, 94.4% 

for OC-WCX2a, 97.2% for OC-WCS2b, 73.6% for PC-H4, and 76.4% for PC-IMAC-

Cu. The study also experimented with 200 different shrinkage threshold values ranging 

from 0.5 to 10 in increments of 0.05 and obtained the same classification results. 
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Ray et al. (2007) used PAM to analyse their Alzheimer’s disease dataset.  From this 

analysis, a set of 18 proteins were selected from 120 proteins. The set of 18 proteins 

were used in the classification of test samples (Alzheimer’s disease, Non-demented 

control (NDC), mild cognitive impairment (MCI)). The result from the analysis was an 

overall 89 % classification accuracy. The performance of PAM was better than other 

algorithms such as GA-ANN by Cho et al. (2003) (Ray et al., 2007). Following the 

discovery of the 18 protein biomarker from Ray et al.’s study (2007), Ravetti and 

Moscato (2008) and de Paula, Ravetti, Berretta, and Moscato (2011) also used the NSC 

algorithm to perform classification on the same Ray et al.’s Alzheimer’s disease dataset 

(2007). 

 

Many approaches have also been proposed for modifying the NSC algorithm with the 

aim of improving its performance. For example, Yeung and Bumgarner (2003) 

developed the uncorrelated shrunken centroid (USC) and the error-weighted, 

uncorrelated shrunken centroid (EWUSC) algorithms which are based on the NSC 

algorithm. The proposed algorithms removed redundant, correlated genes which 

reduced the number of features needed for classification. These algorithms were applied 

to different types of cancer datasets such as Colon, Leukemia and Ovarian. The results 

showed improvements in the classification accuracy and also in a smaller number of 

relevant features. S. Wang and Zhu (2007) proposed 2 methods, Adaptive L∞-norm 

Penalized NSC (ALP-NSC) and Adaptive Hierarchically Penalized NSC (AHP-NSC) 

with 2 different penalty functions. ALP-NSC method penalizes the maximum absolute 

relative difference (|dik|) between the class centroid and overall centroid for the i
th

 gene, 

if the maximum absolute |dik| is shrunken to 0 then all dik are automatically shrunken to 

0. ALP-NSC also penalizes each gene differently by using a pre-defined weighting 

scheme (wj); wj is small (i.e. less penalty applied) for genes that distinguishes different 

classes, and wj is large (i.e. more penalty applied) for genes that are similar and do not 

distinguish different classes. AHP-NSC penalizes the relative difference (dik) 

hierarchically, i.e., within i
th

 gene, different levels of dik are applied. The proposed 

methods were used to analyse the Leukemia. Their study showed ALP-NSC and AHP-

NSC outperformed NSC in terms of selecting smaller sets of features with similar 

classification accuracy.  
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Although there is extensive work involving the NSC, both from using it to analysis and 

from modifications for improvements, a major drawback is the determination of the 

shrinkage threshold value. This value is still being manually selected using CV or 

empirical methods. In addition, this value impacts on FS and classification in NSC. This 

drawback limits the NSC algorithm to perform its best, owing to the fact that if 

incorrect or sub-optimal shrinkage threshold values are provided to NSC, then the 

algorithm does not perform fully at its best in selecting optimal feature subsets and 

subsequently can lead to a lower classification accuracy. Thus, it is essential to develop 

methods that can automatically find the shrinkage threshold values for NSC. That is, the 

process of selecting the shrinkage threshold value is carried out automatically using the 

respective training data. Subsequently, the optimal shrinkage threshold value obtained 

from the automated process is used in the NSC algorithm to perform FS and 

classification. This would overcome the existing drawback of the NSC algorithm. The 

following section describes some of the hybrid approaches that incorporate a classifier 

and an EA for selecting relevant features. 

 

2.2.4. Feature selection using hybrid approach 

 

A hybrid approach that has been used to optimize the search for feature subsets is to 

incorporate an EA (e.g. GA) with another algorithm (e.g. SVM) (Pujari, 2001). The 

following section describes some studies that used hybrid EA approaches in FS and 

classification. 

 

In Peng, Xu, Ling, Peng and Du’s study (2003) study, GA was used in conjunction with 

SVM to select features from 2 datasets, namely the NCI60 and GCM cancer datasets. 

Unlike other search strategies that search for the best feature one at a time, GA searches 

for subsets of features in high dimensional data, hence the algorithm is able to select a 

small feature subset with a high accuracy of classification. The results of applying the 

approach to 4 cancer datasets (Colon, leukemia, NCI60 and GCM) has shown  that, the 

algorithm is able to find a smaller subset of relevant genes that produces a higher 

classification accuracy than previous methods such as rank-based gene selection and all 

paired binary SVM (AP-SVM) (Peng et al., 2003)  
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Cho et al. (2003) proposed an approach that incorporated GA and ANN for selecting 

relevant features to classify an Alzheimer’s disease dataset of 32 samples with 118 

features. An initial feature subset was generated, each feature in this subset was 

evaluated using ANN to determine their fitness. GA performed FS based on the fitness 

of the individuals. Only dominant features from each generation were selected. These 

selected features were used as a relevant feature subset to input for the neural network, 

which increased the network efficiency. Experimental results showed that 35 features 

were selected from 118 features, and the classification accuracy was 81.9% on the test 

data. GA was able to select relevant features to classify Alzheimer’s disease data from 

non- Alzheimer’s disease data, which was very useful for early detection of the disease 

(Cho et al., 2003) 

 

Jirapech-Umpai and Aitken  (2004) proposed a hybrid EA approach for multiclass 

classification. The approach combines GA and k-NN with the use of 6 ranking methods 

(Information gain, Twoing rule, Gini index, Sum minority, Max minority and Sum of 

variances) as fitness selection method to determine best features for GA. In the study, 

binary representation was used for chromosomes in the GA population, k-NN was 

employed as a measure function between samples using Euclidean distance. The 

proposed algorithm of GA and k-NN was evaluated using 2 microarray datasets: 

Leukemia and NCI60. The approach selected sets of features with 92% - 98% and 

76.23% classification accuracy on the 2 datasets, respectively (Jirapech-Umpai & 

Aitken, 2004). 

 

In the study of Li Li et al. (2005), the combination of GA and SVM (GA-SVM) has also 

been implemented to select an optimal subset of genes. The proposed GA-SVM used 

the power of GA for searching relevant features, and the SVM classifier to evaluate the 

goodness of feature subsets. The approach was applied to a diffuse large B-cell 

lymphoma (DLBCL) microarray dataset. From the analysis, 99% classification accuracy 

was obtained, which outperformed other FS methods such as the combination of GA 

and k-NN (GA-kNN), and filter methods (t-test, non-parametric scoring)  (Li Li et al., 

2005) 

 

Lu, Tian, Neary, Liu, and Wang (2008) proposed a hybrid FS approach, incorporating 

GA to improve FS on 2 microarray datasets: Colon and Prostate cancer dataset. The 
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hybrid algorithm uses the features selected from other selection methods: 2 from filter 

based methods (entropy-based and T-statistics) and 1 from a wrapper method (SVM-

RFE). The features selected from these three methods are combined together to form a 

feature population. GA uses this feature population as an initial population to start with 

and to produce an optimal (or near optimal) subset with a smaller size, but more 

accurate in prediction. The result from the study shows that, hybrid FS with GA is more 

effective, efficient and accurate in selecting small subsets than the other FS methods 

mentioned above. The study also found that top-ranked features do not necessarily give 

more accuracy than the lower-ranked features because interaction, correlation and 

redundancy between features are to be considered when classifying the data (Lu et al., 

2008) 

 

2.3. Techniques related to the implementations of proposed approaches in the study 

for FS and classification 

 

2.3.1. K-Means 

 

The k-means clustering algorithm was proposed by MacQueen (1967) . It is one of the 

most commonly used clustering algorithms for grouping data into different clusters for 

large datasets (Huang, 1998). The following figure illustrates a basic k-means 

algorithm. 
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Figure 2-3 Basic k-means algorithm 

 

As seen in Figure 2-3, step 1 is to generate initial centroids randomly for the k clusters, 

i.e., one centroid for one cluster; in step 2, each data point is placed into the cluster that 

has a closest centroid to the data point; step 3 is to re-calculate the new centroid for each 

cluster using the new data points and step 4 is to check for cluster convergence. Step 2 

and 3 are repeated until the cluster centroids do not change, i.e., convergence takes 

place.  

 

2.3.2. Rough Set Theory 

 

It is common for datasets to contain decision variables (classes) which cannot be used to 

differentiate the samples. For example, two or more samples have the same attribute 

values but belong to different classes and therefore the samples cannot be assigned 

correctly to the class they belong based on values for these types of variables. This 

causes problems in classification when the classifier tries to classify data to a certain 

class. A rough set (RS) approach was proposed by Pawlak (1982). This approach was 

developed on a mathematical basis and could be used to classify indiscernible data. The 

RS approach has also been used effectively in FS (Hu, Yu, Liu, & Wu, 2008; Pujari, 

2001; Swiniarski, 2001). According to Han, Kamber and Pei (2006), the RS is based on 

equivalence classes containing samples that are identical in terms of attributes 

describing the data. The RS classifies a class by using a lower approximation and an 

upper approximation for the class. The lower approximation for the class consists of all 

the samples that can be described as definitely belonging to the class, “positive cases”, 

whilst the upper approximation for the class consists of all the samples that are 

described as possibly belonging to the class, “possible cases” (Pujari, 2001, p. 57). 

  



33 

 

 

     A given class, C            Universe U 

 

        

         

         Lower approximation of C

      Lowe   (positive region) 

           

   Upper approximation 

               Upper approximation of C           (possible region)  

 

                           Negative region 

 

 

Figure 2-4 Rough set with lower and upper approximation of a given class, C, adapted 

from Han, Kamber and Pei (2006, p. 352) and Hu et al. (2008, p. 3582). 

 

The circle in Figure 2-4 represents a given class (C) that consists of the outlined cross 

hatched rectangular region (positive region) as a lower approximation, shaded 

rectangular region (boundary region) as an upper approximation. Each rectangle of the 

positive and boundary region represents an equivalence class. The samples of the 

positive region are identified as belonging to C; whilst the samples of the boundary 

region partly covered by C (i.e., samples with similar feature values which belong to 

more than one class) are possibly belonging to C, but that status cannot be verified with 

certainty. All the samples outside the boundary in the white rectangular region (negative 

region) are definitely not belonging to C.  

 

The lower approximation of class C:   = {         } where      is an equivalence 

class. Thus all the samples in the equivalence classes are in C. The upper approximation 

of class C:    = {           }. Thus not all the samples in the equivalence classes 

are in C. The result of the intersection between equivalence classes and C is a non-

empty set. The boundary region is the region of the difference between lower and upper 

region and is calculated as Boundary AC =   -   . The boundary region indicates the 

roughness of C. The smaller boundary region has the better confidence in classification. 

The negative region is the region outside the upper approximation region, NC = U-  . 
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The accuracy of the rough set is calculated by dividing the lower approximation by the 

upper approximation (lower/upper).  

 

Rough set can also be used to as a pre-processing approach to eliminate a number of 

redundant attributes for a high dimensional data based on the equivalence classes, lower 

and upper approximation (Jaaman, Shamsuddin, Yusob, & Ismail, 2009), prior to 

applying a FS or/and classification technique to select optimal feature subsets to classify 

data more effectively. 

 

2.3.3. Nearest Shrunken Centroid algorithm 

 

As mentioned earlier, the NSC algorithm has been used widely in bioinformatics as a 

FS and classification technique to select the most relevant features and to classify high 

dimensional biomedical data, e.g., Leukemia data. The following section describes the 

NSC algorithms in details.  

 

The NSC algorithm shrinks the class centroid for each feature (gene) toward the overall 

centroid for all classes by an amount of shrinkage threshold, ∆. The class centroid  ̅   

for class k for gene i is calculated using Equation (2.4). 

  ̅    ∑                (2.4) 

 

where     is a gene expression value for gene i =1...p and sample j = 1...m, Ck is an 

index of nk samples in class k.  

 

The overall class centroid  ̅i for gene i is calculated using Equation (2.5). 

  ̅i   ∑  i     
      (2.5) 

 

The relative difference,     is the difference in class centroid,  ̅   and the overall class 

centroid,  ̅i , standardized by the within class standard deviation of gene i, si. The 

formula for calculating relative difference    , is defined by Equation (2.6). 

 



35 

 

     ̅i - ̅i 
  (si so)

  (2.6) 

where  mk = √ 1
nk

 1
n
 

                s0 = median value of si over all genes 

 

The relative difference, dik is evaluated to 0 if it is equal to 0 or smaller than the 

threshold, ∆, else reduce dik by the threshold, ∆. The updated dik is called a shrunken 

relative difference, d’ik. The calculation for d’ik is shown in Equation (2.7). 

                  |   |       if |   |   . Otherwise 0     (2.7) 

 

Class centroid for gene i is updated by using the new value of       as shown in 

Equation (2.8). 

  ̅ i     ̅i      (si   so)          (2.8) 

 

If a gene is shrunk to zero for all classes, then it is considered not different from the 

overall centroid (i.e. irrelevant genes from a classification point of view) and is 

eliminated from the gene list (Klassen & Kim, 2009) Genes with at least one positive 

shrunken relative difference (over all classes K) are retained as relevant attributes           

(K. Yeung & R. Bumgarner, 2003). Selected attributes are then evaluated by calculating 

the discriminant score for class k for a new sample X* ={x
*

1, x
*
2 ,…, x*

p}, as shown in 

Equation  (2.9). 

 

   (  )    ∑                      - 2 log    p
i    (2.9) 

 

The first part of Equation (2.9) is the standardized squared distance of x* to the k
th

 

shrunken centroid, and the second term of Equation (2.9) is a correction based on the 

class prior probability   , where     = nk /n.  

 

Based on the discriminant score for each class, sample x* is classified to the class k that 

has a minimal discriminant score defined by Equation (2.10). 
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                                            (2.10) 

 

where C(  ) is an assigned class of sample x,    (  ) is a class discriminant score,   (  )  
is a minimal class discriminant score. 

 

The general steps of NSC algorithm are shown in the following figure. 
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Step 1. Calculate class centroid for attribute (gene) i of class k  ̅    ∑            

 

Step 2. Calculate overall centroid for all classes ( ̅i   ̅i   ∑ i     

   

 

 

Step 3. Calculate the relative difference (dik) 

 Calculate class standard deviation of attribute (si)    

si
2
 = 

     ∑ ∑      ( ̅    ̅  ) 
 

 Calculate so, median value of si over all attributes 

 Calculate    √  
  
  

 
  

 Calculate relative difference      ̅  - ̅  
          

 

Step 4. calculate the shrunken relative difference (     )  

          if |   | > threshold (∆)  
                  while |   |>threshold (∆)  

            |   | = |   |-∆ 

                         = sign(   ) (|   |) 

          else   

                   =0 

   

Step 5. Update class centroids for attribute i  ̅       ̅                      
Step 6. Repeat step 1 to 5 until all attributes are processed 

 

Step 7. Select relevant attributes with at least one positive shrunken relative 

difference (    ) over all classes 

 

Step 8. Evaluate the set of relevant attributes selected 

 calculate discriminant score for class k for a new sample (  ) 

           ∑       ̅               -                

where    is a sample with attribute values          ..,            =   /    

 Assign sample    to the class k that has a minimal discriminant 

scores: 

                                              
 

 

Figure 2-5 Steps of the NSC algorithm  
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2.3.4. Evolutionary Algorithm  

 

Evolutionary algorithm (EA) is a search method, based on the principle of survival of 

the fittest which was borrowed from the evolution of biological nature. Basically, a 

number of generations are iterated through EA; each generation consists of a numerous 

individuals. The later generations contain fitter individuals which maybe a subset of 

previous generations. Only individuals which survive as the fittest are retained from 

generation to generation, and the fittest individual subset is selected at the end of the 

process. GA and MOEA are the 2 typical types of EA which are described in the 

following section. 

 

2.3.4.1. Genetic Algorithm  

 

GA was proposed and developed by Holland (1975) and is based on Darwin’s theory of 

survival of the fittest. GA consists of components such as population representation, 

objective function, evaluation of population, selection, crossover, and mutation 

operators. Figure 2-6 shows the steps in a GA.   

 

Figure 2-6 Basic steps of GA 
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 Initial population 

Individuals in the population are randomly generated. 

 Fitness evaluation 

The algorithm uses an objective function (s) to evaluate the fitness of individuals in the 

population.  

 Selection 

Once the process of ranking the fitness of individuals is done then the selection of 

individuals is carried out in order to find which individuals will be combined to produce 

offspring.  Many selection techniques have been used in the area of GA and these 

include: Ranking selection, Roulette Wheel selection and Tournament selection. 

According to Miller and Goldberg (1995), an ideal selection technique is the technique 

that would be simple in implementation, efficient in performance and adaptable in 

different domains. Tournament selection has been widely used in GA because of its 

usefulness and  robustness, and it satisfied all the criteria mentioned above (Miller & 

Goldberg, 1995).  

 

Tournament selection is also known as a random tournament selection that selects k 

number of individuals randomly from  the population pool to form a tournament group 

of size k and the fittest individual from the group is then selected for  crossover  

(Goldberg & Deb, 1991; Hoefsloot, 2013; Miller & Goldberg, 1995). A binary 

tournament selection is a special case of random tournament selection in which, the size 

of the tournament group is 2. That is, two individuals are selected randomly from the 

population to form a tournament group of size 2 and the best individual of the group 

(i.e. the best of the two) is selected (Deb, Pratap, Agarwal, & Meyarivan, 2002; Suzuki, 

Takahashi, & Shibahara, 1995). The following figure describes the general process of 

selecting individuals using tournament selection.  
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Input: 

 Chromosome population (p) 

 Fitness population (Fp) 

Output: 

 Selected parent chromosomes (Cparents) 

Steps: 

   1. Set k = size of tournament 

   2. Set Tournament (Tk) = { } 

   3. Set n = max number of parents to be selected 

   4. For counter from 1 to n 

a. For counter from 1 to k 

 Select chromosomes randomly from p 

 Store selected chromosomes into Tk 

b. Compare fitness of individuals in Tk using Fp 

c. Select a chromosome with the best fitness (Cbest) 

d. Store Cbest into Cparents 

 

Figure 2-7 Tournament selection procedure 

 

 Crossover (recombination)  

The crossover process combines two or more selected parents from previous steps to 

produce offspring. This method depends on the type of chromosome representation, 

e.g., binary crossover (crossover with single, double, multi points, uniform and 

arithmetic) is used for binary representation. Generally, the steps in crossover involve: 

1) two parent candidates are selected for crossover, 2) a crossover parameter is used to 

determine whether the crossover operation will take place, 3) a random number is 

drawn, i.e., for one point crossover, in the case of multi points crossover then more than 

one random number need to be drawn, to determine the position (s) where the crossover 

take place on the parents, 4) the parents are crossed over at the randomly selected 

position(s) to produce the new individuals (offspring). The following figure illustrates 

one point binary crossover between two parents which is related to the study. 
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Figure 2-8 Example of a one point binary crossover  

 

As seen in Figure 2-8, two parents are split into ‘head’ (in blue) and ‘tail’ (in green) at 

the cross position (Cp), the ‘tails’ of 2 parents are inter-changed to produce 2 offspring.  

 

 Mutation  

After the crossover process, offspring are mutated to produce new individuals with 

different features which are not present in their parents. According to Eiben & Smith 

(2007), mutation operators can be applied for binary, integer, real and permutation 

encoding representations. The following section describes the bit flip mutation 

procedure for binary representation and uniform mutation procedure for real-value 

representation, both of which are used in this study. 

 

Bit flip mutation for binary representations:  

A bit flip mutation is the type of mutation where each bit in the chromosome is allowed 

to change its value independently with a small mutation probability (Pm). That is, if the 

random number generated for the bit is less than Pm and if the bit is 1 then it changes 

(flips) to 0 or if the bit is 0 then it changes to 1 (Eiben & Smith, 2007).  
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Input: 

 Chromosome (chrom) 

 Mutation probability (Pm) 

Output: 

 Modified chromosome (chromMod) 

Steps: 

     1. Set len = length of chrom 

     2. Generate a random number (Rn) in the range [0, 1] using a  

random number generator (RNG) 

     3. If Rn < Pm 

For counter =1 to len 

    Generate a random number (Rn) in the range [0, 1] using RNG 

                            If Rn ≤ Pm 

                                 Do bit flip on chrom [counter] 

  chromMod = chrom 

     4. Else  

No mutation 

 

Figure 2-9 Bit flip mutation procedure 

 

The algorithm for Uniform mutation for real-encoding representations is shown in 

Figure 2-10. 

 

Input: 

 Chromosome (chrom) 

 Mutation probability (Pm) 

Output: 

 Modified chromosome (chromMod) 

 Steps: 

1. Set len = length of chrom 

2. Generate a random number (Rn) in the range [0, 1] using RNG 

3. If Rn < Pm 

Find the lower bound value of chromLb 

Find the upper boundary value of chromUb 

For counter =1 to len 

    Generate a random number (Rn) in the range [0, 1] using RNG  

    If Rn ≤ Pm 

        Calculate chrom[counter] =chromLb + (Rn * (chromUb - chromLb))  

  chromMod = chrom  

       4. Else 

No mutation 

 

 

Figure 2-10 Uniform mutation procedure 
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 New population generation: 

Best offspring from selection, crossover and mutation process is placed into the new 

generation. The process of selection, crossover and mutation are repeated until the new 

generation of the population is completed.  

 

 Termination: 

The process of fitness evaluation, crossover, mutation and new population generation 

are repeated until a stopping condition is met. For example,  such as a solution is found 

after a pre-defined number of iterations.   

 

2.3.4.2. Multi-objective evolutionary algorithms 

 

In the real world, tasks are normally associated with multiple conflicting objectives such 

as the conflict between performance, cost, fuel efficiency, reliability, etc., For example, 

a car that performs well but consumes less fuel and is of a reasonable price. There is no 

single best solution that satisfies multiple conflicting objectives simultaneously, rather a 

set of solutions with trade-offs between conflicting objectives. Multi objective 

algorithms use more than one objective functions to optimize a problem. MOEA solves 

the problem effectively by dealing with multiple conflicting characteristics represented 

by the objective functions, and generates a set of optimal solutions, e.g., Pareto front of 

optimal solutions, which are the set of all non-dominated solutions (Ayala & Coelho, 

2008). 

 

MOEA is classified on the basis of its selection approach. There are three different 

types of MOEA (Coello & Lamont, 2004): 

 Aggregating function approach which combines all the objective functions into a 

single objective function. The weighting (w) of each objective function, which 

indicates the importance of one objective function over the others, is used in this 

approach, e.g., F= w1f1 +w2f2  … wnfn. The limitation of this approach is that it 

does not give a set of different possible best solutions to satisfy all objectives, rather 

than one general solution for all objectives.  

 Population based approaches which use the population to improve the diversity of 

the search but not incorporating the concept of Pareto front in the selection process. 
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Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985) is a typical example 

for this type of approach. At each generation, sub-populations are created based on 

objective functions, i.e., each objective function is used in turn in the selection 

process to generate a subpopulation of size of the total population size (M) over a 

number of k objectives. A new population of size M is then created from these 

subpopulations. Genetic algorithm evolves the new population with the use of 

selection scheme, crossover and mutation operator. The drawback of this approach 

is that if an individual has a good overall fitness for all objectives but is not the best 

individual for any individual objective, then it is discarded. 

 Pareto based approaches which incorporate the concept of a Pareto front into 

MOEA.  The objective function used to search for a Pareto Front which is a set of 

optimal solutions is defined by Ayala and Coelho (2008), as follows.  

 

Optimized F( ) = (f1 ( ), f2 ( ), … fn ( )) 

 

where n= 1, 2,.., k; decision variables x = ( 1,  2, …,  n)   X; X = feasible solution set; 

fn are objective functions. The concept of a Pareto front is discussed in Chapter 8. 

 

NSGA2 incorporates the concept of Pareto front into MOEA (Deb et al., 2002). This 

study uses NSGA2 in the approach of incorporating NSGA2 into NSC for finding 

multiple optimal shrinkage thresholds. NSGA2 will be described in Chapter 8. 

 

2.3.5. Memetic Algorithms (MAs) 

 

MAs are similar to evolutionary algorithms such as GA. A common definition of MA is 

“A memetic is an Evolutionary Algorithm that includes one or more local search phases 

within its evolutionary cycle” (Krasnogor & Smith, 2005, p. 2). Gene values in GA are 

known as memes (Dawkins, 2006) in MA. The term, meme, is referred to a unit of 

culture evolution or transmission where the local improvement for chromosomes takes 

place using local search (LS) algorithms such as hill climbing (Elbeltagi, Hegazy, & 

Grierson, 2005; Wu, 2001a). Thus MA is a hybrid of EAs which combines an EA and a 

local search (LS) to improve the fitness of chromosomes (Krasnogor & Smith, 2005; 

Wu, 2001a).  
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MA has additional steps of LS for improving the fitness of chromosomes in the 

population by finding local optimum neighbours in chromosomes prior to the normal 

process of crossover and mutation operations. Each new population is evolved locally 

using LS and then globally via GA. This cycle repeats until the stopping criteria such as 

global convergence takes place or the pre-defined number of generations has been 

executed.  

 

The combination of GA and LS makes MA more efficient and effective in terms of 

processing time for converging to optimal solutions, finding smaller sets of features, 

and improving classification accuracy when compared to other traditional EAs such as 

GA (Elbeltagi et al., 2005; Zhu et al., 2007). Different LS strategies such as pair-wise 

LS (Merz & Freisleben, 1999), improvement first strategy LS and greedy LS (Zhu et 

al., 2007) can be incorporated into GA in different ways. A LS strategy can be applied 

to  

 only elite chromosomes or  

 the entire population, or 

 either after the crossover and/or mutation operation 

 

The following section describes some strategies of implementing MA with different LS 

methods. 

 

Elbeltagi et al. (2005) described a LS using pair-wise swapping proposed by Metz and 

Freislenben (1999). A swapping strategy to interchange 2 memes (genes) was applied to 

chromosomes in order to find the best local neighbour in the chromosome. Figure 2-20 

illustrates the use of this pair-wise swapping strategy. 
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  Chromosome before LS (a) 

Meme1 Meme2 Meme3 Meme4 Meme5 Meme6 Meme7 Meme8 

 

   

Pair Swapping 

 

Meme2 Meme1 Meme3 Meme4 Meme5 Meme6 Meme7 Meme8 

 

  New chromosome after LS (b) 

 

 

Figure 2-11 An example of LS using pair-wise strategy 

 

As seen in Figure 2-11, the pair of ‘Meme1’ and ‘Meme2’ of chromosome (a) is 

swapped to form a new chromosome (b). The process of swapping between the pair 

continues for the remaining pairs, e.g., pair of Meme1 and Meme3, Meme1 and Meme4, 

...., Meme1 and Meme8, pair of Meme2 and Meme3, Meme2 and Meme4, ...., Meme2 

and Meme8, and so on.  The number of pairs (N) to be swapped is calculated using 

Equation (2.11). 

 

N = ½ (n (n-1))     (2.11) 

 

where n is the length of chromosome. 

 

For example, let chromosome A has the length, n = 1000, then N = ½ (1000(1000-1)) = 

499500. That is, LS needs to process 499500 pair-wise operations. This could involve a 

large computational time when using this LS strategy. According to Elbeltagi et al. 

(2005), in order to reduce the cost of computational time, the swapping between pairs 

stops as soon as the fitness of the chromosome is improved (Merz & Freisleben, 1999). 

This is known as an improvement first strategy (Zhu et al., 2007), i.e., no need to 

continue performing the swap for the remaining pairs once the first improvement of the 

chromosome has been found. The procedure of pair-wise LS with improvement first 

strategy is described below. 

      LS 

Pair-wise 

swapping 
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Input 

   Chromosome (chrom) 

   Fitness of chrom 

Output  

   Improved chromosome (chromImp) 

Steps 

   1. Calculate the number of pairs of memes, N=1/2 (n (n-1)) 

   2. For counter =1 to N 

         Swap the positions of the pair to create a new chromosome (chromnew) 

         Evaluate the fitness of chromnew 

         If the fitness of chromnew  > fitness of chrom  

      chromImp = chromnew 

     Stop swapping pairs and exit 

         Process the next chromosome  

 

Figure 2-12 Pair-wise LS with improvement first strategy used in Elbeltagi et al. (2005) 

 

The adding subtracting LS strategy involves searching for a better chromosome in 

terms of fitness by adding or subtracting a small random value to a meme (gene) value 

in the chromosome to create a new chromosome. The fitness of the new chromosome is 

then evaluated, if an improvement is obtained then the new chromosome is retained 

otherwise discarded. The process continues for the rest of the memes in the 

chromosome (Elbeltagi et al., 2005). This is called a greedy search strategy (Zhu et al., 

2007) or a hill climbing search strategy where the search progresses from the current 

chromosome to the one that has a better fitness (Kohavi & John, 1997; H. Wang, Wang, 

& Yang, 2009). According to Elbeltagi et al. (2005), MA using the adding and 

subtracting LS with a greedy strategy outperformed GA in terms of a better 

classification accuracy and processing time. The procedure of adding and subtracting 

LS with a greedy strategy (Elbeltagi et al., 2005) is described in Figure 2-13. 
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Input 

   Chromosome (chrom) 

   Fitness of chrom (chromfit) 

   Population size (S) 

   Chromosome length (len) 

Output  

   Improved chromosome (chromImp) 

Steps 

     1. Generate a random value, Rn 

     2. For counter1 =1 to S 

  For counter2 =1 to len 

      Add Rn to chrom[counter2] to create a new chromosome (chromnew) 

      Evaluate the fitness of chromnew 

      If fitness of chromnew > chromfit 

             chromImp = chromnew 

 update chrom = chromnew 

      Else  

             subtract chrom[counter]from Rn to create chromnew 

             evaluate the fitness of chromnew 

             if fitness of chromnew > chromfit 

                 chromImp = chromnew 

     update chrom = chromnew 

              

 

Figure 2-13 Procedure of greedy search strategy using adding and subtracting LS 

(Elbeltagi et al., 2005) 

 

According to Zhu et al. (2007), the improvement first strategy LS outperformed the 

greedy strategy LS. Their study also found that when applying the improvement first 

strategy LS on a few of elite chromosomes, results obtained were better than those 

obtained from applying LS on all chromosomes.   

 

Elbeltagi et al. (2005) proposed another MA approach where the LS is applied to 

offspring after the crossover or mutation process.  In the Guided Local Search (GLS) 

Based Memetic Algorithm (Krasnogor & Smith, 2005), the LS is applied to offspring 

after the crossover and mutation operations.  
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2.3.6. Similarity distance measures 

 

From the literature, it can be seen that different similarity measures have been used to 

cluster gene expression data into groups of similar genes and in classification. A 

similarity measures is used in the process for grouping genes into clusters, whereby 

genes in the same cluster are as similar as possible, and are very different from genes in 

another cluster. For example, Pearson correlation measure considers the correlation 

between two genes for measuring the similarity between genes. Similar genes have a 

positive correlation and are related (Leale et al., 2013). Genes that similar in expressions 

(i.e. close in similarity distance measure) are grouped into a cluster (class) (Deshpande, 

VanderSluis, & Myers, 2013). Genes in the same cluster are likely to be involved in the 

same cellular processes and biological functions (Paul & Maji, 2014). The set of 

selected features from a biological perspective implies that the level of expressions 

associated with the selected biomarkers differ significantly between disease and non-

disease. There’s little existing evidence as to which measure is most effective but 

previous studies have shown that the use of different similarity measures have an impact 

on the clustering/classification results. The following sections describe some commonly 

used similarity distance measures. These include Euclidean, Mahalanobis, Pearson 

correlation and Mass distance. 

 

2.3.6.1. Euclidean distance  

 

Euclidean distance satisfies the triangle inequality and is the most commonly used 

distance measure. It is the method of measuring the distance between 2 points based on 

Pythagoras’ theorem (A2
 = B

2
 + C

2
). For example, points with 2 dimensions A {  ,   } 

and B {  ,   }, the squared distance between A and B is the total of squared differences 

of coordinates between A and B. Hence the distance is the square root of     –    2       –    2
, as shown in Equation (2.12). 

 

EucliDAB = √    –    2       –     2     (2.12) 

 

Points in multi-dimensional space, e.g., A{  ,   , ..,   } and B{  ,   , ..,   }, the 

Euclidean distance measure is calculated as follows: 
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EucliDAB = √∑ (      )    2
      (2.13) 

 

Euclidean distance have also been used in classification to classify a sample with 

multiple features,  {  ,   , ..,   } to a class. In this case, a sample is assigned to a class 

based on the distance between the sample and its class centroid. The Equation (2.13) is 

re-written as follows. 

        √∑ (      )    2
     (2.14) 

 

Where     is the mean of class k of j
th

 feature 

      is the sample of j
th

 feature 

    n is a number of features. 

 

2.3.6.2. Mahalanobis distance 

 

Mahalanobis distance is a popular method that has been used widely as a distance 

measure in clustering and classification (Wölfel & Ekenel, 2005). Mahalanobis distance 

(Mahalanobis, 1936) is the method of measuring the distance between the centroids of 2 

classes or the distance between a variable and a class centroid. Unlike Euclidean 

distance, in which the different class densities are considered to be equal and only the 

distance from a data point to a class centroid is a criterion for classification, in 

Mahalanobis distance, the different class densities are taken into account when 

classifying data (McLachlan, 1999).  Figure 2-14 illustrates Mahalanobis distance 

measure. 

 

   Data density           Data density 

 

 

 

 

            Class A           Class B 

 

Figure 2-14 Mahalanobis distance measure 

x 



51 

 

Variance of each variable and the co-variance between variables are taken into 

consideration in the Mahalanobis distance calculation. It handles problems associated 

with poorly and highly correlated features in a dataset. 

 

Mahalanobis distance measure is calculated as follows. 

 

MahaD ² = (x - µ)
T Σ-1

(x - µ)         (2.15) 

 

where µ: class centroid 

          superfix T: matrix transpose 

     Σ-1
: inverse covariance matrix 

 

2.3.6.3. Pearson distance  

 

Pearson correlation (Pearson, 1895) is a method for measuring the correlation between 2 

variables. The correlation is measured in the range of -1 to +1.  +1 means the correlation 

is a perfect positive linear relationship, 0 implies an uncorrelated relationship and -1 is a 

perfect negative linear relationship. Pearson correlation is calculated as follows. 

 

 (r) = 
∑ (x- ̅) (y- ̅)√(x- ̅)

2
 √(y- ̅)

2
      (2.16) 

 

Pearson Distance (PD) = 1- r     (2.17) 

 

where x is variable value 

            ̅ is class centroid 

 

According to Equation (2.17), when r approaches 1, PD approaches 0, i.e., the distance 

is 0, thus attributes have a linear relationship; when r approaches to 0, PD approaches to 

1 (PD = 1-0), i.e., the distance is 1, thus attributes have an uncorrelated relationship; 

when r approaches to -1, PD approaches to 2 (PD =1-(-1)=2), i.e., the distance is 2, thus 

attributes have negative linear relationship. 
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The problem of using the Pearson distance as defined by Equation (2.17) is that the 

relationship between the distance and correlation coefficient is not mapping 

appropriately for measuring the correlation distance between variables.  To address this, 

D. Wang, Wang, Lu, Song and Cui’s study’s (2010) used the absolute Pearson’s 

correlation coefficients, | r | to measure the similarity for microRNA, PD is calculated 

using | r | instead of r. Thus Pearson correlation distance is now calculated as follows. 

 

PD = 1 - | r |        (2.18) 

 

According to Equation (2.18),  when r approaches to 1 or -1 then  | r | = 1, PD 

approaches to 0 (PD=1- |-1|), that is the distance is 0 and attributes have a positive or 

negative linear relationship; when r approaches to 0, PD approaches to 1 (PD = 1 - 0), 

that is the distance is 1 and attributes have an uncorrelated relationship. 

2.3.6.4. Mass distance  

 

Euclidean, Mahalanobis and Pearson distance do not consider the background 

distribution of attributes while calculating the distance (Yona et al., 2006).  

 

MD measure is a method that has been used for evaluating gene expression similarity 

and takes into account the background distribution of attribute values in the calculation 

of the distance (Yona et al., 2006). Unlike the other measures such as Euclidean, 

Mahalanobis and Pearson, MD calculates the distance between two variables by 

measuring the relative difference between the variables and by measuring their 

probability mass (volume). Two variables are more similar (closer) when they have 

smaller volume (Yona et al., 2006).  

 

The equations used to calculate MD for 2 variables (a, b) are taken from Yona, et al. 

(2006).  

 

Calculation of probability mass for 2 variables a and b for sample i: 

             ∫                                      (2.19) 
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Where                     =(    √  )                is the normal distribution for 

sample i.                              (    √  )                (2.20) 

 

Where     is a class centroid 

               is a standard deviation of the class 

                       (2.21) 

 

  max and min are the maximum and minimum value of the variables  

 

Hence            can be re-written using Equation (2.20) and (2.21) as follows. 

             (∫ (    √  )                                    )  (          )  (2.22) 

 

Mass Distance (MD) of variable a and b is obtained by first calculating the total volume 

of measurement values bounded between the 2 variables and followed by taking the 

product over all samples, as shown in Equation (2.23). 

           ∏                  (2.23) 

 

where d is the number of samples. 

 

2.4. Discussion and Summary 

 

From the review of the literature, it can be seen that the biomedical area is data rich 

through the development of high throughput technologies such as microarrays, mass 

spectrometry and from the international genome projects. Development of new 

computational techniques to analyse these data is vital for progress to be made from 

bio-information to in the bio-knowledge and followed by drug discovery. One approach 

involved feature selection and techniques involved evolutionary approaches, rough set 
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theory, various machine learning techniques and hybrids of some of these approaches. 

However given the characteristics associated with biological datasets, approaches 

involving traditional statistical approaches and machine learning techniques as 

described in Section 2.2 may not effective in their analysis. 

 

From a biomedical perspective, groups of features are also known to work together as 

components in a biological pathway. However, as seen in the review, many existing 

data analysis approaches in bioinformatics may only involve evaluating each feature 

separately (univariate analysis) and do not consider possible correlations amongst 

features nor the joint behavior of a combination of features. There is an increasing need 

for development of techniques that attempts to address this limitation and where the 

basis of the selection involved the evaluation of different combinations of features by 

simultaneously considering two or more selection criteria. 

 

In summary, this chapter has briefly described fundamental concepts associated with 

DM and FS methods.  Existing work related to FS and classification approaches for 

analysing high dimensional biological data were also outlined. Lastly Section 2.3 

presented a review of the various techniques associated with the proposed approaches in 

this study.  

 

The next chapter describes common elements in this study. These include the seven 

datasets used to evaluate the approaches in this study, the CV strategy, the process of 

checking for the state of convergence and termination conditions for the GA.   
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3. Datasets, Evaluation strategy, Convergence and Termination 

criteria  

 

This chapter has four main sections that described common elements employed in this 

study. The first section described the datasets used for evaluating techniques developed 

in this study, the second section outlined the CV approach, and Section 3 and 4 detailed 

the process of checking the state of convergence and termination conditions for the GA, 

respectively.  

 

3.1. Datasets 

 

This section describes 7 biomedical public datasets associated with various diseases, 

ranging from Ray et al. Alzheimer’s Disease (AD)  (Ray et al., 2007), Alon et al. Colon 

cancer (Alon et al., 1999), Leukemia cancer (Golub et al., 1999), Lung cancer (Gordon 

et al., 2002) Lymphoma cancer (Alizadeh et al., 2000), Ovarian cancer (Petricoin et al., 

2002) and Prostate cancer (Singh et al., 2002).  

Table 3-1 showed a summary description of these seven datasets.  

 

Table 3-1 Summary of seven public datasets used in the study 

Dataset Type of data 
No of 

features 

No of 

classes 

No of 

samples 
Data type 

Ray et al. AD  

(Ray et al., 2007) 

Protein 

immunoassay 
120 2 259 

Continuous 

Alon et al. Colon  

(Alon et al., 1999) 

Cancer 

microarray 

2000 2 62 

ALL-AML Leukemia 

(Golub et al., 1999) 
7129 2 72 

Lung  

(Gordon et al., 2002) 
12533 2 181 

Lymphoma 

(Alizadeh et al., 

2000) 

4026 2 47 
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Prostate  

(Singh et al., 2002) 
12600 2 136 

Ovarian (Petricoin et 

al., 2002) 

Proteomic 

spectra 
15154 2 253 

 

These datasets have already been used in the evaluation of  FS and classification 

techniques in previous studies associated with bioinformatics (Banerjee et al., 2007; 

Cao, Lee, Seng, & Gu, 2003; Klassen & Kim, 2009; Ravetti & Moscato, 2008; Ray et 

al., 2007; Rocha de Paula et al., 2011; Yeung, Bumgarner, & Raftery, 2005). All 

datasets (except the AD dataset) are taken from Kent Ridge Bio-medical Dataset 

Repository (J. Li & Liu, 2002). Each dataset is a publicly available dataset. Details of 

data collection techniques for each dataset can be referred to the original author’s paper. 

 

One of the seven datasets (AD) in Table 3-1 is from Alzheimer’s disease domain and 

generated using protein immunoassay technologies, and 5 datasets are associated with 

cancer, namely Colon, Leukemia, Lung, Lymphoma and Prostate cancer, all of which 

are generated using microarray technologies. Lastly, the Ovarian cancer dataset is 

generated using proteomic spectra technologies. The AD dataset consists of a relatively 

small number of attributes (120 attributes), while each of the remaining seven datasets 

has a large number of attributes ranging from 4026 to 15154, with the number of 

samples in these datasets being extremely small in comparison to the number of 

attributes. For example, the Prostate cancer dataset consists of only 136 samples, with 

each sample having 12600 attributes. This is a typical example of datasets in the 

biomedical domain. The samples in all these datasets are classified into 2 classes, 

diseased versus non-diseased. The attributes are continuous variables and the format of 

the data files is either in Excel or text format. The following sections describe each of 

these datasets. 

 

3.1.1. Ray et al. Alzheimer’s Disease (AD) datasets 

 

The assay dataset used in Ray et al.’s experiment (2007) consists of 259 plasma samples 

from 6 categories, namely Alzheimer disease (AD), Non-demented control (NDC), 

Other Dementia (OD), Mild Cognitive Impairment (MCI), Other Neurological Disease 
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(OND) and Rheumatoid Arthritis (RA). Each sample is characterized by measurements 

associated with 120 known signalling proteins (attributes), saved in a Microsoft Excel 

file format. Table 3-2 showed the breakdown of information for this dataset. This study 

used the same training set and test sets as determined in the Ray et al.’s study (2007). 

 

 Table 3-2 Description of subsets associated with the Ray et al.’s dataset (2007) 

Dataset:   259 samples 

                120 attributes 

Type of data & 

Number of samples  

 

 

 

Alzheimer disease (AD)  (85)    

Non-demented control (NDC) (79)                       

Other dementia (OD)  (11)                

Mild cognitive Impairment (MCI) (47) 

Training set (83) 

AD: 43 

NDC: 40 

AD test set  (92)  

AD: 42 

NDC: 39 

OD: 11 

MCI test set (47) 

MCI -> AD:   22 

MCI -> OD:   8       

MCI -> MCI: 17 

Other neurological disease (OND) (21) 

Rheumatoid arthritis (RA)  (16) 

Not used for AD classification 

 

 

 Of the 259 samples, 85 samples belong to the AD group and 79 samples 

belong to the NDC group.  Samples from these two groups are allocated into 

2 sets: training and test set. The training set consists of 43 samples 

belonging to AD group and 40 samples from the NDC group.  

 There are two additional test sets used in this study: the AD test set consists 

of 42 AD, 39 NDC and 11 OD making a total of 92 samples and the MCI 

test set consists of 47 cases of MCI. In the case of MCI, after 2-6 years of 

follow-up diagnosis, 22 cases developed to AD, 8 cases developed to OD 

and 17 cases still remained as MCI, i.e., not developed to AD or OD (Ray et 

al., 2007). 
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 According to Ray et al. (2007), an additional set, consisting of 21 OND and 

16 RA from the 259 samples, was not used for classification. 

 

For more information regarding the methods used to produce the data and the 

description of the 120 proteins in the dataset, please refer to Ray et al. (2007) 

 

3.1.2. Alon et al. Colon cancer data 

 

The Colon cancer dataset consists of 62 samples that was analysed using Affymetrix 

oligonucleotide arrays. Samples were taken from tumours and normal tissues. Each 

sample has 2000 attributes with continuous values obtained from the microarray 

analysis. Data is saved in text file format. Table 3-3 shows the detailed breakdown of 

the dataset.  

 

Table 3-3 Description of subsets of Colon data 

Dataset:   62 samples 

               2000 attributes 

Type of data & 

Number of samples 

 

 

Tumour colon cancer (T) (40)        

Normal tissues (N) (22) 

Training set (46) 

T: 30 

N: 16 

Test set  (16) 

T: 10 

N: 6 

 

As seen in Table 3-3, two groups consisting of 40 tumour (T) tissue samples and 22 

normal (N) tissue samples are distributed  into a training set consisting of 46 (30 T and 

16N) samples, and a test set consisting of 16 (10T and 6N) samples. This distribution of 

samples in this dataset into the training and test sets followed the same configuration as 

used in the study conducted by Klassen and Kim (2009). 
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3.1.3. Leukemia cancer data 

 

Leukemia dataset contains 72 bone marrow samples from acute leukemia patients. It 

includes samples from Acute Lymphoblastic Leukemia (ALL) and Acute Myelogenous 

Leukemia (AML), with each sample having 7129 attributes with continuous values. The 

data is stored in text format. A summary of this dataset is shown in Table 3-4. This 

study used the same training set and test sets as determined in the study conducted by 

Golub, et al. (1999), J. Li & Liu (2002) and Klassen and Kim (2009). 

 

Table 3-4 Description of subsets of Leukemia data 

Dataset:   72 samples 

               7129 attributes 

Type of data & 

Number of samples 

 

 

Acute Lymphoblastic Leukemia (ALL) (47)        

Acute Myelogenous Leukemia (AML) (25) 

Training set (38)  

ALL: 27 

AML: 11 

 Test set  (34) 

ALL: 20 

AML: 14 

 

As seen in Table 3-4, the groups of 47 ALL samples and 25 AML samples from a total 

72 samples are allocated into a training set consisting of 38 (27 ALL and 11 AML) 

samples and a test set consisting of 34 (20 ALL and 14 AML) samples.  

 

3.1.4. Lung cancer data 

 

The Lung cancer dataset contains 181 samples from adenocarcinoma (ADCA) and 

malignant pleural mesothelioma (MPM) patients. Each sample has 12533 attributes that 

are continuous values. Dataset is stored in text format. A summary of this dataset is 

shown in Table 3-5. This study used the same training set and test sets as determined in 

J. Li and Liu’s study (2002) 
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Table 3-5 Description of subsets of Lung data 

Dataset:  181 samples 

              12533 attributes 

Type of data & 

Number of samples 

 

Adenocarcinoma (ADCA) (150)        

Malignant Pleural Mesothelioma (MPM) (31) 

Training set (149)  

ADCA: 134 

MPM: 15  

Test set  (32) 

ADCA: 16 

MPM: 16 

 

As seen in Table 3-5, the groups of 150 ADCA samples and 31 MPM samples from the 

total 181 samples are distributed into a training set consisting of 149 (134 ADCA and 

15 MPM) samples and a test set consisting of 32 (16 ADCA and 16 MPM) samples.  

 

3.1.5. Lymphoma cancer data 

 

Lymphoma cancer dataset contains 47 samples of Diffuse large B-cell lymphoma 

(DLBCL), including Activated B-like DLBCL (ACL) and Germinal Centre B-like 

DLBCL (GCL). Each sample has 4026 attributes of continuous values. Dataset is stored 

in text format. A summary of this dataset is shown in Table 3-6. 

 

Table 3-6  Description of subsets of Lymphoma data 

Dataset:   47 samples 

               4026 attributes 

Type of data & 

Number of samples 

 

 

Germinal Centre B-like (GCL) (24)  

Activated B-like (ACL) (23) 

Training set (34) 

GCL: 17 

ACL: 17  

Test set  (13) 

GCL: 7 

ACL: 6 
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As seen in Table 3-6, the distribution of samples in this dataset followed the same 

configuration as used in the study conducted by L. Li, Weinberg, Darden and Pedersen 

(2001)  whereby the groups of 24 GCL samples and 23 ACL samples from a total 47 

samples are allocated in the following manner: a training set consisting of 24 (17 GCL 

and 17 ACL) samples, and a test set consisting of 23 (7 GCL and 6 ACL) samples.  

 

3.1.6. Prostate cancer data 

 

Prostate cancer dataset contains 136 samples from tumour and normal tissues. These 

samples were analysed using Affymetrix oligonucleotide microarrays resulting in each 

samples having 12600 attributes with continuous values. Dataset is stored in text 

format. A summary of this dataset is shown in Table 3-7. This study used the same 

training set and test sets as determined in J. Li and Liu’s study (2002) 

 

Table 3-7 Description of subsets of Prostate data 

Dataset:   136 samples 

               12600 attributes 

Type of dataset 

 

 

Tumour tissues (T) (77) 

Normal tissues (N) (59) 

Training set (102)   

T: 52 

N: 50 

Test set  (34) 

T: 25 

N: 9 

 

As seen in Table 3-7, the groups of 77 tumour (T) samples and 59 normal (N) samples 

from the total 136 samples are allocated in the following manner: a training set consists 

of 102 (52 T and 50 N) samples, a test set consists of 34 (25 T and 9 N) samples 

 

3.1.7. Ovarian cancer data 

 

The Ovarian cancer dataset contains 253 samples of cancer and normal tissues. Each 

sample has 15154 attributes (continuous values) was analysed using mass spectroscopy. 

Dataset is stored in text format. A summary of this dataset is shown in Table 3-8. 
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Table 3-8 Description of subsets of Ovarian data 

Dataset:     253 samples 

                  15154 attributes 

Type of dataset 

 

Cancer disease (D) (162)  

 

Normal control (N) (91)  

 

Training set (126)   

N: 45 

D: 81 

Test set (127) 

N: 46 

D: 81 

 

As seen in Table 3-8, the distribution of samples in this dataset followed the same 

configuration as used in the study conducted by J. Li and Liu (2002) whereby the 

groups of 91 normal control (N) samples and 162 cancer samples (D) from the total 253 

samples are allocated in the following manner: a training set consisting of 126 (45 N 

and 81 D) samples  and a test set consisting of 127 (46 N and 81 D) samples. 

 

This section described the various datasets used to evaluate the techniques developed in 

this study and the next section will describe the evaluation method for assessing the 

performance of the developed techniques in this study.   

 

3.2. Evaluation Strategy 

 

Predictive DM is one branch of DM where a model formulated using some existing data 

is used to predict future behaviour/outcomes. There are a number of ways to measure 

the performance of these models, namely: classification accuracy, error rates, lift charts 

(charts are used to measure the performance of the prediction model by plotting the 

number of true positive predictions against the total number of samples) and ROC 

curves (charts are used to measure the performance of the prediction model by plotting 

the number of true positive predictions against the total number of negative predictions) 

(Witten & Frank, 2005). However, an issue associated with the use of these models for 

prediction is that while they perform effectively on classifying training data, they may 

perform badly on future unseen data. Evaluation of these models then becomes 

important in terms of the reliability of the predicted results, with CV being the most 
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widely used approach for evaluating these models (i.e., the generalization ability of the 

models) (Witten & Frank, 2005). Other methods which also have been used for model 

evaluation include holdout and bootstrap 0.632 (Wood, Visscher, & Mengersen, 2007). 

Cross validation (CV) is a statistical approach that consists of iterations where subsets 

of the data (training data) are first used to fit a model and followed by the testing of  the 

performance of that model using  the rest of the data (validation data). However, if the 

approach is not carried out properly, selection bias can occur and the resulting 

classification results can be optimistically biased (Ambroise & McLachlan, 2002).  

Typically in mining mass throughput data such microarray data, the first step involves 

employing FS techniques to reduce the number of attributes to a small number. 

Selection bias occurs if the whole dataset is first used in the FS process and then 

followed by the CV process.  This is due to the fact that the selection of these features 

already incorporated information on the test set. Thus in order to avoid the selection 

bias in the process of selecting the training model, “the test set must play no role in the 

feature-selection process for an unbiased estimate to be obtained” (Ambroise & 

McLachlan, 2002, p. 6566). 

 

Other issues that must be considered as part of the evaluation strategy are stratification, 

and the number of folds in the CV process, number of repetitions of a CV process and 

computation resources and lastly, simulation of prediction of new data.  Stratification is 

a process for ensuring that each class associated with the dataset is properly represented, 

with samples of each class being in the right proportion in both the training and test sets.  

According to Witten and Frank (2005), a 10-fold is sufficient to obtain the best error 

estimate. If stratification is incorporated into a 10-fold CV procedure then the 

evaluation approach is known as a stratified 10-fold CV. In addition, consideration must 

also be given to the number of repetitions of the CV process as a single 10-fold 

stratified CV will not be able to guarantee a reliable error estimate.  Repetitions of CV 

need considerations of computation resources and lastly, simulation of prediction of 

new data implies having an untouched validation dataset as this is the only way to 

simulate prediction of new data. The following section outlines the evaluation strategy, 

that addressed the issues discussed above and, is used in this study. 
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Unseen test dataset (U) 

 

Training dataset (T) 

 Fold 1 

Fold 2  

Fold 3 

Fold 4 

Fold 5 

Fold 6 

Fold 7 

Fold 8 

Fold 9 

Fold 10 

 

Figure 3-1 General mining structure: the breakdown of a dataset into an unseen test 

dataset (U) (brown colour) and a training dataset (T) (green colour), in which (T) is 

further split into 10 folds for 10 fold CV. 

 

The evaluating strategy consists of 3 major steps: 1) partitioning the dataset into a 

training dataset (T) and an unseen test dataset (U), 2) performing evaluation of 10 fold 

CV on the training data (T) and 3) performing test classification on the unseen test data 

(U). The following section describes these steps in details. 

 

Step 1. Partition the full dataset into a stratified training dataset and a stratified unseen 

test dataset. 

 Randomly assign each sample from the dataset into one of two groups: training 

(T) and unseen test dataset (U). As part of this allocation process, ensure that 

each class associated with the dataset (e.g. disease and healthy control) is 

appropriately represented in both the training and unseen test dataset, thus 

incorporating stratification. In this study, the split ratio (into training and unseen 

test datasets) and the proportion of samples for each of the classes, e.g., Cancer 

and Normal in Ovarian cancer dataset, into the training set and unseen test set 

respectively, from each of the full dataset, followed the configurations used by 
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either the original authors or authors who have also used the same datasets in 

their subsequent studies. 

 

Step 2. Perform 10 fold CV using the training dataset (T). 

 Randomly assign samples from the training dataset (T) into 10 folds to obtain 10 

stratified subsets. 

 Select 1 subset (fold) as the validation set and use the remaining 9 subsets as a 

training set. For example, in Figure 3-1, fold 1 may be set to be the validation set 

and the training set then consists of fold 2 to fold 10. 

 Using a selected approach developed in this study and 9 folds, generate the 

classification model and evaluate its performance using the validation set. This 

process is repeated 10 times (i.e. 10 folds), with each subset in turn being the 

validation set and the remaining subsets (9 folds) being a training set. Calculate 

the performance of 10 fold CV by averaging the classification error rate over the 

10 folds. 

 

Step 3. Perform classification on unseen test dataset (U). 

 Using the selected approach used in Step 2  and the training data (T), generate 

the classification model and evaluate its performance on the unseen test dataset 

(U) to obtain the unseen test classification accuracy.  This stage may also be 

seen as simulating the prediction of new data as the unseen test dataset has been 

kept totally separate from the training dataset. 

 

The entire classification process (Steps 2 and 3) is repeated 15 times (15 independent 

runs) which means including 15 times of 10 fold CV. The final training classification 

accuracy of 15 times of 10 fold CV and classification accuracy of the unseen test dataset 

are calculated by averaging their respective accuracy rates over the the15 independent 

runs. Running multiple times is also essential for evaluating the quality and 

performance of evolutionary algorithm such as GA (Alba, Garcia-Nieto, Jourdan, & 

Talbi, 2007). For example, 5 independent runs were used  in Huerta, Duvalm and Hao’s 

experiment (2006),  10 runs were used in studies (Alba et al., 2007; Bala, Huang, 

Vafaie, DeJong, & Wechsler, 1995; Kenneth A DeJong & Spears, 1990; Sharpe & 

Glover, 1999);  and 20 runs (Stein, Chen, Wu, & Hua, 2005; Zhang & Sun, 2002). Thus 
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in this study,  15 runs are considered as a sufficient number for estimating the 

classification accuracy and the performances of the proposed approaches, bearing in 

mind the tradeoffs – the need for sufficient number of runs  for evaluating the 

performance of proposed techniques and  the computational overhead associated with 

the analysis of  high dimensional biological datasets.  

 

3.3. Termination criteria 

 

According to many researchers (Safe, Carballido, Ponzoni and Brignole (2004), 

Koumousis and Katsaras (2006), Milton (2009) and Ong and Fukushima (2011)), the 

most common criteria used to terminate GA are: full population convergence to a single 

solution, fitness of the population has not improved over a pre-define number of 

consecutive generations, a pre-defined maximum number of generations (or fitness 

evaluations) have been executed, or the best fitness values found over a number of 

generations. The following section describes the stopping criteria employed in this 

study for terminating GA. An additional check using the strategy of detecting the 

convergence status as described in the previous section 3.3 is also conducted after the 

GA is deemed to have converged.  

 

The termination criteria employed here for terminating the GA consists of a 

combination of two conditions: executing for a predefined maximum number of 

generations and that the fitness of the population did not change over a pre-defined 

number of consecutive generations. In order to implement this termination approach, for 

each of generations in the GA, the following calculations are carried out, 1) fitness of 

each chromosome/individual in the entire population, 2) the maximum fitness of the 

population, and 3) the average fitness of the population. Whilst a pre-defined maximum 

number of generations are not reached, the average fitness of the population is checked 

for any changes (improvement), if it does not change (improve) over a pre-defined 

number of consecutive generations (100 generations), then the population  is considered 

as having converged and the GA terminates . The choice of 100 consecutive generations 

for termination is based on the results of parameter tuning that has been completed for 

all the datasets in this study, as described in Section 5.3. The number of 100 consecutive 

generations is large enough for avoiding a pre-mature convergence. This termination 

approach not only avoids premature convergence but also reduce the total 
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computational time because there is no need to keep executing the algorithm when the 

population in question has already converged (Kumar & Rockett, 2002; Ong & 

Fukushima, 2011).  

 

The following algorithm describes the procedure of terminating GA. 

 

Input 

 Individual fitness in population (Find) 

 Population size (s) 

 A pre-defined maximum number of generations (Gmax) 

 A pre-defined maximum number of consecutive generations of  

convergence  

(Cmax) 

 

Output 

 Maximum population fitness (Fmax) 

 Average population fitness (Favg) 

 

Steps 

    1. Set counter = 0 

    2. For 1 to Gmax 

a. Calculate total population fitness (Ftotal) = ∑        

b. Calculate Favg = Ftotal / s 

c. If Favg does not change then 

 Increase counter by 1 

 If counter = Cmax then 

Terminate GA 

d. Else  

 Reset counter back to 0 

 

 

Figure 3-2 Termination procedure for GA  

 

To minimize the likelihood of premature convergence, this study has incorporated the 

following: 

 

 Selection of parameter settings from one of the four sets of “standard parameter 

values” for GA from the literature and these have been described in Section 

5.3.1. This study has also used tournament selection, elitism and an appropriate 

crossover probability to ensure a balance between diversity and selection 
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pressure, so as to avoid premature convergence. Details are shown in Table 4-1 

and Table 5-2. 

 

 In addition, this study  instituted a mechanism consisting of  three parts for 

checking for the occurrence of premature convergence: an approach proposed by  

Srinivas and Patnaik (1994) for checking for  premature convergence and 

checking that the maximum fitness, at the point of convergence, approaches the 

theoretical maximum fitness value associated with the different fitness functions 

and the termination criteria described in Section 3.3 and 3.4 of the thesis 

respectively. In this check, the function defined by  Srinivas and Patnaik 

approaches zero and the maximum fitness, at the point of convergence, 

approaches the theoretical maximum fitness value associated with the different 

fitness functions and termination condition (that is, the fitness of the population 

did not change over a pre-defined number of consecutive generations). 

 

3.4. Genetic Algorithm and state of convergence 

 

The GA is incorporated in a number of approaches developed in this study. It is 

important to ensure that the GA has achieved convergence as a premature convergence 

will result in a local optimal solution instead of a global optimum. To check  the 

algorithm is converging to the global optimum, this study used an approach proposed by  

Srinivas and Patnaik (1994) to check for premature convergence. This can be done by 

checking the difference between the average fitness (favg) and maximum fitness value 

(fmax) of the population after the GA has converged.  A plot of the values for fmax – favg  is 

used to detect the state of convergence of GA. That is, the smaller the difference 

between fmax and favg, the better the global convergence and a better optimal solution 

obtained from the algorithm,  thus avoiding  premature convergences (M. Srinivas & 

Patnaik, 1994).  

 

Figure 3-3 shows an example of the convergence plot for one GA execution over 300 

generations. The blue line shows the plot of the maximum fitness of the population for 

each generation and the red line shows the plot of the values of (fmax – favg ). The vertical 

axis on the left-hand side indicates maximum fitness of each generation and the vertical 

axis on the right hand side indicates the values for (fmax– favg ). Note that (fmax – favg) 
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approaches to values approximately close to zero around 211 generations. This 

coincides with the max fitness having a value of 0.954 (1 is maximum). Figure 3-2 also 

shows a local optima that occurred in the execution of the algorithm over 300 

generations. The 2 vertical green lines in Figure 3-2 illustrate the local optimum (a1) 

found prior to the algorithm reaching global convergence (the vertical blue line). If the 

algorithm stopped when this local optimum found, then it was a premature convergence, 

where (fmax – favg) approaches to values not so close to zero (a2) and it coincides with the 

maximum fitness having a smaller value of 0.938 (a1), compared to 0.954 (b1) and (fmax 

– favg) is close to zero (b2) in the case of the global convergence. 

 

 

Figure 3-3 An example of a convergence status plot 

 

3.5. Summary  

 

This chapter has described the details of common elements associated with this study. 

These include: 1) the dataset of AD, Colon cancer, Leukemia cancer, Lung cancer, 

Lymphoma cancer, Ovarian cancer and Prostate cancer dataset in terms of the training 

and unseen test sets, 2) the evaluation strategy used to evaluate the proposed 
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approaches, 3) check the state of convergence for GA, and 4) GA termination criteria. 

These common elements are applied to the evaluation of proposed approaches 

developed in this study.  

 

In Chapter 4, the proposed approach of incorporating RST into GA for searching 

optimal feature sets is described. Chapter 4 is the pilot study in this thesis and involved 

modifying Banerjee et al.’s (2007) approach for generating the distinction table.  
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4. Rough set theory and GA approach (RST-GA) 

 

Chapter 3 described the seven datasets used in this study. It can be seen that these 

datasets belongs to the category of “binary classification” problems, specifically, normal 

versus diseased or two variants of diseased samples. Common characteristics of these 

datasets are very high dimensionality and small number of samples. The challenge when 

classifying this type of data arises from the limited availability of a small number of 

samples in comparison to the large number of features associated with each sample. With 

a large number of features, of which, some maybe redundant or irrelevant, the 

classification process can be computationally intensive. Furthermore, with a small 

number of samples, over-fitting in training is likely to occur and can lead to higher 

classification errors when the trained classification model is used to classify unseen test 

data (data not used as part of the training).  

 

Chapter 4 is the pilot study in this thesis and involved modifying Banerjee et al.’s 

(2007) approach for generating the distinction table. This chapter is an extended version 

of the paper “Incorporating genetic algorithm into rough FS for high dimensional 

biomedical data” (Dang, Lam, & Lee, 2011). It describes the first investigation that was 

carried out in this study to explore EA-based approaches for FS and classification of 

such high dimensional biological data. In Section 4.1, a hybrid approach, incorporating 

GA and RST, for searching for the best subset of optimal features is described. A 

description of a parameter tuning process for the GA is then outlined in Section 4.3. 

Using optimal sets of features generated from the proposed approach, classification was 

carried out using k Nearest Neighbour (k-NN) classifiers to evaluate their performance 

in classifying unseen test data. Classification results involving classifiers from WEKA 

(Waikato Environment for Knowledge Analysis) (Hall et al., 2009) are also shown in 

Section 4.4, and followed by a discussion in Section 4.5. 

 

Please note that in this thesis the term “feature” and “attribute” are used interchangeably 

and represent the same thing. 
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4.1. The proposed approach, RST-GA 

 

 

Figure 4-1 Framework of the proposed approach, RST-GA 
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Figure 4-1 illustrates the framework of the proposed approach, RST-GA, incorporating 

k-means clustering, RST and GA. As shown in the figure, the proposed approach uses a 

3-phased process, consisting of: 

 

Phase 1: This phase carries out the feature reduction step.  Owing to k-means being 

employed to find threshold values associated with each feature, a normalization step was 

first carried out on all the features.  The normalized values are then used to partition each 

corresponding feature in the process of generating a reduced attribute table.  The 

objective of this step is to do an initial cull, completing a preliminary coarse reduction in 

redundancy amongst the features.     

 

Phase 2: In this phase, a distinction  table (Wroblewski, 1995), which is a variant of the 

discernibility matrix, is constructed using the reduced feature table generated from Phase 

1. The distinction table is in the form of binary matrix.  

 

Phase 3:  GA was employed in the third phase as an optimization method to search for  

the optimal set of features based on the distinction table that has been generated from 

Phase 2.  

 

RST-GA, is an initial attempt to explore approaches for analyzing high dimensional 

biological data and is based on Banerjee et al.’s approach, using RST and  incorporating 

GA as a search algorithm However, the proposed approach makes improvements by  

using quartile statistics and K-means clustering to obtain optimal centroids for 

partitioning data in the first phase. 

 

The steps associated with each of these three phases are described in the following 

sections.  

 

4.1.1. Phase 1: Feature reduction 

 

K-means is employed in this phase to generate centroids of each attribute which are 

subsequently used for its partitioning step. K-means is one of the most popular 

clustering technique and widely used in the DM community to cluster high dimensional 

data (Yedla, Pathakota, & Srinivasa, 2010). K-means clustering groups data into 
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separate clusters based on the Euclidean distance between the data points and the 

centroids (Nazeer & Sebastian, 2009).  According to Nazeer and Sebastian (2009), there 

are 2 steps associated with k-means.  The first step is to determine the value of k (i.e. the 

number of clusters) and to initialize each of these cluster centres to a random number. 

The second step involves the use of a similarity measure (e.g. Euclidean distance 

measure) to calculate the respective distances of each data point to these centroids and 

assignment of the data points to the closest centroid. The new centroid for each cluster 

is re-calculated and the respective distances of each data point to the updated centroids 

are also re-calculated, and subsequently, data points are re-assigned to the clusters based 

on the new values of the re-calculated distances of the data points to each of the updated 

centroids. The process of updating cluster centroids, re-calculating the distance between 

data points and centroids, and re- assigning data points to the clusters continue until the 

convergence of clusters takes place, i.e., when there is no more changes to the cluster 

centroids.  

 

In addition, Visalakshi and Thangavel (2009, p. 168) have also stated that “the 

clustering results can be greatly affected by differences in scale among the dimension 

fro , which the dista ces are co puted”. Thus to address this issue, a normalization 

process needs to be carried out to transform raw data consisting of attribute values to a 

specific range such as [0, 1] prior to employing k-means clustering. In this proposed 

approach, min-max normalization is first used to normalize the data. 

 

a) Normalization  

The min-max normalization method (Han & Kamber, 2006) is applied to the training 

and test datasets, converting attribute values into the range of [0, 1] using Equation 

(4.1). 

 

a'j = (aj (xi) – minj) / maxj - minj     (4.1) 

where maxj and minj are respectively, the maximum and minimum expression value of 

attribute aj  from all samples.  

 

The following figure illustrates an example of normalization. 
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 (a) Raw data                              (b) Normalized data 

     Attributes             min-max normalization  Attributes 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2 Example of part of normalized data using min-max normalization 

 

As seen in Figure 4-2, each attribute (column) shown in the table of Raw data (Figure 4-

2 (a)) consists of values with differences in a wide range (blue box), which are 

normalized to values between 0 and 1 (red box) shown in the table of Normalized data 

(Figure 4-2 (b)). Thus, after normalization, values of each attribute are standardized in 

the same scale (i.e. between 0 and 1). 

 

K-means is also very sensitive to the starting points (i.e. initial centroids) and these 

subsequently impact greatly on  its ability to achieve global versus local optimum in 

terms of accuracy (i.e. clustering results) and efficiency (i.e. computational time spent to 

perform clustering) (Bradley & Fayyad, 1998; Nazeer & Sebastian, 2009; Yedla et al., 

2010). In this study, a quartile statistics technique is first employed to find more 

appropriate initial starting centroid values for k-means rather than using random values 

for initial centroids. The following section describes the quartile statistics procedure for 

calculating the initial starting centroids for each attribute.  
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b) Quartile statistics  

As seen in Chapter 3, the datasets used in this study are from the bioinformatics domain 

and belongs to the category of “binary classification” problems, specifically, normal 

versus diseased or two variants of diseased samples. Values associated with attributes of 

such datasets typically falls into a number of categories: a normal range where it is 

considered to be associated with a “non-diseased condition” and a value that’s too high 

or too low may indicate abnormality and that it is associated with a “diseased 

condition”. For example, a measurement associated with blood glucose level that’s 

below 70mg/dl (milligrams per decilitre) is considered to be associated with  a low 

blood glucose condition and a measurement above 180mg/dl is considered to be 

associated with a high blood glucose condition (hyperglycemia) – a condition which is 

known to be associated with diabetes, while a measurement  between 70mg/dl and 

180mg/dl is considered to be associated with a normal blood glucose level (Euglycemia) 

(W. L. Clarke et al., 2005).  

 

On the basis of the above characteristic, the approach employs quartile statistics to find 

three values associated with each attribute: 25
th

 percentile, 50
th

 percentile and 75
th

 

percentile; with the value at 50
th

 percentile being used to reflect a value associated with 

the normal range and the remaining two to reflect values associated with conditions 

considered to be either too low or too high. These three values are then used as 

initialization values for centroids of three clusters in the third step – the application of 

K-means algorithm. The steps used in the calculation of quartile statistics are shown 

below (Banerjee et al., 2007). 

 

 Sort values associated with each attribute in ascending order. 

 Partition the sorted values for each attribute equally into small class intervals (δ). 

 Calculate quartile statistics for each attribute to obtain the lower threshold value 

(Thl), middle threshold value (Thm) and upper threshold value (Thu) using the 

formula defined in Banerjee et al. (2007), and shown as follows. 

 

                            (4.2) 

where   Lc is the lower limit of the Cth class interval 

 Rk is the rank of the kth interval value  
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 Rk 
N k
p

   with p = number of partition  

N is a number of objects  

k = k
th

 partition value, k=1, 2, 3 for 4 partitions        is the cumulative frequency of the immediately preceding class interval 

such that    

                        

      is the class frequency 

  δ is the class interval width 

 

    

        

              

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 Example of partial table of Thl, Thm andThu threshold values generated as 

initial starting points for k-means using the quartile statistics method. 

 

As seen in Figure 4-3, each attribute with its values shown as a row in the table of 

Normalized data (Figure 4-3(a)) is partitioned into 3 levels of thresholds, lower (Thl), 

middle (Thm) and upper (Thu) shown as a row in the table of Thresholds (Figure 4-3(b)). 

The three threshold values associated with each attribute are used as initial centroid 

points for the K-means clustering step for partitioning each attribute.  
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c) K-means  

The k-means algorithm employed here has been described in Section 2.4.1. Figure 4-4 

shows the refinement of the cluster centroids before (initial) and after k-means (final) 

for one attribute.  The initial centroid value (red square) in each cluster (C1, C2, and 

C3) shifts towards the centre of the cluster, i.e., red squares move to the green triangles 

which are closer to the centre of the clusters. Subsequently, the final centroids obtained 

from the k-means step are used in the RST process to produce a distinction table. 

 

  

Figure 4-4 Example of cluster centroid positions before and after k-means 

 

d) Partition data 

Attributes are considered to be “of interest” if their values have a decisive role in 

differentiating between individuals belonging to different classes (e.g. diseased vs. non-

diseased). Using the previous example, blood glucose level can be an attribute of 

interest if the task is to decide whether an individual is suffering from diabetes – 

specifically in the case where the blood glucose level is either very high or very low. 

This implies that this value associated with this attribute differs between the diseased 
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and non-diseased individuals, with diseased individuals having values outside the norm. 

Using this rationale, the attributes in the datasets are processed in the following manner: 

Using the final centroid values obtained in the k-means clustering step, thresholds Thl 

and Thu are assigned as the lower and upper attribute thresholds respectively. These 

values are subsequently used for transforming the values of each attribute into 0, 1 and 

“ ”, with “ ” is considered as a “do ’t care” condition (Banerjee et al., 2007, p. 625).  

The implication here is that the range of interest is when the attribute value is at the 

extreme ends. The following rules are used to process each attribute: 

 

1. If an attribute value is less than or equal to its associated Thl then assign the  

    value of 0.  

2. If an attribute value is greater or equal to its associated Thu then assign the     

    value of 1.  

3. If an attribute value is greater than its associated Thl and less than its  

    associated Thu assigned it to “ ”  

 

As seen in Figure 4-5, values in each attribute (blue box) are compared to its respective 

Thl and Thu threshold value and has been converted to 0 or 1 or “ ” (red box) based the 

conditions as specified above. As a result, a table of 0, 1 and “ ” values are created. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 Example of a “01*” table 
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e) Generate reduced attribute value table 

Based on the “ ” values in the “0 *” table generated from the previous step, the 

average frequency of “ ” is computed from the whole dataset (table) and then used as a 

“ ” guided threshold value (Th avg) to eliminate attributes. As mentioned earlier, 

attributes with a majority of “ ” are considered as not being significant in separating the 

different classes. Therefore, attributes with a total number of “ ” greater than or equal to 

Th*avg are eliminated from the attribute list. As a result, a large number of attributes are 

eliminated and a reduced attribute value table (Ar) is produced.  

 

4.1.2. Phase 2: Generate a distinction table  

 

In this phase, the reduced attribute table, Ar, is then used to create a distinction table. 

The distinction table is a variant of the discernibility matrix which is based on the 

indiscernibility relation approach. Objects are divided into equivalence classes based on 

equivalence relations such that two objects are in the same class (equivalence class) if 

and only if they have the same attribute values (equivalence relation). A discernibility 

matrix (Dm) is defined as a matrix of m rows by n columns of an information system (S) 

of N samples and A attributes. A discernibility matrix of an information system, Dm (S), 

with the i
th

, j
th

 entry (Eij) is defined as          {          (  )}         

(Hoa & Son, 1996). According to Banerjee, et al. (2007), a distinction table created 

based on the following criteria is greatly reduced in dimension and the computational 

time involved is shorter. This distinction table is called a “d-Distinction” table, the same 

name used here as in Banerjee, et al (2007, p. 626). 

 

The following rules are used for generating a d-Distinction table: 
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1. Insert 1 for object pairs of different classes having different values (e.g., {0,1}  

    or {1,0}).  (       )  = 1 if ai(xk) ≠ ai(xj) 

2. Insert 0 for object pairs of different classes having the same value (e.g., {1, 1}  

    or {0,0}).  (       )= 0 if ai(xk) = ai(xj) 

3. Insert 0 for either object of the pair has “ ”. 

4. Object pairs of the same class are ignored. 

5. Rows with all 0s are not allowed. 

 

A d-Distinction table created using the above criteria has a smaller dimension of m1 * 

m2 in comparison to a discernibility matrix of (m*(m-1))/2, where m = m1+m2, and m1, 

m2  =  the number of samples in class 1 and 2, respectively.  For example, let m1 is 22 

and m2 is 40, therefore m1 * m2 = 22 * 40 = 880 rows (sets) of objects, which are much 

less than ((22+40) * (22+40)-1))/2 = (62*61)/2= 1891. Therefore, in terms of search 

space, it would reduce computational cost when using GA to find the optimal feature 

subset. The following figure shows an example of a cut down version of d-Distinction 

table. 

 

 

 

0 1 0 : : 0 1 1 

1 0 1 : : 1 0 1 

: : : : : : : : 

: : : : : : : : 

0 1 1 : : 1 0 0 

0 1 1 : : 1 1 0 

1 0 0 : : 0 1 0 

0 1 0 : : 0 0 1 

 

 

Figure 4-6 An example of d-Distinction table 

  

Attributes  

1 n 

1 

m 

Sets of objects  
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4.1.3. Phase 3: Feature selection via GA search optimization 

 

The first task of phase 3 is to determine the representation of chromosomes. There are 

different types of chromosome representations. These include binary, integer, real 

numbers, single character, and permutation representation. One of key components in 

application of GA is the representation of the solution using chromosomes (Qin, 1999). 

This is due to the fact that GA searches for solutions (chromosomes) to solve a problem, 

so it is very difficult for GA to find an optimal solution with an unsuitable chromosome 

representation for the specific problem. In fact “the use of different chromosome 

encoding schemes would lead to different search performances.” (Chaiyaratana, 

Piroonratana, & Sangkawelert, 2007, p. 3). 

 

The aim here is to process the d-Distinction table for sets of relevant features associated 

with high dimensional biomedical data using GA. In the studies of Felix and Ushio 

(1999), Duval & Hao (2010) and Perez and Marwala (2012), strings of n binary bits 

(binary chromosomes), e.g. {0 1 0 1 0 1 0 1 1 1 0 0}, were used to represent solutions 

for GA. The length n is the number of features (genes) in the dataset. That is, a binary 

chromosome represents a set of features and binary bits (gene values) of 0s in the 

chromosomes indicate features are not present (not selected for classification), and 

binary bits of 1s indicate features are present (selected for classification) in relation to 

the dataset (Banerjee et al., 2007; Deb & Reddy, 2003; Duval & Hao, 2010; Liu & Iba, 

2002; Perez & Marwala, 2012; Vafaie & De Jong, 1992). For example, a chromosome 

{0 1 0 1 0 1 0 1 1 1 0 0} represents a total of 12 genes in the dataset and genes with 

value of “1” (2nd
, 4

th
, 6

th
, 8

th
, 9

th
 and 10

th
 genes) are used for classification, whilst genes 

with value of “0” are not used. The following sections detail the steps associated with 

the application of GA. 

 

a) Population initialization 

The population of chromosomes is initialized by randomly selecting sets (rows) of 

objects from a d-Distinction table generated from the RST step. The number of sets of 

objects selected randomly from the distinction table equals the population size. That is, 

the number of sets of objects are randomly selected depending on the size of the 

population, e.g., if the size of the population is set to 100 (100 chromosomes) then 100 
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sets of objects are selected randomly. The following figure describes the algorithm used 

to initialize the population. 

 

Input: 

 d-Distinction table (Td) of m rows and n columns 

 Size of population (p) 

Output: 

 An initialized population of p rows and n columns 

Steps: 

    1. Set chromosomes as strings of binary of length n 

    2. Set initial population of size p (Ip) = { } 

    3. For counter from 1 to p 

a. Generate an integer random number (Rn) in the range [1, m] using a  

RNG 

b. Search indexes of rows (sets of objects) in Td using Rn 

c. Select row[Rn] in Td 

d. Store the selected row to Ip  

 

Figure 4-7 Algorithm for initialisation of population using d-Distinction table 

 

b) Fitness evaluation 

Fitness function in RST-GA,    of a chromosome is defined using the formula shown in 

Equation (4.3).   = w1*   + w2*         (4.3) 

Where w1 and w2 are the weightings for    and   , respectively, with w1 + w2 =1 

    and   are the objective function 1 and 2, respectively 

   is an overall objective function  

The fitness of a chromosome,    is defined as an aggregation of two objective functions,    and   . The objective function    is for maximizing the fitness of chromosomes (sets 

of features) with the least number of “1”s (features), whilst objective function    is for 

maximizing the fitness of chromosomes that discerns the most number of objects, i.e, 

maximizing accuracy. Thus, the objective function,  ,  guides GA to find an optimal 

subset of relevant features that has the least number of features but gives higher 

accuracy in discerning between objects . 

 

Since the objective function is an aggregation of 2 objective functions, f1 and f2, 

associated weightings, w1 and w2, are assigned to    and   , respectively. These 

weightings of f1 and f2 would affect the search optimization process for finding optimal 
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chromosomes (solutions). Therefore, an empirical experiment for obtaining the 

appropriate values of w1 and w2 was conducted in this study. Different combinations of 

w1 and w2 values were applied, e.g., w1 = 0.1 and w2 = 0.9 or w1 = 0.2 and w2 = 0.8, etc. 

As a result, w1 = 0.9 and w2 = 0.1 were found to work best for the 2 datasets used in this 

study.  Coincidentally, these two weighting are the same as those used in Banerjee et al. 

(2007)’s experiment and allowed a comparison with results from Banerjee et al.’s. As 

RST-GA incorporated quartile statistics and K-means methods to partition data, an 

approach different from Banerjee et al., this comparison of results allows an 

examination of the effectiveness of using quartile statistics and K-means for partition 

data in phase 1 of the approach.  

 

Equation (4.4) and (4.5) define objective functions f1 and f2, respectively (Banerjee et 

al., 2007). 

 

       →  = 
    →      (4.4) 

     →  = 
  →             (4.5) 

where 

N is the length of the candidate chromosome   → is a number of “1”s in the candidate chromosome          are the number of objects belonging  to class 1 and 2, respectively   → is a number of objects distinguished by the candidate chromosome. 

 

The following Figure 4-8 describes the algorithm used to calculate the fitness of 

chromosomes. 

 

Input: 

 d-Distinction table (Td) of m rows and n columns 

 Initial population (p) 

Output: 

 Fitness of chromosomes as an array of p rows and n columns 

Steps: 

    1. Set Size = size of population, p 

    2. Set weighting for w1 and w2 with w1+w2=1 

    3. Set f = fitness of chromosome 

    4. Set fitness population (Fp) = { } 
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    5. For counter from 1 to Size 

a. Calculate objective function f1 using  Equation (4.4) 

b. Calculate objective function f2 using Equation (4.5) 

c. Calculate fitness of chromosome f using Equation (4.3) 

d. Store f into fitness population (Fp) 

 

Figure 4-8  Algorithm for fitness calculation using f1, f2 and f objective functions 

 

c) GA operators 

Selection, crossover and mutation operators for binary-value encodings are used in the 

proposed approach. Tournament selection is a simple but efficient operator that has 

been commonly used in the GA (Miller & Goldberg, 1995). In the proposed approach, 

the tournament selection is employed to select 2 chromosomes from the population for 

crossover operation. Two chromosomes are selected randomly from the population of 

size k, a fitter chromosome is then selected for crossover. The tournament selection has 

been described in Section 2.3.4.1. 

 

Single point crossover (Back, Hoffmeister, & Schwefel, 1991) is a technique that can be 

applied to binary value encodings to exchange parts of two chromosomes at a randomly 

selected crossover position. That is, 2 selected parents are split into 2 parts at the 

crossover position and then the second part of the 2 parents is inter-changed to produce 

2 offspring. Single point crossover has been described in Section 2.3.4.1 and is 

employed in this study to recombine the chromosomes using the probability rate (Pc) as 

listed in Table 4-1. 

 

Bit-flip mutation is the most common mutation operator used for binary encoded 

chromosomes. The bit value of a gene is flipped, i.e., if the bit value is 0 then change it 

to 1 and vice versa, independently based on a predefined mutation rate, (Eiben & Smith, 

2007). As a result, mutated offspring are produced by the process of mutation. The bit-

flip mutation has been described in Section 2.4.4.1 and is employed in this study to 

modify the chromosomes using the mutation rate (Pm) as listed in Table 4-1.  

 

d) New population generation 

The 2 best chromosomes are selected from the pool of parents and resulting offspring 

obtained from the previous step involving selection, crossover and mutation. These are 

then placed into the new population. Also a single elitist strategy is employed in this 
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study to allow the best candidate solution in the previous generation to be retained and 

placed into the new generation to improve the search in evolutionary algorithms (Ahn & 

Ramakrishna, 2010). The process of selection, crossover and mutation continue until the 

generation of the new population is completed. The following figure describes the 

procedure to generate a new population. 

 

  Input: 

Chromosome population (p) 

Fitness population (Fp) 

Crossover probability (Pc) 

Mutation probability (Pm) 

Elite chromosome (Elite) 

 

   Output: 

New population (Np) 

   Steps: 

1. Set Size = size of population, p 

2. Set new population (Np) = { } 

3. Store Elite into Np 

4. For counter from 1 to ½ Size 

     a. Select 2 parent chromosomes from p 

 Perform tournament selection to select parent1, parent2 

     b. Create 2 offspring chromosomes using parent1 and parent2 

b1. Generate a random number (Rn) in the range [0, 1] using RNG 

b2. If    Pc  ≥ Rn 

 Perform one point crossover on 2 parents to produce 2 offspring 

           b3. If    Pm  ≥ Rn 

 Perform bit-flip mutation on each bit of offspring  

       b4. Evaluate fitness of parent and offspring chromosomes 

       c. Store the best 2 chromosomes into Np 

 

Figure 4-9 Algorithm for generating a new population  

 

e) Checking for convergence in NSC-GA 

 

The process of fitness evaluation, selection, crossover, mutation and new generation is 

repeated until the convergence of population in fitness takes place or a predefined 

maximum number of generations have been executed. The procedure of verifying the 

convergence status and terminating the GA have been described in Section 3.3 and 3.4, 

respectively. Upon the convergence the fittest chromosome (optimal solution) is 

selected. 
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In order to evaluate the proposed approach, a suitable set of parameter values are needed 

for all the parameters associated with GA. The following section describes the parameter 

tuning process to obtain the best parameter set for GA. 

 

4.1.4. Parameter tuning for the GA 

 

Convergence of fitness in the GA is important as premature convergence will result in a 

local optimal solution. Parameter tuning for the GA is necessary to ensure that the 

algorithm has executed  using the best parameter setting, owing to the fact that the 

crossover probability (Pc) and the mutation probability (Pm) are vital for the optimal 

performance of the GA (M. Srinivas & Patnaik, 1994). Parameter tuning for Pc and Pm in 

this study is completed using the approach proposed by Srinivas and Patnaik (1994). 

This process involves varying different values of Pc and Pm, and observing the difference 

value between the average fitness (favg) and the maximum fitness value (fmax) of the 

population to verify the convergence status for GA (i.e. local or global convergence).  As 

a result of this parameter tuning, the best parameter values of Pc and Pm are found to be 

0.7 and 0.03, respectively. The complete set of parameter values used to run RST-GA in 

this study is shown in Table 4-1. 

 

Table 4-1 A set of parameters used to run GA 

Parameters Values / Methods 

Population Size 100 

Chromosome length -  

           Binary Encoding 

The number of reduced 

attributes (genes) 

Pc 0.7 

Pm 0.03 

Generation 1000 

Selection Tournament 

Crossover Single point 

Mutation Bit-flip 

Elitist Single 
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4.2. Experiment results 

 

 The proposed approach was evaluated using both the Colon and Leukemia cancer 

datasets described in Chapter 3. For each dataset, 15 independent runs of the proposed 

approach were executed using the respective training data. The optimal set obtained for 

each run was used to construct corresponding k-NN classifier with k = 1, 3, 5, and 7. The 

selected optimal set of features is evaluated using 10 fold CV strategy described in 

Section 3.2 and then further evaluated using unseen test datasets.  

 

Steps in conducting one run of the experiment involved: 

- Invoke the algorithm using an input training file and parameter setting file. The 

training dataset and unseen test dataset are prepared based on the procedure 

outlined in Section 3.1 and 3.2.   

- Use the optimal feature set, to construct corresponding k-NN classifier with k = 

1, 3, 5, and 7. Record results. Repeat this step using another training fold until 10 

fold CV has been completed. 

- Use the optimal feature set, to construct corresponding k-NN classifier with k = 

1, 3, 5, and 7 to classify the unseen test dataset respectively. 

 

The classification results for classifying the unseen test data using each of these k-NN 

classifiers were recorded and shown in Table 4-2. The following sections detail the 

results obtained from applying the approach on each of the two datasets. 

  

4.2.1. Alon et al. Colon cancer data 

 

Banerjee, et al. (2007) split the colon cancer dataset, with 50% for training and 50% as 

the unseen test dataset. Each of these two datasets consists of 20 Cancer (C1) samples 

and 11 Normal (C2) samples. In this study, the Colon cancer dataset was partitioned in 

the same way as that of Banerjee, et al.’s (2007). 

 

Using the parameter settings in Table 4-1 and the training data for the Colon cancer 

dataset, the optimal subset of features from each of the 15 independent runs of RST-GA 

were obtained, evaluated using 10 fold CV evaluation strategy described in section 3.2, 

as well as tested on the unseen test set. The k-NN classifier with different k values of 1, 
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3, 5 and 7 were used to classify the Colon unseen test dataset. The classification results 

obtained using the optimal set from each of the 15 independent runs on the unseen test 

data are shown in Table 4-2. 

 

 

Figure 4-10 A typical convergence plot for maximum fitness and (fmax – favg) associated 

with the Colon dataset 

 

A convergence plot from one of the typical runs is shown in Figure 4-10. As seen in this 

figure, the algorithm converged to a global optimum with the maximum fitness of 0.99 

(approaching the theoretical maximum fitness of 1). The values of (fmax – favg) was 

relatively high (values shown on the right-hand vertical axis) in the earlier generations 

(<5) and it decreases to values very close to zero after 17 generations. This value 

coincides with the maximum fitness value of 0.99.  Note that the convergence after 17
th

 

generations is due to the initial population of individuals being selected from the d-

Distinction table, which consists of chromosomes (binary strings) that have already been 

processed for redundancy reduction of features.   

 

Premature convergence occurs when the evolutionary algorithm (e.g. genetic 

algorithms) gets stuck in local optima and returns suboptimal solutions (Vanaret, 
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Gotteland, Durand, & Alliot, 2013). On achieving global convergence, the population is 

genotypically very similar, thus individuals in the population has very similar fitness 

value. The state of convergence of each of the 15 runs of RST-GA is evaluated using 

the check mechanism outlined in Section 3.4, and typically, a plot like the graph in red 

in Figure 4-10 is obtained for fmax - favg. In addition, to gain a understanding of the 

behaviour of RST-GA across the 15 run, a whisker plot for the maximum fitness value 

of all 15 runs is shown in Figure 4-11 . At the point of convergence, the fitness value 

approaches the theoretical maximum fitness of 1 and the spread of the fitness value is 

very small across the 15 runs for each of those generations, thus showing global 

convergence. 

 

 

Figure 4-11 A whisker plot for maximum fitness for 15 runs 

 

The fitness maximum value obtained at convergence for each of the 15 run of RST-GA 

for the Colon cancer dataset are 0.9907, 0.9917, 0.991, 0.992, 0.9907, 0.9914, 0.9914, 

0.9922, 0.9929, 0.9917, 0.992, 0.9898, 0.9896, 0.9902 and 0.9836 respectively.  The 

first value of 0.9907 is associated with Set 1 in Table 4-3, 0.9917 with Set 2, and the 

mapping of the sets following this order until with Set 15 being mapped to 0.9836. 
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Table 4-2 Results associated with RST-GA (proposed approach) and  from Banerjee, et 

al. (2007) using k-NN classifiers, with k=1, 3, 5, and 7 on the Colon unseen test set 

 

 

Table 4-2 shows the results obtained via RST-GA and those obtained in Banerjee, et 

al.’s study (2007). The column headings C1 and C2 in the table stand for classification 

accuracy (%) on the Colon unseen test dataset for the Cancer class and Normal class, 

respectively. The column heading “Net” stands for the overall classification (%) for all 

classes on the Colon unseen test dataset and “Net” is calculated using Equation (4.3).  

 



92 

 

Net (%)          
                      (4.3) 

 

where    is true positive for correct prediction to C1 class 

              is true negative for correct prediction to C2 class 

              is false positive for incorrect prediction to C1 class 

              is false negative for incorrect prediction to C2 class 

 

From 15 independent runs, RST-GA found 15 sets of features consisting of 1 set of 10 

features, 3 sets of 7 features and 11 sets of 6 features. Each of the 15 sets is used to train 

a k-NN classifier with k = 1, 3, 5, and 7 and each row of Table 4-2 is associated with the 

classification results obtained on the unseen test dataset. The row highlighted (in blue) 

in Table 4-2 shows the highest classification accuracy obtained for classifying the 

unseen test set. It can be seen that the proposed algorithm found a smaller set with 6 

genes that gave a higher classification accuracy in comparison to those  involving the 

larger set of 15 features reported by Banerjee, et al. (2007).  It is not possible to evaluate 

whether there are any commonality in the sets of features found by RST-GA, with the 

set obtained by Banerjee et al. (2007)  as the list of their 15 features is not listed in their 

paper.  

 

In addition to examining the importance of the classification performance of a set of 

features, its relevance to its corresponding domain is crucial. Table 4-3 lists the selected 

genes by accession numbers for the 15 sets found by the proposed approach.  As seen 

from the table, some genes are common across a number of these sets (e.g. H08393 are 

found in set 1, 3, 5, and 12). These are coded in the same colour in the table for ease of 

identifying them in the different sets.   
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Table 4-3 List of genes associated with the Colon Cancer dataset for each of the 15 

optimal sets of features obtained from 15 independent runs of RST-GA 

 

 

As seen in Table 4-3, the feature set obtained from each of 15 runs of the RST-GA is 

different, with only a small number of features in common across the different sets. This 

is due to a characteristic associated with feature selection methods, namely, the stability 

of feature selection methods. Stability is a term used to describe the sensitivity of a 

feature selection algorithm to small variations in the training data and in the settings of 
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the algorithmic parameters, resulting in different feature sets being produced by the 

algorithm. Small variations in the training data include using a different partition of data 

samples, reordering of samples and adding/removing a few samples. In addition, in 

stochastic algorithms, using different random seeds and different parameter values will 

also result in different results from the algorithm. Both Rough Set theory and the GA 

are algorithms known to have feature selection instability.  

 

An important point to note is that each execution of the RST-GA approach consists of 

three phases, and the application of GA is only in the third phase. The first two phases 

of RST-GA involved application of Rough Set Theory to generate the d-Distinction 

table, used as input,  in the third phase (i.e. the GA phase). The initialization of 

population in the third phase (i.e. GA phase) involved 100 individuals randomly 

selected from the d-Distinction table (e.g. in the case of the Colon Cancer dataset, size 

of the d-Distinction table = 480). Thus the input to the GA phase is different in each of 

the 15 runs (besides having the random seed being different). Given that the GA is a 

feature selection instability method, different results is obtained in different runs since 

the input data is different. Other potential causes for the feature selection instability here 

is due to redundancy of features in high dimensional biological datasets, where multiple 

features contribute to the same diseased effect and with the availability of only a small 

number of samples in relation to the high number of features as exemplified by 

microarray datasets. 

 

Set #3 (“Set #3” column highlighted Table 4-3) is one of the 15 sets selected using the 

proposed approach which gave the highest classification accuracy on the unseen test 

data. This set consists of 6 genes which have been reported in biomedical literature as 

being associated with cancer and other diseases. U31248 (Human zinc finger protein 

(ZNF174) mRNA) is related to the expression of colon tissues (Williams, Khachigian, 

Shows, & Collins, 1995). L08069 (Human heat shock protein, E. coli DnaJ homologue 

mRNA ) is not only “shown to increase tumorigenicity in rat colon cancer” 

(GSAEmulator, n.d.), but also associated with tumour development in human 

(Diesinger et al., 2002). H49870 (yo24h10.s1 Soares adult brain N2b5HB55Y) is 

involved in the detection of over-expression for olon cancer disease (Laping, 1999). The 

M18216  (Human nonspecific crossreacting antigen mRNA) is considered as a major 

component of Carcinoembryonic antigen involved in expression of lung cancer, tumour 
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specimens, and tumour cell lines at mRNA levels (Hasegawa et al., 1993), and also 

increasing level of expression in Colon cancer (Hinoda et al., 1997). H08393 

(yl92a10.s1 Soares infant brain 1NIB) is involved in the process of degrading activity 

of Colon cells.  It is also one of 66 differently expressed genes for Colon cancer data 

(Shaik & Yeasin, 2007).  M22538 (Human nuclear-encoded mitochondrial NADH-

ubiquinone reductase 24Kd subunit mRNA) is involved in schizophrenia, bipolar 

disorder, and Parkinson disease (Nishioka et al., 2010) and is the only feature of this set 

that has not been shown to have an established linked to some form of cancer. This 

result may be the trigger for biological studies to include this feature for subsequent 

investigations. 

 

Sensitivity and specificity associated with classification are two measures that are of 

great interest to the biomedical community in their efforts to find biological markers 

(also known as biomarkers) and to assess the utility of these biomarkers as to how well 

they can predict relevant outcomes.  Sensitivity represents the probability of correctly 

diagnosing a condition (i.e. the proportion of truly affected (i.e. diseased) in a sample 

population that is identified by the test as being diseased). On the other hand, specificity 

represents the proportion of truly non-diseased that the test identified as such. Ideally, a 

biomarker should have high sensitivity and high specificity – resulting in the majority of 

the truly at-risk cases being correctly identified, and the majority of the truly not-at-risk 

cases also correctly identified as not having the diseased condition.    

 

From Table 4-2, the k-NN classification results associated with each of the 15 sets of 

features mostly showed high sensitivity but low specificity, implying the majority of the 

truly at-risk cases will be correctly identified, but the majority of the truly not-at-risk 

cases will also be incorrectly identified as at-risk. For example, in the case of the 

highlighted row, sensitivity is 90% but specificity is only 72.7% for k = 1.  A further 

investigation was carried out using the same set of 6 genes and 22 different classifiers 

from WEKA software (Hall et al., 2009) to classify the unseen test dataset. WEKA is a 

data mining software program that has been developed and maintained by WEKA team 

since 1994 (Markov & Russell, 2006). WEKA consists of a large number of classifiers 

that can be used to analyse datasets and perform classification. WEKA classifiers used 

in the thesis are categorized into six types of classifiers including Function, Bayes, 

Lazy, Meta, Rules and Tree classifiers (Hall et al., 2009). Function classifiers are 
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simple and used for attributes with all numeric values, and a “linear boundaries between 

classes” strategy is used for classifying data. Bayes classifiers are implemented based 

on Bayes’s rule for probability and use density estimators to map attributes to the 

probability. Lazy classifiers are simple and use a distance function to measure the 

distance between data points and classify data. Meta classifiers use weighting or voting 

or ensemble schemes to classify data, for example, AdaBoost classifier classifies data 

based on the class with highest total weight (Witten & Frank, 2005). Rules classifiers 

use “a separate-and-conquer” strategy to identify rules for classifying data (Beasley, 

Martin, & Bull, 1993, p. 171). Tree classifiers use “the simple divide-and-conquer” 

strategy to generate decision trees for classifying data (Beasley et al., 1993, p. 159) . 

Further details of WEKA classifiers can be found in Witten and Frank (2005) and Hall 

et al. (2009). The aim here is to see if this trend (as in the case of k-NN) in terms 

sensitivity and specificity is a result of using a specific classifier, in this case k-NN 

classifiers. The classification results for the 22 classifiers constructed using the same set 

of 6 features as that in training the k-NN classifiers are shown in Table 4-4. Note that 

Multilayer Perceptron, Decorate, Random Committee and Random Forest are classifiers 

that may return (slightly) different results from different runs, thus, these classifiers 

were executed 10 times with different seeds and results with * is an average on these 10 

executions. 

 

As seen in Table 4-4, mixed results were obtained.  Using KStar (in bold) on the unseen 

test set produced results showing high sensitivity and high specificity (90%). However, 

there are also other classifiers showing behaviour similar to that of the k-NN classifiers. 

Also interestingly, there are a number of classifiers demonstrating higher specificity 

(shaded cells) than sensitivity. These results demonstrated that the use of specific 

classifiers may have an impact on the sensitivity and specificity. Thus in a DM analysis 

for finding suitable sets of biological markers, a number of classifiers should be used 

instead of just using one. This will avoid cases of missing out on sets of features with 

high discriminatory capabilities that should be further investigated in early diagnostic 

test developments but have been rejected on the basis of their sensitivity/specificity 

relating to a specific classifier.  
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Table 4-4 Results of classification for the 6 selected genes (highlighted in blue in Table 

4-2) with 22 WEKA classifiers on the Colon unseen test set 

Classifier 
Set of 6 genes 

C1 C2 

SMO 70 81.8 

Simple Logistic 65 100 

Logistic 65 100 

Multilayer Perceptron 83.5* 89* 

Bayes Net 85 18.2 

Naïve Bayes 80 63.6 

Naïve Bayes Simple 80 63.6 

Naïve Bayes Up 80 63.6 

IB1 90 72.7 

KStar 90 90.9 

LWL 70 63.6 

AdaBoost 80 63.6 

ClassVia Regression 80 63.6 

Decorate 85* 58.2* 

Multiclass Classifier 65 100 

Random Committee 77.5* 55.4* 

j48 90 54.5 

LMT 65 100 

NBTree 80 54.5 

Part 90 54.5 

Random Forest 79* 59.9* 

Ordinal Classifier 90 54.5 
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4.2.2. Leukemia cancer data 

 

Using the same approach as outlined in Section 4.2, 15 independent runs involving 

RST-GA were carried out using the parameter settings in Table 4-1 and the Leukemia 

training dataset. The optimal subsets of features were obtained and evaluated using 10 

fold CV evaluation strategy described in Section 3.2, as well as tested on the unseen test 

dataset. The k-NN classifier associated with each of the optimal subsets of features and 

with k values of 1, 3, 5 and 7 were used to classify the Leukemia cancer unseen dataset. 

A convergence plot from one of the 15 independent runs is shown in Figure 4-12 and 

the classification results of the 15 runs are shown in Table 4-5. 

 

 

Figure 4-12 A typical state of convergence plot for maximum fitness and (fmax – favg ) 

values associated with the Leukemia cancer dataset 

 

As seen in Figure 4-12, the algorithm converged to a global optimum with the maximum 

fitness value of 0.928. The value for (fmax – favg ) was relatively high (values shown on 

the right-hand vertical axis) in the earlier generations (<7) and  it decreases to values 

approximately close to zero around 64 generations. This value coincides with the 
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maximum fitness having a value of 0.928 (1 is the maximum). Similar to the Colon 

dataset, the convergence is also quick although it occurred after 64 generations in 

comparison with 17 generations for the Colon dataset. This is due to the fact that samples 

in the Leukemia dataset have a larger number of genes (features), 7129, compared to 

2000 features for the Colon cancer data. The 15 optimal sets of features obtained from 

15 runs for the Leukemia cancer data using RST-GA, consisted of 2 sets of 4, 6, 7, 10 

and 14 features, 3 sets of 5 features, 1 set of 11 features, and 1 set of 12 features. Each 

row in Table 4-5 is associated with classification results for the unseen test dataset using 

the k-NN classifier constructed from one of the 15 sets of features. The proposed 

algorithm found a set of 5 and 14 genes (rows highlighted in blue and green in the table, 

respectively)  that gave a similar classification accuracy compared to those involving 

the larger set of 19 genes reported by Banerjee, et al.(2007).  It is not possible to 

evaluate whether there are any commonality in the sets of features found by RST-GA, 

with the set obtained by Banerjee et al. as the list of their 19 features is not listed in 

their paper. Table 4-5 shows the classification accuracy for the unseen test data for the 

classifier associated with each of the 15 sets. The lists of genes associated with each set 

are shown in Table 4-6 by their accession number. Again, the differences between the 

sets of selected features from each of the 15 runs are due to the same reasons as outlined 

in the analysis of the Colon Cancer dataset. 

 

As seen from Table 4-5, the k-NN classification accuracies associated with classifiers of 

the set of 5 genes (the row highlighted in blue) and 14 genes (the row highlighted in 

green) obtained from RST are compatible with the classification accuracies associated 

with classifiers of the set of 19 features reported in Banerjee, et al. (2007).  
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Table 4-5 Results for RST-GA (proposed approach) and Banerjee, et al.(2007) using for 

k-NN classifier with k=1, 3, 5, and 7 on the Leukemia unseen test set. The column 

heading “Net” stands for the overall classification (%) for all classes on the Leukemia 

unseen test dataset and “Net” is calculated using Equation (4.3). 

Approach 
# 

attr 

k=1 k=3 k=5 k=7 

C1 C2 Net C1 C2 Net C1 C2 Net C1 C2 Net 

Banerjee 

et al. 

(2007) 

19 90 50 73.5 90 57.1 76.5 95 14.3 61.7 100 14.3 64.7 

RST-GA 

4 70 7.1 44.1 55 21.4 41.2 55 14.3 38.2 90 0 51.9 

4 85 35.7 64.7 85 35.7 64.7 90 28.6 64.7 95 35.7 70.6 

5 90 28.6 64.7 100 21.4 67.6 100 35.7 73.5 100 35.7 73.5 

5 65 42.9 55.9 90 14.3 58.8 95 21.4 64.7 95 21.4 64.7 

5 100 35.7 73.5 100 28.6 70.6 100 21.4 67.6 100 14.3 64.7 

6 75 42.9 61.8 85 0 50 95 0 55.9 96.3 45.5 55.9 

6 80 50 67.6 95 42.9 73.5 95 35.7 70.6 100 28.6 70.6 

7 70 50 61.8 95 28.6 67.6 80 35.7 61.8 85 7.1 52.9 

7 95 35.7 70.6 100 21 67.6 100 28 70.6 100 21.4 67.6 

10 95 28.6 67.6 95 14.3 61.8 95 21.4 64.7 96.3 27.3 61.7 

10 85 50 70.6 90 7.1 55.8 85 7.1 52.9 95 0 55.9 

11 75 42.9 61.8 95 35.7 70.6 95 35.7 70.6 95 28.6 67.6 

12 65 57.1 61.7 75 57.1 67.7 70 50 61.7 90 50 73.5 

14 85 50 70.6 95 57.1 79.4 95 50 76.5 95 50 76.5 

14 75 64.3 70.6 85 64.3 76.5 85 50 70.6 85 57.1 73.5 
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Table 4-6 List of 15 sets of genes selected for the Leukemia cancer dataset using RST-

GA. 

 

 

Table 4-6 lists the selected genes by accession numbers for the 15 sets found by RST. 

The highlighted columns (“Set #5” in blue and “Set #14” in green) in the table are the 

corresponding set of 5 and 14 genes associated with classifiers that produced 



102 

 

compatible unseen test classification accuracies in rows highlighted in blue and green, 

respectively, in Table 4-5. As seen from the table, some genes are common across a 

number of these sets, e.g., D64158 are found in Set# 3, 8, 10, 11, 12 and 14 (shaded 

cells). These common genes are coded in the same colour in the table for ease of 

identifying them in the different sets. 

 

As seen in from Table 4-6, Set #5 (“Set #5” column highlighted in Table 4-6) is one of 

the 15 sets obtained using the proposed approach, which gave a high classification 

accuracy with a smaller number of features. This set consists of 5 genes which have 

been reported in the literature as being associated with cancer: D10495 (protein kinase 

C delta-type) is the gene whose expression is commonly down-regulated in acute Adult 

T-cell leukemia (ATL) (Tsukasaki et al., 2004), D13628 (Angiopoietin 1) is the gene 

that is over-expressed in extramedullary plasmacytomas (Hedvat et al., 2003), D42072 

(Neurofibromatosis type 1 (NF1)) is known as an autosomal disorder gene and highly 

associated with malignancy (Suzuki et al., 1995), D50683 (Alteration of the 

tra sfor i g growth factor β ( G B)) is a down-regulated gene that  modifies 

expression and effects of TGFB in pancreatic carcinomas (Albrechtsson, Axelson, 

Heidenblad, Ludmilagorunova, & Höglund, 2001) and D83004 (ubiquitin-conjugating 

enzyme E2) is one of Atherosclerotic phenotype determinative genes that can be used in 

diagnosis, treatment and drug screening methods for Atherosclerosis (West, Nevins, 

Goldschmidt, & Seo, 2005). No existing information found to indicate its role in terms 

of this disease. 

 

Also seen in Table 4-5, similar to the Colon cancer data, the k-NN classification results 

associated with the selected set of 5 and 14 genes mostly showed high sensitivity but 

low specificity when classifying the unseen test data.   For example, the k-NN classifier 

involving the set of 5 selected genes showed 100% classification accuracy for C1 and 

35.7% for C2 ( i.e. high sensitivity and low specificity) . Further investigation, similar 

to that conducted with the Colon cancer dataset, was also carried out here using the sets 

of 5 and 14 genes to train  22 classifiers from WEKA and then to use them to classify 

the  Leukemia unseen test dataset.  The classification results of 22 classifiers are shown 

in Table 4-7.  
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Table 4-7 Results of classification for the 5 and 14 selected genes (highlighted in blue 

and green, respectively, in Table 4-6) with 22 WEKA classifiers on the Leukemia 

unseen test set 

Classifier 
Set of 5 genes Set of 14 genes 

 C1  C2  C1  C2 

SMO 100 14.3 95 64.3 

Simple Logistic 100 14.3 80 50 

Logistic 100 14.3 90 64.3 

Multilayer Perceptron 100* 7.1* 85* 64.3* 

Bayes Net 95 42.9 75 71.4 

Naïve Bayes 100 14.3 80 57.1 

Naïve Bayes Simple 100 14.3 80 57.1 

Naïve Bayes Up 100 14.3 80 57.1 

IB1 100 35.7 85 50 

KStar 95 14.3 100 42.9 

LWL 95 42.9 70 35.7 

AdaBoost 100 42.9 95 50 

ClassVia Regression 95 42.9 80 57.1 

Decorate 100* 24.6* 86.7* 62.7* 

Multiclass Classifier 100 14.3 90 64.3 

Random Committee 100* 13.4* 95.5* 45* 

j48 100 14.3 70 57.1 

LMT 100 14.3 80 50 

NBTree 100 14.3 80 57.1 

Part 100 14.3 70 57.1 

Random Forest 100* 17.3* 95.5* 46.4* 

Ordinal Classifier 100 14.3 70 57.1 

 

Again, it can be seen that the classification results of 22 WEKA classifiers constructed 

using the selected set of 5 and 14 genes showed mixed results in terms of sensitivity and 

specificity. The 22 classifiers associated with the set of 5 genes showed that they can 
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classify the diseased instances (C1) very well and are very poor in classifying the non-

diseased cases (C2) (i.e. high sensitivity and low specificity). For the classifiers 

associated with the set of 14 genes, most showed similar trends as the k-NN classifiers 

but one classifier (Bayes Net) showed similar specificity and sensitivity.  

 

4.3. Discussion  

 

As described in the previous section, the optimal set of features, generated from each 

independent RST-GA run, is then used with the training set to produce the various k-

NN classifiers. These classifiers are then used to classify the unseen test set, with the 

classification results reported in Table 4-2 and Table 4-5 for the Colon cancer and the 

Leukemia datasets respectively.  As shown in Table 4-3 and Table 4-6 

Table 4-6, the optimal set of features obtained from each independent run of RST-GA 

has differences and varying degrees of overlap in terms of the selected features. This is 

a typical outcome when using a non-deterministic approach such as RST-GA. Potential 

benefits include: 1) the generations of smaller sets of features, (e.g. sets ranging from 4 

to 14 features in comparison to the original dimensionality such as 7129 features in the 

Leukemia dataset), with high discriminatory capabilities that can be further investigated 

for early diagnostic test developments, and 2) examination of  the overlap between the 

sets of features which then can lead to construction of feature sets for further 

investigations.  

 

A number of observations emerged from examining the classification results in Table 4-

2 and Table 4-5 relating to the issues of sensitivity and specificity of a classifier 

associated with selected set of features. First, it can be seen that different classifiers, 

trained using the same set of features, can produce different values for these two 

measures in their evaluation of a test dataset. Second, as demonstrated in the analysis 

involving the Leukemia dataset, sets with different number of features (e.g. set of 5 and 

set of 14 genes) when used to train the same classifier will also produce different values 

for these two measures in their evaluation of a test dataset. For example in the case of 

the Bayes Net classifier, when trained with the set of 5 genes, the classification result 

showed high sensitivity (95%) and low specificity (42.9%) and when trained with the 

set of 14 genes, the sensitivity and specificity is not too different (75% versus 71.4 %). 

Yet, most of the remaining 21 classifiers when trained with the same set produced 
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classification results that showed high sensitivity and low specificity. This implies that 

decisions, in terms of evaluating sets of features to be further investigated in early 

diagnostic test developments, need to take into consideration these observations - to 

avoid eliminating potential sets of features during an early stage of investigation.   

 

The proposed approach, RST-GA can be used as an exploratory tool in terms of the 

generation of multiple optimal sets with the most relevant features. By utilizing these 

sets of features to train multiple classifiers and followed by classification on unseen test 

datasets would provide biomedical researchers with more information about selecting 

potential sets for further investigation. The comparison of classification results of these 

different optimal sets with different classifiers in conjunction with domain knowledge 

could be the starting basis for further investigations and developments leading to 

development of panels of biomarkers related to a disease. 

 

However, given the feature instability nature associated with RST-GA, resulting in 

feature sets obtained from each different runs of the RST-GA on a specific dataset being 

different and only having a small number of common features across the different sets.   

From examining the analysis involving two datasets, it was obvious that the degree of 

feature instability across different runs could be significant and the approach may not be 

most ideal to explore biomedical data for finding potential biomarkers. The decision 

was then to explore approaches that could work better with evolutionary approaches and 

with minimal feature instability. 

 

4.4. Summary 

 

This chapter describes the proposed approach of a hybrid algorithm (RST-GA) which 

incorporates GA and RST for finding the optimal subset of significant features. The 

approach utilizes the k-means clustering for getting the initial cluster centroids of each 

attribute for RST, the rough set-based approach for generating sets of good candidate 

solutions, and GA for finding the reducts (optimal subsets of features). The evaluation 

process used the same Colon and Leukemia cancer datasets as in Banerjee, et al. (2007). 

The set of 6 genes and 5 genes for Colon and Leukemia cancer data respectively, 

produced from the proposed approach, have similar classification results in comparison 

to those obtained by Banerjee, et al. (2007) using a larger number of features.  
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In the next chapter, an approach of incorporating the NSC algorithm with GA for 

searching for an optimal shrinkage threshold value that leads to the selection of an 

optimal set of features will be described. 
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5. Incorporating NSC and GA, NSC-GA 

 

5.1. Introduction 

 

Chapter 4 described an initial attempt in this study to develop FS techniques 

incorporating the use of evolutionary algorithms and RST for analysis of high-

dimensional biomedical data. One limitation of this approach is that the result of the 

optimal set of features obtained is not constant in every independent run. This is a 

typical issue when employing a non-deterministic algorithm such as GA. To ensure less 

variability in the optimal set of features from each independent run, a deterministic 

method can be incorporated in the approach. This chapter is an extended version of the 

paper “NSC-GA: Search for Optimal Shrinkage Thresholds for Nearest Shrunken 

Centroid” (Dang, Lam, & Lee, 2013). It describes the second approach in this study that 

incorporates EA and a deterministic algorithm for analysing biological data.  This 

hybrid approach incorporates the NSC method (Tibshirani et al., 2002) and GA to 

automatically search for an optimal range of shrinkage threshold values for the NSC. 

The optimal shrinkage thresholds obtained are used in NSC to obtain a set of features. 

The feature sets obtained using this hybrid approach has less variability as in NSC, 

shrinkage threshold values with small differences map to the same feature set . 

 

The NSC method, with its most well-known software implementation being known as 

Prediction Analysis for Microarrays (PAM), has been widely used as a FS and 

classification method for high dimensional biomedical data in numerous studies (Bair & 

Tibshirani, 2004; Klassen & Kim, 2009; Lee et al., 2005; Ravetti & Moscato, 2008; Ray 

et al., 2007; K. Y. Yeung & R. E. Bumgarner, 2003).  A shrinkage threshold value must 

also be provided to the NSC method as input and normally, this is selected manually by 

executing the NSC method many times using a number of predetermined shrinkage 

threshold values. The optimal shrinkage threshold value is then obtained by minimizing 

the cross-validated error rate on the training data.  This process can be time-consuming 

and the optimal shrinkage threshold value may be limited by the granularity of the 

predetermined values.  
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The selection of a shrinkage threshold value is crucial as the NSC works on the 

principle of shrinking the relative difference between the class centroid and the overall 

centroid of all classes, moving the class centroid towards the overall centroid of all 

classes using the shrinkage threshold value. 

 

Figure 5-1 Shrinkage of threshold of 2 class centroid toward overall centroid in NSC 

 

As seen in Figure 5-1, the class centroid  ik1 and  ik2 (associated with Class 1 and Class 

2 respectively) of attribute i are shrunk toward overall class centroid ( K) by a shrinkage 

threshold (∆) value iteratively. The relative difference, dik1and dik2, is the distance 

between the class centroid,  ik1 and  ik2, and the overall centroid,  k, respectively. If the 

relative difference of an attribute is shrunk to zero for all associated classes, then it is 

considered as not an important attribute and is eliminated (i.e. class centroids and 

overall class centroid are not different). Attributes with at least one positive relative 

shrunken class centroid are considered as important attributes and are selected (i.e. class 

centroids and overall class centroid are different). 

 

The shrinkage threshold value for NSC is important in terms of FS and classification as 

it affects the selection of features. Using inaccurate shrinkage threshold values will lead 

to irrelevant features being selected and subsequently will lead to a lower classification 

accuracy. Two approaches, CV (Tibshirani et al., 2002; S. Wang & Zhu, 2007; K. 

Yeung & R. Bumgarner, 2003) and empirical approach (Klassen & Kim, 2009; Levner, 

2005; Ray et al., 2007) are normally used to find the shrinkage threshold values.  With 

Relative 

difference 

(dik1) 

Relative 

difference 

(dik2) 

 (dik2 - ∆)  (dik1 - ∆) 



109 

 

the CV approach such as 10 fold CV, the dataset is divided randomly equal into 10 

parts, each part consists of approximate proportion of a number of samples and classes. 

One part takes turn to be the test set while the other 9 parts are used as the training set. 

The procedure is repeated 10 times to obtain the prediction error rate for each time.  The 

overall prediction error rate is then calculated by averaging the errors from all iterations. 

The selected optimal shrinkage threshold value is based on the CV prediction errors 

associated with the different shrinkage threshold values. The shrinkage threshold value 

that gives the minimum CV prediction error is selected as the optimal shrinkage 

threshold value. For example, in Tibshirani, Hastie, Narasimhan and Chu’s study (2002) 

the optimal shrinkage threshold value was chosen based on the average errors of a 10 

fold CV resulting in a set of 43 genes that was associated with the minimum CV errors.  

 

With the empirical approaches (Klassen & Kim, 2009; Levner, 2005; Ray et al., 2007), 

the optimal shrinkage threshold was selected based on the lowest classification error 

over a range of shrinkage thresholds. For example, in Levner’s study (2005), 

experiments were first carried out with 20 different shrinkage threshold values in the 

range of [0.5, 10] with increments of 0.5. This study also experimented with another 

200 different shrinkage threshold values in the range of [0.5, 10] with increments of 

0.05, and obtained the same classification results. In general, CV and empirical 

approaches for determining the optimal shrinkage threshold value are based on “trial 

and error”.  However, such shrinkage threshold values may not be precisely tuned for 

the specific dataset for obtaining optimal classification results. This is due to the fact 

that it is limited in terms of exploring the search space of shrinkage threshold values in 

relation to the dataset. It is vital to address the issues described above. Thus, a new 

approach incorporating GA for automatically searching for the optimal shrinkage 

threshold for the NSC is proposed in this study.  

 

Besides investigating evolutionary approaches for obtaining the shrinkage threshold 

values, similarity measures used in NSC is another area of investigation. The 

investigation is structured in the following way: the investigation of evolutionary 

approaches for the NSC and followed by investigation of the impact of different 

similarity measures. Chapter 5 and 6 described investigations involving GA and 

Memetic algorithm and followed by the description of investigations if similarity 

measures in Chapter 7.  
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The following section describes the proposed approach (NSC-GA) involving GA.  

Section 5.3 describes the parameter settings for GA. Using seven datasets described in 

Section 3.1, the performance of the proposed approach is examined using the evaluation 

strategy as described in Section 3.2. The evaluation results are reported in Section 5.4 

and the summary is in Section 5.5. 

 

5.2. The proposed approach, NSC-GA 

 

Figure 5-2 illustrates the framework of the proposed approach, NSC-GA that 

incorporates NSC and the GA to search for the best optimal range of shrinkage 

thresholds for the NSC algorithm. The basic concepts of NSC (Tibshirani et al., 2002) 

and GA (Goldberg, 1989) algorithms have  already been reviewed in Section 2.3.3, and 

2.3.4.1, respectively. 

 

The two main steps are: 

 

Step 1:  This step carries out the procedure of automatic calculation of Thmax. This 

procedure is performed once only at the beginning of the proposed approach, NSC-GA, 

to obtain Thmax. 

 

Step 2: The GA is employed in this step as an optimization method to search for optimal 

sets of shrinkage thresholds for NSC algorithm that lead to the selection of optimal 

subsets of features. Also in this step, the NSC algorithm is employed as a fitness 

evaluator to evaluate the fitness of each chromosome in terms of the number of selected 

features and its training classification accuracy. 
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Figure 5-2  Framework of the proposed approach, NSC-GA 
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5.2.1. Issues related to the proposed approach, NSC-GA 

 

Encoding chromosomes, estimating the initial range of values for the shrinkage threshold 

and fitness evaluation are the issues that need to be first addressed in NSC-GA. The 

following section describes these issues. 

 

5.2.1.1. Encoding chromosomes 

 

The aim of the proposed approach is to optimize a range of shrinkage threshold values 

consisting of real numbers for NSC. The most appropriate encoding representation for 

chromosomes in this study would be real-encoding. Each chromosome, consists of 

number of genes, representing a range of n shrinkage threshold values, e.g. {1.23 0.56 

4.23 5.32 6.0 0.87 in the case of n = 6}. This allows the optimization of a range of 

shrinkage threshold values and the use of the GA crossover operator. Without using 

crossover to recombine chromosomes, GA would rely solely on a mutation operator and 

has a higher probability of being stuck in a local optimum (Back et al., 1991).  

 

5.2.1.2. Estimate initial range of values for shrinkage thresholds 

 

Shrinkage threshold values of chromosomes are generated randomly using a RNG. 

Theoretically, shrinkage thresholds can be in the range [0, ∞]. However, in practice, 

there is a finite number of attributes associated with the dataset to be analysed. The 

lower limit (Thlower) associated with shrinkage thresholds is a value where all attributes 

from the dataset are selected and the maximum value (Thmax) is a value where only 1 

attribute is selected. The value Thlower is 0. Thus shrinkage threshold values in the range 

[0, Thmax] map to the search space of sets of features in NSC. In the proposed approach, 

a chromosome is a range of shrinkage thresholds, each shrinkage threshold maps to a 

subset of features, therefore each chromosome maps to a number of subsets of features. 

This mapping is different from the commonly used binary representation in FS in 

which, a chromosome is a string of binary (bit) of 0 and 1, and each gene (bit) value 

maps to 1 feature, with each chromosome mapping to only 1 set of selected features.  

To illustrate the impact of Thmax in the “time-to-convergence” in NSC-GA, Figure 5-3 

and Figure 5-4, respectively, showed examples of convergence plots of fitness from 
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executing NSC-GA with and without employing Thmax  when analysing the AD training 

data. 

 

 

Figure 5-3 Example of convergence plot for AD training dataset with the application of 

Thmax calculation using NSC-GA 

 

 

Figure 5-4 Example of convergence plot for AD training dataset without the application 

of Thmax calculation and Thupper > Thmax 
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As seen in Figure 5-3 and Figure 5-4, the algorithm achieved the same maximum fitness 

of 0. 887. However, it can be also seen that, with the application of the Thmax, the 

algorithm reached convergence much quicker, at the 47
th

 generation in comparison to 

the 916
th

 generation for the algorithm that did not use Thmax.  In this instance, the 

approach that did not use Thmax required more than 20 times the number of generations 

compared to the one using Thmax. The approach with the application of Thmax reached 

the fitness of 0.78 in the 1
st
 generation, while the other approach (without Thmax 

calculation) required 820 generations before reaching the same fitness value of 0.78. 

The algorithm without the application of Thmax spent much more computational time to 

obtain the same result as that of the one with Thmax calculation. This is not only 

unnecessary but also contradictory to attempts by many previous researchers whom 

have tried to develop algorithms or strategies to improve computational time for GA (Li 

and Love (1997), Ahujaa and Orlinb (2000), Ilonen, Kamarainen and Lampinen (2003), 

and Snyder and Daskin (2006). 

 

 

Figure 5-5 Example of convergence plot for AD training dataset without the application 

of Thmax calculation and the value of Thupper < Thmax 

 

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Max fitness

1.......48..............................................................................................100000 

Convergence occurs 

Generations 



115 

 

Figure 5-5 shows an example of the convergence plot of fitness for analysing the impact 

of Thmax, using the same Ray et al. training dataset as before and where the upper limit 

of shrinkage threshold value is less than the associated of Thmax value (i.e. the initial 

population of chromosomes is initialized to be in the range [0, thupper] (i.e. thupper < 

Thmax). As seen in this figure, the algorithm is stuck in a local optima and premature 

convergence occurred. A maximum fitness of 0.727 is obtained after running for a very 

large number of generations (100,000). The optimal shrinkage threshold obtained has 

resulted in a set of 48 features with corresponding classification accuracy of 86.95% on 

the unseen test set. In comparison, as demonstrated in Figure 5-3, a fitness of 0.887 

resulting in a set of 11 features with corresponding classification accuracy of 89.49% on 

unseen test data in the case involving the use of Thmax. 

 

Thmax is a simple procedure that involved a single iteration to calculate Thmax and the 

computational time to obtain Thmax is up to around 1 second for each of seven datasets 

using a personal computer i7, CPU speed of 3.4 GHz with 16 GB memory, Windows 7 

and NetBeans 7.2. The calculation of Thmax needed to be carried out once only for each 

dataset. For example, it took 0.0105 seconds to obtain Thmax for the Ray et al.  AD 

training dataset, 0.167 seconds for the Colon cancer dataset, 0.41 second for Leukemia, 

0.180 second for Lymphoma, 0.95 second for Lung cancer, 0.971 second for Prostate  

cancer and 1.06 seconds for Ovarian cancer dataset. It can also be seen that the 

application of Thmax in the proposed GA based approach maximizes the performance of 

the algorithm, resulting in a global convergence using less computational time. 

 

5.2.1.3. Fitness evaluation using NSC as a fitness evaluator 

 

The NSC algorithm as described in Section 2.3.3 was implemented and employed as a 

fitness evaluator in this approach to evaluate the fitness of the chromosomes using the 

training dataset.  

 

5.2.2. Steps in the proposed approach, NSC-GA 

 

The following sections describe the steps in NSC-GA. 
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5.2.2.1. Step 1: Thmax calculation 

 

To find the value of Thmax for the dataset in question, the approach estimates the value 

of Thmax using the procedure shown in Figure 5-6. 

 

Input 

        Training dataset (Ts) 

Output 

 Thmax value 

Steps 

      1. Generate a real random number (Rn) in the range [0,1] as an initial shrinkage  

threshold seed using RNG 

      2. Set Thmax = Rn 

      3. Perform NSC FS on Ts using Thmax to select a number of features (N)  

      4. Loop while n ≠ 1     

a. If no feature selected n = 0 

 Generate Rn 

 Decrease Thmax by Rn, Thmax = Thmax - Rn  

 Perform NSC FS on Ts using updated Thmax to select n 

b. Else  

 Generate Rn 

 Increase Thmax by Rn, Thmax = Thmax + Rn  

 Perform NSC FS on Ts using updated Thmax to select N 

      5. Return Thmax 

 

 

Figure 5-6 Algorithm for calculating Thmax  

 

As seen in the algorithm in Figure 5-6, the value of Thmax is adjusted up or down using 

steps of values associated with random numbers in the range [0, 1]. This process repeats 

until Thmax reaches the value that results in only one feature being selected using NSC, 

i.e., Thmax of the training dataset has been determined. 

 

5.2.2.2. Step 2: GA search optimization 

 

The following section describes steps involving the application of GA in NSC-GA. 

 

a) Population initialization 

After Thmax has been calculated, a population of chromosomes is then initialized. Each 

shrinkage threshold in a chromosome (essentially each chromosome represents a range 
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of values for shrinkage thresholds) is initialized to a real number, generated randomly in 

the range of [0, Thmax] using a RNG. The number of shrinkage threshold values in the 

chromosome equals to the length (n) of the chromosome, i.e. the number of genes in the 

chromosome. Theoretically, n can be as large as ∞, but in this proposed approach, n = 

10 is chosen. That is, each chromosome consists of 10 shrinkage thresholds. The size of 

10 is chosen empirically to balance the computational time and obtaining the optimal 

shrinkage threshold. For example, a chromosome of size 10 is illustrated as a range of 

10 real numbers, as follows. 

2.312 3.523 1.133 1.034 2.334 9.234 0.211 5.354 8.142 10.299 

 

Figure 5-7 describes the algorithm used to initialize the population and Figure 5-8 

shows an example of an initial population.  

 

   Input: 

Thmax 

Length of chromosome, n 

Size of population, p 

   Output: 

An initialized population of p rows and n columns  

   Steps: 

        1. Set population (Ip) as a 2 dimensional array of p rows and n columns of real  

numbers 

        2. Set Ip = { } 

        3. For counter1 from 1 to p 

3.1 For counter2 from 1 to n 

a. Generate a real random number (Rn) in the range [1, Thmax] using a  

RNG 

b. Store Rn to Ip[counter1][counter2] 

 

Figure 5-7 Initial population algorithm using RNG 
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Figure 5-8 An example of an initial population 

 

Figure 5-8 shows an example of an initial population of N chromosomes by M 

shrinkage threshold values. That is, each chromosome consists of M shrinkage 

thresholds. After the population has been initialized, the next step is to employ the NSC 

algorithm as a fitness evaluator to evaluate the fitness of each chromosome. 

 

b) Fitness evaluation 

GA was described in Section 2.4.4 and implemented, and employed in this study. The 

GA here uses an objective function to optimize the search for finding optimal shrinkage 

thresholds that leads to the selection of the smallest set of features with the highest 

classification accuracy. The objective function, f, is an aggregation of two fitness 

functions, f1 and f2, calculated using Equations (5.1), (5.2) and (5.3). 

 

        f = f1 + f2  (5.1) 

 

f1 = (Ntotal - Natt) / Ntotal (5.2) 

 



119 

 

f   
     

           
  (5.3) 

 

 where Ntotal is the total number of attributes (features) of the dataset 

            Natt is the number of attributes selected by NSC  

            f2 is an overall training classification accuracy for the selected set of attributes  

   using NSC. 

            TP is true positive for correct prediction to the disease class 

            TN is true negative for correct prediction to the normal class 

            FP is false positive for incorrect prediction to disease class 

            FN is false negative for incorrect prediction to normal class 

 

f1 is computed based on the number of attributes selected over the total of number of 

attributes in the training dataset. That is, the smaller the set of features, the higher the 

fitness value for f1. Thus f1 is designed for evaluating the fitness of a shrinkage 

threshold that leads to a minimum number of attributes. 

 

f2 is computed based on the classification accuracy, associated with the training data, in 

the form of TP and TN over a total number of samples in the  training dataset (i.e. TP, 

FP, TN and FN). Thus f2 is designed for evaluating the fitness of a shrinkage threshold 

that leads to the maximum classification accuracy. 

 

Since each chromosome (range) consists of a number of shrinkage threshold values, 

therefore the overall fitness of a chromosome is calculated, as the average of fitness 

values associated with each of the shrinkage thresholds in the chromosome, using 

Equation (5.4). 

FitnessInd= ∑      th / M   (5.4)    

           

where M is the number of shrinkage thresholds in a chromosome. 
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c) GA operators 

Selection, crossover and mutation operators for real encodings are used in NSC-GA.  

The same tournament selection procedure employed in the RST-GA approach proposed 

in Chapter 4 is also employed here to select the parent chromosomes for crossover. 

 

The same single point crossover employed in Chapter 4 is used here to recombine the 2 

selected parent chromosomes to produce 2 offspring chromosomes using the probability 

of crossover (Pc) listed in Table 5-4. 

 

Uniform mutation (Eiben & Smith, 2007) is used for real-encoded chromosomes. 

Uniform mutation has been described in Section 2.4.4.1 and is employed here to modify 

offspring chromosomes using the mutation rate (Pm) listed in Table 5-4. Uniform 

mutation modifies a chromosome by replacing its gene value with a mutated number, 

Nmut , which is calculated using Equation (5.5). 

 

Nmut = Lb + (Rn * (Ub - Lb))     (5.5)  

 

where Lb is lower bound of chromosome, Rn is a random number generated by RNG, Ub 

is upper bound of chromosome. 

 

d) Generation of New population  

Two parents and 2 offspring chromosomes from the previous step involving selection, 

crossover and mutation are evaluated for their fitness and the best 2 chromosomes are 

selected and placed into the new population. A single elitist strategy is also employed to 

allow the best candidate solution in the previous generation to be retained and placed 

into the new generation to improve the search in evolutionary algorithms (Ahn & 

Ramakrishna, 2010). The process of selection, crossover and mutation iterates until the 

generation of the new population is completed. The procedure for generating a new 

population in NSC-GA is the same as the one in RST-GA (Figure 4-8), except that 

uniform mutation instead of the bit flip mutation is employed here.  

 

The following figure shows an example of the process of selection, crossover, mutation, 

in new population generation. 
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Figure 5-9 An example of creating a new population  

 

e) Checking for convergence in NSC-GA 

The process of fitness evaluation, selection, crossover, mutation and new population 

generation is repeated until the convergence of fitness takes place or if a predefined 

maximum number of generations have been executed. The procedure of verifying the 

convergence status and terminating the GA have been described in Section 3.3 and 3.4, 

respectively. Upon convergence, the fittest chromosome (optimal solution) is selected.  

 

The process of determining parameter settings used in NSC-GA is described in Section 

5.3. 
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5.3. Parameter settings for GA 

 

As discussed previously, one of the aims of this study is to investigate the incorporation 

of evolutionary algorithms in developing techniques for analysing high dimensional 

biological datasets. An aspect associated with the use of evolutionary algorithms 

involves finding appropriate values for its parameters (Eiben & Smith, 2003). 

Population size, crossover and mutation probability rate are some of the crucial 

parameters which affect the performance of evolutionary algorithms where their specific 

values may cause the algorithm either to converge to a local (premature convergence) or 

global optimal solution. This process is known as parameter tuning, in which 

appropriate parameter settings are determined to ensure that the algorithm will perform 

at its best (M. Srinivas & Patnaik, 1994).   

 

A traditional parameter tuning approach empirically finds a set of parameter values 

which is then subsequently applied to the evolutionary algorithm for processing the 

various problem instances. This is usually a very time-consuming and hard task 

(Nannen, Smit, & Eiben, 2008) as there are many choices of values associated with the 

parameters and little is known about the effect of these parameter values on the 

performance of the algorithm. Often this process is guided by conventions (e.g. low 

mutation rate), ad hoc choices and experimental comparisons carried out on a limited 

scale. Dovgan, Tu ar and Filipic (2011) carried out experiments, comparing parameter 

tuning methods for evolutionary algorithms and their findings showed that “there is no 

best value for each parameter, but there are wide ranges of good parameter values” 

(Franken et al., 2011, p. 2), and that there’s some value in conducting parameter tuning. 

Recently a study by Fraser and Arcuri (2011) confirmed that parameter tuning can have 

an impact on the performance of the evolutionary algorithm but if this is not performed 

properly, it is highly likely to result in obtaining parameter  configurations which are 

worse than values already found in the literature. One of the main conclusions from 

their study is that “using default values coming from the literature is a viable option” 

(Fraser & Arcuri, 2011, p. 26), specifically in the case where parameter tuning is 

expensive and the investigation is focused on examining the performance of new 

techniques (rather than comparisons between techniques). They argued that it would 

make more sense to use the available time for analysing a larger number of case studies 

than to spend that time on parameter tuning.   
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Section 5.3.1 describes the procedure for selection of the parameter settings which will 

be employed in approaches in the remaining part of this thesis. The outcomes of this 

process are presented in Section 5.3.2 with a summary of the results listed in Table 5-3. 

 

5.3.1. Parameter settings 

 

In order to find an appropriate set of values for the GA parameters, empirical parameter 

tuning involving 4 sets of commonly used parameter settings from the literature are 

conducted.  The  parameters that are tuned (highlighted in blue in Table 5-2) include 

population size, crossover probability rate (Pc), and mutation probability rate (Pm), with 

each set of these values being taken from DeJong (1975), Grefenstette (1986), Goldberg 

(1989), and Alander (1992) respectively (Table 5-2). These sets of parameter settings 

have been widely used in applications involving the GA and have been considered as 

“standard parameter values” for the GA (Harik & Lobo, 1999). The aim of the 

parameter tuning process in this study is to determine which of these four sets of 

“standard parameter values”, will encourage more exploration and less exploitation in 

the population, and achieves an appropriate balance between selection pressure and 

diversity so that global convergence can be achieved in a reasonable amount of time.  

 

In other words, during parameter tuning, the evaluation is on the suitability of each the 

sets of parameter values for one algorithm using specific datasets and the end product is 

a specific set of parameter values. Suitability is measured in terms of achieving 

maximum fitness at convergence and the required computation time. For example, we 

can have the situation where there are two sets where the algorithm can converge to the 

same maximum fitness but one set provides a lower selection pressure than the other and 

so may take a longer computation time to reach convergence. Obviously in this case, the 

set of parameter values that allowed the algorithm to converge to the same maximum 

fitness and using a shorter computation time will subsequently be chosen in the 

application of the algorithm to solve the specific problem. Thus, computation time in 

obtaining maximum fitness at convergence is used to evaluate one set of parameter 

values against another set.   

 

The tuning process involved separate trials that employ each of the 4 sets of parameter 

settings in the NSC-GA and for all the seven datasets described in Section 3.1. The 
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results obtained from these experiments are analyzed and the set of parameter values 

which gave the best results in terms of computational time for convergence and 

maximum fitness were then selected to be used in the proposed approaches in this study.  

 

An entire tuning trial involving each of the 4 parameter sets using each of the 7 datasets 

(i.e. 4 x (1 x7) = 28 runs) takes 119,339 minutes to complete. Owing to this lengthy 

computational time, three independent trials of the tuning process are carried out. The 

following table, Table 5.1, shows the computational time of using a personal computer 

i7, CPU speed of 3.4 GHz with16 GB memory, Windows 7 and NetBeans 7.2 for one 

trial involving each parameter setting for each dataset.  

 

Table 5-1 Computational time spent for one trial involving the 4 parameter settings 

Datasets 
Running time (minutes) 

Dejong (1975) Grefensette (1986) Goldberg (1989) Alander (1992) 

Ray et al.  AD 102 45 45 
64 

Alon et al. 

Colon 2241 644 724 

795 

Leukemia 2844 2314 1969 
4895 

Lung 11288 7721 6764 
10816 

Lymphoma 3377 1456 1086 
1625 

Ovarian 11180 7721 8596 
10026 

Prostate 5473 5352 3436 
6740 

 

 

Table 5-2 Four sets of parameter settings used in the tuning process 

 Dejong Grefensette Goldberg Alander 

Population size 50 30 30 50 

Pc 0.06 0.9 0.6 0.5 

Pm 0.001 0.01 0.033 0.002 

Maximum generations 5000 

Selection Tournament 

Crossover Single point 

Mutation Uniform 

Elitist One 
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5.3.2. Results of parameter tuning 

 

The following section presents the results from one typical independent trial.  For each of 

the seven datasets, NSC-GA is applied using each of the 4 sets of parameter settings 

shown in Table 5-2 for one typical trial. Plots demonstrating convergence of fitness 

associated with each of the 4 sets of parameter settings as well as a typical plot of the 

state of convergence associated with one set of parameter settings is shown for each 

dataset. A summary of the results for the 3 independent trials is also shown in Table 5-3. 

 

5.3.2.1. Ray et al. AD data 

 

 

 

Figure 5-10 Typical convergence of fitness plots for AD data associated with each of 

the 4 different parameter settings from DeJong, Genfenstette, Goldberg and Alander 

 

Figure 5-10 shows the convergence of fitness plots from running NSC-GA on the AD 

dataset using each of the 4 parameter settings from Table 5-2. The algorithm converged 

to the maximum fitness of 1.775 for each of the 4 sets of parameter settings. However, 
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the convergence associated with each of the 4 sets of parameter settings occurred at 

different generations. With DeJong’s set of parameter settings, convergence occurred 

after 197 generations and with Grefensette’s and Alander’s set of parameter settings, the 

convergence occurred after 64 and 162 generations, respectively. Whilst with 

Goldberg’s set of parameter settings, convergence occurred after 35 generations. With 

this dataset, the algorithm using Goldberg’s parameter settings outperformed the other 3 

sets of parameter settings in terms of obtaining the global optimum with the same 

maximum fitness value and a quicker convergence. 

 

The state of convergence associated with each run of the algorithm using one of the 4 

sets of parameter settings is monitored using Srinivas and Patnaik (1994)’s method, see 

Section 3.3. The red line plot in Figure 5-11 shows the difference between the maximum 

and average fitness of the population (i.e.  fmax – favg ) and demonstrates the state of 

convergence of the algorithm associated with using Goldberg’s parameter settings. The 

value of (fmax – favg ) is expected to be very small for a population that has converged to a 

global optimum than for a population with members spread over the entire search space.  

That is, a value closer to 0 would imply a convergence closer to the global optimum. 

 

 

Figure 5-11  An example plot of the state of convergence: (fmax – favg ) versus 

generations (using Goldberg’s set of parameter settings) 
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As seen in Figure 5-11, the value for (fmax – favg ) was relatively high (values shown on 

the right-hand vertical axis) in the earlier generations (<10) and  it decreases to values 

very close to zero around 35
th

 generations. This coincides with the maximum fitness of 

1.775.   

 

The following figure shows the state of convergence associated with one run of the 

algorithm for each of the 4 sets of parameter settings using Srinivas and Patnaik 

(1994)’s method. 

 

 

Figure 5-12 An example plot of the state of convergence: (fmax – favg ) versus generations 

for 4 sets of parameter settings 

 

As seen in Figure 5-12, the value for (fmax – favg ) was relatively high for each set of 

parameter settings in the earlier generations (<10) and  it decreases to 0 around 35 

generations for Goldberg’s parameter settings, 64 generations for Grefensette’s, 162 

generations for Alander’s and 197 generations for Dejong’s . 
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5.3.2.2. Alon et al. Colon cancer data 

 

 

 

Figure 5-13  Typical convergence of fitness plots for Colon cancer data associated with 

each of the  4 different parameter settings from DeJong, Grefenstette, Goldberg and 

Alander. 

 

Figure 5-13 shows the convergence of fitness plots of running NSC-GA on the Colon 

cancer dataset for each of the 4 sets of parameter settings. The algorithm converged 

with different maximum fitness values and involved a different number of generations 

for each of the 4 sets. With Goldberg’s parameter settings, convergence occurred after 

238 generations with the maximum fitness of 1.833, whilst with the other 3 sets of 

parameter settings,   their maximum fitness at convergence is lower than Goldberg’s 

value. In terms of the number of generations required for convergence, the algorithm 

took 2199 generations using DeJong’s set of parameter settings. In the case of using 

Grefenstette’s  and Alander’s set of parameter settings with the Colon cancer dataset, 

the algorithm required a smaller number of generations (in comparison to Goldberg’s 

set) to converge. Therefore the algorithm with Goldberg’s set of parameter settings 
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outperformed the other 3 sets of parameter settings in terms of obtaining a higher 

maximum fitness.  

 

5.3.2.3. Leukemia cancer data 

 

 

Figure 5-14  Typical convergence of fitness plots for Leukemia cancer data associated 

with parameter settings from DeJong, Grefenstette, Goldberg and Alander 

 

Figure 5-14 shows the convergence of fitness plots of running NSC-GA on the 

Leukemia cancer dataset for each of the 4 sets of parameter settings. The algorithm 

converged to the global optimum with the same maximum fitness of 1.973 for each of 

the 4 sets of parameter settings. However, the number of generations that the algorithm 

has to run to achieve convergence is different.   With Goldberg’s set of parameter 

settings, convergence occurred after 42 generations, with Grefenstette’s set of parameter 

settings, convergence occurred after 129 generations, with DeJong’s set, convergence 

occurred after 732 generations and lastly with Alander’s set, convergence occurred after 

1050 generations. Therefore the algorithm with Goldberg’s parameter settings 
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outperformed the other parameter settings in terms of obtaining the global optimum 

with the same maximum fitness but used less computational time. 

 

The state of convergence associated with each run of the algorithm using one of the 4 

sets of parameter settings for the Leukemia cancer data is also monitored using the 

method proposed by Srinivas and Patnaik (1994).  The plots obtained here for each of 

the 4 sets of parameters are similar in nature to that shown in Figure 5-11 and Figure 

5-12. 

 

5.3.2.4. Lung cancer data 

 

 

Figure 5-15 Typical convergence of fitness plots for Lung cancer data with 4 different 

parameter settings from DeJong, Grefenstette, Goldberg and Alander 

 

The convergence of fitness plots from running NSC-GA on the Lung cancer dataset for 

each of the 4 sets of parameter settings is shown in Figure 5-15. It can be seen that the 

algorithm converged with the same maximum fitness of 1.999 for each of the 4 sets of 

parameter settings. However, these convergence started at different generations; with 
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Goldberg’s set of parameter settings, the convergence occurred after 32 generations, 

with Grefenstette’s set of parameters, the convergence occurred after  60 generations, 

DeJong’s set parameters, the convergence occurred after 212 generations and Alander’s 

set of parameters, the convergence occurred after 155 generations. With this dataset, the 

algorithm using Goldberg’s set of parameter settings achieved the global optimum with 

the same maximum fitness. 

 

The state of convergence associated with each run of the algorithm using one of the 4 

sets of parameter settings for the Lung cancer data is again monitored.  The plots 

obtained here for each of the 4 sets of parameters are similar in nature to that shown in 

Figure 5-11 and Figure 5-12. 

 

5.3.2.5. Lymphoma cancer data 

 

 

Figure 5-16  Typical convergence of fitness plots for Lymphoma cancer data for each of 

the 4 sets of parameter settings: DeJong, Grefenstette, Goldberg and Alander. 

 

Figure 5-16 shows the convergence of fitness plots of running NSC-GA on the 

Lymphoma cancer dataset and each of the 4 sets of parameter settings. The algorithm 
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converged, producing the same maximum fitness of 1.968 for each of the 4 sets of 

parameter settings. However, the number of generations required for convergence 

differs, with Goldberg’s set of parameter settings, convergence occurred after 133 

generations, with Alander’s set of parameter settings, convergence occurred after  312 

generations, with Grefensette’s set of parameter settings, convergence occurred after 

387 generations and lastly with DeJong’s, the convergence occurred after 1217 

generations. Again, running the algorithm with Goldberg’s set of parameter settings on 

this dataset resulted in obtaining the global optimum. 

 

5.3.2.6. Ovarian cancer data 

 

 

Figure 5-17  Typical convergence of fitness plots for Ovarian cancer data using each of 

the 4 different parameter settings from DeJong, Grefenstette, Goldberg and Alander 

 

From Figure 5-17, it can be seen that the algorithm converged to different maximum 

fitness values for each of the 4 sets of parameter settings on the Ovarian cancer dataset.  

With Goldberg’s and Grefensette’s set of parameter settings, both achieved a maximum 

fitness of 1.989 but convergence occurred after 120 and 573 generations, respectively. 

Whilst with DeJong’s and Alander’s sets of parameter settings, convergence occurred 
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after 180 and 47generations, respectively and both with a maximum fitness value 

smaller than 1.989. In this instance, the algorithm using Goldberg’s set of parameter 

settings obtains a higher fitness value. 

 

5.3.2.7. Prostate cancer data 

 

 

Figure 5-18 Typical convergence of fitness plots for Prostate cancer data with 4 

different parameter settings from DeJong, Grefenstette, Goldberg and Alander  

 

As seen in Figure 5-18, the algorithm converged to the global optimum with the same 

maximum fitness of 1.94 for each of the 4 sets of parameter settings. Again, the 

algorithm using Goldberg’s set of parameter settings outperformed the other three sets 

of parameter settings in terms of computational time (faster convergence). 

 

The results of parameter settings using the 4 parameter settings of DeJong, Grefensette, 

Goldberg and Alander are summarized in Table 5-3. 
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Table 5-3 Summary of results of running the algorithm using each of the 4 sets of 

parameter settings for 3 independent runs 

 

From Table 5-3, it can be seen that the algorithm, using Goldberg’s set of parameter 

settings, consistently achieves maximum fitness in each of the three runs for all of the 

seven datasets. In comparison, the algorithm using any one of the remaining three sets 

of parameters only achieve similar results in some of the runs for some of the seven 

datasets. In addition, on examining Table 5-1, the algorithm using Goldberg’s set of 

parameter settings also consistently used least computation time to achieve 
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convergence. Based on these observations, Goldberg’s set of parameter settings is 

considered to be more suitable than the other three sets of parameter values.  

 

Note that while the number of generations has been provided in terms of when 

convergence starts to occur, it is not used to measure the performance of the algorithm. 

It is only used as an indicative measure of computation time associated with a set of 

values for GA parameters used by the algorithm against the seven datasets in this study 

as these seven datasets are of different complexity (varying from 120 variables in the 

AD dataset to 15154 in Ovarian cancer dataset). 

 

Given the lengthy computational time associated with the tuning process (see Table 5-1) 

and the aim of the study is to explore the feasibility of incorporating evolutionary 

approaches for finding interesting biomarkers that can differentiate between two classes 

(e.g. diseased vs. healthy) of biological data, a “near optimal” set of parameter settings 

that can be applied across a range of datasets and algorithms is acceptable.  This is 

unlike the case where the aim is related to comparisons between the performances of 

one evolutionary algorithm against another evolutionary algorithm (that is, to show the 

performance of one evolutionary algorithm as being superior), where it is then 

important to ensure parameters associated with each of these algorithms are optimally 

tuned. Arcuri and Fraser (2011) has argued that, in the case where parameter tuning is 

expensive and the investigation is focused on examining the performance of new 

techniques, using a set of default values is acceptable. Hence, Goldberg’s set of 

parameter settings will subsequently be used in the evolutionary-based approaches 

described in Chapter 5, 6 and 7 in this study.  The following table shows the complete 

set of parameter settings.  
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Table 5-4 Parameter settings used in Chapter 5, 6 and 7 

Parameters Values/operators 

Population Size 30 

Chromosome length  

- Real encoding 
10 

Crossover probability (Pc) 0.6 

Mutation Probability (Pm) 0.033 

Maximum generations 1000 

Selection Tournament 

Crossover Single Point 

Mutation Uniform 

Elitist Single 

 

Note that the set of parameters shown in Table 5-4 is the same as the one (Goldberg’s) 

in Table 5-2, except for the maximum number of generations which is now set for 1000 

instead of 5000. This is due to the fact that with the Goldberg’s parameter settings, the 

algorithm obtains the global optimum with the maximum fitness in less than 1000 

generations for all seven datasets, thus allowing some savings in computational time. As 

the approach also checks the state of convergence, the number of generations in specific 

instances can be varied if required. The set of parameter setting is to be selected on the 

basis that it consistently allows the algorithm to converge with maximum fitness using 

less computation time. 

 

5.4. Experiment results 

 

The proposed approach was evaluated using seven datasets: AD, Colon, Leukemia, 

Ovarian, Lymphoma, Lung and Prostate cancer datasets. For each dataset, 15 

independent runs of NSC-GA were executed using the respective training data and 

parameter values shown in Table 5-4. For each run, 10 fold CV strategy described in 

Section 3.2 was employed to evaluate the selected feature sets. The optimal set of 

features was then used to construct the NSC classifier to classify the unseen test data 

associated with the dataset. The classification results for classifying the unseen test data 

were recorded and the average classification result from 15 independent runs was 
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calculated. The following sections detail the results obtained from applying NSC-GA on 

each of the seven datasets. Where appropriate, the comparison of the performance of the 

proposed algorithm with existing work is based on classification accuracy and the 

selected feature sets. 

 

5.4.1. Ray et al.  Alzheimer’s Disease (AD) data 

 

As mentioned previously in Section 3.1.1, this dataset consists of 120 attributes. The 

training set consists of 43 AD and 40 NDC samples and 2 test sets: the AD test set 

consists of 42 AD, 50 NAD samples and the MCI test set consists of 22 AD and 25 

NAD samples. More details about this dataset can be found in Section 3.1. 

 

The optimal shrinkage thresholds obtained upon convergence were used to evaluate the 

training dataset first, and then applied to the unseen test dataset using the NSC 

classifier. A convergence plot from one of the typical runs is shown in  and results are 

in Table 5-5. 

 

Table 5-5 Classification results for the AD data using NSC-GA approach and from Ray 

et al. (2007) 

Approach 

Alzheimer 

AD MCI 

No of 

attributes 

Average classification 

accuracy on unseen 

test dataset (%) 

Average classification 

accuracy on unseen test 

dataset (%) 

Proposed approach 

NSC-GA 11 89.49 79 

NSC  (Ray et al., 

2007) 18 89 81 
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Figure 5-19 A typical convergence of fitness plot for the training set of AD 

 

As seen in Figure 5-19, convergence occurred after 28 generations with the maximum 

fitness of 1.775. Although convergence was achieved in 28 generations, the optimal 

solution actually involved a total of 8400 evaluations which is not a small number given 

that this dataset with only 120 variables is considered to be of “low dimensionality” 

relative to most other biological datasets. The length of chromosomes is 10, 

representing 10 shrinkage threshold values. With a population size of 30, the evaluation 

in each generation involved 30* 10 shrinkage threshold values. Convergence after 28 

generations would mean that a total of 8400 evaluations.  

 

The optimal chromosome obtained for each of the runs had the same maximum fitness 

of 1.775, which resulted in a set of 11 features. This set of 11 features (proteins) is a 

subset of the 18 biomarkers (proteins) found in Ray et al. (2007)’s experiment  and is 

shown in Table 5-6 . 
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Table 5-6 List of 11 proteins selected using NSC-GA 

Features (Proteins) 

PDGF-BB_1 RANTES_1 IL-1a_1 TNF-a_1 EGF_1 M-CSF_1 

ICAM-1_1 IL-11_1 IL-3_1 GCSF_1 ANG-2_1  

 

The same set of 11 proteins was obtained from each of the 15 independent runs. The 

average classification accuracy from 15 runs for the unseen AD test set was 89.49% and 

for the unseen MCI test set was 79% using the set of 11 proteins found in this study. 

These are similar to the result of 89% for unseen AD test set and 81% for the unseen 

MCI test dataset using 18 proteins obtained in Ray et al. (2007)’s study. The remaining 

7 proteins excluded here from the original 18 protein signatures (Ray et al., 2007) were 

also not included in the 6 and 5 protein signatures found in Ravetti and Moscato 

(2008)’s study. According to Ray and Wyss-coray (2010), TRAIL-R4 and IGFBP-6 

proteins from the  7 excluded proteins are optional in the list of biomarkers for a 

diagnostic analysis of AD. 

 

5.4.2. Alon et al. Colon cancer data 

 

The Colon dataset consists of 2000 attributes, 40 Tumour (T) and 22 Normal (N) 

samples. The training set consists of 30 T and 16 N samples, and the test set consists of 

10 T and 6 N samples. More details about this dataset can be found in Section 3.1. 

 

Using the same procedure, 15 independent runs of NSC-GA was executed with 10 fold 

CV using the Colon dataset with the GA parameter setting listed in Table 5-4. The 

optimal shrinkage threshold value from the fittest chromosome upon convergence was 

used to evaluate on the training dataset first, and then applied to the unseen test dataset 

using the classifier in the NSC.  A convergence of fitness plot from one of the typical 

runs is shown in Figure 5-20 and classification results using the optimal sets of features 

are in Table 5-7. 
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Table 5-7 Classification results, for the Colon data using NSC-GA approach, and from 

Klassen and Kim (2009) 

Approach 

Colon 

No of attributes Average classification 

accuracy on unseen test 

dataset (%) 

Proposed approach NSC-GA 
28 

6 

100 

93.75 

NSC  (Klassen & Kim, 2009) 16 75 

 

 

Figure 5-20 A typical convergence plot for the training set of Colon cancer data 

 

As seen in Figure 5-20, the convergence of fitness occurred after 362 generations with 

the maximum fitness of 1.833. Nine runs had the maximum fitness of 1.833 which gave 

the same set of 28 features (genes) for the Colon dataset. Six runs had the maximum 

fitness of 1.823 which gave the same set of 6 genes which is a subset of the 28 gene set. 

The average classification accuracy from 15 independent runs was 97.5% on the unseen 

test set (93.75% for 6 gene set and 100% for 28 gene set) in comparison to 75% 

classification accuracy using 16 genes reported in Klassen and Kim (2009)’s 

experiments. It is not possible to check the set of 28 and 6 genes found by the proposed 
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approach against the set of 16 genes from Klassen and Kim (2009) as these were not 

listed in their study. The set of 28 genes from this study are listed by their accession 

number in Table 5-8 (the highlighted genes belong to the set of 6 genes). 

 

Table 5-8  Twenty eight genes selected for Colon cancer data using NSC-GA 

Gene accession numbers 

T95018 X55715 M63391 H40560 T92451 T57619 R78934 

T58861 M26697 M76378 R87126 H43887 H64489 M22382 

T71025 Z24727 Z50753 X12671 T47377 L05144 H55758 

M64110 M76378 T60155 M76378 J02854 X86693 T60778 

 

 

5.4.3. Leukemia cancer data 

 

The Leukemia dataset consists of 7129 attributes, 47 ALL and 25 AML samples. The 

training set consisting of 27 ALL and 11 AML samples, and the test set consisting of 20 

ALL and 14 AML samples. More details about this dataset can be found in Section 3.1. 

 

Similar to the experiments above, 15 independent runs with 10 fold CV were carried out 

using the Leukemia dataset. A convergence of fitness plot from one of the typical runs 

is shown in Figure 5-21 and classification results on unseen test dataset are in Table 5-9. 

 

Table 5-9 Classification results for the Leukemia data using NSC-GA approach and 

from Tibshirani et al. (2002), Klassen and Kim (2009), S. Wang and Zhu (2007) and J. 

Fan and Fan (2008) 

Approach 

Leukemia 

No of 

attributes 

Average classification 

accuracy on unseen 

test dataset (%) 

Proposed approach NSC-GA 9 97.05 

NSC  (Tibshirani et al., 2002) 21 94.12 

NSC  (Klassen & Kim, 2009) 21 94.12 

ALP-NSC, AHP-NSC (S. Wang & Zhu, 2007) 16 94.12 

 FAIR (Fan & Fan, 2008) 11 97.05 
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Figure 5-21 A typical convergence plot for the training set of Leukemia cancer data. 

 

As seen in Figure 5-21, the convergence occurred after 109
 
generations with the 

maximum fitness of 1.973. The optimal shrinkage thresholds obtained from each of the 

15 independent runs had the same maximum fitness of 1.973 which produced the same 

set of 9 features (genes) for the Leukemia cancer dataset.  The set of nine features gave 

the classification accuracy of 97.05% on the unseen test dataset. Seven out of the nine 

genes listed in Table 5-10 (highlighted genes) are a subset of the 16 genes reported in S. 

Wang and Zhu’s study (2007).  Two genes having accession numbers M96326 and 

M28310 are not present in that set of 16 genes. It is not possible to check the set of 9 

genes found using NSC-GA against the set of 11 genes in J. Fan and Fan (2008) as 

these were not listed in their study. 

 

The proposed approach achieved a higher classification accuracy 97.05% using a 

smaller  number of genes, 9, as compared to 94.12% classification accuracy with 21 

genes reported in Tibshirani et al. (2002) and Klassen and Kim (2009), and 94.12% 

using 16 genes reported in S. Wang and Zhu (2007), and achieved the same 

classification accuracy of 97.05 but using the smaller set of 9 features compared to J. 

Fan and Fan (2008). The set of 9 genes from this study are listed by their accession 

number in Table 5-10. An interesting point here is, when comparing the results obtained 

via NSC-GA with those reported by Tibshirani et al. (2002), Klassen and Kim (2009), 
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and S. Wang and Zhu (2007); all involved the same method, NSC, with S. Wang and 

Zhu (2007) having made attempts to improve the the original NSC approach via 

adaptive L1-norm penalized NSC (ALP-NSC) and adaptive hierarchically penalized 

NSC (AHP-NSC).  The results reported  for NSC-GA is an average of 15 runs and is 

obtained by trying to automatically find the optimal value for the shrinkage threshold 

for the original NSC method. The NSC-GA results lends support to the hypothesis, “ an 

automatic approach that can effectively explore the search space to find a more precise 

shrinkage threshold value for NSC may result in an optimal value leading to a better 

classification result”, as it produced a shrinkage threshold value that leads to the 

selection of 9 genes with a classification accuracy of 97.05%. 

 

Table 5-10 Nine genes selected by the proposed NSC-GA for Leukemia cancer data 

Gene 

accession 

number 

Gene definition 

M27891 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage) 

M84526 Human adipsin/complement factor D mRNA, complete cds 

M96326 Human azurocidin gene, complete cds 

U46751 
Phosphotyrosine independent ligand p62 for the Lck SH2 domain 

mRNA 

U50136 Leukotriene C4 synthase (LTC4S) gene 

X17042 Human mRNA for hematopoetic proteoglycan core protein 

X95735 Homo sapiens mRNA for zyxin 

M28310 Mus musculus 3/10 metalloproteinase inhibitor gene, exon 3 

Y00787 
Human mRNA for MDNCF (monocyte-derived neutrophil 

chemotactic factor) 
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5.4.4. Ovarian cancer data 

 

The Ovarian dataset consists of 15154 attributes, 162 Disease (D) and 91Normal (N) 

samples. The training set consists of 81 D and 45 N samples, and the test set consists of 

81 D and 46 N samples. More details about this dataset can be found in Section 3.1. 

Similar to the experiments above, 15 independent runs with 10 fold CV were carried out 

using the Ovarian dataset. A convergence of fitness plot from one typical run is shown 

in Figure 5-22 and classification results on the unseen test dataset are in Table 5-11. 

 

Table 5-11 Classification results for the Ovarian data using NSC-GA approach and 

from Foss (2010) 

Approach 

Ovarian 

No of attributes 

Average classification 

accuracy on unseen test 

dataset (%) 

Proposed approach NSC-GA 7 96.06 

GCLUS and SERA (Foss, 2010) 47 97.63 

 

 

Figure 5-22 A typical convergence plot for the training set of Ovarian cancer data 
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As seen in Figure 5-22, the convergence occurred after 115 generations at the maximum 

fitness of 1.989. The optimal shrinkage thresholds obtained for each of the 15 

independent runs had the same maximum fitness of 1.989 which produced the same set 

of 7 features (peptides), MZ244.36855, MZ244.66041, MZ244.95245, Z245.24466, 

MZ245.8296, MZ245.53704 and MZ246.12233. These 7 peptides are a subset of 47 

peptides reported in Foss (2010). Six peptides (in bold) are among the top 10 peptides 

reported in Yap, Tan and Pang (2013). The average classification accuracy  from 15 

independent runs on the Ovarian unseen test dataset using this set of 7 selected peptides 

was 96.06%, compared to 97.63% using the set of 47 peptides using the Implementation 

of the MAXCLUS framework (GCLUS) and Statistical Error Rate estimation 

Algorithm (SERA) in Foss (2010).   

 

5.4.5. Lymphoma cancer data 

 

The Lymphoma dataset consists of 4026 attributes, 24 GGL and 23 ACL samples. The 

training set consisting of 17 GCL and 17 ACL samples, and the test set consisting of 

seven GGL and six ACL samples. More details about this dataset can be found in 

Section 3.1. 

 

Fifteen independent runs with 10 fold CV were carried out using the Lymphoma 

dataset. A convergence of fitness plot from one of the typical runs is shown in Figure 

5-23 and classification results on unseen test dataset are in Table 5-12. 

 

Table 5-12 Classification results for the Lymphoma data using NSC-GA approach and 

from Klassen and Kim (2009) 

Approach 

Lymphoma 

No of attributes 

Average classification 

accuracy on unseen test 

dataset (%) 

Proposed approach NSC-GA 

7 

12 

128 

129 

132 

95.45 

95.45 

100 

100 

100 

NSC  (Klassen & Kim, 2009) 25 86.6 
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Figure 5-23 A typical convergence plot for the training set of Lymphoma cancer data 

 

As seen in Figure 5-23, the convergence occurred after 145 generations with the 

maximum fitness of 1.968. From the 15 independent runs, 10 runs resulted in a 

shrinkage threshold that mapped to the same set of 128 features, one run resulted in a 

set of 129 features, one run resulted in a set of 132 features, one run gave a set of 7 

features, and one run gave a set of 12 features. The set of 128, 129 and 132 features 

leads to the same classification accuracy of 100% and the set of 7 and 12 features 

resulted in the same classification accuracy of 95.45 on the unseen test set. The average 

classification accuracy from 15 runs was 99.39% on the unseen test set. The smaller set 

of features is a subset of the larger set, e.g., set of 7 features is a subset of the set of 12 

features and both are subsets of the set of 128 features.  Biomedical domain knowledge 

can be used to examine these sets further to make better informed decision for 

subsequent diagnostic test development. The set of 7 and 12 genes are listed by their 

accession number in Table 5-13. 
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Table 5-13 The sets of 7 and 12 genes selected by NSC-GA for Lymphoma cancer data 

Gene accession 

number 

Set 

12 genes 7 genes 

GENE3327X √ √ 

GENE3329X √ √ 

GENE3330X √ √ 

GENE3332X √ √ 

GENE3361X √ √ 

GENE3258X √ √ 

GENE3256X √ √ 

GENE3328X √  

GENE3314X √  

GENE3260X √  

GENE1252X √  

GENE3967X √  

 

5.4.6. Lung cancer data 

 

The Lung dataset consists of 12533 attributes, 150 ADCA and 31 MPM samples. The 

training set consisting of 134 ADCA and 15MPM samples, and the test set consisting of 

16 ADCA and 16 MPM samples. More details about this dataset can be found in 

Section 3.1. 

 

Fifteen independent runs with 10 fold CV were carried out using the Lymphoma 

dataset. A convergence of fitness plot from one of the typical runs is shown in Figure 

5-24 and classification results on unseen test dataset are in Table 5-14. 
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Table 5-14  Classification results for the Lung data from NSC-GA approach and from 

Klassen and Kim (2009), Tai and Pan (2007) and J. Fan and Fan (2008) 

Approach 

Lung 

No of attributes Average 

classification 

accuracy on 

unseen test 

dataset (%) 

Proposed approach NSC-GA 

8 

9 

10 

11 

100 

NSC  (Klassen & Kim, 2009) 5 93.7 

Weighted NSC (Tai & Pan, 2007) 6 99.99 

 FAIR (Fan & Fan, 2008) 31 95.3 

 

 

Figure 5-24 A typical convergence plot for the training set of Lung cancer data 

 

As seen in Figure 5-24, the convergence occurred after 88 generations with the 

maximum fitness of 1.999. Three runs resulted in the same set of 8 features for the Lung 
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cancer dataset, 6 runs resulted in a set of 9 features, 2 runs resulted in a set of 10 

features and 4 runs resulted in a set of 11 features. The average classification accuracy 

of the sets of 8, 9, 10 and 11 features is 100% on the unseen test set. The set of 8, 9, 10 

and 11 listed by their accession genes are number in Table 5-15. 

 

Table 5-15 The sets of 8, 9, 10 and 11 genes selected by NSC-GA, for Lung cancer data 

Gene accession number 

 

Set 

11 genes  10 genes 9 genes 8 genes 

32551_at √ √ √ √ 

33328_at √ √ √ √ 

34320_at √ √ √ √ 

36533_at √ √ √ √ 

37157_at √ √ √ √ 

37716_at √ √ √ √ 

37954_at √ √ √ √ 

40936_at √ √ √ √ 

33833_at √ √ √  

33327_at √ √   

35823_at √    

 

 

5.4.7. Prostate cancer data 

 

The Prostate dataset consists of 12600 attributes, 77 Tumour (T) and 59 Normal (N) 

samples. The training set consisting of 52 T and 50N samples, and the test set consisting 

of 25 T and 9 N samples. More details about this dataset can be found in Section 3.1. 

 

Fifteen independent runs with 10 fold CV were carried out using the Prostate dataset. A 

convergence of fitness plot from one of the typical runs is shown in Figure 5-25 and 

classification results on the unseen test dataset are in Table 5-16. 
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Figure 5-25 A typical convergence plot for the training set of Prostate cancer data 

 

As seen in Figure 5-25, the convergence occurred after 99 generations with the 

maximum fitness of 1.94. The optimal shrinkage thresholds obtained for each of the 15 

independent runs had the same maximum fitness of 1.94 which produced the same set 

of 6 genes, 31444_s_at, 41468_at, 37639_at, 38406_f_at, 769_s_at and 556_s_at. The 

average classification accuracy using the 6 gene set from 15 runs on the unseen test set 

was 90.2%, as shown in Table 5-16. 
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Table 5-16 Classification results for the Prostate data from NSC-GA approach and from 

Klassen and Kim (2009), Tai and Pan (2007) and J. Fan and Fan (2008) 

Approach 

Prostate 

No of 

attributes 
C1 

(Tumour) 

C2 

(Normal) 

Average 

classification 

accuracy on 

unseen test 

dataset (%) 

Proposed approach NSC-GA 6 80 100 90.2 

NSC  (Klassen & Kim, 

2009) 
6  

 
90.91 

Weighted NSC (Tai & Pan, 

2007) 
10  

 
60.51 

 FAIR (Fan & Fan, 2008) 2   73.52 

 

The column headings C1 and C2 in the table stand for average classification accuracy 

(%) on the Prostate unseen test dataset for the Tumour class and Normal class, 

respectively. The column heading “Average Test” stands for the overall average 

classification accuracy (%) on the Prostate unseen test dataset for the 15 independent 

run. “Average Test” is calculated using Equation (5.3).  

 

A summary of the results for the AD, Colon, Leukemia, Ovarian, Lymphoma, Lung and 

Prostate cancer datasets are shown in Table 5-17. 
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Table 5-17 Classification results for AD, Colon, Leukemia, Ovarian, Lymphoma, Lung and Prostate cancer data using NSC-GA 

Approach 
Alzheimer 

Colon Leukemia Ovarian Lymphoma Lung Prostate 
AD MCI 

 No 

attr 

Test 

(%) 

Test 

(%) 

No 

attr 

Test 

(%) 

No 

attr 

Test 

(%) 

No 

attr 

Test 

(%) 

No 

attr 

Test 

(%) 

No 

attr 

Test 

(%) 

No 

attr 

Test 

(%) 

Proposed approach 

NSC-GA 

 

11 

 

89.49 

 

79 

 

28 

 

6 

 

100 

 

93.75  

 

 

 

9 

 

97.05 

 

7 

 

96.06 

 

7 

12 

128 

129 

132 

 

95.45 

 

100 

 

 

 

8 

9 

10 

11 

 

100 

 

6 

 

90.2 

NSC  (Ray et al., 2007) 18 89 81       
      

NSC  (Tibshirani et al., 

2002) 
     21 94.12   

      

NSC  (Klassen & Kim, 

2009) 
   16 75 21 94.12   25 86.6 5 93.7 6 90.91 

ALP-NSC, AHP-NSC 

(S. Wang & Zhu, 2007) 
     16 94.12   

      

Weighted NSC 

(Tai & Pan, 2007) 
         

  
6 99.55 10 60.51 

 FAIR 

(Fan & Fan, 2008) 
     11 97.05   

  
31 95.3 2 73.52 

GCLUS & SERA (Foss, 

2010) 
       47 97.63 
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5.5. Discussion 

 

Table 5-17 shows a summary of experimental results achieved by the proposed 

approach, NSC-GA in comparison to existing work that used the same datasets. The 

classification accuracy rate reported for each dataset for NSC-GA is based on the 

average classification accuracy of 15 independent runs. NSC-GA achieved similar 

classification results as in Ray et al. (2007) on AD and MCI independent test datasets, 

and also improved FS and/or classification accuracy on the other 6 datasets in terms of 

obtaining smaller sets of features and higher or similar classification accuracy on unseen 

test sets compared to the  existing results (as reported in Klassen and Kim (2009), S. 

Wang and Zhu (2007), J. Fan and Fan (2008), Foss (2010), and Tai and Pan (2007)). 

For example, for the Leukemia cancer dataset, NSC-GA obtained a smaller set of 9 

features and higher classification accuracy of 97.05% and for the Ovarian cancer 

dataset, a smaller set of 7 features was obtained with the similar classification accuracy 

of 96.06%.  In terms of the Lung cancer dataset, Tai and Pan (2007) achieved 99.55 

using a set of 6 features whereas in NSC-GA using 8 features to obtain 100% 

classification accuracy. However, as the actual features used have not been listed in Tai 

and Pan’s paper. It is not possible to compare the results in terms of the actual features. 

 

When comparing results obtained via NSC-GA with other NSC-based approaches 

(Tibshirani et al. (2002), Klassen & Kim (2009), S. Wang & Zhu (2007)), it can be seen 

that  NSC-GA generally found optimal feature sets that have a smaller number of 

features and better classification results. This outcome is achieved by using GA to 

automatically explore the search space to find a more precise shrinkage threshold value 

for NSC, thus overcoming limitations typically associated with “trial and error” 

approaches. Unlike approaches (e.g. S. Wang & Zhu (2007)) that attempts to improve 

the performance of NSC by modifying it, this result is obtained using the original NSC 

algorithm, thus potentially the proposed approach can also be incorporated into 

modified NSC for further improvements. 

 

Having information as shown in Table 5-17, with the Colon, Lymphoma and Lung 

cancer datasets, each are associated with multiple sets of features which are subsets of 

each other. This allows the domain expert to make informed decision in terms of sets of 

features that could be selected for further investigations. For example, in the case of the 
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Colon cancer dataset, one can make decisions based on the tradeoffs between 

classification accuracy and size of feature set. It can be seen that in the case of the 

Lymphoma cancer dataset, the set of 6 features resulted in the same classification 

accuracy as the set of 12 features (i.e. 95.45%). The domain expert can examine the 6 

additional features in the set of 12 and use domain knowledge to decide on their 

potential relevance and make decision on subsequent analysis. Equally it is interesting 

to further analyse the Lung cancer dataset where sets with 8, 9, 10 and 11 features 

respectively resulted in classifiers producing the same classification accuracy on the 

unseen test dataset (100%). It appears that a major contributing factor relates to 8 

features and thus may warrant further investigations into the relevance of the remaining 

features. This sort of information for analysis in bioinformatics is important as reducing 

the number of features to a smaller promising set for further investigations would 

reduce costs associated with future experiments and analysis. The set of selected 

features from a biological perspective implies that the level of expressions associated 

with the selected biomarkers differ significantly between disease and non-disease. 

 

From Table 5-16, the NSC classification results associated with the set of 6 features 

mostly showed high specificity but low sensitivity, e.g., sensitivity (C1) is 80% but 

specificity (C2) is 100%, implying the majority of the truly not-at-risk cases will be 

correctly identified, but some of the truly at-risk cases will also be incorrectly identified 

as not-at-risk.  Continuing the investigation about classifier bias that was initiated in 

Chapter 4, further analysis is carried out using the Prostate cancer data and the 

corresponding set of 6 genes identified via NSC-GA. This set of features are used to 

construct 22 different classifiers from WEKA software (Hall et al., 2009) for  

classifying the unseen test dataset. The aim here is to further examine the trend 

observed in Chapter 4 in terms sensitivity and specificity being associated with specific 

classifiers (in this case NSC). The classification results from 22 different classifiers are 

shown in Table 5-18. 
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Table 5-18 Results of classification for the 6 selected genes with 22 WEKA classifiers 

on the Prostate unseen test set 

Classifier 
Set of 6 genes 

C1 (%) C2 (%) Average (%) 

SMO 80 96.2 88.2 

Simple Logistic 88 100 94.1 

Logistic 80 92.3 86.3 

Multilayer Perceptron* 88.8 98.8 93.9 

Bayes Net 80 88.5 84.3 

Naïve Bayes 92 92.3 92.2 

Naïve Bayes Simple 92 88.5 90.2 

Naïve Bayes Up 92 92.3 92.2 

IB1 84 92.3 88.2 

KStar 68 96.2 82.4 

LWL 84 92.3 88.2 

AdaBoost 92 92.3 92.2 

ClassVia Regression 92 92.3 92.2 

Decorate* 82 94.35 88.2 

Multiclass Classifier 80 92.3 86.3 

Random Committee* 92 88.8 90.4 

j48 92 88.5 90.2 

LMT 96 88.5 92.2 

NBTree 72 92.3 82.4 

Part 92 88.5 90.2 

Random Forest* 92.8 91.55 92.2 

Ordinal Classifier 92 88.5 90.2 

 

Mixed results, with regards to the classifiers used and their corresponding sensitivity 

and specificity, were obtained.  Naïve Bayes, Naïve Bayes Updateable, AdaBoost and 

ClassVia Regression (in bold) produced results showing high sensitivity (92%) and high 

specificity (92.3%). However, there are also other classifiers showing behaviour similar 



156 

 

to that of the NSC classifiers (i.e. lower sensitivity and higher specificity). Also 

interestingly, there are a number of classifiers demonstrating higher sensitivity (shaded 

cells) than specificity. These results demonstrated that the use of specific classifiers may 

have an impact on the sensitivity and specificity obtained using a set of features in 

classification. Thus in a DM analysis for finding suitable sets of biological markers, a 

number of classifiers should be used instead of just using one. This will avoid missing 

out on sets of features with high discriminatory capabilities that should be further 

investigated in early diagnostic test developments.  

 

5.6. Summary 

 

This chapter describes the proposed approach of incorporating NSC and a single 

objective algorithm, GA, to overcome the limitations of previous approaches such as 

empirical methods with NSC, by 1) searching automatically for the optimal shrinkage 

threshold value for NSC, and 2) obtaining the optimal set of minimal number of features 

for higher classification results. This advantage here is due to the fact that the proposed 

approach employs GA as a search algorithm to find optimal shrinkage thresholds based 

on the fitness evaluation from the NSC. An additional advantage of the proposed 

approach is the use of computers to run the algorithm for finding the optimal shrinkage 

threshold values automatically. This is unlike the traditional NSC approach involving 

manual shrinkage threshold value selection where the user spends a lot of time and 

effort to choose the optimal shrinkage threshold value via trial and error.  

 

A further analysis was also carried out on the Prostate cancer data using the same set of 

6 genes to construct 22 different classifiers from WEKA software (Hall et al., 2009) to 

investigate the impact of using different classifiers on sensitivity and specificity.  

 

To continue the exploration of evolutionary approaches for FS in biological data, the 

following chapter describes an approach incorporating MA for automatically finding 

optimal shrinkage thresholds for NSC, an attempt to further improve upon the NCS-GA 

approach described in this chapter. 
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6. Incorporating the NSC algorithm into MA 

 

Chapter 5 described an approach incorporating NSC into GA (NSC-GA) to 

automatically search for optimal shrinkage thresholds in NSC leading to the selection of 

optimal sets of features with better classification accuracy. According to Elbeltagi, 

Hegazy, & Grierson (Elbeltagi et al., 2005), computation time associated with GA 

processing is intensive.  One of the factors that contribute to the quality of optimal 

solutions in EA is the evaluation of fitness of individuals in the population. That is, the 

better the fitness evaluation the better the quality of the optimal solution. One of the 

approaches to improve GAs both in processing time and quality of optimal solutions is 

the use of a MA (Elbeltagi et al., 2005).  MA (Albrechtsson et al., 2001) is a hybrid 

algorithm that incorporates an EA and a local search (LS) to search for a local optimum 

to further improve its fitness (Elbeltagi et al., 2005; Krasnogor & Smith, 2005; Wu, 

2001b). As a result of increased exploitations, fitness of each chromosome is improved 

significantly in each generation, leading to a faster convergence in population fitness, 

and subsequently, computation time for the evolutionary process is reduced. The quality 

of the optimal solution could also be improved owing to the fact that chromosomes have 

already been evaluated locally by LS before being subjected to a global search for the 

optimal solution.  

 

In this chapter, an approach of incorporating the NSC algorithm into a MA, namely 

NSC-MA, for automatically searching for an optimal range of shrinkage threshold 

values is proposed. The aim here is to explore how to improve the NSC-GA approach.  

 

MA has been described in Section 2.3.5. The following section describes the proposed 

approach of incorporating the NSC algorithm and MA, the results are reported in 

Section 6.2, the discussion is in Section 6.3 and the summary is in Section 6.4. 
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6.1. The proposed approach, NSC-MA. 

 

The combination of EA and LS makes MA more efficient and effective in terms of 

processing time for convergence to optimal solutions, finding smaller sets of features, 

and improving classification accuracy in comparison to other traditional EAs such as 

GA (Elbeltagi et al., 2005; Zhu et al., 2007). Different LS strategies such as pair-wise 

LS (Merz & Freisleben, 1999), Adding Subtracting LS, Improvement First Strategy LS 

and greedy LS (Zhu et al., 2007) have been incorporated into GA in different 

approaches. For example, a LS strategy can be applied to elite chromosomes only or to 

the entire population or only to chromosomes that have been modified by crossover 

and/or mutation operation, etc.  

 

Adding Subtracting LS strategy is carried out to search for a better chromosome in 

terms of fitness by adding or subtracting a small random value generated by a RNG to a 

meme (gene) value in the chromosome to create a new chromosome. The fitness of the 

new chromosome is then evaluated, if improved (i.e. better fitness) the new 

chromosome is retained, otherwise discarded. The process continues for the rest of the 

memes in the chromosome (Elbeltagi et al., 2005). This strategy has been known as a 

greedy search strategy (Zhu et al., 2007) or a hill climbing search strategy where the 

search progresses from the current best chromosome to the one that has a better fitness 

(Kohavi & John, 1997; H. Wang et al., 2009). MA with the greedy search  strategy LS 

outperformed GA in terms of achieving better classification accuracy and processing 

time (Elbeltagi et al., 2005). However, according to Zhu, et al. (2007)’s study, the LS 

with Improvement First Strategy outperformed the greedy search strategy LS. Their 

study also found that the Improvement First Strategy LS when applied to a few of the 

elite chromosomes resulted in better solutions when compared to the approach that 

applied the Improvement First Strategy LS to all chromosomes in the population.  

 

Improvement First Strategy LS was also employed as a LS to find a local optimum for 

offspring generated from crossover and mutation operation. That is, after the application 

of crossover and mutation operators on chromosomes, Improvement First Strategy LS is 

then applied to offspring for searching for a local optimum. According to Krasnogor 

and Smith (2005)’s experiments, MA with Improvement First Strategy LS outperformed 
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other LS strategies such as Multi Start Local Search (MSLS) (Marchiori, 2002), Genetic 

Local Search (Aarts, 1997) and the general procedure of MA (Elbeltagi et al., 2005). 

 

Motivated by the performance of the MA that incorporated the adding and subtracting 

Improvement First Strategy LS (Krasnogor & Smith, 2005), it is combined with the 

NSC algorithm in the development of a hybrid approach for finding optimal threshold 

values in NSC automatically. The basic concepts of NSC (Tibshirani et al., 2002) and 

GA have been reviewed in Section 2.4.3 and Section 2.4.4.1, respectively. The 

following sections describe the NSC-MA approach.  

 

6.1.1. NSC-MA proposed approach 

 

Similar to the NSC-GA approach proposed in Chapter 5, the proposed approach, NSC-

MA, consists of 2 major steps:  

 

Step 1:  This step involved the automatic calculation of Thmax. This procedure is 

performed once only at the beginning of the proposed approach, NSC-MA, to obtain 

Thmax. 

 

Step 2: MA (Albrechtsson et al., 2001) is employed in this step as an optimization 

method to search for optimal sets of shrinkage thresholds for NSC algorithm that lead to 

the selection of optimal sets of features. Also in this step, NSC algorithm is employed as 

a fitness evaluator to evaluate the fitness of each chromosome in terms of the number of 

selected features and its corresponding training classification accuracy. 

 

The framework of the proposed approach, NSC-MA, is illustrated in Figure 6-1 and is 

described in the following section. 
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Figure 6-1 Framework of the proposed approach, NSC-MA, using MA with adding and 

subtracting Improvement First Strategy LS 
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The same concepts associated with chromosome encoding, estimation of the initial 

range of values for the shrinkage threshold and fitness evaluation as previously 

discussed in NSC-GA in Chapter 5 also applies in NSC-MA.   

 

6.1.2. Steps of the proposed approach, NSC-MA 

 

In examining Figure 6-1 and Figure 5-2, it can be seen that the only difference between 

NSC-GA and NSC-MA is an additional component for MA, that is, the incorporation of 

LS into the GA thus converting the GA into a MA. Since the core components of the 

algorithm are essentially steps associated with the GA, many of these have been 

discussed in Chapter 5 and are applicable here. These include the calculation of Thmax 

and some of the steps associated with the GA (i.e. population initialization, fitness 

evaluation, selection, crossover, mutation).  The step “new population generation” used 

in NSC-GA are also used in NSC-MA, but has an addition, the incorporation of the 

“adding and subtracting LS with Improvement First Strategy”. This additional step is 

applied to offspring chromosomes after crossover and mutation to further improve the 

quality of chromosome. Figure 6-2 describes the procedure of adding and subtracting 

LS with Improvement First Strategy. 
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    Input: 

Chromosome (chrom) 

Chromosome length (len) 

     

    Output: 

 An improved local search chromosome (chromls)  

    Steps: 

1. Generate a real random number (Rn) in the range [0, 1] using RNG 

2. Evaluate fitness of chrom 

3. For counter from 1 to len 

a. Add Rn to chrom[counter] to create a new chromosome (chromls) 

b. Evaluate the fitness of chromls 

c. If fitness of chromls > chrom  

 Retain chromls as an improved local search chromosome 

 Exit the loop 

d. Else  

 subtract Rn to chrom[counter] create a new chromosome 

(chromls) 

 evaluate the fitness of chromls 

 If fitness of chromls > chrom  

o retain chromls as an improved local search 

chromosome 

o exit the loop 

 else 

o discard chromls 

     

Figure 6-2 Procedure of adding and subtracting LS with Improvement First Strategy 

 

The procedure for generating a new population in NSC-MA is described in Figure 6-3. 

A single elitist strategy is also employed in this study. The best candidate solution 

(elite) from the previous generation is retained and placed into the new generation to 

improve the search in evolutionary algorithms (Ahn & Ramakrishna, 2010). Also in the 

step of generating a new population, two best offspring chromosomes produced from 

the previous steps via selection, crossover, mutation and LS strategy are placed into the 

new population. These steps are repeated until the generation of the new population is 

completed.  
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Input: 

 Chromosome population (p) 

 Fitness population (Fp) 

 Crossover probability (Pc) 

 Mutation probability (Pm) 

 Elite chromosome (Elite) 

 Chromosome length (lenC) 

Output: 

 New population (Np) 

Steps: 

    1. Set Size = size of population, p 

    2. Set new population (Np) = { } 

    3. Store Elite into Np 

    4. For counter from 1 to ½ Size 

a. Select 2 parent chromosomes using binary tournament selection 

i. Select 2 chromosomes randomly from p 

 Select the best fit chromosome as 1
st
 parent (parent1)  

ii. Select 2 chromosomes randomly from p 

 Select the best fit chromosome as 2
nd

 parent (parent2) 

b. Create 2 offspring chromosomes using parent1 and parent2 

i. Generate a random number (Rn) in the range [0, 1] using RNG 

ii. If    Rn ≤ Pc 

 Perform one point crossover on 2 parents to produce 

offspring1 and offspring2 

 Perform adding and subtracting LS with Improvement First 

Strategy on offspring1 and offspring2 to produce 2 new 

offspring (offspring1lscross and offspring2lscross)  

iii. If    Rn ≤ Pm 

   For counter from 1 to lenC 

 Generate a random number (Rn) in the range [0, 1] using 

RNG 

If Rn ≤ Pm 

 Perform uniform mutation on each bit of offspring1 to 

generate offspring1mut  

 Perform uniform mutation on each bit of offspring2 to 

generate offspring2mut 

 Perform adding and subtracting LS with Improvement 

First Strategy on offspring1mut and offspring2mut to produce 

2 new offspring (offspring1lsmut and offspring2lsmut)  

iv. Evaluate fitness of offspring1lscross, offspring2lscross,  

     offspring1lsmut and offspring2lsmut chromosomes 

c. Store the best 2 chromosomes into Np 

 

Figure 6-3 Algorithm for generating a new population using MA incorporated adding 

and subtracting LS with Improvement First Strategy 
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6.1.3. Parameter settings 

 

The parameter settings for running NSC-MA are shown in Table 6-1. The parameters 

used here are the same as those used in NSC-GA (described in Chapter 5), except for an 

additional parameter “Local Search”. 

 

 Table 6-1 Parameter settings used in the proposed approach, NSC-MA  

Parameters Values/Algorithm 

Population size 30 

Chromosome length 

- Real encoding 
10 

Crossover rate 0.6 

Mutation rate 0.033 

Maximum generation 1000 

Selection Tournament 

Crossover Single point 

Mutation Uniform  

Elitist Single  

Local search  Adding and subtracting with First Improvement Strategy 

 

 

6.2. Experiment results 

 

Similar to the experiments for the NSC-GA approach described in Chapter 5, NSC-MA 

was evaluated using seven datasets: AD, Colon, Leukemia, Ovarian, Lymphoma, Lung 

and Prostate cancer datasets as described in Section 3.1. For each dataset, 15 

independent runs of NSC-MA were executed using the respective training data and 

parameter values shown in Table 6-1. For each run, 10 fold CV strategy described in 

Section 3.2 was employed to evaluate the selected feature sets. The optimal set of 

features was then used to construct the NSC classifier to classify the unseen test data 

associated with the dataset. The classification results for classifying the unseen test data 

were recorded and the average classification result from 15 independent runs was 

calculated. The following sections detail the results obtained from applying the 
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approach on each of the seven datasets. Where appropriate, the comparison of the 

performance of the proposed algorithm with existing work is based on classification 

accuracy and the selected feature sets. 

 

6.2.1. Ray et al.  Alzheimer’s Disease data 

 

As mentioned previously in Section 3.1.1, this dataset consists of 120 attributes. The 

training set consists of 43 AD and 40 NDC samples and 2 test sets: the AD test set 

consists of 42 AD, 50 NAD samples and the MCI test set consists of 22 AD and 25 

NAD samples.  

 

 

Figure 6-4 A comparison convergence of fitness plot for AD training dataset using 

NSC-MA and NSC-GA associated with one typical run 

 

Figure 6-4 shows a plot of convergence of fitness associated with one typical run for 

NSC-MA and NSC-GA. Both algorithms converged to the global optimum with the 

same maximum fitness of 1.775. However, the number of generations that the 

algorithms have to run to achieve convergence of fitness is different.  With the proposed 

approach, NSC-MA, convergence occurred after 14 generations, and with NSC-GA, 
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convergence occurred after 28
 
generations in this case.  From Table 6-2, it can be seen 

that on average NSC-MA takes 18 +/- 2.97 runs to converge versus NSC-GA requiring 

28 +/- 4.68 runs for convergence of fitness. Therefore the NSC-MA takes less 

computational time to obtain the same global optimum as NSC-GA.  This is due to the 

fact that, with NSC-MA, chromosomes in the population have been subjected to the 

local search to further improve the fitness in each generation and subsequently, the 

optimal fitness is obtained in a shorter time. 

 

The same set of 11 features is obtained from 15 independent runs using NSC-MA. 

Classifier constructed from this set of features gave an average classification accuracy 

of 89.34% for the unseen AD test dataset and 76.59% for the unseen MCI test dataset, 

compared to 89.49% and 79%, respectively, using NSC-GA. Although the same set of 

11 features was obtained using the proposed approach, the resulting classification 

accuracy is slightly different from the value obtained using NSC-GA. This is due to the 

fact that the optimal shrinkage threshold values obtained from NSC-MA are only 

slightly different from those using NSC-GA. The nature of shrinkage thresholds 

associated with NSC is that rather than an exact value, a narrow range of values maps to 

the same set of features. Since the optimal threshold value from NSC-GA and NSC-MA 

is only slightly different, both mapped to the same set of 11 features but still produced 

slight differences in classification accuracy. The classification results of NSC-MA in 

comparison to NSC-GA are shown in Table 6-2. 

 

Table 6-2 Classification results and time to converge for NSC-GA and NSC-MA using 

AD data 

Approach 

Alzheimer Average number of  

generations for  

convergence of fitness 

over 15 independent 

runs 

Standard 

deviation 

(Stdev) 

AD MCI 

No of  

attributes 

Unseen 

test data 

(%) 

Unseen 

test data 

(%) 

Proposed 

approach 

NSC-MA 

11 89.34 76.59 18 2.97 

NSC-GA 11 89.49 79 28 4.68 
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6.2.2. Alon et al. Colon cancer data 

 

Details about the Colon dataset can be found in Section 3.1. 

 

 

Figure 6-5 Plots for convergence of fitness from a typical run for Colon training dataset 

using NSC-MA and NSC-GA  

 

As seen in Figure 6-5, both algorithms converged to the global optimum with the same 

maximum fitness of 1.883. However, the number of generations that the algorithms 

have to run to achieve convergence of fitness is different.  With NSC-MA convergence 

occurred after 259 generations, and with NSC-GA, convergence occurred after 363
 

generations in this sample run.  From Table 6-3, it can be seen that on average NSC-

MA takes 274 +/- 178.84 runs to converge versus NSC-GA requiring 309 +/- 194. 98 

runs for convergence of fitness.  The same set of 28 features is obtained from each of 15 

independent runs using NSC-MA and resulted in an average classification accuracy of 

100% for the unseen test cancer dataset. In comparison, sets of 6 and 28 features were 

obtained using NSC-GA with 93.75% and 100% for average classification accuracy on 

the same unseen test dataset, respectively. This shows that the proposed approach NSC-

MA selects sets of features consistently for all 15 independent runs (i.e. the same set of 

28 features is obtained for every run) compared to NSC-GA where 2 sets, one of 6 and 
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one of 28 features were obtained from 15 runs. The classification results of NSC-MA in 

comparison to those associated with NSC-GA are shown in Table 6-3. 

 

Table 6-3 Classification results and time to converge for NSC-GA and NSC-MA using 

the Colon cancer data 

Approach 

Colon 

No of 

attributes 

Unseen test data 

 (%) 

Average number of  

generations for  

convergence of fitness 

over 15 independent runs 

Standard 

deviation  

(Stdev) 

Proposed 

approach 

NSC-MA 

28 100 271 178.84 

NSC-GA 
28 

6 

100 

93.75 
309 194.89 
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6.2.3. Leukemia cancer data 

 

Details about the Leukemia dataset can be found in Section 3.1. 

 

 

Figure 6-6 Plots for convergence of fitness from a typical run for Leukemia training 

dataset using NSC-MA and NSC-GA  

 

As seen in Figure 6-6, both algorithms converged to the global optimum with the same 

maximum fitness of 1.973. In terms of convergence of fitness, NSC-MA took 73 

generations, and NSC-GA took 91
 
generations for this sample run.  From Table 6-4, it 

can be seen that on average NSC-MA takes 54 +/- 38.73 runs to converge versus NSC-

GA requiring 82 +/- 43.57 runs for convergence of fitness.  The same set of 9 features is 

obtained from each of the 15 independent runs using NSC-MA, resulting in an average 

classification accuracy of 97.05% on the Leukemia unseen test dataset. The 

classification results of NSC-MA in comparison to those of NSC-GA are shown in 

Table 6-4. 
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Table 6-4 Classification results and time to converge for NSC-GA and NSC-MA using 

the Leukemia cancer data 

Approach 

Leukemia  

No of 

attributes 

Unseen test 

data  (%) 

Average number of  

generations for  

convergence of fitness 

over 15 independent runs 

Standard 

deviation 

(Stdev) 

Proposed 

approach 

NSC-MA 

9 97.05 54 38.73 

NSC-GA 9 97.05 82 43.57 

 

 

6.2.4. Ovarian cancer data 

 

Details about this dataset can be found in Section 3.1. 

 

 

Figure 6-7 Plots for convergence of fitness from a typical run for Ovarian training 

dataset using NSC-MA and NSC-GA 
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As seen in Figure 6-7, both algorithms converged to the global optimum with the same 

maximum fitness of 1.99. With NSC-MA, convergence occurred after 452 generations, 

and with NSC-GA, convergence occurred after 124
 
generations in this sample run.  

From Table 6-5, it can be seen that on average NSC-MA takes 177 +/- 160.78 runs to 

converge versus NSC-GA requiring 86.88 +/- 24.5 obvious from runs for convergence 

of fitness. NSC-MA found the same set of 7 peptides resulting in the same average 

classification accuracy of 96.06% on the Ovarian cancer unseen test dataset as that 

obtained via NSC-GA. The classification results of NSC-MA in comparison to those of 

NSC-GA are shown in Table 6-5. 

 

Table 6-5 Classification results and time to converge for NSC-GA and NSC-MA using 

the Ovarian cancer data 

Approach 

Ovarian 

No of 

attributes 

Unseen test 

data 

(%) 

Average number of  

generations for  convergence 

of fitness over 15 independent 

runs 

Standard 

deviation 

(Stdev) 

Proposed 

approach 

NSC-MA 

7 96.06 177 160.78 

NSC-GA 7 96.06 86.88 24.5 
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6.2.5. Lymphoma cancer data 

 

Details about this dataset can be found in Section 3.1. 

 

 

Figure 6-8 Plots for convergence of fitness from a typical run for Lymphoma training 

dataset using NSC-MA and NSC-GA 

 

As seen in Figure 6-8, both algorithms converged to the global optimum with the same 

maximum fitness of 1.968. With NSC-MA, convergence occurred after 92 generations, 

and with NSC-GA, convergence occurred after 144
 
generations in this typical run.  

From Table 6-6, it can be seen that on average NSC-MA takes 88 +/- 8.91 runs to 

converge versus NSC-GA requiring 100 +/- 62.42 runs for convergence of fitness. The 

same set of 128 features obtained for each of the 15 independent runs using NSC-MA 

gave the same average classification accuracy of 100% on the Lymphoma unseen test 

dataset. This shows that the proposed approach NSC-MA selects features consistently 

for all 15 independent runs (i.e. the same set of 128 features is obtained for every run) 

compared to the approach NSC-GA where 5 different sets of 128, 129, 132, 7 and 12 

features were selected from the independent 15 runs. The classification results of NSC-

MA in comparison to NSC-GA are shown in Table 6-6. 
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Table 6-6 Classification results and time to converge for NSC-GA and NSC-MA using 

the Lymphoma cancer data 

Approach 

Lymphoma 

No of 

attributes 

Unseen test 

data 

 (%) 

Average number of  generations 

for  convergence of fitness over 

15 independent runs 

Standard 

deviation 

(Stdev) 

Proposed 

approach 

NSC-MA 

128 100 88 8.91 

NSC-GA 

7 

12 

128 

129 

132 

95.45 

95.45 

100 

100 

100 

100 62.42 

 

 

6.2.6. Lung cancer data 

 

Details about this dataset can be found in Section 3.1. 

 

As seen in Figure 6-9, both algorithms converged to the global optimum with the same 

maximum fitness of 1.999. With NSC-MA, convergence occurred after 27 generations, 

and with NSC-GA, convergence occurred after 88 generations in this sample run.  From 

Table 6-7, it can be seen that on average NSC-MA takes 41 +/- 9.5 runs to converge 

versus NSC-GA requiring 68 +/- 53.08 runs for convergence of fitness. The same set of 

8 features obtained from each of the 15 independent runs using NSC-MA gave the same 

average classification accuracy of 100% on the Lung unseen test dataset. In comparison, 

NSC-GA produced 4 different sets consisting of 8, 9, 10, and 11 features from 15 runs. 

The classification results of NSC-MA in comparison to NSC-GA are shown in Table 

6-7. 
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Figure 6-9 Plots for convergence of fitness from a typical run for Lung training dataset 

using NSC-MA and NSC-GA  

 

Table 6-7 Classification results and time to converge for NSC-GA and NSC-MA using 

the Lung cancer data 

Approach 

Lung 

No of 

attributes 

Unseen test 

data 

 (%) 

Average number of  generations 

for  convergence of fitness over 

15 independent runs 

Standard 

deviation 

(Stdev) 

Proposed 

approach 

NSC-MA 

8 100 41 9.5 

NSC-GA 

8 

9 

10 

11 

100 68 53.08 
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6.2.7. Prostate cancer data 

 

Details about this dataset can be found in Section 3.1. 

 

As seen in Figure 6-10, both algorithms converged to the global optimum with the same 

maximum fitness of 1.973. With NSC-MA, convergence occurred after 62 generations, 

and with NSC-GA, convergence occurred after 99 generations in this sample run.  From 

Table 6-8, it can be seen that on average NSC-MA takes 65 +/- 23.62 runs to converge 

versus NSC-GA requiring 82 +/- 32.26 runs for convergence of fitness. The same set of 

6 features obtained from each of the 15 independent runs using NSC-MA gave the same 

average classification accuracy of 90.2% on the Prostate unseen test dataset.  The 

classification results of NSC-MA in comparison to NSC-GA are shown in Table 6-8. 

 

 

Figure 6-10 A comparison convergence of fitness plot for Prostate training dataset using 

NSC-MA and NSC-GA associated with one typical run 
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Table 6-8 Classification results and time to converge for NSC-GA and NSC-MA using 

the Prostate cancer data 

Approach 

Prostate 

No of 

attributes 

Unseen test 

data 

 (%) 

Average number of  generations 

for  convergence of fitness over 

15 independent runs 

Standard 

deviation 

(Stdev) 

Proposed 

approach 

NSC-MA 

6 90.2 65 23.62 

NSC-GA 6 90.2 80 32.26 
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Table 6-9 Summary of results obtained from the NSC-GA and NSC-MA approach 

Dataset 

NSC-GA NSC-MA 

No of  

attributes 

Unseen 

test data 

(%) 

Average number 

of  generations for  

convergence of 

fitness over 15 

independent runs 

Standard 

deviation 

(Stdev) 

No of 

attributes 

Unseen 

test data 

(%) 

Average number 

of  generations for  

convergence of 

fitness over 15 

independent runs 

Standard 

deviation 

(Stdev) 

AD 11 89.49 28 2.97 11 89.34 18 4.68 

Colon 
28 

6 

100 

93.75 
309 194.9 28 100 271 178.84 

Leukemia 9 97.05 82 43.57 9 97.05 54 38.73 

Lymphoma 

7 

12 

128 

129 

132 

95.45 

95.45 

100 

100 

100 

100 62.42 128 100 88 8.91 

Ovarian 7 96.06 86 24.5 7 96.06 177 160.78 

Lung 

8 

9 

10 

11 

100 68 53.08 8 100 41 9.5 

Prostate 6 90.2 80 32.26 6 90.2 65 23.62 
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6.3. Discussion 

 

Table 6-9 shows a summary of experimental results obtained using NSC-MA, in 

comparison to results from NSC-GA on the same datasets. The proposed approach 

achieved the same classification results in terms of the sets of selected features and 

classification accuracy on unseen test sets for the seven datasets. However, the NSC-

MA approach has generally improved performance in terms of computational time for 

all datasets except for the Ovarian and Lymphoma datasets. That is, the NSC-MA 

approach, on average over 15 independent runs, required a smaller number of 

generations for convergence of fitness.   

 

Another difference from NSC-MA when compared to NSC-GA is that, NSC-MA 

consistently obtained the same set of features for each of the 15 independent runs. This 

highlights the advantage of incorporating LS into the previous approach NSC-GA to 

further improve the fitness of candidate solutions and subsequently, that leads to only 

one constant optimal solution being obtained for all the independent runs for the 

respective dataset. For example, for the Lung cancer dataset, the proposed approach 

NSC-MA obtained the same set of 8 genes for each of the 15 independent runs, whilst 

the NSC-GA approach obtained sets with 8, 9, 10, and 11 features from the 15 

independent runs.  

 

Overall, the impact of incorporating MA with NSC for finding shrinkage threshold 

values automatically are (1) reduced computational time and (2) obtaining the same 

feature set over different runs of NSC-MA. 

 

6.4. Summary 

 

This chapter has described the proposed approach of incorporating the NSC and MA to 

automatically search for optimal threshold values for the NSC, and subsequently to be 

used for FS and classification. The approach incorporated the adding and subtracting LS 

with Improvement First Strategy in a MA to optimize the optimal threshold value 

automatically for NSC, and to obtain the sets of relevant features. The results obtained 

shows that with NSC-MA, convergence of fitness is quicker while obtaining the same 

feature set and similar classification accuracy, compared to those obtained via NSC-GA. 
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In Chapter 7, the investigation of incorporating different similarity distance measures 

into the NSC algorithm in NSC-GA will be described. 
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7. Incorporating different similarity distance measures into the NSC 

algorithm in the NSC-GA approach 

 

The NSC classifier uses Euclidean distance as a measure to assign data points to 

different classes.  Each data point is assigned to the class that it has the shortest 

Euclidean distance. The classification accuracy is calculated based on correct class 

assignment.  The higher the number of data points correctly assigned to its class, the 

higher the resulting classification accuracy. According to Bandyopadhyay and Saha 

(2013, p. 60), “similarity measurement is essential for performing classification”, 

therefore employing a different similarity distance measure in the NSC classifier would 

impact its class prediction of data points and consequently  the classification accuracy. 

 

The aim of this chapter is to investigate the impact of employing different similarity 

distance measures (Mahalanobis, Pearson and Mass distance (MD) measure) in the NSC 

classifier on FS and classification using the same NSC-GA approach, which has been 

proposed and implemented in Chapter 5. Subsequently the impact of incorporating 

different distance measures in NSC*-GA (with * representing M or P or MD) is 

evaluated using the seven biomedical datasets described in Chapter 3. Section 7.1.1 

describes the proposed approaches, NSCM-GA, NSCP-GA and NSCMD-GA, the results 

are reported in Section 7.2, discussion is in Section 7.3 and summary is in Section 7.4. 

 

7.1. NSC
*
-GA proposed approach 

 

Similar to the NSC-GA approach where Euclidean distance is employed in the NSC, the 

proposed approach NSC*-GA consists of the same 2 major steps that have been 

described in Section 5.2.  

 

Considerations for chromosomes encoding, estimation of the initial range of values for 

the shrinkage threshold and fitness evaluation in NSC*-GA are also the same as NSC-

GA and have been discussed in Section 5.2.1. The basic concepts of NSC algorithm 

(Tibshirani et al., 2002) have been reviewed in Section 2.3.3 and different distance 

measures, Euclidean, Mahalanobis (Mahalanobis, 1936), Pearson (Pearson, 1895) and 

MD (Yona et al., 2006) have been reviewed in Section 2.3.6. The following sections 
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describe the proposed approach which incorporates NSC with different similarity 

distance measures, Mahalanobis, Pearson and MD, into GA, denoted as NSCM-GA, 

NSCP-GA and NSCMD-GA, respectively.  

 

7.1.1. NSC-GA with Mahalanobis (NSCM-GA), Pearson (NSCP-GA) and  Mass 

distance measure (NSCMD-GA) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-1 Framework of NSC*-GA 

 

As seen in Figure 7-1, the core of the framework of NSC*-GA is the same as of the 

framework of NSC-GA. The only difference between the 2 approaches is the different 

distance measure method employed in the NSC classifier. That is, instead of using the 

Euclidean distance as a distance measure in the original implementation of NSC, 

Mahalanobis distance (green box), Pearson (yellow box) and Mass distance (blue box) 

are employed in the NSC classifier to measure the distance between data points and 

classes when performing classification.  The modified NSC*  classifiers (NSC with a 

different distance measure) are NSCM, NSCP and NSCMD with M, P and MD denoting 

Mahalanobis distance, Pearson and Mass distance respectively. These modified 

classifiers are detailed in the following sections. 
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A number of calculations in the original NSC algorithm still apply in NSCM, NSCP and 

NSCMD. These include the calculations of class centroid, overall centroid, relative 

difference, shrunken relative difference, updated class centroid and classification. 

Equations for these calculations are shown in Equation (7.1), (7.2), (7.3), (7.4), (7.5), 

and (7.6), respectively. More details about these equations can be found in Section 

2.4.3. 

 

 Class centroid :   ̅    ∑                         

(7.1) 

 Overall centroid:   ̅i   ∑  i     
                 

(7.2) 

 Relative difference:        ̅i - ̅i 
  (si so)

             

(7.3) 

 Shrunken relative difference:                  |   |       if |   |    

Otherwise 0     

(7.4) 

 

 Updated class centroid:  ̅ i     ̅i      (si   so) d’i           (7.5) 

 

 Classification:                                                   (7.6) 

 

The following sections describe the specific distance measure employed in NSCM, 

NSCP and NSCMD classifiers respectively. 

 

 NSCM classifier 

The difference between the NSC and NSCM classifier is the calculation of discriminant 

scores for data points, where each data point is assigned to the class that it has the 

closest distance, i.e., the distance is based on a minimal discriminant score.  

 

In NSCM, the calculation of the discriminant score is now obtained using the calculation 

of Mahalanobis distance (     ) as defined by Equation (7.8) and (7.9). Descriptions of 

Mahalanobis distance and associated equations are found in Section 2.3.6.2.  

 

       √                       (7.7) 
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   where   is a data point 

  µ is a class centroid 

    superfix T is a matrix transpose 

           Σ-1
 is an inverse covariance matrix 

 

Hence the calculation of discriminant scores using Mahalanobis distance measure is 

defined by Equation (7.8) as follows. 

 

   (  )             (7.8) 

 

 NSCP classifier 

 In NSCP, the calculation of the discriminant score is now obtained using Pearson 

Correlation. These calculations are defined by Equation (7.9), (7.10) and (7.11). 

Descriptions of Pearson Correlation and associated equations are found in Section 

2.3.6.3.  

  

 Correlation coefficient           r = 
∑ (x- ̅) (y- ̅)√(x- ̅)

2
 √(y- ̅)

2
                              (7.9) 

       where x is variable value 

                    ̅     ̅ are class centroids 

 

 Pearson correlation measure                            |   |                 (7.10) 

 

 Hence the calculation of discriminant scores using Pearson correlation is defined by 

Equation (7.11) as follows. 

 

   (  )           (7.11) 

 

 NSCMD classifier 

In NSCMD, the calculation of the discriminant score is now obtained using MD. These 

calculation are defined by Equation (7.12), (7.13), 7.14), (7.15) and (7.16) in the 

calculations for Mass Distance. These equations have been described in Section 2.3.6.4. 
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            ∫                                     (7.12) 

           (    √  )                 (7.13) 

                         (7.14) 

             (∫ (    √  )                                    )  (          )  (7.15) 

 

Hence the calculation of discriminant scores using mass distance is defined by Equation 

(7.16) as follows. 

                       (7.16) 

 

As mentioned previously, NSC*-GA comprised of the same 2 major steps as NSC-GA. 

These steps include the automatic Thmax calculation, GA search optimization including 

population initialization, fitness evaluation, GA operators and new population 

generation steps which have been described in Section 5.2.1 and will not be repeated 

here. The same parameter settings used in NSC-GA (Table 5-4) are also used to run 

NSCM-GA, NSCP-GA and NSCMD-GA. 

 

7.2. Experiment results 

 

Similar to the experiments for NSC-GA described in Chapter 5, NSCM-GA, NSCP-GA 

and NSCMD-GA, were evaluated using the same seven datasets. For each dataset, 15 

independent runs of NSC*-GA (i.e. 15 runs for each of NSCM-GA, NSCP-GA and 

NSCMD-GA) were executed using the respective training dataset and parameter settings 

shown in Table 5-4. For each independent run, 10 fold CV strategy described in Section 

3.2 was employed to evaluate the proposed approaches. The optimal set of features 

obtained for each dataset was then used to construct the respective NSC* classifier to 

evaluate the corresponding unseen test dataset. The classification results for the unseen 

test data were recorded and the average classification result from 15 independent runs 

was calculated. The following sections report the results of experiments for each 

approach on each of the seven datasets. Where appropriate, the comparison of the 
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performance of the proposed algorithm with existing work is based on classification 

accuracy and the selected feature sets. 

 

7.2.1. NSCM-GA 

 

7.2.1.1. Ray et al.  AD data 

 

 

Figure 7-2 A typical plot for convergence of fitness for the training data of AD using 

NSCM-GA 

 

As seen in Figure 7-2, convergence in this sample run occurred after 28 generations 

with the maximum fitness of 1.81. The optimal shrinkage threshold obtained for each of 

the runs had the same maximum fitness of 1.81 which produced the set of 18 proteins 

with resulting 97.82% classification accuracy on the unseen test data (Figure 7-1). The 

18 proteins selected by NSCM-GA, for the AD dataset are the same set of 18 proteins 

found by Ray et al. (2007). 
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Table 7-1 Comparison of classification results between NSC-GA and NSCM-GA for AD 

data 

NSC-GA (Euclidean dist.) Proposed NSCM-GA (Mahalanobis dist.) 

Number of 

proteins 
Unseen Test (%) 

Number of 

proteins 
Unseen Test (%) 

11 90.21 18 97.82 

 

 

7.2.1.2. Alon et al. Colon cancer data 

 

 

Figure 7-3 A typical plot for convergence of fitness for the training data of Colon using 

NSCM-GA 

 

As seen in Figure 7-3, convergence in this sample run occurred after 37 generations 

with the maximum fitness of 1.99. The optimal shrinkage threshold obtained for each of 

the runs had the same maximum fitness of 1.99 which produced the set of 7 genes with 

93.54% classification accuracy on the unseen test set. The gene accession numbers of 7 

genes selected by NSCM-GA for Colon dataset are T71025, M76378, M63391, T92451, 

H64489, M76378 and J02854. This set of 7 genes is a subset of the set of 28 genes and 

the superset of the 6 genes which have been found by NSC-GA. As seen in Table 7-2, 

the classification accuracy using the set of 6 and 7 genes are very similar. 
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Table 7-2 Comparison of classification results between NSC-GA and NSCM-GA for 

Colon cancer data 

NSC-GA (Euclidean dist.) Proposed NSCM-GA 

(Mahalanobis dist.) 

Number of 

genes 
Unseen Test (%) 

Number of 

genes 
Unseen Test (%) 

28 

6 

100 

93.75 
7 93.54 

 

 

7.2.1.3. Leukemia cancer data 

 

 

Figure 7-4 A typical plot for convergence of fitness for the training data of Leukemia 

using NSCM-GA 

 

As seen in Figure 7-4, convergence in this sample run occurred after 69 generations 

with the maximum fitness of 1.99. The optimal shrinkage threshold obtained for each of 

the 15 independent runs had the same maximum fitness of 1.99 which produced the 

same set of 9 genes for the Leukemia cancer dataset. As shown in Table 7-3, this set of 

9 genes produced the average classification accuracy of 94.12% on the unseen test set. 

The classification accuracy is slightly different from those obtained using NSC-GA. 

Owing the fact that the optimal shrinkage threshold value obtained from NSCM-GA is 
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still mapped to the same set of 9 genes but produced slightly different classification 

accuracy on the same unseen test dataset. 

 

Table 7-3 Comparison of classification results between NSC-GA and NSCM-GA for 

Leukemia data 

NSC-GA (Euclidean dist.)  Proposed NSCM-GA 

(Mahalanobis dist.) 

Number of 

genes 
Unseen Test (%) 

Number of  

genes 
Unseen Test (%) 

9 97.05 9 94.12 

 

 

7.2.1.4. Lymphoma cancer data 

 

As seen in Figure 7-5, convergence in this sample run occurred after 31 generations 

with the maximum fitness of 1.99. The optimal shrinkage threshold obtained for each of 

the 15 independent runs had the same maximum fitness of 1.99 which produced the 

same set of 3 genes for the Lymphoma cancer dataset. This set of 3 genes produced the 

average classification accuracy of 100% on the unseen test set. The 3 gene set with gene 

accession numbers, GENE3327X, GENE3329X and GENE3361X, selected by NSCM-

GA for Lymphoma dataset, is a subset of the following sets consisting of 7, 12, 128, 

129 and 132 genes found using NSC-GA. For this dataset, the proposed approach 

selected a smaller set of genes resulting in a higher classification accuracy on the same 

unseen test dataset. 
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Figure 7-5 A typical plot for convergence of fitness for the training data of Lymphoma 

using NSCM-GA 

 

Table 7-4 Comparison of classification results between NSC-GA and NSCM-GA for 

Lymphoma data 
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Number of 
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7.2.1.5. Lung cancer data 

 

 

Figure 7-6 A typical plot for convergence of fitness for the training data of Lung using 

NSCM-GA 

 

As seen in Figure 7-6, convergence in this sample run occurred after 10 generations 

with the maximum fitness of 1.998. The optimal shrinkage threshold obtained for each 

of the 15 independent runs produced the set of 9 and 11 genes for the Lung cancer 

dataset. As shown in Table 7-5, the set of 9 and 11 genes resulted in the average 

classification accuracy of 98.88% on the unseen test set. These sets of 9 and 11 genes 

selected by NSCM-GA are the same set of 9 and 11 genes found by using NSC-GA with 

the classification accuracy of 100%.  

 

Table 7-5 Comparison of classification results between NSC-GA and NSCM-GA for 

Lung data 

NSC-GA (Euclidean dist.) Proposed NSCM-GA (Mahalanobis dist.) 

Number of 
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7.2.1.6. Ovarian cancer data 

 

 

Figure 7-7 A typical plot for convergence of fitness for the training data of Ovarian 

using NSCM-GA 

 

As seen in Figure 7-7, convergence in this sample run occurred after 46 generations 

with the maximum fitness of 1.98. The optimal shrinkage threshold obtained for each of 

the 15 independent runs had the same maximum fitness of 1.98 which resulted in the set 

of 1 peptide for the Ovarian cancer dataset. As shown in Table 7-6, the set of 1 gene 

(MZ244.36855) gave the average classification accuracy of 96.06% on the unseen test 

set. This set of 1 peptide selected by NSCM-GA is a subset of 7 peptides found using the 

NSC-GA approach but gave the same classification accuracy of 96.06%. It appears that 

a major contributing factor relates to 1 peptide and thus may warrant further 

investigations into the relevance of the remaining features. This sort of information for 

analysis in bioinformatics is important as reducing the number of features to a smaller 

promising set for further investigations would reduce costs associated with future 

experiments and analysis. 
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Table 7-6 Comparison of classification results between NSC-GA and NSCM-GA for 

Ovarian data 

NSC-GA (Euclidean dist.) Proposed NSCM-GA (Mahalanobis dist.) 

Number of genes Unseen Test (%) Number of genes Unseen Test (%) 

7 96.06 1 96.06 

 

 

7.2.1.7. Prostate cancer data 

 

As seen in Figure 7-8, convergence in this sample run occurred after 9 generations with 

the maximum fitness of 1.998. The optimal shrinkage threshold obtained for each of the 

15 independent runs had the same maximum fitness of 1.998 which produced the sets of 

17 genes for the Prostate cancer dataset. As shown in Table 7-7, this set of 17 genes 

resulted in the average classification accuracy of 100% on the unseen test set. The gene 

accession numbers of 17 genes selected by NSCM-GA for Prostate cancer dataset are: 

31444_s_at, 31527_at, 33614_at, 41468_at, 37639_at, 39756_g_at, 40435_at, 

40436_g_at, 36587_at, 36666_at, 37720_at, 38406_f_at, 38429_at, 40282_s_at, 

769_s_at, 556_s_at and 216_at. The gene accession number, 31444_s_at and 769_s_at 

are listed in the prognosis gene patent that indicates high risk for TTD (time to death) 

(Liu & Iba, 2002). In comparison, this set of 17 genes is a superset of the 6 genes 

obtained using NSC-GA which produced a resulting classification accuracy of 90.2% 

on the same unseen test dataset.  
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Figure 7-8 A typical plot for convergence of fitness for the training data of Prostate 

using NSCM-GA 

 

Table 7-7 Comparison of classification results between NSC-GA and NSCM-GA for 

Prostate data 

NSC-GA (Euclidean dist.)  Proposed NSCM-GA (Mahalanobis dist.) 

Number of genes Unseen Test (%) Number of genes Unseen Test (%) 

6 90.2 17 100 
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7.2.2. NSCP-GA approach 

 

Similar to the experiments for NSCM-GA approach, the same parameter settings, 

experimental conditions and evaluation strategy were also used here for evaluating 

NSCP-GA. The results from these experiments are reported as follows. 

 

7.2.2.1. Ray et al.  AD data 

 

 

Figure 7-9 A typical plot for convergence of fitness for the training data of AD using 

NSCP-GA 

 

As seen in Figure 7-9, convergence in this sample run occurred after 251 generations 

with the maximum fitness of 1.768 in this sample run. The optimal shrinkage threshold 

obtained for each of the 15 independent runs had the same maximum fitness of 1.768 

which produced the same set of 9 proteins for the AD dataset. As shown in Table 7-8, 

the set of 9 proteins resulted in the average classification accuracy of 92.39% on unseen 

test dataset, an improvement over the results from the set of 11 proteins obtained via 

NSC-GA. The selected 9 proteins, PDGF-BB_1, RANTES_1, IL-1a_1, TNF-a_1, 

EGF_1, M-CSF_1, ICAM-1_1, IL-3-1 and GCSF_1, are a subset of the sets of 11 and 

18 proteins obtained using NSC-GA and NSCM-GA, respectively, as well as being a 

subset of the 18 proteins in Ray et al. (2007). 
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Table 7-8 Comparison of classification results between NSC-GA and NSCP-GA for AD 

data 

NSC-GA (Euclidean dist.) Proposed NSCP-GA (Pearson dist.) 

Number of genes Unseen Test (%) Number of genes Unseen Test (%) 

11 89.49 9 92.39 

 

 

7.2.2.2. Alon et al. Colon cancer data 

 

 

Figure 7-10 A typical plot for convergence of fitness for the training data of Colon 

using NSCP-GA 

 

As seen in Figure 7-10, convergence in this sample run occurred after 144 generations 

with the maximum fitness of 1.826. Seven runs produced a maximum fitness of 1.826 

which gave the same set of 42 genes and other 8 runs produced a maximum fitness of 

1.823 which mapped to the same set of 6 genes which is a subset of the 42 gene set. As 

shown in Table 7-9, these sets of 42 and 6 genes, each resulted in an average 

classification accuracy of 100% on the unseen test dataset. The set of six genes selected 
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by the proposed approach is the same set of 6 genes found by the NSC-GA approach 

and is also a subset of the sets of 28 genes (from NSC-GA) and 42 genes.  

 

Table 7-9 Comparison of classification results between NSC-GA and NSCP-GA for 

Colon data 

NSC-GA (Euclidean dist.) Proposed NSCP-GA (Pearson dist.) 

Number of genes Unseen Test (%) Number of genes Unseen Test (%) 

28 

6 

100 

93.75 

42 

6 
100 

 

 

7.2.2.3. Leukemia cancer data 

 

 

Figure 7-11 A typical convergence of fitness plot for the training data of Leukemia data 

using NSCP-GA 

 

As seen in Figure 7-11, convergence in this sample run occurred after 91 generations 

with the maximum fitness of 1.99. Three different optimal shrinkage thresholds were 

obtained from the 15 independent runs, each are associated with 7 sets of 4 genes, 5 sets 

of 5 genes and 3 sets of 24 genes respectively. As shown in Table 7-10, these sets of 4, 

5 and 24 genes, each resulted in an average classification accuracy of 100% on unseen 
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test data. The sets of 4 and 5 genes, each is a subset of the 9 gene set produced from 

using NSC-GA.  

 

Table 7-10 Comparison of classification results between NSC-GA and NSCP-GA for 

Leukemia data 

NSC-GA (Euclidean dist.) Proposed NSCP-GA (Pearson dist.) 

Number of genes Unseen Test (%) Number of genes Unseen Test (%) 

9 97.05 

4 

5 

24 

100 

 

 

7.2.2.4. Lymphoma cancer data 

 

 

Figure 7-12 A typical plot for convergence of fitness for the training data of Lymphoma 

using NSCP-GA 

 

As seen in Figure 7-12, convergence in this sample run occurred after 91 generations 

with the maximum fitness of 1.983. Five different optimal shrinkage thresholds 

obtained for the 15 independent runs, each are associated with 5 sets of 72 genes, 3 sets 
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of 73 genes, 5 sets of 75 genes, 1 set of 77 and 80 genes respectively. As shown in 

Table 7-11, these sets of 72, 73, 75, 77 and 80 genes, each produced an average 

classification accuracy of 100% on unseen test data. The sets of 72, 73, 75, 77 and 80 

genes are subset of the 128 gene set produced using NSC-GA. 

 

Table 7-11 Comparison of classification results between NSC-GA and NSCP-GA for 

Lymphoma data 

NSC-GA (Euclidean dist.) Proposed NSCP-GA (Pearson dist.) 

Number of genes Unseen Test (%) Number of genes Unseen Test (%) 

7 

12 

128 

129 

132 

95.45 

95.45 

100 

100 

100 

72 

73 

75 

77 

80 

100 

 

 

7.2.2.5. Lung cancer data 

 

As seen in Figure 7-13, convergence in the sample run occurred after 36 generations 

with the maximum fitness of 1.9996. Three different optimal shrinkage thresholds were 

obtained from the 15 independent runs. Each is associated with 8 sets of 4 genes, 5 sets 

of 5 genes and 2 sets of 7 genes, respectively. The smaller set is a subset of the larger 

set. As shown in Table 7-12, the set of 4, 5 and 7 genes resulted in an average 

classification accuracy of 100% on unseen test data. The set of 7 genes, with gene 

accession numbers 32551_at, 33328_at, 34320_at, 36533_at, 37157_at, 37716_at and 

37954_at. Sets of 4, 5 and 7 genes are each a subset of the sets consisting of 8, 9, 10 and 

11 genes produced using NSC-GA. 
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Figure 7-13 A typical plot for convergence of fitness for the training data of Lung using 

NSCP-GA 

 

Table 7-12 Comparison of classification results between NSC-GA and NSCP-GA for 

Lung data 

NSC-GA (Euclidean dist.) Proposed NSCP-GA (Pearson dist.) 

Number of genes Unseen Test (%) Number of genes Unseen Test (%) 

8 

9 

10 

11 

100 

4 

5 

7 

100 

 

 

  

1.99

1.991

1.992

1.993

1.994

1.995

1.996

1.997

1.998

1.999

2

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

Max fitness

Fitness 

Convergence starts 

Generations 



200 

 

7.2.2.6. Ovarian cancer data 

 

 

Figure 7-14 A typical plot for convergence of fitness for the training data of Ovarian 

using NSCP-GA 

 

As seen in Figure 7-14, convergence in this sample run occurred after 7 generations 

with the maximum fitness of 1.984. Four different optimal shrinkage thresholds were 

obtained from the 15 independent runs, each are associated with 2 sets of 2 peptides, 8 

sets of 8 peptides, 3 sets of 9 peptides and 2 set of 10 peptides respectively. As shown in 

Table 7-13, the set of 2 peptides produced an average classification accuracy of 96.85% 

and the set of 8, 9 and 10 genes produced an average classification accuracy of 96.06% 

on unseen test data. The set of the 2 peptides, MZ244.95245 and MZ245.24466, is a 

subset of 7 peptides found by the approach NSC-GA. 
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Table 7-13 Comparison of classification results between NSC-GA and NSCP-GA for 

Ovarian data 

NSC-GA (Euclidean dist.) Proposed NSCP-GA (Pearson dist.) 

Number of peptides Unseen Test (%) Number of peptides Unseen Test (%) 

7 96.06 

2 

8 

9 

10 

96.85 

96.06 

96.06 

96.06 

 

 

7.2.2.7. Prostate cancer data 

 

 

Figure 7-15 A typical plot for convergence of fitness for the training data of Prostate 

using NSCP-GA 

 

As seen in Figure 7-15, convergence in this sample run occurred after 43 generations 

with the maximum fitness of 1.942. The optimal shrinkage threshold obtained for each 

of the 15 independent runs had the same maximum fitness of 1.942 which mapped to 

the same set of five genes. As shown in Table 7-14, this set of five genes produced an 

average classification accuracy of 90.2% on unseen test data. This five gene set, with 
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gene accession numbers 41468_at, 37639_at,  38406_f_at, 769_s_at and 556_s_at , is a 

subset of six genes found using NSC-GA.  

 

Table 7-14 Comparison of classification results between NSC-GA and NSCP-GA for 

Prostate data 

NSC-GA (Euclidean dist.) Proposed NSCP-GA (Pearson dist.) 

Number of genes Unseen Test (%) Number of genes Unseen Test (%) 

6 90.2 5 90.2 

 

 

7.2.3. NSCMD-GA approach 

 

Similar to the experiments for NSCM-GA and NSCP-GA, the same parameter settings, 

experimental conditions and evaluation strategy were also used here for evaluating 

NSCMD-GA. The results from these experiments are reported as follows. 

 

7.2.3.1. Ray et al.  AD data 

 

As seen in Figure 7-16, convergence in this sample run occurred after 51 generations 

with the maximum fitness of 1.84. The optimal shrinkage threshold obtained for each of 

the 15 independent runs had the same maximum fitness of 1.84 which mapped to the 

same set of 4 proteins. As shown in Table 7-15, this set of 4 proteins resulted in an 

average classification accuracy of 91.3% on unseen test data. This 4 protein set, PDGF-

BB_1, RANTES_1, TNF-a_1 and IL-1a_1, is a subset of  the following sets with each 

comprising of 11, 18 and 9 features selected using NSC-GA, NSCM-GA and NSCP-GA, 

respectively, and is also a subset of 18 features in Ray et al. (2007).  
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Figure 7-16 A typical plot for convergence of fitness for the training data of AD using 

NSCMD-GA 

 

Table 7-15  Comparison of classification results between NSC-GA and NSCMD-GA for 

AD data 

NSC-GA (Euclidean dist.) Proposed NSCMD-GA (Mass dist.) 

Number of  proteins Unseen Test (%) Number of  proteins Unseen Test (%) 

11 90.21 4 91.3 
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7.2.3.2. Alon et al. Colon cancer data 

 

 

Figure 7-17 A typical plot for convergence of fitness for the training data of Colon 

using NSCMD-GA 

 

As seen in Figure 7-17, convergence in this sample run occurred after 853 generations 

with the maximum fitness of 1.86. The optimal shrinkage threshold obtained from each 

of the 15 independent runs had the same maximum fitness of 1.86 which mapped to the 

same set of 12 genes. As shown in Table 7-16, this set of 12 genes resulted in an 

average classification accuracy of 100% on the unseen test data. The set of 12 genes has 

gene accession numbers: T71025, Z24727, M76378, M63391, M76378, R87126, 

X12671, M76378, T92451, H43887, T47377 and J02854. This set is also a subset of the 

set of 28 genes found using NSC-GA. The interesting point from the perspective of 

early diagnostic test developments is a small set with high discriminatory potentials and 

here both sets (set of 12 genes and the set of 28 genes) produced the same classification 

accuracy on the unseen test dataset. 
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Table 7-16 Comparison of classification results between NSC-GA and NSCMD-GA for 

Colon data 

NSC-GA (Euclidean dist.) Proposed NSCMD-GA (Mass dist.) 

Number of genes Unseen Test (%) Number of genes Unseen Test (%) 

28 

6 

100 

93.75 
12 100 

 

 

7.2.3.3. Leukemia cancer data 

 

  

Figure 7-18 A typical plot for convergence of fitness for the training data of Leukemia 

using NSCMD-GA 

 

As seen in Figure 7-18, convergence in this sample run occurred after 56 generations 

with the maximum fitness of 1.92. The optimal shrinkage threshold obtained for each of 

the 15 independent runs had the same maximum fitness of 1.92 which mapped to the 

same set of 3 genes. As shown in Table 7-17, this set of 3 genes gave the average 

classification accuracy of 94.12% on unseen test data. The set of 3 genes selected with 

gene accession numbers, M27891, M84526, and X17042, is a subset of 5 features found 

in NSCPGA, and also a subset of 9 genes found in NSC-GA. 
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Table 7-17 Comparison of classification results between NSC-GA and NSCMD-GA for 

Leukemia data 

NSC-GA (Euclidean dist.) Proposed NSCMD-GA (Mass dist.) 

Number of genes Unseen Test (%) Number of genes Unseen Test (%) 

9 97.05 3 94.12 

 

 

7.2.3.4. Lymphoma cancer data 

 

 

Figure 7-19 A typical plot for convergence of fitness for the training data of Lymphoma 

using NSCMD-GA 

 

As seen in Figure 7-19, the convergence in this sample run occurred after 151 

generations with the maximum fitness of 1.997. The optimal shrinkage threshold 

obtained for each of the 15 independent runs had the same maximum fitness of 1.997 

which produced the same set of 3 genes for the Lymphoma cancer dataset. As shown in 

Table 7-18, the set of 3 genes gave the average classification accuracy of 100% on 

unseen test data. The set of 3 genes selected with gene accession numbers, 

GENE3327X, GENE3329X and GENE3361X, is a subset of 7 features found in NSC- 

GA. 
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Table 7-18 Comparison of classification results between NSC-GA and NSCMD-GA for 

Lymphoma data 

NSC-GA (Euclidean dist.) Proposed NSCMD-GA (Mass dist.) 

Number of genes Unseen Test (%) Number of genes Unseen Test (%) 

7 

12 

128 

129 

132 

95.45 

95.45 

100 

100 

100 

3 100 

 

 

7.2.3.5. Lung cancer data 

 

 

Figure 7-20 A typical plot for convergence of fitness for the training data of Lung using 

NSCMD-GA 

 

As seen in Figure 7-20, the convergence in this sample run occurred after 21 

generations with the maximum fitness of 1.997. The optimal shrinkage threshold 

obtained for each of the 15 independent runs had the same maximum fitness of 1.997 

which produced the same set of 2 genes for the Lung cancer dataset. As shown in Table 

7-19, the set of 2 genes gave the average classification accuracy of 63.33% on unseen 
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test data. The set of 2 genes selected with accession numbers, 33328_at and 40936_at, is 

a subset of 8 genes found in NSC-GA. 

 

Table 7-19 Comparison of classification results between NSC-GA and NSCMD-GA for 

Lung data 

NSC-GA (Euclidean dist.)  Proposed NSCM-GA (Mass dist.) 

Number of genes Unseen Test (%) Number of genes Unseen Test (%) 

8 

9 

10 

11 

100 2 63.33 

 

 

7.2.3.6. Ovarian cancer data 

 

 

Figure 7-21 A typical plot for convergence of fitness for the training data of Ovarian 

using NSCMD-GA 

 

As seen in Figure 7-21, the convergence in this sample run occurred after 37 

generations with the maximum fitness of 1.964. The optimal shrinkage thresholds 

obtained for the 15 independent runs produced the 12 sets of 10 peptides, 2 sets of 11 

peptides and 1 set of 20 peptides for the Ovarian cancer dataset. As shown in Table 
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7-20, the set of 10, 11 and 20 peptides gave the average classification accuracy of 

63.33% on unseen test data. The smaller set is a subset of the larger sets. 

 

Table 7-20 Comparison of classification results between NSC-GA and NSCMD-GA for 

Ovarian data 

NSC-GA (Euclidean dist.) Proposed NSCMD-GA (Mass dist.) 

Number of peptides Unseen Test (%) Number of peptides Unseen Test (%) 

7 96.06 

10 

11 

20 

92.12 

92.12 

88.97 

 

 

7.2.3.7. Prostate cancer data 

 

 

Figure 7-22 A typical plot for convergence of fitness for the training data of Prostate 

using NSCMD-GA 

 

As seen in Figure 7-22, the convergence occurred after 43 generations with the 

maximum fitness of 1.94. The optimal shrinkage threshold obtained for each of the 15 

independent runs had the same maximum fitness of 1.94 which produced the same set 
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of 5 genes for the Prostate cancer dataset. As shown in Table 7-21, the set of 5 genes 

gave the average classification accuracy of 94.12% on unseen test data. The set of 5 

genes selected with gene accession numbers are 41468_at, 37639_at, 38406_f_at, 

769_s_at and 556_s_at, which is a subset of 6 genes found in NSC-GA. 

 

Table 7-21 Comparison of classification results between NSC-GA and NSCMD-GA for 

Prostate data 

NSC-GA (Euclidean dist.) Proposed NSCMD-GA (Mass dist.) 

Number of 

genes 
Unseen Test (%) Number of genes 

Unseen Test 

(%) 

6 90.2 5 94.12 

 

 

7.2.4. Summary: selected feature subsets and corresponding classification results 

 

Table 7-22 to Table 7-30 summarised all the features sets that were obtained using 

NSCM-GA, NSCP-GA, NSCMD-GA and NSC-GA on the seven datasets. 
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Table 7-22 Summary of the sets of selected features obtained from NSCM-GA, NSCP-

GA, NSCMD-GA and NSC-GA for AD data 

Proteins 

NSC-GA 

(Euclidean dist.) 

Proposed approaches 

NSCM-GA NSCP-GA NSCMD-GA 

Number of 

proteins 
Number of proteins 

11 18 9 4 

PDGF-BB_1 √ √ √ √ 

RANTES_1 √ √ √ √ 

IL-1a_1 √ √ √ √ 

TNF-a_1 √ √ √ √ 

EGF_1 √ √ √ 

M-CSF_1 √ √ √ 

ICAM-1_1 √ √ √ 

IL-3_1 √ √ √ 

IL-11_1 √ √ √ 

GCSF_1 √ √ 

ANG-2_1 √ √ 

PARC_1  √ 

GDNF_1  √ 

TRAIL R4_1  √ 

IL-8_1  √ 

MIP-1d_1  √ 

IGFBP-6_1  √ 

MCP-3_1  √ 
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Table 7-23 Summary of the sets of selected features obtained from NSCM-GA, NSCP-

GA, NSCMD-GA and NSC-GA for Colon data  

Gene Accession 

number 

 

NSC-GA 

(Euclidean dist.) 

Proposed approaches 

NSCM-GA NSCP-GA NSCMD-GA 

Number of genes Number of genes 

28 7 6 12 

T71025 √ √ √ √ 

M63391 √ √ √ √ 

R87126 √ √ √ √ 

M76378 √ √ √ √ 

T92451 √ √ √ √ 

 J02854 √ √ √ √ 

M76378 √ √  √ 

R78934 √    

M26697 √    

Z24727 √   √ 

X55715 √    

T60778 √    

T57619 √    

M76378 √   √ 

H64489 √    

Z50753 √    

T60155 √    

M64110 √    

H40560 √    

T58861 √    

M22382 √    

X12671 √   √ 

T95018 √    

X86693 √    

H43887 √   √ 
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T47377 √   √ 

L05144 √    

H55758 √    

 

Table 7-24 Summary of the sets of selected features obtained from NSCM-GA, NSCP-

GA, NSCMD-GA and NSC-GA for Leukemia data  

Gene 

Accession 

number 

 

NSC-GA 

(Euclidean dist.) 

Proposed approaches 

NSCM-GA NSCP-GA NSCMD-GA 

Number of genes Number of genes 

9 9 4 5 24 3 

M27891 √ √ √ √ √ √ 

M84526 √ √ √ √ √ √ 

M96326 √ √ √ √ √ √ 

X17042 √ √ √ √ √  

U50136 √ √  √ √  

U46751 √ √   √  

X95735 √ √   √  

M28130 √ √   √  

Y00787 √ √   √  

L08246     √  

L16896     √  

M11147     √  

M16038     √  

M19507     √  

M55150     √  

M57710     √  

M62762     √  

M63138     √  

M69043     √  

Y12670     √  

X85116     √  
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J03801     √  

M19045     √  

X14008     √  

 

Table 7-25 Summary of the sets of selected features obtained from NSCM-GA, NSCP-

GA, NSCMD-GA and NSC-GA for Lymphoma data  

Gene 

accession 

number 

NSC-GA 

(Euclidean dist.) 

Proposed approaches 

NSCM-GA NSCP-GA NSCMD-GA 

Number of genes Number of genes 

12 7 3 

The list of 80 

genes is shown in  

 

Table 7-26 

3 

GENE3327X √ √ √ √ 

GENE3329X √ √ √ √ 

GENE3361X √ √ √ √ 

GENE3332X √ √   

GENE3330X √ √   

GENE3258X √ √   

GENE3256X √ √   

GENE3328X √    

GENE3314X √    

GENE3260X √    

GENE1252X √    

GENE3967X √    
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Table 7-26  List of 80 genes in the selected set obtained from NSCP-GA for Lymphoma 

data 

Gene accession numbers 

GENE3940
X 

GENE3554
X 

GENE3325
X 

GENE3338
X 

GENE3259
X 

GENE1212
X 

GENE3966
X 

GENE1693
X 

GENE3941

X 

GENE2496

X 

GENE3326

X 

GENE3341

X 

GENE3256

X 

GENE1213

X 

GENE3967

X 

GENE1694

X 

GENE3939
X 

GENE2326
X 

GENE3327
X 

GENE3314
X 

GENE3261
X 

GENE1251
X 

GENE3968
X 

GENE1697
X 

GENE3946

X 

GENE2106

X 

GENE3328

X 

GENE3312

X 

GENE3263

X 

GENE1252

X 
GENE947X 

GENE1719

X 

GENE3945
X 

GENE2066
X 

GENE3329
X 

GENE3311
X 

GENE3264
X 

GENE1174
X 

GENE3932
X 

GENE1720
X 

GENE3947

X 

GENE2065

X 

GENE3330

X 

GENE3309

X 

GENE3265

X 

GENE1159

X 

GENE3617

X 

GENE3839

X 

GENE3699

X 

GENE3290

X 

GENE3331

X 

GENE3361

X 

GENE3246

X 

GENE3988

X 

GENE3815

X 

GENE1349

X 

GENE3755

X 

GENE3347

X 

GENE3332

X 

GENE3258

X 

GENE2760

X 

GENE3987

X 
GENE384X 

GENE1171

X 

GENE3556

X 

GENE3346

X 

GENE3334

X 

GENE3257

X 

GENE3025

X 

GENE3986

X 

GENE1609

X 

GENE1080

X 

GENE3555

X 

GENE3315

X 

GENE3335

X 

GENE3260

X 

GENE1211

X 

GENE3965

X 

GENE1616

X 

GENE1556

X 

 

Table 7-27 Summary of the sets of selected features obtained from NSCM-GA, NSCP-

GA, NSCMD-GA and NSC-GA for Lung data  

Gene 

accession 

number 

NSC-GA 

(Euclidean dist.) 

Proposed approaches 

NSCM-GA NSCP-GA NSCMD-GA 

Number of genes Number of genes 

11 9 11 4 5 7 2 

33328_at  √ √ √ √ √ √ √ 

40936_at  √ √ √ √ √ √ √ 

34320_at √ √ √ √ √ √  

32551_at √ √ √ √ √ √  

37157_at √ √ √  √ √  

36533_at √ √ √   √  

37954_at √ √ √   √  

37716_at  √ √ √     

33833_at √ √ √     

33327_at √  √     

35823_at √  √     
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Table 7-28 Summary of the sets of selected features obtained from NSCM-GA, NSCP-

GA, NSCMD-GA and NSC-GA for Ovarian data  

Gene 

accession 

number 

NSC-GA 

(Euclidean dist.) 

Proposed approaches 

NSCM-GA NSCP-GA NSCMD-GA 

Number of 

Peptides 
Number of Peptides 

7 1 2 8 9 10 10 11 20 

MZ244.36855 √ √ √ √ √ √ √ √ √ 

MZ244.66041 √  √ √ √ √ √ √ √ 

MZ244.95245 √   √ √ √ √ √ √ 

Z245.24466 √   √ √ √ √ √ √ 

MZ245.8296 √   √ √ √ √ √ √ 

MZ245.53704 √   √ √ √ √ √ √ 

MZ246.12233 √   √ √ √ √ √ √ 

MZ246.41524    √ √ √ √ √ √ 

MZ25.589892     √ √ √ √ √ 

MZ25.49556      √ √ √ √ 

MZ25.684398        √ √ 

MZ28.600577         √ 

MZ220.47402         √ 

MZ28.700483         √ 

MZ220.75125         √ 

MZ29.001246         √ 

MZ246.70832         √ 

MZ463.55767         √ 

MZ463.95962         √ 

MZ464.36174         √ 
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Table 7-29 Summary of the sets of selected features obtained from NSCM-GA, NSCP-

GA, NSCMD-GA and NSC-GA for Prostate data  

Gene 

Accession 

number 

NSC-GA 

(Euclidean dist.) 

Proposed approaches 

NSCM-GA NSCP-GA NSCMD-GA 

Number of genes Number of genes 

6 17 5 5 

41468_at √ √ √ √ 

37639_at √ √ √ √ 

38406_f_at √ √ √ √ 

769_s_at √ √ √ √ 

556_s_at √ √ √ √ 

31444_s_at √ √   

31527_at  √   

33614_at  √   

39756_g_at  √   

40435_at  √   

40436_g_at  √   

36587_at  √   

36666_at  √   

37720_at  √   

216_at  √   

38429_at  √   

40282_s_at  √   

 

Table 7-30 shows a summary of classification results associated with using the different 

sets of features, obtained from NSC-GA, NSCM-GA, NSCP-GA and NSCMD-P on the 

AD, Colon, Leukemia, Lymphoma, Lung, Ovarian and Prostate cancer data, on the 

corresponding unseen test dataset. 
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Table 7-30 Summary of classification results for the respective unseen test datasets 

using the corresponding feature sets obtained using  NSC-GA, NSCM-GA, NSCP-GA 

and NSCMD-GA for  each of the seven datasets  

Dataset 

NSC-GA 

(Euclidean dist.) 

Proposed approaches 

NSCM-GA NSCP-GA NSCMD-GA 

No of 

features 

Test 

(%) 

No of 

features 

Test 

(%) 

No of 

features 

Test 

(%) 

No of 

features 

Test 

(%) 

AD 11 90.21 18 97.82 9 92.39 4 91.3 

Colon 
28 

6 
100 7 93.54 

6 

 42 
100 12 100 

Leukemia 9 97.05 9 94.12 

4 

5 

24 

94.12 3 94.12 

lymphoma 

7 

12 

128 

129 

132 

95.45 

95.45 

100 

100 

100 

3 100 

72 

73 

75 

77 

80 

100 3 100 

Lung 

8 

9 

10 

11 

100 
9 

11 
98.88 

4 

5 

7 

100 2 63.33 

Ovarian 7 96.06 1 96.06 

 

2 

8 

9 

10 

 

96.85 

96.06 

96.06 

96.06 

10 

11 

20 

92.12 

92.12 

88.97 

Prostate  6 90.2 17 100 5 90.2 5 94.12 

 

As seen in Table 7-30, the columns of “No of features” list the number of selected 

features using the different approaches, NSC-GA, NSCM-GA, NSCP-GA and NSCMD-

GA, with the smaller set being a subset of the larger set of features for the 

corresponding dataset. Also seen from the table, for AD data, NSCM-GA approach was 

the best in terms of achieving the highest classification accuracy, 97.82%, on unseen 

test data compared with NSC-GA, NSCP-GA and NSCMD-GA. However, NSCMD-GA 

approach selected a smallest set of features, 4, and classification accuracy of 91.3%, that 

was higher than the NSC-GA approach and compatible with the NSCP-GA approach; 

for Colon data, NSCP-GA outperformed the other approaches in terms of selecting a 
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smallest set of relevant features, 6, with highest classification accuracy of 100%; for 

Leukemia data, NSCMD-GA selected a smallest set of relevant features, 3, and still 

retained the same classification accuracy of 94.12% as of NSCM-GA and NSCP-GA 

using 13, 9 and 5 features respectively, and was compatible with NSC-GA of 97.05 

using 9 features. It can be stated that NSCMD-GA approach is able to select a smallest 

set of features and still retain compatible classification accuracy compared to the other 

approaches for AD and Leukemia data; for Lymphoma data, NSCM-GA and NSCMD-

GA outperformed the other approaches for both in selecting a smallest feature set, 3, 

with the highest classification accuracy of 100%; for Lung and Ovarian data, NSCP-GA 

showed its best in overall for selecting small set of 4 and 2 features with the highest 

classification accuracy of 100% and 96.85%, respectively; and for Prostate data, NSCM-

GA selected the larger set of 17 features with the highest classification accuracy of 

100%, NSCMD-GA outperformed NSC-GA and NSCP-GA for selecting a smallest set of 

5 features with higher classification accuracy of 94.12%.  

 

Again, these results showed that the developed techniques support a comprehensive 

analysis, providing a number of multi-variate signatures for each dataset, each with a 

varying number of features. Biomedical researchers can make informed decision based 

on the tradeoffs between classification accuracy and size of feature sets as well as use 

domain knowledge to decide on the potential relevance of features in the different 

signatures. An important aspect of the smaller sets being subsets of the larger set also 

provides some information about the possible correlations/interactions amongst the 

features and the joint behaviour of these features. 

 

7.3. Summary 

 

This chapter has described the proposed approach of implementing different similarity 

distance measures in the NSC classifier and incorporating NSC and GA to 

automatically search for optimal shrinkage threshold values for NSC. The approach 

used the modified NSC classifier with different distance measure as an evaluator to 

evaluate the fitness of the candidate shrinkage threshold values, utilized the GA as a 

search algorithm to search for optimal shrinkage threshold values, and obtained the sets 

of relevant features. The results obtained shows that the new approaches, NSCM-GA, 
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NSCP-GA and NSCMD-GA, are able to select smaller set of features and improve 

classification accuracy compared to the NSC classifier using Euclidean distance.  

 

In the next chapter, the proposed approach of using a multi-objective algorithm to 

incorporate into the NSC algorithm for searching multiple optimal solutions will be 

described in details.  
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8. Incorporating Nearest shrunken centroid and multi-objective 

evolutionary algorithm for searching multiple shrinkage threshold 

solutions 

 

8.1. Introduction 

 

In Chapter 5, the approach of incorporating NSC into GA (NSC-GA) was proposed for 

finding an optimal shrinkage threshold for NSC automatically (Dang et al., 2013). In 

NSC-GA, the approach of aggregating 2 objective functions as a single objective was 

implemented for measuring the fitness of chromosomes. In order to optimize a multi-

objective problem more effectively and to obtain multiple optimal solutions in a single 

run, an approach involving MOEA is developed in this study. The non-dominated 

sorting algorithm (NSGA2) algorithm (Deb et al., 2002) is  an example of an MOEA 

that has been used in bioinformatics. For example, Deb, et al. (2002), Deb and Reddy 

(2003), Mitra and Banka (2006), and Banerjee, Mitra and Banka (2007) employed the 

NSGA2 algorithm to produce multiple feature sets for Colon, Lymphoma and Leukemia 

cancer dataset in their studies. One of the advantages of using MOEAs is its ability to 

evaluate multiple objectives simultaneously in order to find optimal solutions showing 

good tradeoffs between all objective functions (Deb et al., 2002). For example, Deb and 

Reddy (2003) employed NSGA2 to analyse the Leukemia cancer dataset and obtained 

352 different three-gene sets that gave 100% classification accuracy.  

 

Motivated by 1) the effectiveness of MOEA (NSGA2) in its potential to find  multiple 

solutions, 2) the NSC algorithm in FS and classification, and 3) the automated shrinkage 

threshold optimization in NSC-GA,  a hybrid approach incorporating NSGA2 (Deb et 

al., 2002) and NSC algorithm (Tibshirani et al., 2002) is proposed in this chapter to 

automatically find the Pareto front associated with optimal  shrinkage threshold values 

for the NSC.  These optimal shrinkage threshold values mapped to potential sets of 

relevant features for classification. The aim of this study is to see the impact of 

incorporating a MOEA with NSC with the use of multiple objective functions to 

evaluate the fitness of chromosomes in the task for obtaining multiple shrinkage 

threshold solutions. This chapter is an extended version of the paper “NSC-NSGA2: 

Optimal Search for Finding Multiple Thresholds for Nearest Shrunken Centroid” (Dang 
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& Lam, 2013). The proposed approach uses NSC as a fitness evaluator in NSGA2 to 

measure the goodness of feature sets and NSGA2 optimizes the search for multiple 

solutions.  Unlike NSC-GA, where the shrinkage threshold value is selected on the basis 

of a single objective function which is an aggregation of 2 objective functions, the 

proposed approach, NSC-NSGA2, supports finding optimal shrinkage threshold values 

while considering different tradeoffs by simultaneously considering multiple objective 

functions. The proposed approach is evaluated using the evaluation strategy and the 7 

biomedical datasets described in Chapter 3. 

 

Section 8.2, describes the proposed approach, NSC-NSGA2, with evaluation results in 

Section 8.3, details and results for NSC-NSGA2 using 3 objective functions are 

described in Section 8.4. Section 8.5 describes the investigation of using Mahalanobis 

distance in NSC-NSGA2 and followed by the summary in Section 8.6. 

 

8.2. The proposed approach, NSC-NSGA2 

 

Figure 8-1 illustrates the framework of the proposed approach, NSC-NSGA2. There are 

2 main steps consisting of: 

 

Step 1:  This step carries out the procedure for automatic calculation of Thmax. This 

procedure is performed once only at the beginning of NSC-NSGA2. 

 

Step 2: NSGA2 is employed in this step to search for multiple optimal sets of shrinkage 

thresholds for NSC algorithm. The NSC algorithm is employed as a fitness evaluator to 

evaluate the fitness of each chromosome in terms of the number of features selected and 

its training classification accuracy. 
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 Figure 8-1 Framework of the proposed approach, NSC-NSGA2 
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8.2.1. Issues related to the proposed approach, NSC-NSGA2 

 

Chromosomes encoding and fitness evaluation are similar to those used in NSC-GA. 

The same procedure for estimation of the initial range of values for the shrinkage 

threshold described in Section 5.2.1 is also used in NSC-NSGA2. The following section 

describes the issues associated with encoding chromosomes and fitness evaluation. 

 

8.2.1.1. Encoding chromosomes 

 

The aim of the proposed approach is to use a MOEA, specifically NSGA2 to find a 

Pareto front consisting of multiple shrinkage threshold values that are real numbers for 

NSC. Similar to the NSC-GA, the most appropriate encoding representation for 

chromosomes in this study would also be a real-encoding. But unlike the NSC-GA 

approach in which, each chromosome consists of a number of genes (shrinkage 

thresholds), in NSC-NSGA2, each chromosome consists of a single gene only, 

representing one shrinkage threshold value.  

 

8.2.1.2. Fitness evaluation using NSC as a fitness evaluator 

 

The NSC algorithm is also employed as a fitness evaluator in the NSC-NSGA2 

approach for evaluating the fitness of the chromosomes using the training dataset. The 

NSC algorithm uses shrinkage threshold values to perform FS and classification. As a 

result, each shrinkage threshold (chromosome) is associated with a set of features and 

classification accuracy. To investigate the impact of the approach to using more than 2 

objective function, two versions: NSC-NSGA2 and NSC-NSGA2* were implemented 

involving two and three objective functions respectively. The first two objective 

functions (f1 and f2) have been described in Section 5.3.2.2 and the third objective 

function (f3) is defined in Equation 8.6. 

 

The basic concepts of NSC algorithm (Tibshirani et al., 2002) has been reviewed in 

Section 2.3.3. The following sections describe the steps associated with the proposed 

approach, NSC-NSGA2. The parameters used to run NSC-NSGA2 are also described in  
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Table 8-1. 

 

8.2.2. Steps of the proposed approach, NSC-NSGA2 

 

8.2.2.1. Step 1:  Thmax calculation 

 

The same procedure for calculating Thmax described in Section 5.2.2.1 is employed here 

to find the Thmax value (upper bound shrinkage threshold value) for the respective 

dataset. 

 

8.2.2.2. Step 2: Multi-objective evolutionary algorithm search optimization 

 

The study uses NSGA2 and NSC to automatically obtain multiple optimized shrinkage 

threshold values for finding relevant features for classification. The following section 

describes Pareto-based MOEA in general and NSGA2 specifically. 

 

The concept of Pareto optimality and dominance as defined by Coello and Lamont 

(2004), Ayala and Coelho (2008), and Fonseca and Fleming (1995) is: 

     X is a Pareto optimal if and only if F( ) = (fi ( ),.., fk ( )) is not dominated by F(  ) 

= (f1 (  ),.., fk (  )) where      X. A solution  1 dominates  2 if and only if f ( 1) less 

than or equal f ( 2), which means: 

 ∀i {1..k}, fi ( 1) ≤  fi ( 2) ⋀ ∃i   {1..k}  : fi ( 1) < fi ( 2) 

 

if no other solutions dominate  1, then  1 is non-dominated. Thus the Pareto front is the 

set of non-dominated solutions.  

 

Figure 8-2 illustrates the Pareto front with a set of solutions. 
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Figure 8-2 Pareto front solutions 

 

According to Ayala and Coelho (2008), a good solution obtained from MOEA must be 

very close to the Pareto front and is also wide spread. In order to achieve this desire  

solution, MOEA first  needs to find a solution set that is close to the Pareto front as 

possible and then search through the Pareto front to obtain a  set of solution which is 

more diverse than the other solution sets in the Front. 

 

MOEA selects non-dominated solutions (Pareto front) based on the Pareto ranking. The 

population is sorted according to Pareto dominance of individuals, and then all the non-

dominated individuals are given the same rank which is a higher rank than the 

dominated individuals. The same rank is given for all non-dominated individuals so that 

they would have the equal probability of being chosen to reproduce offspring. 

According to Coello and  Lamont (2004), the diversity of the Pareto front is maintained 

by different strategies such as fitness sharing and niching, clustering, and use of 

entropy. The use of elitist schemes is very popular in MOEA in recent years. With this 

elitist approach, a second population is used along with the main population to store the 

non-dominated solutions found during the evolutionary process. It is also used to 

improve the diversity of the solutions and to adjust the selection rate of the algorithm 

(Coello & Lamont, 2004). Another approach of using this elitist approach is to combine 

the parent population and its offspring population into a single population as in NSGA2 

(Deb et al., 2002) to maintain the elitist solutions (Coello & Lamont, 2004). The 

following section describes steps involving NSGA2 in the proposed approach. 

 

NSGA2 incorporates the concept of Pareto front into MOEA (Deb et al., 2002) which 

was developed based on NSGA (N. Srinivas & Kalyanmoy, 1994). NSGA2 is an 

improved version of NSGA in terms of less computational time, incorporating elitism to 

      Pareto front solutions  

Dominated solutions 

f2 

f1 
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improve the performance of the algorithm and avoid losing good solutions, and not 

using a sharing parameter provided by the user (Deb et al., 2002). The following figure 

illustrates the framework of NSGA2 with the major phases. 

 

Figure 8-3 Major steps of NSGA2 adapted from Deb et al. (2002) 

 

a) Population initialization 

After the chromosome representation has been determined and the Thmax value has also 

been calculated, a population of chromosomes is then initialized. Each chromosome 

(shrinkage threshold value) is initialized to a real value generated randomly in the range 

[0, Thmax] using RNG. Figure 8-4 describes the procedure used to initialize the 

population and Figure 8-5 shows an example of an initial population. 

 

 

Input: 

 Thmax 

Size of population, p 

Output: 

 An initialized population of p chromosomes 

Steps: 

1. Set population (Ip) as 1dimensional array of size p of real numbers 

2. Set Ip = { } 

3. For counter from 1 to p 

a. Generate a real random number (Rn) in the range [1, Thmax] using a  

RNG 

b. Store Rn to Ip[counter] 

 

Figure 8-4 Initial population algorithm using RNG 
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1.153       25  

2.969      1  

1.176       24 

1.932       14 

0.702       45 

1.337       16 

0.247       87 

2.438       4 

0.001       150 

1.872       15 

 

 

Figure 8-5 An example of an initial population with 10 chromosomes with shrinkage 

threshold values and the number of features in their corresponding sets 

 

As seen in the example in Figure 8-5, each chromosome consists of only one shrinkage 

threshold value which has been initialized to be in the range between 0 and Thmax, that 

is [0, 3], Each shrinkage threshold value is associated with a set of features, for 

example, shrinkage threshold value of 1.153 resulted in a set of the most relevant 25 

features and a value of 0.001 resulted in a set of the entire initial 150 features 

(highlighted row 1 and 9, respectively). Once the initial population has been initialized, 

the next step is to evaluate the fitness of chromosomes in the population.  

 

b) Fitness evaluation in NSC-NSGA2 

In this step, two sub-steps are carried out: firstly, the fitness for each chromosome in the 

population is calculated using two objective functions: f1 and f2 (or three objective 

functions in the case of NSC-NSGA2*), and secondly, chromosomes in the population 

are sorted using the non-dominated sorting algorithm (Deb et al., 2002) shown in Figure 

8-8. 

 

The NSC algorithm described in Section 2.3.3 is employed here as a fitness evaluator to 

determine the fitness of the chromosomes associated with a training dataset. To obtain 

the fitness of the chromosome, firstly, the chromosome (shrinkage threshold) value is 

used in the NSC algorithm to obtain the corresponding set of features and secondly, this 

Gene (shrinkage threshold)  

Chromosomes  

 

   Associated feature sets 
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set of features is then used to construct a classifier that is used to classify the training 

data. The set of features and its classification result are then used in the calculation of 

the fitness of the chromosome. The two objective functions (f1 and f2) have been 

described in Section 5.3.2.2 and are shown as follows. 

 

 f1 = (Ntotal - Natt) / Ntotal   (8.1) 

                         (8.2) 

 

Objective function f1 is designed for maximizing the fitness of chromosomes (solutions) 

that has a minimum number of features, i.e., the smaller the number of features selected 

the better the fitness for the chromosome, f2 is designed for maximizing the fitness of 

chromosomes that has highest training classification accuracy, i.e., the higher the 

training classification accuracy the better the fitness for the chromosome.  

 

c) Selection and mutation operators 

Selection and mutation operators for real encodings are used in NSC-NSGA2. The 

crowded tournament selection is employed in NSGA2 for chromosome selection. The 

crowded tournament selection is a binary tournament selection with different selection 

criteria based on the rank and crowding distance of the chromosomes. That is, two 

chromosomes are selected randomly from the population to form a tournament group 

(i.e. the size of tournament group is two for a binary tournament) and the best 

chromosome of the group is selected based on the fitness ranked by the non-dominated 

sorting procedure (Deb et al., 2002; Suzuki et al., 1995). In the case of two 

chromosomes with different ranks then choose the one with a better rank. Otherwise, if 

the two chromosomes have the same rank, then the crowding distance algorithm is 

employed to calculate the crowding distance of the chromosomes and the chromosome 

with a smaller crowding distance is chosen (Deb et al., 2002; Suzuki et al., 1995). 

Tournament selection has been described in Section 2.4.4.2, the crowded tournament 

selection and the crowding distance algorithm (Deb et al., 2002) are described in Figure 

8-6 and Figure 8-7, respectively. 
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Input: 

 Population front (P) 

 Population ranks (Prank) 

Output: 

 Best chromosome (Cbest) 

Steps: 

1. Set k = size of binary tournament = 2 

2. For counter from 1 to k 

 Select a chromosome (C1) randomly from P 

 Select a chromosome (C2) randomly from P 

3. Compare the rank of C1 and C2 using Prank 

i. If rank of C1 = rank of C2 

 Perform crowding distance algorithm 

 Select the chromosome (Cbest) with a smaller crowding distance 

ii. Else 

  Select a chromosome (Cbest) with the best rank  

 

Figure 8-6 Crowded tournament selection algorithm used in Deb et al. (2002) 

 

 

Input: 

 Population (P) 

 Objective functions f [f1..fn] 

 Number of objective functions (Nf) 

Output: 

 Individual crowding distance  

Steps: 

1. For each n individual in P 

      Initialize Individual distance (Id) = 0     

2. For counter from 1 to Nf 

a. Sort P based on f 

b. Set Id1  = Idn   ∞       

3. For counter = 2 to (n -1)       

        Idi = Idi+ ((I(i+1).m  - I(i-1).m)/ ∫    - ∫       
  (where I(i).m = value of mth objective function of the kth  

individual in i) 

 

Figure 8-7 Crowding distance algorithm used in Deb et al. (2002) 

 

Note that in Step 2b, the two boundary solutions, i.e., solutions with smallest and largest 

objective function values, are assigned a value of infinite distance (∞) so that the 

boundary solutions are always selected. Step 3 in Figure 8-7 is used to calculate the 
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Euclidean distance for the remaining solutions, i.e., solutions between the boundary 

solutions. 

 

Gaussian distribution probability is employed as the mutation operator to modify the 

value of a gene in a chromosome.  When mutating a single real value, Gaussian 

probability distribution function is first used to get a number and then adding it to the 

value being mutated to produce a new number (Hedvat et al., 2003). The calculation of 

probability distribution,     , for a value   is defined by Equation (8.3) and the 

mutation value,      , is calculated by Equation (8.4). 

       (   √  )   (         )
     (8.3) 

                 (8.4) 

 

where   is a value of the gene (threshold), σ is a standard deviation,  μ is a mean of the 

value. 

 

σ  1 and μ 0 when mutating a chromosome with only one gene value, hence Equation 

(8.3) can be rewritten using Equation (8.5).       (  √  )   (   )
     (8.5) 

 

d) Offspring population (Po) generation 

The new offspring produced from one cycle consisting of the selection and mutation 

process are then placed into the offspring population. The process of creating new 

offspring via the cycle consisting of the selection and mutation process is repeated until 

the population for new offspring of size N (the same size of parent population size) is 

obtained. 
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e) Union (combination) of two populations (Pi and Po) 

Two populations (in the same generation), the first being the parent population (Pi) of 

size N and the second being the offspring population (Po) also of the size N, are then 

combined to make a larger population of size 2N, Pu.  

 

f) Rank the individuals in the combined population, Pu, using the non-dominated  

sorting algorithm (Figure 8-8). All the best chromosomes of rank #1 are placed in Front 

#1, all the next best chromosomes of rank #2 are placed in Front #2, etc., and when the 

sorting algorithm has found a sufficient number of fronts having a specified number of 

chromosomes for the new population, it stops the sorting process (Deb et al., 2002).  

 

For each individual p in population P 

Initialise Sp =                      

               np =0                      

For each individual q in population P 

     If p dominates q then  

 Add q to Sp 

     Else if q dominates p then 

       np = np+1              

     if np=0                              

          prank =1           

          add p to Front1       

Set Front counter i =1 

While Fronti ≠   

    Set Q =              

     For each p in Fronti 

        For each q in Sp               

           nq = nq-1         

                if nq =0      

         qrank = i+1        

   add q to Q       

    i = i+1                       

    set Fronti = Q  

 

Figure 8-8 Non-dominated sorting procedure used in Deb et al. (2002)  

 

g) Generate a new population (Pi+1) of size N 

After the ranked chromosomes in Pu were sorted into Fronts on the basis of their 

respective ranks, a new population (Pi+1) of size N is then created by populating it, 

starting with chromosomes from the front with the highest rank. The process continues 

to incorporate chromosomes, taken from a descending order of ranked fronts. In the 
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event that there are more chromosomes in the ultimate Front to be included for 

completing a population of size N, chromosomes in this front are sorted using the 

crowding distance procedure first and the remaining slots in the population are then 

filled with the required number of “best chromosomes” from  this front. Figure 8-9 

showed the steps involved in generating the new population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-9 Steps for generating the new population from the combined population 

 

h) Repeat the process 

The new population Pi+1 undergoes the next iteration consisting of all steps described 

above, i.e., from fitness evaluation to the step for generation of a new population. These 

iterations of steps are repeated until the termination condition is satisfied (i.e. the 

predefined maximum number of generations has been executed).  A Pareto front is the 

output.  The following figure shows an example of a Pareto front of shrinkage threshold 

solutions with their associated objective function values. 
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Figure 8-10 An example of Pareto front of 9 shrinkage threshold solutions 

 

Figure 8-10 shows an example of a Pareto front consisting of 9 shrinkage threshold 

value solutions listed in the “Pareto front” column with their associated objective 

function of f1 and f2 listed in the last 2 columns (Objective fitness column). For example 

for the 1
st
 shrinkage threshold value, 2.8555 (highlighted) in the shrinkage threshold 

value column having associated f1=0.9916 and f2=0.6626 (highlighted) in the objective 

fitness column. 

 

8.2.3. Parameter settings for NSGA2 

 

According to Deb et al. (2002), the mutation rate used in their study was based on 1/n 

where n is the number of attributes. In this study, since the chromosome has only one 

attribute (shrinkage threshold value), the algorithm relies solely on a mutation operator 

to generate new offspring. To adapt to this situation the mutation rate of 1/n is used 

where n is the population size (Goldberg, 1989). The algorithm was executed with the 

population size of 100, and mutation rate of 0.01, i.e., 1/100. The complete set of 

parameter settings used in this study is shown in Table 8-1. As each chromosome 

consists of a single gene, crossover operations are not applicable.  

 

 

 

  

0.9916666666666667  0.6626506024096386  

0.8416666666666667  0.9036144578313254  

0.9666666666666667  0.7228915662650602  

0.9583333333333334  0.7951807228915662  

0.9083333333333333  0.8674698795180723  

0.8666666666666667  0.8795180722891566  

0.9333333333333333  0.8192771084337349  

0.9166666666666666  0.8554216867469878  

0.95    0.8072289156626506  

2.855559333844611   

1.2154637472872774   

2.194804507510737   

2.0993206348249376   

1.5086645962070784   

1.3642342000485415   

1.7379179051564781   

1.6187309914352315   

1.868299886752155   

Objective fitness Pareto front 

f1 f2 
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Table 8-1 Parameter set used for NSC-NSGA2 

Parameters Values / Methods 

Population Size 100 

Chromosome Length 

- Real encoding 

1 

 

Mutation Probability 1 / Population size = 0.01 

Generation 1000 

Selection Crowded tournament 

Mutation Gaussian probability distribution 

 

 

8.3. Experiment results 

 

Experiments were carried out to evaluate the proposed approach, NSC-NSGA2, in 

terms of obtaining the Pareto front of shrinkage threshold values associated with the 

NSC for the datasets described in Section 3.1. For each of the 7 datasets, 15 

independent runs of the proposed approach were executed using the respective training 

data. For each run, a stratified 10 fold CV described in Section 3.2 was employed. Each 

shrinkage threshold solution on the Pareto front obtained from each run is used as input 

to the NSC algorithm to obtain its corresponding feature set. This feature set was then 

used to construct the corresponding NSC classifier to classify the unseen test data 

associated with the dataset. Where appropriate, the comparison of the performance of 

the proposed algorithm with existing work is based on classification accuracy and the 

selected feature sets. 

 

Two common characteristics are applicable across the results from the evaluation of the 

approach using each of the seven datasets. These are: 

 The classification results using each of the NSC classifiers on the respective 

unseen test dataset from each run are first recorded and the reported 

classification accuracy in the tables was an average of classification accuracy of 

these classifiers over the 15 independent runs. 

 In terms of the selected feature sets that were obtained as part of the evaluation, 

the smaller feature set is a subset of the larger feature set. For example, in Table 
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8-2, the set with 18 features is the subset of the set with 19 features and 

similarly, the set with one feature is both a subset of the set of 18 as well as the 

set of 19 features. 

 

8.3.1. Ray et al.  AD data 

 

The proposed algorithm, NSC-NSGA2, was executed 15 times with 10 fold CV on AD 

dataset using the NSGA2 parameter setting listed in Table 8-1. The results obtained 

from the 15 independent runs consists of 8 runs where their Pareto fronts has 10 

shrinkage thresholds, 3 runs with Pareto fronts of 9 shrinkage thresholds, 3 runs with 

Pareto fronts of 8 shrinkage thresholds, and 1 run with Pareto fronts of 7 shrinkage 

thresholds. Using these shrinkage thresholds led to selected sets of features consisting of 

1, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18 and 19 features. The convergence plot with a 

typical Pareto optimal front from one of the 15 runs is shown in Figure 8-11 and the 

NSC classification results using each of these sets of features on the unseen test dataset 

are shown in Table 8-3. 

 

 

Figure 8-11 A typical Pareto front plot of objective function f1 against f2 for AD dataset 
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As seen in Table 8-2, the proposed approach found a set of 18 and 19 features which are 

the same set of 18 and 19 features found in (Ray et al., 2007). The approach also found 

the same set of 11 features reported in Chapter 5 using the NSC-GA approach.  

 

Table 8-2 Sets of selected proteins using the proposed approach, NSC-NSGA2, for AD 

data 

 Proteins  
Protein sets 

19 18 17 16 15 11 10 9 8 7 6 5 4 1 

PDGF-BB_1 √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

RANTES_1 √ √ √ √ √ √ √ √ √ √ √ √ √  

IL-1a_1 √ √ √ √ √ √ √ √ √ √ √ √ √  

TNF-a_1 √ √ √ √ √ √ √ √ √ √ √ √ √  

EGF_1 √ √ √ √ √ √ √ √ √ √ √ √   

M-CSF_1 √ √ √ √ √ √ √ √ √ √ √    

ICAM-1_1 √ √ √ √ √ √ √ √ √ √     

IL-3_1 √ √ √ √ √ √ √ √ √      

IL-11_1 √ √ √ √ √ √ √ √       

GCSF_1 √ √ √ √ √ √ √        

ANG-2_1 √ √ √ √ √ √         

PARC_1 √ √ √ √ √          

GDNF_1 √ √ √ √ √          

TRAIL R4_1 √ √ √ √ √          

IL-8_1 √ √ √ √ √          

MIP-1d_1 √ √ √ √           

IGFBP-6_1 √ √ √            

MCP-3_1 √ √             

MDC_1 √              
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Table 8-3 Classification results for the AD data using the sets of selected features from 

NSC-NSGA2 approach 

Number of proteins  
Average classification Accuracy (%) 

(Unseen Test data) 

1  56.98 

4  72.82 

5  76 

6, 7   81.52 

9 82.6 

8  82.78 

10  83.4 

11  87.7 

17 91.3 

16  91.63 

15 92.39 

18 93.84 

19  94.56 

 

From the results it can also be seen that NSC-NSGA2 produced a number of potential 

feature sets that demonstrates the tradeoffs between the numbers of selected features 

and the classification accuracy for the unseen test data. For example, the smallest 

feature set (with 1 feature), the resulting classifier has the lowest classification accuracy 

for the unseen test data (56.98%), whilst the largest feature set (19 features) the 

resulting classifier has the highest test classification accuracy (94.56%) on the unseen 

test data. This type of analysis provides more information than univariate statistics and 

biomedical researchers can use it to gain a better understanding of the possible 

correlations amongst the features as well as the joint behaviour of features in their 

datasets.   
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8.3.2. Alon et al. Colon cancer data 

 

 

Figure 8-12 A typical Pareto front plot of objective function f1 against f2 for the Colon 

cancer dataset 

 

Using the same experimental procedure described above, the proposed algorithm is 

evaluated using the Colon dataset. A typical convergence plot with a Pareto optimal 

front consisting of 7 solutions is shown in Figure 8-12. NSC-NSGA2 found optimal 

shrinkage threshold values from the 15 independent runs that consist of 8 runs with a 

Pareto front of 5 shrinkage thresholds, 4 runs with a Pareto front of 6 shrinkage 

thresholds, 2 runs with a Pareto front of 4 shrinkage thresholds and 1 run with a Pareto 

front of 7 shrinkage thresholds. Using these shrinkage thresholds led to selected sets of 

features consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21, 23, 38, 39, 40, 42, 43, 44, 45, 47, 48, 

61, 62, 77, 83, 85, 87, 89 and 92 features (genes).  Classification results associated with 

classifiers constructed from these sets of selected features are shown in Table 8-4. An 

interesting point here is that classifiers constructed using feature sets that are supersets 

of the set of 23 features all performed worse than those classifiers constructed from 

feature sets that are subsets of the set of 23 features. The set of 9 genes includes known 

biomarkers associated with Colon cancer from the literature. These are M76378, 

J02854, M63391, Z50753, T71025, R87126, U25138, M82919 and T92451 

(highlighted genes in Table 8-4).  Note that Table 8-4  lists only the sets that have up to 
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23 genes but the evaluation has been done for all sets of features obtained using NSC-

NSGA2 and shown in Table 8-5. 

 

Table 8-4 Sets of genes selected using the proposed approach, NSC-NSGA2 for Colon 

cancer data 

Gene accession number 
Gene sets 

23 21 10 9 8 7 6 5 4 3 2 1 

M76378 √ √ √ √ √ √ √ √ √ √ √ √ 

J02854 √ √ √ √ √ √ √ √ √ √ √  

M63391 √ √ √ √ √ √ √ √ √ √   

Z50753 √ √ √ √ √ √ √ √ √    

T71025 √ √ √ √ √ √ √ √     

R87126 √ √ √ √ √ √ √      

U25138 √ √ √ √ √ √       

M82919 √ √ √ √ √        

T92451 √ √ √ √         

M76378 √ √ √          

Z24727 √ √           

M76378 √ √           

T56604 √ √           

H43887 √ √           

R36977 √ √           

X86693 √ √           

X63629 √ √           

M36634 √ √           

T67077 √ √           

H06524 √ √           

T60778 √ √           

H67764 √            

X12671 √            
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Table 8-5 Classification results for the Colon cancer data using the sets of selected 

features from NSC-NSGA2 approach 

Number of genes  
Average classification Accuracy (%) 

(Unseen Test data) 

61 , 87, 62, 86  62.5 

77, 83, 85, 92, 89 68.75 

38 , 48 81.25 

39, 40, 42, 43, 44, 45, 47 87.5 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21, 23 93.75 

 

 

8.3.3. Leukemia cancer data 

 

Using the same experimental procedure as before, the proposed algorithm was evaluated 

using the Leukemia cancer dataset. A typical Pareto optimal front from one of the 15 

independent runs is shown in Figure 8-13. 

 

 

Figure 8-13 A typical plot of a Pareto front of objective function f1 against f2 for the 

Leukemia cancer dataset 
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The Shrinkage threshold solutions obtained from the 15 independent runs led to selected 

sets of features consisting 2, 7, 9, 10, 11 and 13 features. The sets of 2, 7, 9, 10, 11 and 

13 features are listed in Table 8-6.  Five genes are associated with known Leukemia 

biomarkers in the literature; namely M84526_at, U50136_mal_at, D49950_at, 

M16038_at and X17042_at (highlighted genes in Table 8-6). Classifiers constructed 

using the set with 2 and 13 genes produced the same  average classification accuracy, 

91.18%, on unseen test data, and classifiers constructed using  the set of 7, 9, 10 and 11 

genes produced  the same  average classification accuracy of 94.11%. The set of 13 

genes having seven genes in common from the set of 9 genes reported in NSC-GA [7]. 

 

Table 8-6 Sets of genes selected using the proposed approach, NSC-NSGA2 for 

Leukemia cancer data 

Gene accession number 
Gene sets 

13 11 10 9 7 2 

M84526_at √ √ √ √ √ √ 

U50136_rna1_at √ √ √ √ √ √ 

D49950_at √ √ √ √ √  

M16038_at √ √ √ √ √  

M23197_at √ √ √ √ √  

X17042_at √ √ √ √ √  

X95735_at √ √ √ √ √  

M55150_at √ √ √ √   

M57710_at √ √ √ √   

Y00787_s_at √ √ √    

M27891_at √ √     

U82759_at √      

M28130_rna1_s_at √      
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Table 8-7 Classification results for the Leukemia cancer data using the sets of selected 

features from NSC-NSGA2 approach 

Number of genes 
Average classification Accuracy (%) 

(Unseen Test data) 

2, 13 91.18 

7,  9, 10, 11 94.12 

 

 

8.3.4. Ovarian cancer data 

 

Using the same experimental procedure as before, the proposed algorithm was evaluated 

using the Ovarian cancer dataset.  A typical convergence plot of Pareto optimal front 

with 5 solutions is shown in Figure 8-14.  

 

 

Figure 8-14 A typical Pareto front plot of f1 against f2 for Ovarian cancer dataset 

 

The results obtained from the 15 independent runs consist of 8 runs, each with a Pareto 

front of 5 shrinkage thresholds; 4 runs, each with a Pareto front of 3 shrinkage 

thresholds and 3 runs, each with a Pareto front of 4 shrinkage thresholds. Using these 

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

0.997 0.9975 0.998 0.9985 0.999 0.9995 1

Pareto front

f2 

f1 



244 

 

shrinkage thresholds led to selected sets of features consisting 1, 5, 6, 7, 36, 37, 38, 207, 

210, 212, 224, 227 and 230 features. The sets of 1, 5, 6, and 7 features are listed in 

Table 8-8. Classifiers constructed using the sets with 1, 5 and 6 peptides produced the 

same average classification accuracy, 96.85% , on the unseen test data, and the classifier 

constructed using the set of 7 peptides gives 96.06%. The approach also found the same 

set of 7 features reported in Chapter 5 using the NSC-GA approach, which is associated 

with known ovarian peptide biomarkers in the literature. 

 

Table 8-8 Subsets of genes selected using the proposed approach, NSC-NSGA2 for 

Ovarian cancer data 

Gene accession number 
Gene sets 

7 6 5 1 

MZ245.24466 √ √ √ √ 

MZ244.66041 √ √ √  

MZ244.95245 √ √ √  

MZ245.53704 √ √ √  

MZ245.8296 √ √ √  

MZ244.36855 √ √   

MZ246.12233 √    

 

Table 8-9 Classification results for the Ovarian cancer data using the sets of selected 

features from NSC-NSGA2 approach 

Number of  Genes 

Average classification accuracy (%) 

(Unseen Test data) 

Overall 

average 

classification 

accuracy (%) 

(Unseen Test 

data) 

C1(Disease) C2 (Normal) 

207, 210, 212, 224, 227 88.89 91.3 89.76 

230 90.06 91.3 90.55 

7, 36, 37, 38 97.53 93.48 96.06 

1 , 5, 6 97.65 95.65 96.85 
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The column headings C1 and C2 in the table stand for average classification accuracy 

(%) on the Ovarian unseen test dataset for the Disease class and Normal class, 

respectively. The column heading “Overall average classification accuracy” stands for 

the overall average classification (%) for both classes on the Ovarian unseen test dataset 

for the 15 independent run. “Overall average classification accuracy” is calculated using 

Equation (5.3). From Table 8-9, the NSC classification results associated with the sets 

of features mostly showed similar levels of specificity and sensitivity, e.g., sensitivity 

(C1) is 97.65% and specificity (C2) is 95.65%, implying truly not-at-risk and at-risk 

cases will be correctly identified at a very high level of accuracy. 

 

8.3.5. Lymphoma cancer data 

 

Using the same experimental procedure as before, the proposed algorithm was evaluated 

using the Lymphoma cancer dataset.  A typical convergence plot of Pareto optimal front 

with 4 solutions is shown in Figure 8-15.  

 

 

Figure 8-15 A typical Pareto front plot of f1 against f2 for Lymphoma cancer dataset 
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Using these shrinkage thresholds led to selected sets of features consisting 1, 2, 7, 8, 12, 

128, 133, 134 137, 139, 140, 141, 146, 149 and 164 features. The sets of 1, 2, 7, 8 and 

12 features are listed in Table 8-10. Classifiers constructed using the set with 1 feature 

produced 68.18% average classification accuracy for the unseen test data, classifiers 

obtained using the set with 2 features produced 77.72%, classifiers constructed using 

the set with 7, 8 and 12 features produced the same average classification accuracy of 

95.45%, and classifiers obtained using the set with 128, 133, 134, 137, 139, 140, 141, 

146, 149 and 164 features produced 100% respectively. The approach also found the 

same set of 7, 12 and 128 features reported in Chapter 5 using the NSC-GA approach.  

 

Table 8-10 Subsets of genes selected using NSC-NSGA2 for Lymphoma cancer data 

Gene accession number 

 

Gene sets 

12 8 7 2 1 

GENE3361X √ √ √ √ √ 

GENE3329X √ √ √ √  

GENE3327X √ √ √   

GENE3330X √ √ √   

GENE3332X √ √ √   

GENE3258X √ √ √   

GENE3256X √ √ √   

GENE3328X √ √    

GENE3314X √     

GENE3260X √     

GENE1252X √     

GENE3967X √     
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Table 8-11 Classification results for the Lymphoma cancer data using the sets of 

selected features from NSC-NSGA2 approach 

Number of genes 
Average classification Accuracy (%) 

(Unseen Test data) 

1 68.18 

2 72.73 

7, 8, 12 95.45 

128, 133, 134, 137, 139, 140, 

141, 146, 149, 164, 173 
100 

 

 

8.3.6. Lung cancer data 

 

Using the same experimental procedure as before, the proposed was evaluated using the 

Lung cancer dataset. A typical convergence plot of Pareto optimal front with 3 solutions 

is shown in Figure 8-16.  

 

 

Figure 8-16 A typical Pareto front plot of f1 against f2 for Lung cancer dataset 
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The results obtained from the 15 independent runs consist of 14 runs, each with a Pareto 

front of 3 shrinkage thresholds and 1 run with a Pareto front of 4 shrinkage thresholds.  

Using these shrinkage thresholds led to selected sets of features consisting 1, 2, 3, 5, 8, 

9 and 11 features. The sets of 1, 2, 3, 5, 8, 9 and 11 features are listed in Table 8-12. 

Classifiers constructed using the set with 1 feature produced 93.63% average 

classification accuracy for the unseen test data, classifiers obtained using the set with 2 

features produced 94.62%, classifiers obtained using the set with 3 features produced 

95.93%, and classifiers constructed using each of the sets with 5, 8, 9 and 11 features 

respectively, produced 100% respectively. The approach also found the same set of 8, 9 

and 11 features reported in Chapter 5 using the NSC-GA approach.  

 

Table 8-12 Subsets of genes selected using the proposed approach, NSC-NSGA2 for 

Lung cancer data 

Gene accession number 
Gene  sets 

11 9 8 5 3 2 1 

40936_at √ √ √ √ √ √ √ 

33328_at √ √ √ √ √ √  

32551_at √ √ √ √ √   

34320_at √ √ √ √    

37157_at √ √ √ √    

36533_at √ √ √     

37716_at √ √ √     

37954_at √ √ √     

33833_at √ √      

35823_at √       

33327_at √       
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Table 8-13 Classification results for the Lung cancer data using the sets of selected 

features from NSC-NSGA2 approach 

Number of genes  
Average classification Accuracy (%) 

(Unseen Test data) 

1 93.63 

2 94.62 

3 95.93 

5, 8, 9, 11 100 

 

 

8.3.7. Prostate cancer data 

 

As mentioned previously in Section 3.1.6, the Prostate dataset consists of 12600 

attributes, 77 Tumour (T) and 59 Normal (N) samples. The training set consisting of 52 

T and 50N samples, and the unseen test set consisting of 25 T and 9 N samples.   

 

Using the same experimental procedure as before, the proposed algorithm was evaluated 

using the Prostate cancer dataset.  A typical convergence plot of Pareto optimal front 

with 4 solutions is shown in Figure 8-17.   

 

 

Figure 8-17 A typical Pareto front plot of f1 against f2 for Prostate cancer dataset 
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The results obtained from the 15 independent runs consist of 3 runs with a Pareto front 

of 4 shrinkage thresholds, 4 runs with a Pareto front of 3 shrinkage thresholds and 8 

runs with a Pareto front of 2 shrinkage thresholds. Using these shrinkage thresholds led 

to selected sets of features consisting 1, 2, 3, 4, 5, 6 and 8 features. The sets of 1, 2, 3, 4, 

5, 6 and 8 features are listed in Table 8-14. Classifiers constructed using the set with 1 

feature produced 78.43% average classification accuracy for the unseen test data, 

classifiers obtained using the set with 2 features produced 82.48%, classifiers 

constructed using the set with 3 and 4 features produced 88.24% respectively, classifiers 

obtained using the set with 5 features produced 89.8%, classifiers obtained using the set 

with 6 features produced 90.2% and classifiers obtained using the set with 8 features 

produced 92.16%. The approach also found the same set of 6 features reported in 

Chapter 5 using the NSC-GA approach.  

 

Table 8-14 Subsets of features selected using the proposed approach, NSC-NSGA2 for 

Prostate cancer data 

Gene accession number 
Gene sets 

8 6 5 4 3 2 1 

38406_f_at √ √ √ √ √ √ √ 

37639_at √ √ √ √ √ √  

41468_at √ √ √ √ √   

769_s_at √ √ √ √    

556_s_at √ √ √     

31444_s_at √ √      

39532_at √       

31527_at √       
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Table 8-15 Classification results for the Prostate cancer data using the sets of selected 

features from NSC-NSGA2 approach 

Number of genes  
Average classification Accuracy (%) 

(Unseen Test data) 

1 78.43 

2 82.48 

3 88.24 

4 88.24 

5 89.8 

6 90.2 

8 92.16 

 

The following section compares the NSC-NSGA2 approach with NSC-GA from the 

perspectives of potential sets of features obtained via both approaches. Table 8-16 lists 

the sets of features (in terms of the number of features) and the average classification 

accuracy of their corresponding classifiers for the corresponding unseen test datasets. 
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Table 8-16 Summary of results for NSC-GA and NSC-NSGA2  

Dataset 

NSC-GA (f = f1+f2) NSC-NSGA2 (f1  and  f2) 

Number 

of 

features 

Average 

Classification 

Accuracy (%) 

(Unseen Test 

data) 

Number of 

features 

Average  

Classification 

Accuracy (%) 

(Unseen Test 

data) 

 

AD 

 

11 89.45 

1  56.98 

4  72.82 

5  76 

6, 7   81.52 

9 82.6 

8  82.78 

10  83.4 

11  87.7 

17 91.3 

16  91.63 

15 92.39 

18 93.84 

19  94.56 

Colon 

 

 

6 

 

 

 

 

93.75 

 

 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

21, 23 

93.75 

38 , 48 81.25 

39, 40, 42, 43, 44, 45, 47 87.5 

61 , 87, 62, 86  62.5 

77, 83, 85, 92, 89 68.75 

Leukemia 9 97.06 
2, 13 91.18 

7,  9, 10, 11 94.12 

Ovarian 7  96.06 

1 , 5, 6 96.85 

7, 36, 37, 38 96.06 

207, 210, 212, 224, 227 89.76 

230 90.55 

Lymphoma 

 
7 95.45 

1 68.18 

2 72.73 

7, 8, 12 95.45 

128, 133, 134, 137, 139, 

140, 141, 146, 149, 164, 173 
100 

Lung 

 

8 

 

100 

1 93.63 

2 94.62 

3 95.93 

5, 8, 9, 11 100 

Prostate 6 90.2 

1 78.43 

2 82.48 

3, 4 88.24 

5 89.8 

6 90.2 

8 92.16 
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Table 8-16 shows results obtained in Chapter 5 for NSC-GA where the objective 

function was an aggregation of the same two objective functions for NSC-NSGA2, that 

is,   f = 0.5 f1 + 0.5 f2. In this formulation, both objective functions were given equal 

weightings and using a GA, single optimal sets of relevant features were obtained at the 

end of each run for AD, Colon, Leukemia, Ovarian, Lymphoma, Lung and Prostate 

cancer datasets. With the proposed approach in this chapter, NSC-NSGA2, two 

objective functions (f1 and f2) are assessed simultaneously and multiple optimal sets of 

relevant features are obtained for each dataset at the end of each run.  

 

Having information as shown in Table 8-16 with regards to the joint classification 

behaviour of various sets of features allows the domain expert to make informed 

decision in terms of sets of features that would be selected for further investigations. For 

example in the case of the AD dataset, one can make decisions based on the tradeoffs 

between classification accuracy and size of feature set. The set of 6 features resulted in 

the same classification accuracy as the set of 7 features (i.e. 81.52%). The domain 

expert can examine the 7th feature and use domain knowledge to decide on it potential 

relevance and make decision on subsequent analysis. Equally it is interesting to further 

analyse the Colon cancer dataset where sets with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21 and 23 

features respectively resulted in classifiers producing the same classification accuracy 

on the unseen test dataset (93.75%). It appears that a major contributing factor relates to 

1 feature and thus may warrant further investigations into the relevance of the remaining 

features. A similar situation can also be seen with the Leukemia cancer dataset where 

sets with 7, 9, 10 and 11 features respectively resulted in classifiers returning the same 

classification (94.12%) on the unseen test dataset (a major contributing factor relates to 

7 features); with Ovarian cancer dataset where sets with 1, 5 and 6 features, 

respectively, resulted in classifiers returning the same classification (96.85%) on the 

unseen test dataset (a major contributing factor relates to 1 features), and sets with 7, 36, 

37 and 38 features, resulted in classifiers returning the same classification (96.06%) on 

the unseen test dataset (a major contributing factor relates to 7 features); with 

Lymphoma cancer dataset where sets with 7, 8 and 12 features, respectively, resulted in 

classifiers returning the same classification (95.45%) on the unseen test dataset (a major 

contributing factor relates to 7 features); with Lung cancer dataset where sets with 5, 8, 

9 and 11 features, respectively, resulted in classifiers returning the same classification 

(100%) on the unseen test dataset (a major contributing factor relates to 5 features), and  
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with Prostate cancer dataset where sets with 3 and 4 features, respectively, resulted in 

classifiers returning the same classification (88.24%) on the unseen test dataset (a major 

contributing factor relates to 3 features). This sort of information for analysis in 

bioinformatics is important as reducing the number of features to a smaller promising 

set for further investigations would reduce costs associated with future experiments and 

analysis. 

 

8.4. NSC-NSGA2 with 3 objective functions 

 

To further examine the proposed approach, the following section detailed work that 

investigated the impact of employing more than 2 objective functions for FS. In 

addition to    and   , a 3
rd

 objective function (f3) is also employed in NSC-NSGA2, and 

this is denoted as NSC-NSGA2*.    is calculated using Equation (8.6). 

     (∑ ∑          )         (8.6) 

 

where      is the positive shrunken relative difference of selected features 

           n is the total number of features selected  

             is the number of classes 

              is an average of      for selected features 

 

f3 is designed for maximizing the fitness of chromosomes that has a maximum shrunken 

relative difference,     , for the features selected. As mentioned previously, in NSC, the 

class centroid of attributes is shrunk toward the overall class centroid and attributes with 

at least one positive relative shrunken class centroid are considered as important and are 

selected (i.e. class centroids and overall class centroid are different). The attributes can 

be ranked based on the value of     . That is, the larger the value of      the better the 

rank of attributes. Therefore, f3 is employed in the proposed approach to maximize the 

set that consists of attributes with better ranks, (i.e. the best overall average value of      

for the set), with the aim to improve the fitness evaluation for chromosomes that leads 

to the selection of smaller feature sets with the same or higher classification accuracy.  
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Table 8-17 Result from applying 2 and 3 objective functions for the proposed approach, 

NSC-NSGA2, on AD and Leukemia dataset 

Dataset 

NSC-NSGA2 

(f1,   f2) 
NSC-NSGA2* 

(f1,  f2, f3) 

Number of 

features 

Average 

Classification 

Accuracy (%) 

(Unseen Test 

data) 

Number of features 

Average  

classification 

Accuracy (%) 

(Unseen Test 

data) 

AD 

1 56.98 1 56.07 

4 72.82 4 72.83 

5 76 5 75.47 

6, 7 81.52 6 79.98 

9 82.6 7 81.52 

8 82.78 8 83.02 

10 83.4 9 82.60 

11 87.7 10 83.52 

17 91.3 11 89.72 

16 91.63 12 90.21 

15 92.39 13, 14 92.39 

18 93.84 16 91.67 

19  94.56 17 91.3 

 

18, 19 94.56 

33 92.39 

38 90.21 

67 85.86 

Leukemia 

2, 13 91.18 2, 3, 11, 13, 15 91.18 

7,  9, 10, 11 94.12 7 92.02 

 

8, 10 94.12 

62 85.29 

176, 336, 884, 889 88.23 

 

From the limited analysis using the AD dataset with 120 features and the Leukemia 

dataset with 7129 features, it can be seen from Table 8-17 that the NSC-NSGA2* 

approach resulted in a bigger number of different sets of selected features when 

compared to the approach with 2 objective functions (NSC-NSGA2). Among these 

additional  sets of selected features, some sets are smaller but have the same average 

NSC classification accuracy, e.g., for AD dataset, the sets with 13 and 14 features using 

the 3 objective approach that gave the same classification accuracy (92.39%) as that of 

the set with 15 features using the 2 objective approach, for Leukemia dataset, the set 

with 8 features using the NSC-NSGA2* approach that gave the same classification 
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accuracy (94.12%) as that of the sets with 9, 10 and 11 features using the NSC-NSGA2 

approach. 

 

8.5. The proposed approach, NSC-NSGA2 with Mahalanobis distance measure 

 

According to Bandyopadhyay and Saha (2013, p. 60), “similarity measurement is 

essential for performing classification”, thus in order to investigate the impact of 

employing a different similarity distance measure in the NSC classifier on the Pareto 

front obtained from NSC-NSGA2, the study carried out a further experiment to replace 

Euclidean distance in the NSC classifier with Mahalanobis distance.  This  is one of the 

most common distance measures that has been used for feature-based similarity search, 

specifically in datasets where correlation exists between features (Emrich et al., 2013).  

 

Using the same experimental procedure outlined in Section 8.3, NSCM-NSGA2 (NSC 

with Mahalanobis distance) was evaluated using the Leukemia cancer dataset and the 

NSGA2 parameter settings listed in Table 8-1 as a proof of concept. A typical Pareto 

optimal front from one of the 15 runs is shown in Figure 8-18. 

 

 

Figure 8-18 A typical Pareto front plot of f1 against f2 for Leukemia cancer dataset using 

the NSCM-NSGA2 approach 
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The results obtained from running 15 independent runs of NSCM-NSGA2 led to the 

selection of sets with 2, 5, 6, 7, 8, 9, 10, 11 features.  

 

Table 8-18 Sets of genes obtained by NSCM-NSGA2 for the Leukemia cancer data 

Gene accession number 

Gene sets 

11 10 9 8 7 6 5 2 

M84526_at √ √ √ √ √ √ √ √ 

U50136_rna1_at √ √ √ √ √ √ √ √ 

D49950_at √ √ √ √ √ √ √  

M16038_at √ √ √ √ √ √ √  

M23197_at √ √ √ √ √ √ √  

X17042_at √ √ √ √ √ √   

X95735_at √ √ √ √ √    

M55150_at √ √ √ √     

M57710_at √ √ √      

Y00787_s_at √ √       

M27891_at √        

 

As seen in Table 8-18, sets of 2, 5, 6, 7, 8, 9, 10 and 11 genes obtained are the same as 

those using NSC-NSGA2. The sets of 5, 6 and 8 genes are additional sets obtained 

using NSCM-NSGA2. 

 

Table 8-19 Results from NSC-NSGA2 and NSCM-NSGA2 for Leukemia cancer dataset 

Dataset 

Euclidean 

NSC-NSGA2 (f1  and  f2) 

Mahalanobis 

NSCM-NSGA2 (f1  and  f2) 

Number of  

genes 

Average 

Classification 

Accuracy (%) 

(Unseen Test data) 

Number of 

genes  

Average 

Classification 

Accuracy (%) 

(Unseen Test data) 

Leukemia 

2, 13 91.18 
2 , 5 88.24 

6, 9 94.12 

7, 9, 10, 11 94.12 
7, 8 97.06 

10, 11 100 
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The classification results using classifiers constructed using these sets of features on the 

unseen test data are shown in Table 8-19. It is interesting to note that NSCM-NSGA2 did 

not produce the set of 13 features associated with NSC-NSGA2 and that there are some 

differences in the classification accuracy associated with the different classifiers from 

the two approaches. For example, the classifiers constructed from the set of 7 and 8 

features obtained the same average classification accuracy of 97.06%  in comparison to 

the classifier constructed using the set of 9 features from NSC-NSGA2 that obtained  

94.12%  average classification accuracy. Similar to other analysis in this study, the 

optimal shrinkage threshold values obtained from NSCM-NSGA2 can be slightly 

different from those obtained using NSC-NSGA2 but are still in the range that map to 

the same set of features but may slightly impact on the classification accuracy.  From 

this limited analysis here, it can be seen that the use of another similarity measure in the 

approach can produce some different sets of features. This implies that to 

comprehensively analyse biological datasets, researchers should examine them using 

techniques that support different similarity measures and a number of selection criteria. 

Having information in Table 8-19 can help biomedical researchers to make informed 

decisions about sets of features that would be selected for further investigations. For 

example it will be interesting to examine the set of 6 features obtained via NSCM-

NSGA2 and the set of 7 features obtained via NSCM-NSGA2 in terms of the 7
th

 feature 

(set of 6 being the subset of 7 features) in terms of its known biological relevance to the 

specific disease.  

 

8.6. Summary 

 

This chapter has described the proposed approach of incorporating NSC and MOEA 

(NSGA2) to automatically search for multiple optimal shrinkage threshold values for 

NSC. The approach used NSC as an evaluator to evaluate the fitness of the candidate 

shrinkage threshold values, utilized the MOEA (NSGA2) as a multi-objective search 

algorithm to search for Pareto front of multiple shrinkage threshold values that lead to 

the selection of corresponding sets of relevant features. The proposed approach was 

evaluated using 7 public biomedical datasets: AD, Colon, Leukemia, Ovarian, 

Lymphoma, Lung and Prostate cancer data. The proposed approach shows the 

effectiveness of using a multi objective approach, NSC-NSGA2, over a single 
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aggregated objective function used in NSC-GA involving a single objective approach as 

described in Chapter 5.  

 

This chapter has also described work that incorporated 3 objective functions in NSC-

NSGA2 for studying the impact of using more than two objective functions for FS. This 

approach was evaluated using the AD and Leukemia dataset. The results from the study 

showed that the approach NSC-NSGA2* obtained a bigger number of different sets of 

selected features when compared to the approach using 2 objective functions (NSC-

NSGA2).  In some cases, NSC-NSGA2* obtained some sets having a smaller number of 

features that produced classifiers that obtained the same average NSC classification 

accuracy as those associated with a classifier constructed from a superset of features. 

 

To examine the impact of using a different similarity measure, this study implemented 

NSCM-NSGA2 where Mahalanobis distance is used in NSC instead of Euclidian 

distance. The approach was evaluated using the Leukemia cancer dataset. The results 

showed that some additional sets of features were produced and their corresponding 

classifiers produced similar classification results. This implies that to comprehensively 

analyse biological datasets, researchers need to examine them using techniques that 

support different similarity measures and a number of selection criteria.  

  



260 

 

9. Conclusion and Future work 

 

This thesis presented the investigation of evolutionary-based FS techniques for 

analysing biological datasets acquired via mass throughput technologies. These 

biological datasets are typically high dimensional with only a small number of samples; 

making the task of their analysis especially challenging.  Section 9.1 summarises the 

key findings from this study and Section 9.2 outlines suggestions for future work. 

 

9.1. Conclusion 

 

As the area of bioinformatics become increasingly “data rich”, the need for appropriate 

techniques that can be used for a comprehensive analysis of these huge volumes of data 

is imperative. This thesis contributed towards a better understanding of the development 

of evolutionary-based FS techniques for analysing biological data from mass throughput 

technologies. The thesis also demonstrated the impact of employing different similarity 

measure in NSC and showed the need to consider classifier-biased when examining the 

sensitivity and specificity associated with a specific classifier constructed from a set of 

features. 

 

This study has addressed the following aims: 

 Aim 1: To investigate and develop FS algorithms that  incorporates various 

evolutionary strategies, specifically investigating the use of  evolutionary 

strategies in conjunction with Rough Set Theory and Nearest Shrunken 

Centroid; 

 Aim 2: To evaluate  the developed algorithms in terms of finding the “most 

relevant” biomarkers contained in biological datasets and  

 Aim 3: To evaluate the goodness of extracted feature subsets for relevance 

(examined in terms of existing biomedical domain knowledge and classification 

accuracy form the perspectives of sensitivity and specificity associated with 

different classifiers). The project aims to generate sets of features for 

construction of good predictive models for classifying diseased samples from 

control. 
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In addressing Aim 1, this study has developed evolutionary-based FS techniques that 

incorporated GA, MA and MOEA. The first approach involved the development of 

RST-GA, a hybrid approach involving the GA, RST and k-means. This approach is 

described in Chapter 4 and consisted of 3 phases: feature reduction, distinction table 

generation and FS via GA optimization. In the first phase, features of high dimensional 

data were reduced effectively. In this phase, quartile statistics was employed to generate 

initial starting centroids for k-means clustering. The final centroids obtained from k-

means were used for the feature reduction process. In the second phase, the criteria (i.e. 

generation rules) used in Banerjee, Mitra, & Banka’s study (2007) was also applied to 

generate a distinction table with a smaller dimension. Finally, in the third phase, GA 

was employed to search for optimal feature sets based on the distinction table generated 

in the previous phase. The study showed that the smaller feature sets obtained using 

RST-GA produced classifiers that  gave similar classification accuracy for the Colon 

cancer dataset  and the Leukemia data in comparison to the results reported in Banerjee, 

et al. (2007).  

 

A second approach described in Chapter 5, NSC-GA, incorporates NSC and GA to 

automatically search for an optimal range of shrinkage threshold values for the NSC. 

The NSC is a deterministic FS algorithm which selects the same set of features for 

shrinkage threshold values in the same range.  The optimal shrinkage thresholds are 

used in NSC to obtain the corresponding sets of selected features.  The study showed 

that the feature sets obtained using NSC-GA are smaller. Corresponding classifiers 

constructed from these feature sets produced similar or higher classification accuracy 

for seven datasets in comparison with other NSC-based approaches reported in previous 

studies. While the sets of relevant features obtained using the NSC-GA from every 

independent run is more consistent, multiple sets consisting of features where the 

smaller sets are subsets of the bigger sets were also obtained from the runs of the NSC-

GA. This is important in terms of allowing biomedical researchers to investigate the sets 

of features for biological relevance in subsequent clinical studies. 

 

To continue the exploration of evolutionary approaches for FS in biological data, 

Chapter 6 described an approach MA for automatically finding optimal shrinkage 

thresholds for NSC in an attempt to further improve upon NCS-GA. The aim was to 

explore improvements that can be made on the NSC-GA approach. The impact of 
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incorporating MA with NSC for finding shrinkage threshold values automatically are 

reduced computational time and obtaining the same feature set over different runs of 

NSC-MA. Chapter 8 described NSC-NSGA2, a hybrid approach incorporating NSGA2 

and NSC to automatically find the Pareto front associated with optimal shrinkage 

threshold values for the NSC.  Unlike GA which involved a single objective function, 

the aim here was to examine the impact of incorporating a MOEA with NSC with the 

use of multiple objective functions for obtaining multiple shrinkage threshold solutions. 

Unlike existing techniques, the developed approaches here support FS by 

simultaneously considering tradeoffs between a number of criteria (e.g. high 

classification accuracy and a small number of features).  Multiple sets of potential 

features (biomarkers) obtained via the developed approach can be further investigated to 

explore both diagnostic and biological relevance.   

 

Lastly, this study examined the impact of using different similarity measures in NSC-

GA and NSC-NSGA2. Euclidean distance is the distance measure originally used in 

NSC to assign data points to different classes.  Chapter 7 described the approach of 

implementing different similarity distance measures (i.e. Mahalanobis, Pearson and 

Mass distance) in the NSC classifier and incorporating NSC and GA to automatically 

search for optimal shrinkage threshold values for NSC. The use of distance measures 

such as Mahalanobis overcomes some of the limitations associated Euclidean distance 

(e.g. assumption that the features are uncorrelated). From the perspective of using a 

different distance measure in a multi-objective approach, NSCM-NSGA2 was 

implemented using Mahalanobis distance in NSC instead of Euclidian distance. As a 

proof of concept, it was evaluated using the Leukemia cancer dataset. Additional sets of 

selected features were obtained and their corresponding classifiers produced similar 

classification results. This implies that to comprehensively analyse biological datasets, 

researchers need to examine them using techniques that support different similarity 

measures and a number of selection criteria.  

 

In addressing Aim 2 and Aim 3, seven datasets and the evaluation strategy described in 

Chapter 3 were used to evaluate the developed approaches in this study. The 

dimensionality of these datasets ranged from 120 to 15,154 attributes. In terms the 

relevance and the “goodness” of the selected sets of features, these were evaluated by 

constructing different classifiers using the suite of classifiers from WEKA and 
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examining the corresponding classification accuracy   on unseen test datasets (in terms 

of diagnostic relevance). From these analyses, the study demonstrated that the use of 

specific classifiers may have an impact on the sensitivity and specificity obtained using 

a set of features in classification and recommended that in DM for finding suitable sets 

of biological markers, a number of classifiers should be employed to examine the 

diagnostic relevance. This will avoid incidences of dismissing sets of features with high 

discriminatory capabilities that should be further investigated in early diagnostic test 

developments. From the perspective of biological relevance, this study is limited to 

examining the relevance of the extracted feature sets against known biomarkers from 

literature associated with the relevant domains.  For example, Table 4-3 listed genes 

found by the RST-GA approach which are already known in the biomedical literature to 

be associated with the Colon Cancer. The common features selected across different 

approaches for the seven datasets are listed in Table 9-1. 

 

Table 9-1 Common features selected across difference approaches 

Datasets 

Approaches 

NSC-GA NSCM-GA NSCP-GA NSCMD-GA NSC-MA NSC-

NSGA2 

Common features 

AD PDGF-BB_1, RANTES_1, IL-1a_1, TNF-a_1 

Colon T71025, M63391, R87126, M76378, T92451, J02854, 

Leukemia M27891, M84526, M96326 

Lymphoma GENE3327X, GENE3329X, GENE3361X 

Lung 33328_at, 40936_at 

Ovarian MZ244.36855, MZ244.66041, MZ244.95245, Z245.24466, MZ245.8296, 

MZ245.53704, MZ246.12233 

Prostate 41468_at, 37639_at, 38406_f_at, 769_s_at, 556_s_at 

 

Since the primary theme being the investigation of evolutionary approaches for analysis 

of biological datasets, the NSC-GA approach was developed to first explore the use of 

GA to find the shrinkage threshold value for NSC. The next logical step from NSC-GA 

was to investigate how this technique can be further improved, leading to the 

development of NSC-MA, the use of memetic algorithm. Another venue of 

improvements for the NSC relates to impact of similarity measures used and the 
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investigation here led to the development of NSCM-GA, NSCp-GA and NSCMD-GA. 

Finally, NSC-NSGA2 was developed to explore the use of multiple objectives for 

feature selection, improving upon the previous approaches in this study that involved a 

single objective. 

 

The following table also summarises the advantages and limitations of the proposed 

approaches. 

 

Table 9-2 Advantages and limitation of the developed approaches 

Proposed 

approaches 
Advantages  Limitations  

RST-GA 

 Number of attributes is reduced 

before applying the GA. 

 Less computational time 

Feature instability  

NSC-GA 

 Feature stability  

 Explore interaction of features 

More computational time 

compared to the RST-GA 

approach. 

 

NSC-MA 

NSCM-GA 

NSCP-GA 

NSCMD-GA 

NSC-NSGA2 

 Multiple sets of features 

obtained in one run 

 Feature stability 

 Explore interaction of features 

 

 

 

9.2. Future work 

 

Future directions from this research could examine:   

 Investigations and development of FS techniques that combines RST and 

different evolutionary algorithms such as MA and other MOEA approaches for 

analysing biological datasets. Existing work involving evolutionary-based RST 

for analysis of biological data is limited, probably owing to its computational 

intensiveness.   

  Incorporation of RST into the developed approaches of NSC-GA, NSCM-GA, 

NSCP-GA and NSCMD-GA to reduce computational time of these approaches.   

Here, RST can be used as a feature reduction algorithm to reduce the number of 

features for high dimensional data as an initial step before the NSC-GA 

approach is used to optimize the search of optimal sets of features.   
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 Due to time constrains, the investigations involving MOEA has only examined 

NSGA2 and a maximum of 3 objectives. Subsequent investigations could 

examine the use of other MOEAs and the impact of employing more than 3 

objective functions. 

 NSC-based approaches are very much targeted for analysis of bioinformatics 

data, extended to being applied to other high dimensional biological data 

generated using other techniques. Potentially, the RST-GA approach can be 

applied to any domain for feature selection. 
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