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Abstract

In addition to their biological function, protein complexes reduce the exposure of the constituent proteins to the risk of
undesired oligomerization by reducing the concentration of the free monomeric state. We interpret this reduced risk as a
stabilization of the functional state of the protein. We estimate that protein-protein interactions can account for
*2{4 kBT of additional stabilization; a substantial contribution to intrinsic stability. We hypothesize that proteins in the
interaction network act as evolutionary capacitors which allows their binding partners to explore regions of the sequence space
which correspond to less stable proteins. In the interaction network of baker’s yeast, we find that statistically proteins that
receive higher energetic benefits from the interaction network are more likely to misfold. A simplified fitness landscape wherein
the fitness of an organism is inversely proportional to the total concentration of unfolded proteins provides an evolutionary
justification for the proposed trends. We conclude by outlining clear biophysical experiments to test our predictions.
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Introduction

The toxicity due to protein misfolding and aggregation has a

considerable effect on the viability of living organisms [1–5].

Consequently, cells are under strong selection pressure to evolve

thermodynamically stable [6] and aggregation-free protein

sequences [7]. The internal region of stable proteins has a tightly

packed core of hydrophobic residues. A mutation in the core may

disrupt the entire protein structure. Consequently, the core

residues are strongly conserved [8,9]. In contrast, mutations on

the surface contribute weakly to the thermodynamic stability of

proteins [10] yet surfaces show significant level of conservation

[11] owing to protein-protein interactions.

Recent high throughput experiments have established that

proteins interact with each other on a genome-wide scale [12].

Such ‘small world’ networks are thought to facilitate biological

signaling and ensure that cells remain robust even after a random

failure of some of its components [13]. It is thought that

evolutionarily, multi-protein complexes are favored over larger

size of individual proteins [14] since large proteins are difficult to

fold and expensive to synthesize while small interacting proteins

can fold independently and then efficiently assemble into large

complexes. Individual interaction between proteins can give rise to

cooperativity and allostery which results in a finer control over the

functional task the protein complex performs. Protein-protein

interactions (PPI) are also thought to prevent protein aggregation

[15,16]. Lastly, many proteins can perform promiscuous function

in that they can partake in multiple protein complexes. Interest-

ingly, proteins in higher organisms are involved in more

interactions and form larger protein complexes compared to

more primitive life forms [17].

Here, we hypothesize an additional biophysical advantage for

protein-protein interactions. Proteins bound to their interaction

partners effectively present a lower monomer concentration inside

the cell. Since free monomers are susceptible to misfolding/

unfolding and toxic oligomerization, interacting proteins may face

a reduced risk towards the same. This reduced risk can be

interpreted as interaction-induced stabilization DDGppi — stabi-

lization due to the protein-protein interaction network — of an

otherwise monomeric protein (see Fig. 1 for a cartoon). We

propose that by giving proteins an additional stability, each protein

in the interaction network acts as an evolutionary capacitor [18,19] in

the evolution of its binding partners: proteins are allowed to

explore the less stable regions (regions of low intrinsic stability) of

the sequence space as long as they are stabilized by their

interaction partners. Inversely, unstable proteins are expected to

receive significant additional stability from the interaction

network.

Below we outline the empirical evidence for our hypothesis and

suggest clear biophysical and evolutionary experiments to test it

further.

Results

We present our estimates of the interaction-induced stability

DDGppi (see Methods) and explore the evolutionary interplay

between DDGppi and protein stability DGfolding using a simplified

fitness model for a toy proteome. We test the predictions of the toy
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model on the proteome of baker’s yeast. The fitness model also

sheds light on the interplay between protein stability and protein

abundance.

Interaction-induced stability DDGppi is comparable to
inherent stability DGfolding

Fig. 2 shows the histogram of the estimated interaction-induced

stability DDGppi for *1600 cytoplasmic yeast proteins for whom

abundance, interaction, and localization data is available (see

Methods for the details of the calculations). Note that the average

PPI induced stability is *2kBT and can be as high as 5{6 kBT .

This stabilization is dependent not only on the number of

interaction partners of a given protein or the strengths of those

interactions but also on the relative abundances of the interaction

partners. In fact, the interaction-induced stability of a protein

correlates strongly with the relative concentration of its binding

partners

sA~
1

CA

X
B nn A

CB

(Spearman r~0:64, pv10{5). This suggests a plausible mecha-

nism of stabilization of a protein without changing its sequence viz.

via adjusting the expression levels of its interaction partners (see

Discussion below).

The estimated DDGppi values are of the same order of

magnitude as the inherent stabilities of proteins, DGfolding

(*5{15kBT ) [9]. Given that random mutations are more likely

to destabilize proteins [6], we expect protein-protein interactions

to act as secondary mechanisms to stabilize proteins and to

interfere with the evolution of protein stability.

Simplified fitness model explores the interplay between
DDGppi and DGfolding

To explore the evolutionary consequences of the interaction-

induced stability, we investigate a simplified fitness model of a toy

proteome consisting of 15 proteins (see Methods, Text S1, and

Table S1). Briefly, the fitness of the cell depends only on the total

concentration of unfolded proteins in it [20]. During the course of

evolution, each protein acquires random mutations that change

either a) its inherent stability DGfolding or b) the dissociation

constant of its interaction with a randomly selected interaction

partner. Even though protein abundance and protein-protein

interactions evolve at the same time scale as protein stability, the

former are dictated largely by the biological function of the

involved proteins. Incorporating the fitness effects of changes in

expression levels and interaction partners in our simple model is

non-trivial. Thus, in order to specifically probe the relation

between stability and interactions, we do not allow proteins to

change their abundance and interaction partners.

Figure 1. The equilibrium between the folded state of protein A (blue protein) and its unfolded/insoluble state (blue coil) is
affected by the interactions of the folded state with its interaction partner B (red). The formation of the AB dimer lowers the population of
the unfolded/insoluble state of protein A and effectively stabilizes the folded state.
doi:10.1371/journal.pcbi.1003023.g001

Author Summary

The folded form of proteins is only marginally stable in vivo
and constantly faces the risk of aggregation, unfolding/
misfolding, and other aberrant interactions. For most
proteins, the folded form is also the functionally relevant
one and forces of natural selection strongly modulate its
stability. In vivo, proteins interact with each other on a
genome-wide scale. Usually, the interaction of a protein
and its binding partners requires both the proteins to be in
the folded form and as a result, the interactions tend to
shift the population of a protein towards the folded form.
Consequently, protein-protein interactions interfere with
the evolution of protein stability. Here, we present
empirical evidence and theoretical justification for pro-
teins’ ability to stabilize the folded form of their interaction
partners and allow them to explore the region of the
sequence space that corresponds to proteins with less
stable structure. We argue that the ‘evolutionary capaci-
tance’ – previously thought to be a property of the
chaperone HSP90, a special class of proteins – is a property
of all proteins, albeit to a different degree.

Evolutionary Capacitance and Protein Networks
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In the model, the concentration of unfolded proteins and thus

the fitness of the proteome depends on the total stability

DGtotal~DGfoldingzDDGppi of individual proteins. While random

mutations are more likely to make proteins unstable, protein-

protein interactions increase the total stability. In the canonical

ensemble description of the evolution of fitness [21], the inverse

effective population size (1=f0Ne), the evolutionary temperature

quantifies the importance of genetic drift. The effective population

size modulates the competition between destabilizing random

mutations and stabilizing protein-protein interactions.

We find that at higher effective populations, proteins are

inherently stable and only the least stable proteins (small DGfolding)

receive high stabilization from the interaction network (high

DDGppi). At low effective population, due to genetic drift, proteins

are inherently destabilized and protein-protein interactions serve

as the primary determinant of the effective stability of proteins. Fig. 3

shows the dependence of average inherent stability (DGfolding),

average interaction-induced stability (DDGppi), and average total

stability (DGtotal) with effective population size. Interestingly, the

total stability (DGfoldingzDDGppi) of proteins remains relatively

insensitive to changes in population size.

We observe that the correlation coefficient between the inherent

stability DGfolding and the interaction-induced stability DDGppi

itself varies with the effective population size. Even though its

magnitude decreases, interaction-induced stability becomes more

and more correlated with inherent stability as population size

increases (See Fig. 4). In real life organisms, interaction-induced

stability acts on a need basis for proteins and serve as a secondary

stabilization mechanism. In the drift-dominated regime, which is

unlikely to be realized in real life organisms (except probably in

parasitic microbes with low population sizes), interaction-induced

stability becomes the dominant player in the evolution of total

stability of proteins [17]. We next examine if this prediction from

the toy model holds for real organisms.

Induced stability correlates with aggregation propensity
Proteome-wide information about the inherent stability of

proteins DGfolding is currently unavailable. Previously, in silico

estimates of protein aggregation propensity have been used as

proxy for protein stability [22,23]. We use the TANGO [24]

algorithm to estimate protein aggregation propensity. It is known

that TANGO aggregation propensity correlates strongly and

negatively with protein stability [24]. TANGO has been verified

extensively with experiments on peptide aggregation [24] and has

been previously used to study the evolutionary aspects of protein-

protein interactions [22,25]. Similar analysis for Aggrescan [26] can

be found in Text S1 and Table S3. We find that the aggregation

propensity Z is correlated positively with the interaction-induced

stability DDGppi (Spearman r~0:11, pv10{5). As expected [2],

the aggregation propensity Z is negatively correlated with protein

abundance C (Spearman r~{0:11, pv10{5). The correlation

between Z and DDGppi does not depend on this underlying

dependence and persists even after controlling for total abundance

C (partial Spearman r~0:11, pv10{5) (See Table S2). This result

suggests in the proteome of baker’s yeast, protein stability correlates

negatively with interaction-induced stability.

Aggregation propensity correlates principally with free
monomer abundance

The fitness cost of protein aggregation is directly proportional to

the amount of aggregate [20]. Thus, the selection forces that make

protein sequences aggregation-free act more strongly on highly

expressed proteins [1,2,22]. Our hypothesis suggests that the

proteins that are bound to their interaction partners present a

lower concentration of the free monomeric state in vivo (low F ) and

automatically lower the misfolding/aggregation induced fitness

cost, even if highly abundant (high C). The selection forces to

evolve an aggregation-free sequence may be weaker for such

proteins. Consequently, the aggregation propensity Z should be

principally correlated with the free monomer concentration F

rather than the total abundance C.

Indeed, we observe that the estimated monomer concentration

F and the aggregation propensity Z are correlated negatively

(Spearman r~{0:15, pv10{5). Importantly, this correlation is

not an artifact of the underlying correlation between the

aggregation propensity and total abundance C (partial Spearman

r~{0:10, pv10{5). At the same time, the partial correlation

coefficient between the aggregation propensity Z and the total

protein abundance C controlling for the estimated monomer

concentration F is minimal (partial Spearman r~0:03, pw0:15).

In short, the total free monomer concentration F of a protein

Figure 2. The histogram of estimated PPI-induced stabilities for the yeast cytoplasmic proteome (See main text). While the average
stability is *2 kBT , some proteins can receive as much as 5{6 kBT of stability from their binding partners. Note that the peak near DDGppi&0 is
due to proteins which have no interaction partners and are by definition not stabilized by the PPI network.
doi:10.1371/journal.pcbi.1003023.g002

Evolutionary Capacitance and Protein Networks
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(rather than C, its total abundance) might be a better variable to

relate to evolutionary and biophysical constraints on the protein.

Interacting proteins as evolutionary capacitors
We have thus far shown that a protein’s interaction partners can

significantly stabilize its folded state and this stabilization interferes

with the evolution of the inherent stability of the protein. We now

explore the reverse viz. the evolutionary consequences of the

ability of each protein to impart stability to its interaction partners.

The concept of evolutionary capacitor has been previously

introduced for the heat shock protein HSP90 [18,19], which is also

a molecular chaperone and a highly connected hub in the PPI

network (70 interaction partners in the current analysis). An

elevated concentration of HSP90 buffers the potentially unstable

variation in proteins, which may allow proteins to sample a wider

region of the sequence space, which may often lead to functional

diversification [27]. Similar to HSP90, each protein in the

interaction network has some ability to stabilize its interaction

partners to a certain extent. Consequently, we study the

evolutionary capacitance Ci of individual proteins in the context of

the interaction network by estimating the effect of protein

knockout on ppi-induced stability in silico. Proteins with higher

evolutionary capacitance are defined as those with the higher

cumulative destabilizing effect on the proteome. We write,

Ci~
X

j[destabilized
by i{knockout

DDGi,knockout
ppi (j) {DDGwt

ppi (j)

� �
: ð1Þ

For each protein i, the sum in Eq. 1 is carried out over all proteins

j that are destabilized due to its knockout. Here, we assume that

the potential of a given protein knockout to generate multiple

phenotypes depends on the loss of stability of its interaction

partners caused by its knockout. We hypothesize that, similar to

unstable proteins requiring HSP90 to fold, the interaction partners

of proteins with high capacitance should be unstable. In fact, the

capacitance Ci of a protein and the mean aggregation propensity

SZneighborsT of its interaction partners are strongly correlated

(Spearman r~0:53, pv10{5). The capacitance Ci is significantly

correlated with SZneighborsT even after controlling for the

abundance of the protein (partial spearman r~0:55, pv10{5)

and the number of its interaction partners (partial spearman

r~0:14, pv10{5). This suggests that a protein needs to be

present in sufficient quantity and should interact with a large

number of proteins in order to effectively act as a capacitor.

We have presented evidence that all proteins can act as an

evolutionary capacitor, albeit with variable effectiveness, for their

interaction partners. Traditionally, evolutionary capacitors are

understood to be chaperones that buffer phenotypic variations by

helping misolding-prone proteins fold in a proper structure [19].

Not surprisingly, when we carried out functional term enrichment

analysis using gene ontology [28], we found that approximately

half of the top 20 capacitors have ‘chaperone’ in their name. The

top 20 are also over represented in the chaperone-like molecular

function of protein binding and unfolded protein binding (pƒ0:0025) and

the biological process of protein folding (pƒ0:01). These findings

validate our definition of capacitors that were previously identified

as chaperones. Interestingly, some of the predicted capacitors do

Figure 3. The average of inherent stability DGfolding (triangles) and the interaction-induced stability DDGppi (squares) as a function of
effective population size f0Ne for the toy proteome. The curves are fitted to the data only to highlight trends, blue curve represents the total
stability DGfoldingzDDGppi . Population size f0Ne is in arbitrary units. The shaded area roughly represents the region of the red and the black curve
that correspond to the empirically observed folding free energies DGfolding (3:5{10 kcal=mol) [9] and the estimated interaction-induced free energy
DDGppi (1:5{3 kcal=mol).
doi:10.1371/journal.pcbi.1003023.g003

Evolutionary Capacitance and Protein Networks
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not currently have a protein folding-related functional annotation.

These need more experimental investigation (see supplementary

File S1 for the list). This suggests that previously identified

evolutionary capacitor HSP90 may in fact only be one among the

broader set of evolutionary capacitors. Every protein in the interaction

network is an evolutionary capacitor for its interaction partners and

evolutionary capacitor is a quantitative distinction rather than a

qualitative one.

Discussion

Recently, Fernández and Lynch [17] showed that random

genetic drift is the chief driving force behind thermodynamically

less stable yet densely interacting proteins in higher organisms

[17]. Additionally, protein complexes in higher organisms have

more members than in lower organisms [14]. Recently, it was

observed that a destabilizing mutation in the enzyme DHFR in E.

coli leads to functional tetramerization of the otherwise monomeric

enzyme [29] suggesting that protein-protein interactions can at

least partially compensate the effect of protein destabilization. b
lactoglobulin is an aggregation-prone protein generally found as a

dimer. It was shown that the specific interactions responsible for

the formation of the dimer considerably reduce the risk of protein

aggregation [16]. Ataxin-3 is a protein implicated in polygluta-

mine expansion diseases wherein the functional interactions of the

protein reduce the exposure of its aggregation prone interface and

thereby decrease its aggregation propensity [15].

Here, we have quantified the interaction-induced stability on a

proteome wide scale and hypothesized that the PPI-induced

stabilization is a secondary evolutionary advantage of the PPI

network; alleviating the selection pressure on proteins in functional

multi-protein complexes to evolve a stable folded. A simple model

for the fitness of the proteome provided a fundamental justification

for the co-evolution of protein stability and protein-protein

interactions and made predictions that were tested on the

proteome of baker’s yeast. In the model, when the effects of

natural selection are weak, proteins acquire stability mainly via

protein-protein interactions. At a higher population size — in the

absence of genetic drift — proteins are intrinsically stable and

protein-protein interactions stabilize only those proteins that fail to

evolve inherent stability.

We have also presented evidence that all interacting proteins

stabilize their binding partners to a certain extent and act as the

evolutionary capacitance [19] for their evolution. Interestingly,

though some of the top 20 capacitors predicted in this study are

known chaperones and are over-represented in GO ontology

terms such as protein binding, unfolded protein binding, and protein folding;

others do not have any protein folding-related functional

annotation and need experimental investigation.

The importance of disordered proteins, especially in the

proteomes of higher organisms, cannot be neglected. The

proteome of baker’s yeast does not have many completely

disordered proteins but *17% of the amino acids in the proteins

of yeast are predicted to be in a disordered state [30] (*10% for

the proteins considered in this study, see supplementary Text S1

and Fig. S4). Even though the development presented above

applied only to an equilibrium between folded and unfolded/

misfolded/aggregated protein, it can be easily generalized to

disordered proteins. This is because even though the folded '

unfolded equilibrium is not well defined, similar to well structured

proteins, disordered proteins also exist either in a soluble

monomeric (instead of the folded state), a misfolded/aggregated,

and a complexed state. Many disordered proteins acquire a

definite structure when bound to their interaction partners and

Figure 4. The spearman correlation coefficient between interaction-induced stability DDGppi and inherent stability DGfolding as a
function of effective population size f0Ne (See supplementary Text S1). Population size is in arbitrary units. The blue region identifies the
location of real life proteomes (See Fig. 3).
doi:10.1371/journal.pcbi.1003023.g004
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seldom dissociate to the soluble monomeric [31]. These serve as

even stronger candidates for the beneficiaries of interaction-

induced stability compared to folded proteins. Consequently, we

include both partially disordered proteins and structured proteins

in the current analysis of the *1600 cytoplasmic proteins.

Suggested experimental tests
Modulation of protein stability by overexpression of its

partners. We predict that the measured free energy of protein

folding in vivo [32,33] will be lower than the in vitro

measurement. Moreover, this free energy can be modulated by

overexpressing the interaction partners of the protein that

increases the equilibrium constant K2 between the folded

monomer and the generic complexed state. Recently, it was

observed that the measured stability of phosphoglycerate kinase

was higher by *3kBT in vivo compared to in vitro [33].

Overexpression-instability epistasis. Does the PPI-in-

duced stabilization have evolutionary advantages? We propose

the following experimental test. Consider two mutated phenotypes

for an isolated interacting pair of proteins A and B in an organism

1) A�, a destabilized mutant of protein A and 2) B: where B is

overexpressed. We predict that lowering of the organismal fitness

due to destabilization of protein A (A?A�) can be at least partially

rescued by the overexpression of the protein B (B?B:) i.e. the

combination of two penalizing mutations may perhaps be

advantageous to the organism.

Methods

Law of mass action and DDGppi

In cellular homeostasis, the total concentration CA of any

protein A can be written as the sum of its free folded monomer

concentration FA, a fraction comprising of insoluble oligomers and

unfolded peptide UA, and as part of all protein complexes DA

containing A (See Fig. 5). In our computational model, for

simplicity and owing to the nature of the large scale data [34], we

restrict protein complexes to dimers [35], thus for all proteins B
that interact with A,

DA~
X

B nn A

DAB ð2Þ

Conservation of mass implies,

CA~UAzFAz
X

B nn A

DAB: ð3Þ

The concentration DAB of each dimer AB satisfies the law of mass

action,

DAB~
FAFB

KAB

: ð4Þ

We can write the balance between the three states of the protein,

UA'FA'DA (See Fig. 1), as two equilibrium equations

FA~K1A
:UA, and ð5Þ

DA~K2A
:FA: ð6Þ

Note that UA comprises of a collection of biologically unusable

states of the protein viz. the misfolded/unfolded and the

oligomerized state any of which may convert to/interact with

the folded monomeric state FA. Consequently, the first equilibri-

um UA'FA is a collection of thermodynamic equilibriums. The

equilibrium constant K1 will thus depend not only on the

temperature T but also on UA and FA. If among the unfolded,

misfolded, and the oligomerized states the former dominates the

population comprising UA then, K1A~eDG=kBT where DGw0 is

the thermodynamic stability of the free monomeric state.

Similarly, K2A is given by,

K2A~
X

B nn A

FB

KAB

~
X

B nn A

UBK1B

KAB

ð7Þ

and depends not only on the dissociation constants KAB but also

the free concentrations FB of the interacting partners of protein A

and on the topology of the interaction network in the organism.

Here too, we assume that a) only the folded monomeric forms of

proteins interact with each other and b) there is no appreciable

interaction between the collective unfolded state UA of protein A

and any state of any other protein B. We have also neglected the

role of chaperones in actively reducing the concentration of the

unfolded/misfolded/aggregated state by turning it over to the

folded state. In fact, some of the chaperones are included in of our

mass action equilibrium model and prevent unfolding by

sequestering the folded state (see below and the discussion section).

By combining mass conservation (Eq. 3) with Eq. 5 and Eq. 6,

UA~
CA

1zK1A(1zK2A)
: ð8Þ

In the above development, we have made a crucial assumption

that only.

Note that in the absence of interactions, UA~CA=(1zK1A).
We identify 1zK2A as the additional decrease in the insoluble

fraction due to protein-protein interactions. We define the

interaction-induced stability DDGppi(w0) as,

DDGppi~kBT log(1zK2A) ð9Þ

Identification of proteins and the mass action model
We downloaded the latest set of interacting proteins in baker’s

yeast from the BIOGRID database [36]. To filter for non-

reproducible interactions and experimental artifacts, we retained

only those interactions that were confirmed in two or more

separate experiments. For the sake of simplicity, we only

considered cytoplasmic proteins [37] with known concentrations

[38]. This lead to *1600 proteins connected by *5600
interactions.

The in vivo stability of a protein is a combination of its

thermodynamic stability, resistance to aggregation or oligomeri-

zation, and resistance to degradation [39]. Note that the

interaction-induced stability of a protein depends on the stability

of its interaction partners (see Eq. 6, Eq. 7, and Eq. 9).

Unfortunately, the exact dependence of the in vivo protein stability

on its sequence is unclear and there exist no reliable data or

sequence dependent computational estimates for the thermody-

namic stability of proteins. Moreover, K2A, and thus DDGppi (Eq.

6, Eq. 7, and Eq. 9), can be estimated even in the absence of the

knowledge of K1A. In our estimates of DDGppi, we assume that

K2A is given simply by

Evolutionary Capacitance and Protein Networks

PLOS Computational Biology | www.ploscompbiol.org 6 April 2013 | Volume 9 | Issue 4 | e1003023



K2A~
X

B nn A

FB

KAB

:

Here, FB is obtained by solving the mass action equations [35]

iteratively (see below). This is equivalent to assuming that all the

proteins are equally and highly stable (K1A&1 for all proteins A).

The DDGppi thus calculated serves as the upper limit of

interaction-induced stability. In the supplementary materials (Text

S1, Fig. S1, Fig. S2, and Tables S4 and S5), we show that different

assignments of the equilibrium constants including a simple model

of protein stability [40–42] do not change the qualitative nature of

our observations.

The dissociation constants KAB for protein-protein interactions

follow a lognormal distribution with a mean S1=KABT&5 nM

[35]. The majority of interactions between proteins are neither too

weak nor unnecessarily strong. Common sense dictates that it does

not make sense to decrease the dissociation constant between two

proteins beyond the point where the abundance limiting protein

spends all of its time in the bound state. Motivated by these

evolutionary arguments to minimize unnecessary protein produc-

tion and to avoid unnecessarily strong interactions, Maslov and

Ispolatov [35] devised a recipe to assign dissociation constants to

individual protein-protein interactions. viz. for interacting proteins

A and B, the dissociation constant KAB~max(CA,CB)=20. We

also explore a few other assignment rules for dissociation constants

(see supplementary Text S1, Fig. S3, and Table S6).

We solve for free concentrations FA iteratively [35]. We start by

setting FA~CA for all proteins and iteratively calculate FA from

FA~
CA

1z
P

FB=KAB

ð10Þ

till two consecutive estimates of FA fall within 2:5% of each other

for all proteins.

Simplified fitness model for cellular proteomes
As noted above, the toxic effects of misfolding and aggregation

may be the chief determinant of protein sequence evolution

[2,4,5]. The dosage dependent fitness effect of misfolded proteins

[20] motivates us to introduce a simple biophysical model for

fitness f of the proteome (See Eq. 11),

f ~{f0 log
X

A

UA: ð11Þ

Figure 5. At steady state, protein A can be present either as a mixture of misfolded monomers and insoluble oligomers (UA), a
folded monomer FA, or in a complex with its interaction partners (DA).
doi:10.1371/journal.pcbi.1003023.g005

Evolutionary Capacitance and Protein Networks
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f0 is the scaling factor. Potentially, f0 can be estimated from fitness

experiments by introducing measured quantities of unfolded

protein in the cell [20]. We explore the evolution of a hypothetical

proteome to investigate the interplay between protein stability and

protein-protein interactions.

We believe that protein abundances and the topology of the

interaction network are largely dictated by biological function. It is

non-trivial to incorporate the fitness effect of changes in gene

expression level and the network topology in our simplified model.

Thus, to specifically probe the relation between stability and

interactions, we concentrate on the effect of toxic gain of function

due to misfolding and aggregation on cellular fitness and not

include changes in gene expression levels and network topology. In

this aspect, our model is in the same spirit as previously proposed

models [6,41–48]. The effect of random mutations on average

destabilizes proteins and the dynamics of the evolution of

thermodynamic stability of proteins can be modeled as a random

walk with negative average velocity [6]. We consider the

thermodynamic stability as a proxy for the in vivo stability of

proteins. We construct the cytoplasm of a hypothetical organism

with 15 proteins. The number of proteins is low due to

computational restrictions. The proteome is evolved by sampling

the dissociation constants from the lognormal distribution while

introducing random mutations in proteins that change their

stability. At each generation, the fitness is evaluated and the

progeny is accepted at a certain evolutionary temperature (defined as

the inverse of the effective population size, 1=f0Ne) [21]. We run a

total of 200000 generations for each evolutionary temperature and

analyze the organism in the latter half of the evolutionary run

(details of the model and a brief description of the population

genetics terminology is in supplementary Text S1).

Aggregation propensity
The notion of protein stability relevant to this study is the

propensity of a protein to avoid structural transformations that

may render it unemployable for biological function. For example,

for a small and highly soluble protein, this stability corresponds to

the thermodynamic stability of the native state while for a large

multi domain protein, it may correspond to the thermodynamic

stability of one of its domains against the partially unfolded state.

In short, thermodynamic stability of the folded state with respect

to the unfolded, partially folded state, and the misfolded state all

contribute to the in vivo stability of proteins [39].

Though there is a lack of proteome-wide estimates of

thermodynamic stability of proteins, the aggregation propensity

can be estimated from the sequence [24,26] and is known to be

correlated with protein stability [24]. In our correlation analysis,

we use the estimated aggregation propensity as a proxy for in vivo

protein stability and explore the relationship between interaction-

induced stability DDGppi and protein stability. The aggregation

propensity was estimated for the same *1600 proteins used in the

mass action calculation to estimate DDGppi. We tested the

TANGO [24] and Aggrescan [26] to estimate the aggregation

propensity of proteins. Previously, TANGO has been used

[22,23,49] to understand the relation between protein abundance

and instability. We show results for TANGO in the main text.

Aggrescan results (supplementary Text S1 and Table S3) are quite

similar.
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(PDF)

Table S3 A table reporting correlations between stability and
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interaction when protein stabilities depend on their chain length.
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Table S5 A table reporting correlations between stability and
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