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ABSTRACT 
Evolutionary clustering technique is proposed that opts for 

cluster centers straight way from the data set, further making 

it to speed up the fitness evaluation by estimating a data table 

in advance. It saves the distances among pairs of data points, 

and by using binary instead of string representation to encode 

a variable number of cluster centers. The development of ECT 

has capability to properly cluster different data sets. The 

experimental results show that the ECT provides a more stable 

clustering performance in terms of number of clusters and 

clustering results. These results require less computational 

time as compared to other GA-based clustering algorithms. 
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1. INTRODUCTION 
Cluster analysis, also known as unsupervised learning, is one 

of the most useful methods in the cluster analysis process for 

discovering groups. Clustering aims to organize a collection 

of data items into clusters, such that objects within the same 

cluster have a high degree of similarity, while objects 

belonging to different clusters have a high degree of 

dissimilarity. Cluster analysis makes it possible to look at 

properties of whole clusters instead of individual objects. This 

is a simplification that is useful when handling large amounts 

of data [1]. 

Some algorithms require certain parameters for clustering, 

such as the number of clusters and cluster shapes, as previous 

literature has stated [2]. Several non-GA-based clustering 

algorithms have been widely used, such as K-means, Fuzzy-c-

means, EM, etc. However, the number of clusters in a data set 

is not known in most real-life situations. None of these non-

GA-based clustering algorithms is capable of efficiently and 

automatically forming natural groups from all the input 

patterns, especially when the number of clusters included in 

the data set tends to be large. This is often due to a bad choice 

of initial cluster centers. Difficult problems such as these are 

referred to as unsupervised clustering or non-parametric 

clustering, and are often dealt with by employing an 

evolutionary approach. Genetic algorithms (GA) are the best-

known evolutionary techniques [3]. To date, some research 

articles have dealt with this method [4]. Among the GA-based 

clustering algorithms illustrated in the current literature, the 

GCUK (Genetic Clustering for Unknown K)  

method  [5] is the most effective one. However, its cost of 

computational time is very high because it uses a string 

representation (or real-number encoding) to encode clusters 

that require a great deal of time for floating-point 

computation. In our work, the cluster centers are selected from 

the data set, and a binary representation is used to encode a 

variable number of cluster centers. In the conventional GA-

based clustering  

methods, the cluster mean is used as the center of a cluster, 

and thus the distance from every data point to its cluster center 

must be evaluated each time the fitness of a chromosome is 

evaluated.  

Fitness evaluation during the conventional evolution process 

is quite time-consuming due to the repeated computation of 

the distance between every data point and its corresponding 

cluster center. Since our method selects cluster centers 

directly from the data set, it has the advantage of constructing 

a look-up table that saves the distances between all pairs of 

data points in advance. With the aid of the look-up table, the 

distances between all pairs of data points need to be evaluated 

only once throughout the entire evolution process. 

The question generally asked, in relation to the cluster validity 

problem, is whether the underlying assumptions (cluster 

shapes, number of clusters, initial conditions, etc.) of the 

clustering technique are satisfied for all of the input data sets. 

In order to address this problem, several cluster validity 

measures such as the Dunn index, the XB index (Xie-Beni 

index), the BM index [6] and the DB index [7] have been 

proposed [8,9,10,11]. It is impossible to answer every 

question without prior knowledge of the data. However, we 

can look for measures that provide reasonable clustering 

results in terms of homogeneity within clusters and 

heterogeneity between clusters, as discussed above. Our 

experiments show that the Dunn index slows down the overall 

process although it provides good results for strip-shaped 

clusters, the XB index performs poorly when the number of 

clusters is large, and the BM index tends to form two clusters 

for most of the data sets. The DB index, defined as a function 

of the ratio of the sum of the within-cluster scatter to the 

between-cluster separation, is shown to provide the most 

reasonable measure among all indices mentioned above. 

Therefore, we adopt the DB index to measure cluster validity 

in our experiments. The superiority of the proposed algorithm, 

over other proposed genetic clustering algorithms, is 

demonstrated in the experimental results. 

This paper is organized as follows: Section 2 describes how to 

implement a genetic algorithm. In Section 3, our proposed 

algorithm is introduced. Section 4 provides experimental 

results and comparisons with the GCUK method. Conclusions 

and directions for future research are given in Section 5. 

2. CLUSTER ALGORITHM 
Cluster analysis, also known as unsupervised learning, is one 

of the most useful methods in the cluster analysis process for 

discovering groups. Clustering aims to organize a collection 

of data items into clusters, such that objects within the same 
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cluster have a high degree of similarity, while objects 

belonging to different clusters have a high degree of 

dissimilarity. Cluster analysis makes it possible to look at 

properties of whole clusters instead of individual objects. This 

is a simplification that is useful when handling large amounts 

of data [7]. 

2.1 Clustering using Evolutionary 

algorithms 

2.1.1 Basic principle 
The searching capability of GAs has been used in this article 

for the purpose of appropriately determining a fixed number K 

of cluster centres in R^N; thereby suitably clustering the set of 

n unlabelled points. The clustering metric that has been 

adopted is the sum of the Euclidean distances of the points 

from their respective cluster centres. Mathematically, the 

clustering metric M for the K clusters C1, C2,….., CK is 

given by 

 

The task of the GA is to search for the appropriate cluster 

centres z1, z2,….., zK such that the clustering metric M is 

minimized. 

2.2 GA-clustering algorithm 
The basic steps of GAs, which are also followed in the 

GA-clustering algorithm, are shown in Fig. 1.  

 

 
 

 

These are now described in detail. 

2.2.1  String representation 
Each string is a sequence of real numbers representing the K 

cluster centres. For an N-dimensional space, the length of a 

chromosome is N*K words, where the first N positions (or, 

genes) represent the N dimensions of the first cluster centre, 

the next N positions represent those of the second cluster 

centre, and so on. As an illustration let us consider the 

following example. 

Example 1. Let N"2 and K"3, i.e., the space is two-

dimensional and the number of clusters being considered 

is three. Then the chromosome   

51.6  72.3  18.3  15.7  29.1  32.2 

 

represents the three cluster centres (51.6, 72.3), (18.3, 15.7) 

and (29.1, 32.2). Note that each real number in the 

chromosome is an indivisible gene. 

2.2.2 Population initialization 
The K cluster centres encoded in each chromosome are 

initialized to K randomly chosen points from the data set. This 

process is repeated for each of the P chromosomes in the 

population, where P is the size of the population. 

 

1.2.3. Fitness computation 

The fitness computation process consists of two phases. In the 

first phase, the clusters are formed according to the centres 

encoded in the chromosome under consideration. This is done 

by assigning each point xi, i"1, 2,2, n, to one of the clusters Cj 

with centre zj such that 

 
All ties are resolved arbitrarily. After the clustering is done, 

the cluster centres encoded in the chromosome are replaced by 

the mean points of the respective clusters. In other words, for 

cluster Ci, the new centre zi is computed as 

 

 

 

These zi s now replace the previous zis in the chromosome. 

As an illustration, let us consider the following example. 

 

Example 2. The first cluster centre in the chromosome 

considered in Example 1 is (51.6, 72.3). With (51.6, 72.3) as 

centre, let the resulting cluster contain two more points, viz., 

(50.0, 70.0) and (52.0, 74.0) besides itself i.e., (51.6, 72.3). 

Hence the newly computed cluster centre becomes 

((50.0+52.0+51.6)/3, (70.0+74.0+72.3)/ 3) = (51.2, 72.1). The 

new cluster centre (51.2, 72.1) now replaces the previous 

value of (51.6, 72.3).  

 

Subsequently, the clustering metric M is computed as 

follows: 

 

 

The fitness function is defined as f"1/M, so that maximization 

of the fitness function leads to minimization of M.  
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2.2.3  Selection 
The selection process selects chromosomes from the mating 

pool directed by the survival of the fittest concept of natural 

Evolutionary systems. In the proportional selection strategy 

adopted in this article, a chromosome is assigned a number of 

copies, which is proportional to its fitness in the population, 

that go into the mating pool for further Evolutionary 

operations. Roulette wheel selection is one common technique 

that implements the proportional selection strategy. 

2.2.4 Crossover 
Crossover is a probabilistic process that exchanges 

information between two parent chromosomes for generating 

two child chromosomes. In this article single point crossover 

with a fixed crossover probability of kc is used. For 

chromosomes of length l, a random integer, called the 

crossover point, is generated in the range [1, l ─ 1]. The 

portions of the chromosomes lying to the right of the 

crossover point are exchanged to produce two offspring. 

2.2.5  Mutation 
Each chromosome undergoes mutation with a fixed 

probability µm. For binary representation of chromosomes, a 

bit position (or gene) is mutated by simply flipping its value. 

Since we are considering floating point representation in this 

article, we use the following mutation. A number d in the 

range [0, 1] is generated with uniform distribution. If the 

value at a gene position is v, after mutation it becomes  

 
 

The „ + ' or „ ─ ' sign occurs with equal probability. Note that 

we could have implemented mutation as  

   
 

However, one problem with this form is that if the values at a 

particular position in all the chromosomes of a population 

become positive (or negative), then we will never be able to 

generate a new chromosome having a negative (or positive) 

value at that position. In order to overcome this limitation, we 

have incorporated a factor of 2 while implementing mutation. 

Other forms like  

 

   
 

where 0‹Є‹1 would also have satisfied our purpose. One may 

note in this context that similar sort of mutation operators for 

real encoding have been used mostly in the realm of 

evolutionary strategies. 

2.2.6 Termination criterion 
In this article the processes of fitness computation, selection, 

crossover, and mutation are executed for a maximum number 

of iterations. The best string seen up to the last generation 

provides the solution to the clustering problem. We have 

implemented elitism at each generation by preserving the best 

string seen up to that generation in a location outside the 

population. Thus on termination, this location contains the 

centre of the final clusters. 

3. METHODOLOGY 
A cantilever design problem is considered with two decision 

variables i.e. diameter (d) and length (l). the beam has to carry 

an end load P. Let us also consider two conflicting objectives 

of design , i.e. minimization of weight f1 and minimization of 

end deflection f2. the first objective will resort to an optimum 

solution having the smaller dimensions of d and l, so that the 

overall weight of the beam is minimum. Since the dimensions 

are small , the beam will not be adequately rigid and the end 

deflection of the beam will be large. On the other hand . if the 

beam is minimized for end deflection , the dimensions  of the 

beam are expected to be large , thereby  making the weight of 

the beam large .the left plot in Figure 1 marks the feasible 

decision variable space in the overall search space enclosed by 

10 ≤ d ≤ 50 mm and 200≤ l ≤ 1000 mm. it is clear that not all 

solutions in the rectangular decision space are feasible .  

Every feasible solution in this space can be mapped to a 

solution in the feasible objective space shown in the right plot. 

The correspondence of a point in the left figure with that in 

the right figure is also shown. 

 

 

             
 

                          Left Plot 

 

 

 

 
 

                         Right Plot 

Fig.2     The feasible decision variable space (left) and the 

feasible objective space (right) 

This Fig 2 shows many solutions trading-off differently 

between the two objectives. Any two solutions can be picked 

from the feasible objective space and compared. For some 

pairs of solutions, it can be observed that one solution is better 

than the other in both objectives as given in Table 1.All 

solutions lying on this curve are special in the context of 

multi-objective optimization and are called Pareto-optimal 

solutions. The curve formed by joining these solutions is 

known as Pareto-optimal front. 
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This approach is suitable for decision-makers that do not have 

a priori knowledge of the relative importance of the 

conflicting objectives in Multicriteriaoptimization problem.  

The developed approach is based on the following steps: 

1. Obtain the entire Pareto-optimal set or sub-set of solutions 

by using a multiple-objective evolutionary algorithm (MOEA) 

or by another means. 

2. Apply the GA based clustering algorithm to form clusters 

on the solutions contained in the Pareto set. 

3. To determine the “optimal” number of clusters, k, in this 

set, silhouette plots are used. A value of the silhouette width,  

s(i), is obtained for several values of k. The clustering with the 

highest average silhouette width is selected as the “optimal” 

number of clusters in the Pareto-optimal set. 

4. For each cluster, select a representative solution. To do this, 

the solution that is closest to its respective cluster centroid is 

chosen as a good representative solution. 

4. ANALYZE THE RESULTS. 
At this point, the decision-maker can either: 

5.1 Analyze the “knee” cluster. The suggestion is to focus on 

the cluster that has solutions that conform to the “knee” 

region. The “knee” is formed by those solutions of the Pareto-

optimal front where a small improvement in one objective 

would lead to a large deterioration in at least one other 

objective. Moreover, from this “knee” cluster the decision 

maker can select a promising solution for system 

implementation. This would be the solution closest to the 

ideal or utopian solution of the multiple objective problem, in 

a standardized space.  

5.2 Analyze the k representative solutions and/or select the 

most promising solutions among this k set, selecting the 

solution closest to the ideal point. By applying the proposed 

technique, the Pareto-optimal front of a multiple objective 

problem can be reduced to the “knee cluster” as in 5.1, or to a 

set of k solutions as in 5.2. In both cases the decision maker 

can choose a good tradeoff for system implementation by 

selecting the closest solution to the ideal or utopian solution of 

the multiple objective problems, in a standardized space.  

A Matlab code is developed to perform the steps of the 

proposed technique. From standardized data, the code will run 

the clustering algorithm and from two to a specified number 

of means it will calculate the average silhouette values and it 

will return the value of k suggesting the most optimal 

allocation. After this, it will also return the “knee cluster” of 

the optimal partition, the k representative solutions of the 

Pareto front, and in both cases, the solution closest to the ideal 

or utopian point.Fig.3 & Fig.4 shows the solution sets. 

 
Fig.3   The Solution Set1 

 

 
Fig.4   The Solution Set2 

5. CONCLUSION 
This work proposed a Evolutionary clustering technique 

(ECT) to determine the optimal Solution Set. 

Pareto optimization methods allow the use of Multicriteria 

optimization models without a priori decision maker 

preferences. The decision makers can consider the 

possibilities and trade-offs between objectives before 

selecting a solution for implementation. These methods suffer 

from the shortcoming of requiring the decision makers to 

consider many possible solutions resulting from the 

optimization procedure. This paper developed and evaluated a 

cluster analysis methodology to address this issue.  

Previous methods involved eliminating some of the Pareto 

optimal solutions before presenting them to the decision 

makers. The proposed methodology allows the entire non-

dominated set to be presented to the decision makers by 

providing a tractable structure for the results. This 

methodology will continue to be applicable as computational 

power increases and Pareto optimization algorithms improve, 

leading to the generation of larger non-dominated sets. 

This approach is applicable to Multicriteria problems with 

discrete decision variables. Multicriteria configuration 

optimization problems and the more general class of 

combinatorial Multicriteriaoptimization problems have 

discrete Pareto fronts. It may also be applicable to problems 

containing highly discontinuous Pareto fronts.  

This methodology is particularly useful if similarly 

performing solutions based on the objective function values 

may be distinguishable to the decision makers based on the 

importance of the decision variable values or unmodeled 

aspects of the problem. Previous approaches to this issue 

would have eliminated similarly performing solutions from 

consideration. 
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Future work will revisit the issues in cluster analysis including 

scaling, proximity measures, selection of algorithms, and 

validation as well as improved visualizations. This work could 

be extended to consider the proximity of the solutions based 

on their decision variable values. It may be desirable in some 

applications to highlight clusters containing similarly 

performing solutions with very different decision variable 

values; these solutions could denote unmodeled aspects of the 

problem or possible freedom in the decision.  
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