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ABSTRACT - PURPOSE. The purpose of this 
study was to predict microemulsion structures by 
creating two artificial evolutionary neural 
networks (ANN) combined with a genetic 
algorithm. The first ANN would be able to 
determine the type of microemulsion from the 
desired composition, and the second to determine 
the type of microemulsion directly from a 
differential scanning calorimetry (DSC) curve. 
METHODS. The algorithms and the structures 
for each ANN were constructed and programmed 
in C++ computer language. The ANNs had a feed 
forward structure with one hidden level and were 
trained using a genetic algorithm. DSC was used 
to determine the microemulsion type. RESULTS. 
The ANNs showed very encouraging accuracy in 
predicting the microemulsion type from its 
composition and also directly from the DSC 
curve. The percentage success, calculated over the 
tested data, was over 90%. This enabled us, with 
satisfactory accuracy, to construct several 
pseudoternary diagrams that could facilitate the 
selection of the microemulsion composition to 
obtain the optimal desired drug carrier. 
CONCLUSIONS. The ANN constructed here, 
enhanced with a genetic algorithm, is an effective 
tool for predicting the type of microemulsion. 
These findings provide the basis for reducing 
research time and development cost for 
characterizing microemulsion properties. Its 
application would stimulate the further 
development of such colloidal drug delivery 
systems, exploit their advantages and, to a certain 
extent, avoid their disadvantages. 
 
INTRODUCTION 
 
Microemulsions (ME) are dispersions of oil in 
water, or vice versa, stabilized with a surface 
active film composed of surfactant and often also 
cosurfactant. They are well known colloidal drug 
delivery systems, because of their spontaneous 
formation, optical transparency and thermo-
dynamic stability. They have the ability to 

improve bioavailability and/or to control the 
release of the incorporated drug (1, 2).  

To find the optimal microemulsion 
composition for a desired drug release profile it is 
almost imperative to be able to characterize the 
microemulsion type and structure, which, in turn, 
depend on the ratio of the selected components. 
As it might seem futile to determine the structure 
of a liquid systems, the thermodynamic properties 
of microemulsion assure that oil and water phase, 
separated by the surfactants form a variety of 
different internal metastable formations, from 
simple droplets of oil in water (and vice versa) to 
the large bicontinuous formations and lamellar 
phases. Although thermodynamic properties 
enable the transitions among structures they 
remain relatively stable over a prolonged period 
of time. Still, their determination is far from 
trivial matter (3,4). There are several methods 
available for analyzing the structure of 
microemulsions, such as differential scanning 
calorimetry (DSC), small angle X-ray scattering 
(SAXS), conductivity and surface tension 
measurement, photon correlation spectroscopy 
(PCS), transmission electron microscopy (TEM) 
and rheology (5-13). However most of them are 
very time consuming. Since pharmaceutically 
applicable microemulsions usually consist of at 
least four components, the classical trial-error 
approach for realizing the desired properties is 
costly and does not guarantee success. Even with 
the extensive and detailed studies there would still 
be possible to overlook potentially the best 
solution. The interactions between the 
components are too complex at the molecular 
level to allow construction of a mathematical 
function that would enable accurate prediction of 
the microemulsion properties.  
_______________________________________ 
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However, a nonlinear mathematical approach, 
such as artificial neural networks (14,15), 
constitutes a possible approach, especially if 
combined with a genetic algorithm. In the field of 
microemulsions an important research was done 
by Richardson et al. where they showed that back 
propagation ANN could be successfully used for 
predicting phase behaviour of theirs 
microemulsions (16).  

Artificial neural networks (ANNs) are 
computational models of the human brain. They 
contain fully interconnected process units called 
artificial neurons (14, 17, 18). Similar to the 
brain, the ANN receives input data, which are 
then processed by activation of neurons, and the 
network yields output. There are several 
characteristics that define the topology of the 
network structure and learning algorithms. ANNs 
can contain several hidden layers or even none. 
They can be recurrent or non-recurrent, both of 
which define the direction of the output. They 
could have a supervised or unsupervised form of 
learning. Input values may be binary or 
continuous. For the activation function of the 
neurons, linear, step, sigmoid or other functions 
can be used. The combination of these 
characteristics gives rise to several distinct types 
of ANN. Depending on the situation each could 
be more advantageous in terms of producing 
better results for the specific problem. 

The majority of ANNs including the 
model of Richardson et al. (16) use a back 
propagation algorithm of learning. It is also 
possible to introduce a genetic algorithm to the 
classic feed forward ANN to form an 
evolutionary neural network (23). A genetic 
algorithm is a computer optimization technique 
that uses models inspired by evolutionary biology 
such as mutation, natural selection, and 
recombination. Similar to their natural 
counterparts, artificial chromosomes are used to 
encode the solution of a trained neural network 
(19). These chromosomes are subjected to the 
following basic procedures: the selection of 
solutions (chromosomes) based on their fitness, 
their reproduction by crossover of genes, and 
mutation for random change of genes (14). The 
main control parameters that define the process 
are the number of the initial generation (and size 
of the mating pool), the fitness function, which is 
a measure that can be used to compare solutions 
which is better, the selection method for breeding, 
the crossover probability which randomly 
determines whether crossover takes place, and the 
probability of mutation (14, 20). Also, it is very 

common to carry out a training exercise several 
times, with different initial populations, when 
applying genetic algorithms in order to obtain the 
best, optimal and global, rather than local, 
solutions. 

The aim of the present study has been to 
create two artificial evolutionary neural networks 
(ANN), combined with a genetic algorithm, for 
predicting microemulsion structures. The first 
ANN would be able to determine the type of 
microemulsion from the desired composition, and 
the second to determine the type of 
microemulsion directly from a DSC curve. This is 
possible since DSC can enable the type of 
microemulsion to be determined by measuring the 
freezing peak of the water. Microemulsions were 
prepared with pharmaceutically acceptable 
components. Samples were analyzed with DSC 
and inspected visually to obtain information about 
their type and general structure. These data were 
then used to train both ANNs. Similar work for 
predicting microemulsion structure using ANN 
was done by Richardson et al (16). Their study 
was focused on ability of ANN to find potential 
cosurfactant for lecithin while our purpose was to 
develop ANN as a tool for predicting 
microstructures on the basis of experimental data 
for a given system. In addition we expect that 
ANN would be able to accelerate the 
interpretation of DSC data for elucidating 
microstructure. 
 
MATERIALS AND METHODS 
 
Materials 
 
Isopropyl myristate (IPM) was obtained from 
Fluka Chemie GmbH, Switzerland, and used as 
the lipophilic phase of microemulsions. Tween 
40® (TW40) - polyoxyethylene (20) sorbitan 
monopalmitate (Fluka chemie GmbH, 
Switzerland) was used as surfactant and Imwitor® 
308 (IMW) - glyceryl caprylate (Condea Chemie 
GmbH, Germany) as cosurfactant. Twice distilled 
water was used as the hydrophilic phase. 
 
Structure determination of microemulsions 
with differential scanning calorimetry 
 
A differential scanning calorimeter DSC-4 
(Perkin Elmer, USA) was used, with a nitrogen 
flow of 20 ml/min as purge gas. Approximately 5 
to 15 mg of sample was weighed precisely into a 
small aluminium pan and quickly sealed 
hermetically to prevent water evaporation. The 
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empty sealed pan was used as reference. Samples 
were cooled from 30oC to –60oC (cooling rate 10 
K/min). 
 
Artificial neural network structure and 
training 
 
Structure of the ANN used to determine the type 
of microemulsion from its composition 
 
To determine the type of microemulsion from its 
composition we programmed a feed-forward 
network, with the final architecture involving 4 
input neurons, a single hidden layer of 12 
neurons, and 5 output neurons. Preliminary 
training runs were performed using hidden layers 
involving 3 to 18 neurons. Significant 
improvements in prediction were achieved up to a 
hidden layer size of 10; prolonged learning time 
led to no greater accuracy and diminishing returns 
were obtained with networks featuring more than 
15 hidden neurons. We experimented also with 
ANNs containing two hidden neuron layers with 
up to 20 hidden neurons in total, however the 
results were not satisfactory. For the activation 
function, a sigmoid function ranging from 0 to 1 
was used. The weights of the ANN were 
determined by the genetic algorithm as explained 
bellow. 

The 4 input neurons corresponded to the 
four components used to produce the 
microemulsion: Tween (surfactant), Imwitor 
(cosurfactant), IPM (lipophilic phase) and water 
(hydrophilic phase). The raw weight % for each 
component was first submitted to a mathematical 
transformation. Each of them was subtracted by 
the average value of all weight % of the same 
component (of all the samples in the training set) 
and divided by their standard deviation value (see 
Eq. 1). This mathematical transformation 
provides better learning of the ANN (21). 
 

SD
AVGxp i −

=   (Eq. 1) 

 
where xi is the weight %, AVG is the average 
value of weight ratios and SD their standard 
deviation. 
 
Each of the 5 output neurons represents one 
possible structure – O/W microemulsion, 
bicontinuous microemulsion, W/O 
microemulsion, O/W emulsion or W/O emulsion. 
The output value of each output neuron represents 

the probability of the microemulsion being a 
certain type for the sample in question. The 
winning solution was the one whose output 
neuron had the highest probability. We used a 
supervised form of learning, which was 
discontinued after the classification error dropped 
below 1%. 
 
The structure of the ANN used to determine the 
type of microemulsion from its DSC curve 
 
To determine the type of microemulsion from its 
DSC curve directly, a second feed-forward ANN 
with 1 hidden layer was constructed containing 
100 input neurons (i.e. the input data of the DSC 
curve), a single layer of 5 hidden neurons (the 
network was otherwise tested with 3-200 hidden 
neurons) and 5 output neurons. All computational 
and training procedures were as described bellow.  
 
Training the ANN using a genetic algorithm 
 
A genetic algorithm was used to determine the 
weight (genes) values as W1 1, W1 2, W1 3, up to 
W4 12. Each weight is represented as a gene in 
the chromosome (solution); the first number 
represents the first neuron (for example the input 
neuron) and the second number represents the 
second neuron (for example in hidden neuron). 

The initial population consisted of 50 
different chromosomes where each represents a 
certain weight combination. Larger populations 
did not give better solution, but only prolonged 
the computation. The fitness function to 
determine which solution is better was the 
average squared error (see Eq. 2). 
 

( )∑
=

−
=

n

i
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n
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1

2σ
 (Eq. 2) 

 

where, ASE is average square error, ti actual 
value, σi target value and n total number of the 
data. 
 
The best solution, in this case a combination of 
weights, is the one that yields the lowest average 
square error. To obtain the offspring population, 
the top five solutions were automatically copied. 
A tournament ranking system was then 
implemented, in which the winning chromosome, 
from 4 randomly selected chromosomes, with the 
best fitness was copied and then subjected to 
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crossover or mutation and transferred to the 
offspring population. This type of selection leads 
to the best solutions but still allows the chance 
that a minor solution could contribute, which 
might prove useful in the following generations. 
We constructed two crossover and ten mutation 
models. Each model had an equal chance of being 
implemented on the designated chromosome. 
Crossover was implemented by random crossing 
of the part of the chromosome between two parent 
chromosomes to yield two new offspring 
chromosomes, or by their linear combination. The 
mutation models usually employed the addition of 
a small value to a specific gene (weight value) or 
its multiplication by a random factor. The 
algorithms and the structures were constructed for 
each ANN and programmed in C++ computer 
language. 
 
RESULTS AND DISCUSSION 
 
This study follows on from the research (3, 4), 
where we determined the exact structure and type 
of pharmaceutically applicable microemulsions 
composed of the same components as in this 
study. For this purpose, components (surfactant, 
cosurfactant, oil and water) suitable for dermal 
application were selected and pseudoternary 
diagrams were constructed where the area of 
microemulsion formation was presented. The 
ratio of surfactant to cosurfactant was fixed. In 
this way, the results could be presented in two 
dimensions. Preliminary studies showed that the 
most appropriate surfactant to cosurfactant ratio 
was 1:1, where microemulsions were formed if 
more than 30 wt.% of surfactant was present. The 
least amount of surfactant is desirable to avoid 
irritation of the skin as much as possible. 
However, with lower surfactant concentrations it 
is often hard to obtain stable microemulsion 
systems. In addition to the most appropriate 
pseudoternary diagram, with the surfactant to 
cosurfactant ratio of 1:1, we prepared two 
additional diagrams with the ratio fixed at 2:1 and 
1:2. In total, 170 samples (from all three 
diagrams) were used to train the network. An 
example is shown in Figure1, which represents 
the training set samples on the pseudoternary 
diagram for a surfactant to cosurfactant ratio of 
1:1. 
 
Obtaining the training set data 
 
The microemulsion samples were inspected 
visually and analyzed by DSC. By visual 

inspection, microemulsions, which were clear and 
transparently dispersed were distinguished from 
classical milky emulsions. Using DSC, it is 
possible to determine the state of water in the 
microemulsion system and consequently the 
structure. In most cases the distinction is made 
between bulk and bound water (5, 6, 7). The 
cooling curves of the microemulsion samples 
were analyzed in our previous work (3, 4). For the 
W/O microemulsions, the largest peak appeared 
at approx. –8oC, indicating solidification of IPM 
(lipophilic phase). The second, much smaller but 
important peak at approximately -42oC, indicates 
freezing of surfactant and cosurfactant mixture. 
For these systems is significant that water is 
interacting strongly with other components and no 
freezing of water molecules is detected. When 
analysing the bicontinuous type of microemulsion 
we observed that water molecules have fewer 
interactions with surfactant molecules and 
freezing of  “bound” water in the system is seen 
as a new peak at approximately –50oC. In the 
O/W type of microemulsion a large sharp peak 
appears at approximately –17oC, which indicates, 
freezing of supercooled water with fewer 
interactions (22). This provides the key to 
understanding how it is possible to distinguish 
between different microemulsion types using 
DSC. 
 
Determining the type of microemulsion from 
its composition 
 
When the ANN was trained (accuracy of predictions 
on training data above 99%), we instructed the 
network to predict the structures for all possible 
composition combinations for the pseudoternary 
diagrams with the surfactant to cosurfactant ratios of 
1:1, 2:1, 1:2 and 1.5:1.  The latter diagram was 
constructed to study how well would ANN be able 
to predict the type of microemulsion for the 
unknown surfactant to cosurfactant ratio, away from 
the actual training set. The results are presented in 
Figure 2. In order to assess the validity of the 
network approach, microemulsions previously not 
tested were selected (all types of microemulsion 
were covered). They were inspected visually, 
analyzed by DSC and the results were compared 
with the ANN prediction. The percentage success 
calculated over the tested data was 90% (Table 1), 
which was very encouraging. Constructing this kind 
of ANN, combined with a genetic algorithm, shows 
the possibility of predicting the microemulsion type 
for previously untested compositions. 
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Figure1: An example of the training set on the pseudoternary diagram where surfactant to cosurfactant ratio is fixed to 
1:1. 
 
The general limitations still apply since the 
accuracy of prediction diminishes if the 
composition of the microemulsion in question is 
significantly different from the actual training set. 
The described ANN can be used only to predict 
accurately the construction of  the phase diagram 
for four component microemulsions and with 
great accuracy if the surfactant to cosurfactant 
ratio is from 1:2 to 2:1. However, there is no 
reason that the same principles could not be used 
to construct a similar network where the training 
data would involve other surfactants, oils and 
different surfactant to cosurfactant ratios, and it is 
unlikely that these results would be less 
successful. In general, the information acquired 
may be quite useful, not only because predicting 
the type would minimize the time and cost of 
microemulsion characterization, but would also 
be helpful in predicting the drug release 
depending on the composition (4). This would be 
achieved far more easily and with less effort than 
by using the classical trial-error approach. 
 
 
 
 

 
Determining the type of microemulsion from 
DSC curve directly 
 
If we are able to predict the microemulsion type 
by analyzing DSC data, we should be able to 
design also ANN that would be able to predict the 
type of microemulsion from DSC curve directly. 
For this purpose we constructed another ANN. 
For the training set we used several DSC curves 
of the samples with surfactant to cosurfactant 
ratio of 1:1. Examples of the typical curves used 
to train the network are presented in Figure 3.  

After completing the network learning 
cycles, we selected several curves, not involved 
previously in the learning process of the ANN 
that related to several different types of 
microemulsion, in order to test the accuracy of 
network prediction. The results show 90% 
accuracy in prediction (Table 2), which is very 
encouraging. The implications of these findings 
could be very important. With the advent of 
autosamplers attached DSC, several samples can 
now be prepared and analyzed automatically. Not 
only the raw results (thermograms) but also their 
interpretation would be available in terms of the 
microemulsion type and structure. 
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Figure 2. Continued…. 

 

 
 
Figure 2: Solutions, predicted by ANN. The  respective surfactant to cosurfactant ratios are: a) 1 : 1, b) 1,5 : 1, c) 2 : 1, 
d) 1 : 2, respectively. There were no training points on the diagram with 1,5 : 1 ratio. 

(C) 

(D) 
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Table 1. Validation of an artificial neural network for its ability to determine the type of 
microemulsion from its composition using randomly selected, previously untested samples. 
 

Tween 
wt. ratio 

Imwitor 
wt. ratio 

IPM   
wt. ratio 

water 
wt. ratio 

predicted ME 
type by ANN 

actual ME 
type 

0.1347 0.1347 0.0700 0.6606 O / W O / W 
0.2116 0.2116 0.1651 0.4117 O / W O / W 
0.1882 0.1882 0.5500 0.0736 W / O W / O 
0.1936 0.1936 0.0683 0.5445 O / W O / W 
0.2786 0.2786 0.2351 0.2078 bicontinuous bicontinuous 
0.1680 0.1680 0.4206 0.2434 bicontinuous bicontinuous 
0.2084 0.2084 0.0785 0.5048 O / W O / W 
0.2705 0.2705 0.0842 0.3749 bicontinuous bicontinuous 
0.1906 0.1906 0.3312 0.2877 bicontinuous bicontinuous 
0.1494 0.1494 0.4897 0.2115 bicontinuous bicontinuous 
0.2645 0.2645 0.2190 0.2520 bicontinuous bicontinuous 
0.3652 0.2435 0.1929 0.1984 W / O W / O 
0.4605 0.3070 0.0522 0.1802 W / O W / O 
0.4639 0.3093 0.1803 0.0464 W / O W / O 
0.2849 0.1900 0.3108 0.2143 W / O W / O 
0.2519 0.1680 0.1130 0.4671 O / W O / W 
0.3151 0.2101 0.3941 0.0808 W / O W / O 
0.1858 0.1858 0.2877 0.3408 bicontinuous O / W 
0.2693 0.2693 0.0525 0.4090 bicontinuous O / W 
0.1525 0.1525 0.0562 0.6388 O / W O / W 

 

 
(a) 

 
(b) 

 

 
(c) 

Figure 3: An example of typical DSC curves (thermograms) that were used to train the network so that would be 
capable to predict the type of microemulsion from DSC curve directly. a) W/O microemulsion, b) bicontinuous phase, 
c) O/W microemulsion. 
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Table 2. Validation of an artificial neural network for its ability to determine the type of microemulsion directly 
from its DSC curve using randomly selected, previously untested samples. 
 

Tween 
wt. ratio 

Imwitor 
wt. ratio 

IPM   wt. 
ratio 

water wt. 
ratio 

predicted ME type by 
ANN 

actual ME type 

0.2839 0.2839 0.3315 0.1007 W / O W / O 
0.2524 0.2524 0.2944 0.2008 bicontinuous bicontinuous 
0.2208 0.2208 0.2580 0.3005 bicontinuous bicontinuous 
0.2053 0.2053 0.2397 0.3498 bicontinuous bicontinuous 
0.1895 0.1895 0.2211 0.4000 O / W O / W 
0.2684 0.2684 0.3130 0.1503 W / O W / O 
0.2367 0.2367 0.2764 0.2502 bicontinuous bicontinuous 
0.1263 0.1263 0.1474 0.6000 O / W O / W 
0.1736 0.1736 0.2027 0.4501 W / O O / W 
0.2839 0.2839 0.1001 0.3321 bicontinuous bicontinuous 
0.2686 0.2686 0.1497 0.3132 bicontinuous bicontinuous 
0.2526 0.2526 0.1998 0.2950 bicontinuous bicontinuous 
0.2369 0.2369 0.2498 0.2765 bicontinuous bicontinuous 
0.2213 0.2213 0.2999 0.2575 W / O W / O 
0.1891 0.1891 0.4005 0.2213 W / O W / O 
0.1736 0.1736 0.4503 0.2025 W / O W / O 
0.1502 0.1502 0.5248 0.1747 W / O W / O 
0.1495 0.1495 0.6471 0.0539 W / O W / O 
0.1502 0.1502 0.5996 0.1001 W / O W / O 
0.1508 0.1508 0.4973 0.2012 bicontinuous bicontinuous 
0.1499 0.1499 0.2998 0.4005 O / W O / W 
0.1495 0.1495 0.1016 0.5994 O / W O / W 
0.1504 0.1504 0.1500 0.5492 bicontinuous O / W 
0.1464 0.1464 0.0485 0.6587 O / W O / W 
0.1502 0.1502 0.4496 0.2501 bicontinuous bicontinuous 
0.1506 0.1506 0.3995 0.2994 bicontinuous bicontinuous 
0.2998 0.2998 0.0502 0.3502 bicontinuous bicontinuous 
0.2996 0.2996 0.1008 0.3001 bicontinuous bicontinuous 
0.3001 0.3001 0.1500 0.2498 bicontinuous bicontinuous 
0.2998 0.2998 0.2000 0.2004 W / O W / O 
0.3000 0.3000 0.2499 0.1501 bicontinuous W / O 
0.2998 0.2998 0.3001 0.1004 W / O W / O 
0.3002 0.3002 0.3497 0.0499 W / O W / O 

 
 
Future implications 
 
The next step would be to implement other 
complementary methods, such as conductivity, 
surface tension measurements and SAXS, into 
ANN for microemulsion analysis in order to 
correlate data regarding type and structure 
directly to drug release. Due to the nature of 
several nonlinear equations that are often 
unknown and are dependent on the system, it is 
almost impossible to calculate the drug release 
directly, however using ANNs, enhanced with a 
genetic algorithm, such predictions could be 
possible. Since the microemulsions are formed  

 
 
spontaneously, the critical step in the formulation 
development is to select the proper 
pharmaceutically applicable components, which 
are able to form microemulsions.  After 
preparation and sample analysis the results 
obtained would be automatically used to train 
ANN. It would then be possible to select different 
types of microemulsions and determine separately 
the drug release or permeation. The findings 
could then be inserted into ANN, to give a 
powerful tool, capable of predicting 
biopharmaceutical properties of the systems with 
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the desired drug. We believe this approach could 
vastly improve the development of potentially 
more suitable microemulsion carrier systems. 
 
CONCLUSION 
 
We constructed two evolutionary ANNs enhanced 
with a genetic algorithm, one being able to predict 
the type of microemulsion from its composition 
and the other to predict the type of microemulsion 
directly from the DSC curve. Both show an 
encouraging accuracy of 90% in prediction. They 
provide the basis for reducing research time and 
development cost for the characterization of 
microemulsion properties and drug release ability 
as the drug release is dependant on the 
microemulsion properties (4). It would stimulate 
the development of such colloidal drug delivery 
systems to a greater extent, exploit their 
advantages and, to a certain extent, avoid their 
disadvantages.  
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