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Abstract

This study investigates the evolutionary co-optimisation of fuzzy control and system param-
eters for the Resonating robot Arm (RA). The RA is a novel concept for a pick-and-place
manipulator that uses a spring mechanism to reduce the required actuator torques. Since the
performance of the total system depends on the combination of the spring mechanism and the
controller it is difficult to find (near) optimal solutions using conventional design approaches
in which the system and the controller are optimised separately. Therefore evolutionary co-
optimisation is proposed in which Evolutionary Algorithms (EAs) are used to optimise the
RA system as a whole.

Three experiments were conducted in which the first experiment validated the use of fuzzy
control and EAs to find near optimal control solutions, and the second and third experiment
considered the co-optimisation of the RA with one and two degrees-of-freedom (DOF), re-
spectively. Two types of EAs (CoSyNE and CMA-ES) and two types of fuzzy controllers
(with fixed and free membership functions) were applied and their performances compared.

The results revealed that evolutionary co-optimisation yields near optimal solutions for the
1-DOF RA, which require 43% less torque than the solution found through a separate op-
timisation of the system and control parameters. In case of the 2-DOF RA, evolutionary
co-optimisation resulted in working solutions, however, no consistent convergence to near
optimal solutions was found. Additionally, it was shown that for all experiments the best
solutions came from the CMA-ES algorithm in combination with the fuzzy controller with
free membership functions.

The main conclusion drawn from this study is that evolutionary co-optimisation is an effective
approach to find near optimal solutions for the 1-DOF RA, however more research is needed
for it to be effectively applied to the 2-DOF RA.
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Chapter 1

Introduction

Robots are playing an increasingly large role in both society and industry, and the demands
and requirements for their design are becoming more and more complex. Engineers are
therefore constantly challenged to find better and more advanced robotic solutions for the
complex modern day problems. This drives the development of more effective and efficient
design approaches.

Traditionally, a robot design process starts with the design and optimisation of a mechanical
system. Thereafter a mathematical model is derived, which is used to design and tune a
corresponding controller. A problem with this approach is that during the optimisation of
the system the impact of the design variables on the performance of the whole system is
difficult to grasp. Since during the design of the mechanical system the controller still needs
to be designed, human designers must often rely on intuition and experience in order to tune
the system parameters. Therefore this approach can easily lead to suboptimal system designs.

Co-optimisation approaches solve this problem by optimising the system and controller in
parallel. By considering the system as a whole, parameters of both the system and the
controller are tuned based on their influence on the overall performance.

1-1 Evolutionary Co-Optimisation

The parallel optimisation of system and control generally results in high dimensional and
complex optimisation problems. These problems cannot be solved by analytical methods and
heuristic search methods have to be applied. Most often Evolutionary Algorithms (EAs) are
applied to solve these problems due to their robustness to local minima and to search spaces
that are highly nonlinear and of varying dimensions.

One of the pioneers in evolutionary co-optimisation is Karl Sims [1] who showed that EAs
can be used to evolve both the morphology and control of walking, jumping or swimming
creatures in a virtual environment. Later, others used the same approach to co-optimise the
sensor positioning and control of flying and driving robots [2–4] or to design walking and
swimming robots from modular parts [5–7].
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2 Introduction

It appears that evolutionary co-optimisation has mainly attracted the attention of researchers
in the field of autonomous robots, while its benefits are generally applicable to the development
of other types of robots, such as manipulators used in the industry. The software Darwin2K
from Leger [8] is one of the few applications concerning the optimisation of robot manipulators.
This software is able to synthesise the robot morphology and optimise the system and control
parameters. In order to keep the complexity of the problem manageable, simple local control
strategies (i.e. PID) are applied. Unfortunately, these simple local controllers also limit the
search for an optimal solution [8]. Therefore this research concerns the optimisation of more
complex and global controllers.

1-2 Resonating Robot Arm

In this research, evolutionary co-optimisation is applied to the optimisation of a Resonating
robot Arm (RA). This arm is a novel concept of a pick-an-place robot and aims to reduce
the actuation power needed to fulfil the desired pick-and-place tasks through the use of a
spring mechanism. This spring mechanism fulfils a task normally fulfilled by the controller,
namely the acceleration and deceleration of the arm when moving between the pick-and-place
positions. The task of the original controller can therefore be reduced to small actions needed
to steer the system, reject disturbances and account for friction losses.

The spring mechanism can be considered as a mechanical subcontroller, which works in paral-
lel with the actuator controller to perform the pick-and-place tasks. Both of these controllers
need to be carefully tuned to obtain the best results; a parallel or co-optimisation of both
system and control is therefore clearly desired.

1-3 Research Goals

This thesis addresses the use of evolutionary co-optimisation in the development of the RA.
The general goal is to develop an environment that allows co-optimisation of the RA and to
investigate its benefits and limitations. Other than research such as performed by Leger [8],
this thesis does not consider the optimisation of a system configuration in combination with
linear local controllers. Instead, it aims to optimise the system parameter of a predefined
configuration and a nonlinear global controller. This nonlinear feedback controller is defined
by a fuzzy control architecture. This thesis only considers the movements in the horizontal
plane and does not address the influence of external disturbances or obstacles when performing
the tasks.

The research question that will be answered in this thesis is:

To what extent is co-optimisation through evolutionary algorithms able to find (near) optimal
solutions when optimising both the system parameters and the parameters of a fuzzy controller
for a resonating robot arm?

This research question will be answered by conducting three experiments in which the follow-
ing three research subquestions are considered:

Exp. 1: Is the fuzzy control approach optimised by EAs suitable to generate (near) optimal
feedback control solutions?
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1-4 Approach 3

Exp. 2: Is evolutionary co-optimisation an effective approach to find (near) optimal solutions
for Resonating Arm with one degree-of-freedom?

Exp. 3: Is evolutionary co-optimisation an effective approach to find (near) optimal solutions
for Resonating Arm with two degrees-of-freedom?

1-4 Approach

Two state-of-the-art evolutionary algorithms (CoSyNE and CMA-ES) will be applied and two
types of fuzzy control architectures will be considered in which one has membership functions
with fixed locations and the other uses free membership function with variable locations to
be optimised by the EAs. These different EAs and controllers will be used to investigate
the influence of the EA and controller selection on the effectiveness of the evolutionary co-
optimisation.

Next to providing an answer to the research question and subquestions, this work will conclude
which evolutionary algorithm (CoSyNE or CMA-ES) and which fuzzy control architecture
(with fixed or free membership functions) appeared to be the most effective.

1-5 Thesis Outline

Chapter 2 of this thesis gives an introduction to the field of evolutionary algorithms. It
explains why evolutionary algorithms are especially useful for solving engineering problems
and gives an overview of the different components of which an evolutionary algorithm is
constructed. Thereafter two state-of-the-art evolutionary algorithms CoSyNE and CMA-ES,
which have been used in this research, are presented and their general structure is discussed.

Chapter 3 contains details about the RA system designed for pick-and-place tasks. This
chapter presents the purpose of the RA, explains its mechanical structure and discusses the
specific properties. At last, the derivation of the system model is discussed which has been
used to simulate the system during optimisation.

Chapter 4 introduces the fuzzy control strategy used for nonlinear feedback control. It
presents the control requirements which led to the controller selection and explains the basic
principles. Thereafter the two types of fuzzy control (with fixed and free membership func-
tions), which are investigated in this research, are presented and their expected advantages
and disadvantages are discussed.

In Chapter 5 the execution and results of three experiments are discussed in which evolution-
ary algorithms have been applied on problems of different complexity. The first experiment
validates the use of fuzzy control in combination with evolutionary algorithms by solving a
minimal-time control problem on a single mass. The second experiment validates the effec-
tiveness of evolutionary co-optimisation by optimising a simpler form of the RA system in
which only one degree-of-freedom is considered. The third experiment analyses the results
found after co-optimising the control and system parameters of the complete RA with two
degrees-of-freedom. The chapter is ended with a discussion and analysis on the performance
of the different fuzzy controllers and EAs used in the experiments.
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4 Introduction

Finally, in Chapter 6 we conclude and discuss our work and present recommendations for
further research.
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Chapter 2

Evolutionary Algorithms

In this research evolutionary algorithms (EAs) are used to co-optimise control and system
parameters. This chapter introduces EAs, discusses why these algorithms are being used and
explains the basic concepts on which EAs are based. Finally, two types of EAs are presented,
which will both be used in this research.

2-1 Introduction

Evolutionary algorithms is a class of optimisation heuristic that mimics the process of Dar-
winian evolution [9] by copying natural mechanisms such as selection, reproduction and mu-
tation. Since its inception in the 1950s the field of EAs has strongly matured making EAs
widely recognised as powerful problem solving methods [10].

Successful applications of EAs can be found in a large array of fields [11] such as mathematics,
chemistry, biology, finance and arts and also in the field of engineering the use of EAs is
becoming more and more popular [12].

2-2 Why Evolutionary Algorithms?

Engineering problems, such as the one solved in this research, are in general characterised
by their high dimensionality, complexity and constraints causing a large and nonlinear search
space with many peaks and discontinuities [13]. In Figure 2-1 a classification structure of
existing optimisation methods is presented. With this structure the two main advantages of
using EAs in engineering problems are presented.

The first advantage of EAs is the fact that they are non-gradient-based optimisation methods
and thus do not require a gradient of the search space. Gradient-based methods need the
gradient of an objective function in order to apply so called ‘hill-climbing’ techniques (i.e.
steepest descent method) where the local optima are sought by moving the search in the
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6 Evolutionary Algorithms

Optimisation 

methods
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Non

gradient based

Steepest

descent

ParallelSerial

Evolutionary

algorithms
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Random 

search
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Figure 2-1: A classification of optimisation methods in gradient-based, non-gradient-base, serial
and parallel methods with examples of common methods.

direction of the local gradient. These methods are powerful when the objective functions
have low complexity and continuous derivatives, however, when this is not the case they lack
robustness and are not able to perform an effective search [14]. The high complexity and
possible discontinuities in engineering problems therefore require the use of non-gradient-
based methods.

A second advantage is the fact that EAs are performing a parallel search of the search space.
Serial optimisation algorithms (e.g. simulated annealing and tabu search) evaluate only one
point in a search space at a time, whereas parallel optimisation algorithms (e.g. particle swarm
optimisation, ant colony optimisation and evolutionary algorithms) gather information from
multiple points. When unfortunately initialised a serial optimisation methods could start-off
in a local optimum from which it may not be able to get out. Multiple restarts are therefore
required to find the global optimum. The main disadvantage of the multiple restart approach
is that no search space information is shared between the different searches. Therefore the
same area in the search space may be explored multiple times, which makes the multiple
restart approach inefficient. In a parallel search the search space is sampled at multiple
points at the same time and all information is used to direct the search in the most promising
area of the search space. Since the search space of the co-optimisation problems will most
likely have many local optima parallel optimisation methods seem to be the more appropriate
since they are less sensitive to their initialisation and therefore more effective.

Another advantage of EAs is the fact that they are able to optimise solutions, which consist of
both real- and discrete valued parameters. Although in this research we will only focus on the
optimisation of real valued parameters it could very well be that future optimisations require
the optimisation of discrete parameters (e.g. choosing between different actuator types).

An often mentioned limitation of EAs is their sensitivity to the various parameters that define
them. In this research we will try to overcome this limitation by applying two different types
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of EAs of which one has almost no parameters to be tuned and for the other the parameters
have been applied as published.

2-3 Fundamentals of Evolutionary Algorithms

Although the term EA comprises many different algorithms the structure of the algorithms
can be represented as the pseudocode in Algorithm 1. At first, an initial population of
multiple solutions is created. These initial solutions are traditionally created randomly, but
it is also possible to use predefined solutions. Each solution is evaluated for its ability to solve
the problem, which is indicated by a fitness score. The evolutionary mechanism selection
uses the fitness scores to choose solutions for reproduction, in which new solutions are created
based on the information of the selected solutions. Another selection procedure brings these
new solutions into the next generation by replacing worse performing solutions from the last
generation. This process is repeated until a solution with satisfactory fitness has been found
or until the number of cycles exceeds a certain limit.

Algorithm 1 Pseudocode of an evolutionary algorithm

1: t← 1
2: P (t)← initialise

3: repeat

4: evaluate(P (t))
5: S(t)← select(P (t))
6: R(t)← reproduce(S(t))
7: P (t + 1)← replace(P (t), R(t))
8: t← t + 1
9: until termination criteria

In this section the basic components defining an EA are discussed:

• representation

• fitness evaluation

• population

• parent selection mechanism

• variation operators

• replacement mechanism

• initialisation

• termination condition

Each EA is defined by these components, only the detailed implementation of these compo-
nents varies between the different types of EAs.
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8 Evolutionary Algorithms

2-3-1 Representation

An EA can only find possible solutions to a problem when the solutions are transformed into
a representation the EA can handle. This means that a mapping is needed between possible
solutions within the original problem context, called phenotypes, onto individuals within the
context of the EA, called genotypes.

In EAs this encoding can be done as a string of binary code [15], real-valued numbers [6],
integers [16], or as a tree structure [17]. However, for mechanical problems the most effective
representation is a string of real-valued numbers [18]. In order to limit the search space the
parameters are often bounded to a maximum and minimum value.

The EA will search for optima in the genotype space and will deliver a good genotype solutions,
if the mapping between the genotype space and the phenotype space has been done correctly
this can be decoded into a more meaningful phenotype solution.

2-3-2 Fitness Evaluation

The fitness evaluation step evaluates each solution and determines the relative quality of a
solution in comparison to other solutions using the so called fitness function. The quality of
a solution is called the fitness score and it facilitates the selection mechanism with a measure
to determine the best solutions in a set of solutions. The fitness function is based on the
objective function of the optimisation problem to be solved. The evaluation of the solutions
is therefore often applied in the phenotype space by decoding the solutions before evaluation.

2-3-3 Population

The group of solutions handled by the EA is called the population. In order to define the
population one needs to determine the number of genotypes that are in it. For most EAs
this number is kept constant and is not changed during the evolutionary search. For some
sophisticated EAs a population also has an additional spatial structure, with a distance
measure or a neighbourhood relation [19]. In these cases this measures or relations have to
be defined as well.

2-3-4 Parent Selection Mechanism

The parent selection mechanism operates at the population level and is used to select only the
best solutions in the population as a seed for the production of new solutions. The selection is
always made relative to what currently is present in the complete population and it supports
quality improvement by favouring better solutions above solutions that perform worse. The
selected solutions are called parents since they will be used in the variation operators to
produce the new solutions, also called offspring or children.

Often the parent selection is probabilistic giving high quality individuals a higher chance to
become parents than those with low quality. However, low quality are still able to be selected
in order to prevent the search from becoming too greedy, which could lead to premature
convergence to local optima.
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2-3-5 Variation Operators

The variation operators are responsible for creating offspring from a group of selected parents.
Two types of variation operators can be recognised; mutation and recombination.

Mutation

Mutation takes one parent and slightly modifies the genotype representation in order to create
a mutant of the original parent (Figure 2-2). The modification applied is always stochastic
and its purpose is to discover potential better solutions based on the current best solutions.

Many mutations with large effects will be beneficial to get out of sub optima, but make
convergence to a global optimum more difficult [18]. The need for both small and large
mutations is often solved by using Gaussian or Cauchy distributions, these distributions favour
small mutations but still allow bigger mutations to happen.

           

           

Parent:

Child:

1

2
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3
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5

5

66

6

8

8

9

9

Figure 2-2: Mutation operator.

Recombination

Recombination or crossover merges information from two parent genotypes into one or two
offspring genotypes. The idea behind recombination is that by mating two individuals with
different but desirable features, it is possible to produce offspring that combines both of those
features. Since one cannot tell which information of a solution is responsible for the desired
behaviour, the offspring is constructed by combining randomly selected partial information
from both parents.

Three main recombination approaches are: single-point, two-point and uniform crossover.
In single-point and two-point crossover the array of information from the parents is cut at,
respectively, one or two random points and the offspring is created by combining the sliced
information of both parents (Figure 2-3). In uniform crossover each parental variable is
randomly assigned to either of the two children.

2-3-6 Replacement Mechanism

The replacement mechanism prepares the next generation of the population by replacing
solutions from the current generation with the new offspring produced by the variation oper-
ators. The selection of the solutions to be replaced is often based on the quality of a solution
expressed by its fitness score.
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Figure 2-3: Single-point crossover operator.

2-3-7 Initialisation

In the initialisation step one defines the solutions in the first generation of the evolutionary
process. Generally this is done randomly since one desires the first individuals to be spread
over the complete search space before converging to more promising areas. However, when
prior knowledge is available about the approximated location of the optimum one could initiate
the algorithm around this location in order to point the algorithm in a promising direction.
This is often done to speed up the convergence.

2-3-8 Termination Condition

A trivial termination condition for the evolutionary process is the moment when the optimum
has been found. However, for many optimisation problems the optimum is unknown and one
is therefore never sure whether a solution is the best solution or whether there still exist
better solutions. Moreover EAs are stochastic and might take a long time to converge to the
optimum or may never reach the optimum at all.

Commonly used termination conditions are therefore based on the maximum allowed CPU
time elapses, total number of fitness evaluations or the improvement of the solutions in a
given period of time.

2-4 Algorithm Design

Two different EAs have been used in this research in order to analyse and compare their
performances. Additionally an incremental fitness function has been constructed to be used
for the optimisation of the Resonating Arm (RA). In this section we will discuss the design
of the fitness function and present the two algorithms CMA-ES and CoSyNE used in this
research.

2-4-1 Fitness Function

The fitness functions used in this work are defined in such a way that a minimum amount of a
priori knowledge is required to construct them. This is done by using incremental aggregate
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fitness functions, which, in contrast to the often used behavioural fitness functions, evaluate
solutions on their ability to fulfil the desired task and not on their behaviour.

Most of the fitness functions used in EAs are behavioural fitness functions [20], which deter-
mine the fitness of a solution on its ability to perform the behaviour that is expected to lead
to an optimal fulfilment of the task. An example of such a fitness function is given in (2-1)
in which the minimisation of the settling time of a controlled system is translated into the
weighted integral of the error e and error derivative ė.

f =

∫ tf

t0

a · |e(t)|+ b · |ė(t)|dt (2-1)

The main reason for the use of behavioural fitness functions is that even if none of the
solutions is able to fulfil the task (e.g. converge) their behaviour can still be used to rank the
solutions. However, their disadvantage lies in the fact that a priori knowledge is required of
the optimal behaviour that corresponds to a certain task. A mismatch between the expected
optimal behaviour and the real optimal behaviour may prevent the optimal solutions from
being found.

A better approach is to score the solutions on their ability to perform the task, regardless
of their behaviour. These types of fitness functions are called aggregate fitness functions
[20]. The aggregate fitness function for the minimal settling time problem used before would
therefore translate into a direct relation between the fitness f and the settling time tsettle

f = tsettle (2-2)

Although aggregate fitness functions do not impose any restrictions on the search for the
optimal solution, their disadvantage lies in the fact that at early stages in the optimisation
process none of the solutions might be able to fulfil the task and thus no distinction can be
made between good and bad performing solutions. This problem, called the ‘bootstrap prob-
lem’ [21], results in the fact that the evolutionary mechanisms of selection and replacement
cannot effectively be applied.

A solution to this problem is the use of incremental aggregate fitness functions tailored for
the desired task at hand [20]. These fitness functions eliminate the ‘bootstrap problem’ by
ranking the solutions that do not fulfil the main task by using sub fitness functions. These
sub fitness functions determine the solution’s ability to fulfil a sub task, which is required to
fulfil the main task. In the fitness functions used in this research this often translates into
the sub task of reaching a desired state, which is fundamental for the main task of using a
minimal torque or convergence time.

Although for many EAs the shape of the fitness function has an influence on their performance,
this is not the case for the algorithms used in this work. This is because both the CoSyNE
and CMA-ES algorithm are rank-based algorithms [22, 23], which means that any fitness
function that preserves the rank will be considered equal from the EA’s point of view [24].

Detailed descriptions of the fitness functions used for the conducted experiments are given in
Chapter 5.

2-4-2 CoSyNE algorithm

The CoSyNE (COoperative SYnapse NeuroEvolution) algorithm is one of the two EAs used
in this research. CoSyNE has been proposed by Gomez, Schmidhuber and Miikkulainen in
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2008 [22] and was originally designed for the optimisation of neural networks, but has also
been successfully applied for the optimisation of system parameters of a car setup [25]. It is a
relatively new algorithm and experiments have shown that it is able to match-up and in some
cases beat the current state-of-the-art algorithm CMA-ES (which is the second algorithm
used in this research) [22] [25].

CoSyNE is part of the family of cooperative co-evolutionary algorithms, which are inspired
by natural ecosystems where several species cooperate for their survival (i.e. pilot fish that
clean the skin of a shark in return for protection). In this class large optimisation problems
are decomposed into sub components, which are subject to local evolutionary processes. This
decomposition and evolution of sub solutions is expected to create EAs, which are capable of
optimising problems with high dimensionality.

Since the co-optimisation of control and system parameters often results in high dimensional
search spaces, the cooperative co-evolutionary approach is expected to be beneficial to opti-
mise both the control and system parameters of the RA.

General Framework

The cooperating species or sub populations in the CoSyNE algorithm are the different sub
components of a complete solution. Since the fitness function cannot determine a fitness score
for a single sub component complete solutions are assembled using one member from each
species. The fitness scores at the species level is defined in terms of the fitness of the complete
solutions in which the species members participated. The evolution of each sub population
is then handled independently by a standard evolutionary process of selection, reproduction,
mutation and replacement [22].

To explain these steps more clearly a pseudo-code of the CoSyNE algorithm is presented in
Algorithm 2. First (line 1), a population P consisting of n sub populations Pi i = 1, . . . , n is
initialised randomly, where n is the number of variables needed to define a complete solution.
Each sub population is initialised to contain m real numbers chosen from a uniform probability
distribution in the interval [0, 1]. Starting with these initial sub populations the CoSyNE
algorithm loops through a sequence of generations until the stopping criteria are met (lines 2-
11). Each generation starts by constructing a complete solution by combining one individual
from each sub population. In CoSyNE this is done by taking the jth row of the population
matrix P (line 4). The complete solution is now evaluated and in this way a fitness score is
determined for all m combinations (line 5). The fitness score of an individual is set equal to
the fitness score of the complete solution it was part of. A quarter of the best performing
solutions is selected as parents and used to create offspring by applying the variation operators
mutation and crossover (line 7-8). The newly created individuals are now used to replace the
worst performing individuals (line 9).

Up to now the algorithm is equivalent to a conventional genetic algorithm that evolves com-
plete solutions. In order to incorporate co-evolution into the algorithm the sub populations
are permuted probabilistically so that each individual forms part of a potentially different
solution in the next generation (line 10). Gomez proposed a permutation mechanism in
which individuals are marked randomly according to probabilities assigned by a user-defined
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Algorithm 2 CoSyNE algorithm

1: P ← initialise(P 1, P 2, P 3, . . . , P n) {initialise all n sub population with m variables}
2: repeat

3: for j = 1 to m do

4: Pj ← (P 1
j P 2

j P 3
j . . . P n

j )
5: evaluate(Pj)
6: end for

7: Pparents ← SelectBestQuarter(P )
8: Poffspring ← CreateOffspring(P 1

parents, P 2
parents, P 3

parents, . . . , P n
parents)

9: Pnew ← ReplaceWorstQuarter(P, Poffspring)
10: P ← Permutate(P 1

new, P 2
new, P 3

new, . . . , P n
new)

11: until end criteria

function f() [22]. One possible probability function presented in his paper is:

mutprob(xij) = 1−

√

f(xij)− fmin
i

fmax
i − fmin

i

(2-3)

where f(xij) is the fitness of individual xij , and fmin
i and fmax

i are, respectively, the fitness
of the least and most fit individuals in sub population i. In this permutation process the
probability of an individual to be permuted is inversely proportional to its relative fitness,
which means that the combinations with high fitness are more likely to be preserved, while
those with low fitness are more likely to be disrupted.

However, Gomez does not use this function in his publication and rather uses the less sophis-
ticated probability function; prob(xij) = 1, ∀i, j, which he only applies on the old individuals.
Both in [22] and [25] this approach was found to work well and will therefore also be applied
in this research. Moreover the sophisticated function would make the algorithm dependent on
the distance between the fitness values, which is undesirable since a rank-dependent algorithm
is preferred [24].

After permutation the process is repeated until the stopping criteria have been met.

2-4-3 CMA-ES algorithm

The performance of the CoSyNE algorithm will be compared with a second EA used in
this research called CMA-ES (Covariance Matrix Adaptation Evolution Strategy). CMA-ES
is a well-known state-of-the-art optimisation algorithm proposed by Gawelczyk, Hansen and
Ostermeier [23]. Many empirical results show the effectiveness of CMA-ES and it is considered
to be particularly useful on non-convex, non-separable, ill-conditioned, multi-model or noisy
objective functions.

The main advantages of CMA-ES is that it is quasi parameter-free. Finding good (default)
strategy parameters is considered as a part of the algorithm design, which saves the user from
endless tuning of the different algorithm parameters. The only used-defined parameter of
importance is the population size, which influences the difference between a more local search
with a fast convergence or a global search with a longer convergence time.
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14 Evolutionary Algorithms

General Framework

CMA-ES was developed with the idea that the evolutionary operators of selection, recombina-
tion and mutation implicitly define a distribution from which the next generation is sampled.
Therefore an evolutionary search in its simplest form can be described by a three step process
of sampling, evaluation and an update of the distribution parameters as shown in Algorithm
3.

Algorithm 3 Basis structure of the CMA-ES algorithm

1: set population size λ ∈ N

2: initialise distribution parameters γ
3: repeat

4: sample distribution P (x|γ)→ x1, . . . , xλ ∈ R
n

5: evaluate x1, . . . , xλ on fitness function f
6: update distribution parameters γ ← F (γ, x1, . . . , xλ, f(x1), . . . , f(xλ))
7: until end criteria

The sample distribution used in CMA-ES is a multi-variate normal distributionN (m, C) that
is uniquely determined by its mean value m ∈ R

n and its symmetric positive definite n × n
covariance matrix C. This distribution can be geometrically interpreted as an iso-density
ellipsoid, which shape is determined by the covariance matrix C. Its position is determined
by the mean value m around which the distribution is symmetric.

The mean value m of this distribution is updated after each generation by selecting the best
points from the evaluated population. The weighted average of these points is then used to
determine the updated mean value m, where the weight of each point is determined by its
ranking position. Also the covariance matrix C is updated by finding a covariance matrix
that fits the distribution of the best points of the new populations best. Since CMA-ES uses
a non-elitist selection only the newly created solutions are used for these updates.

The step-size determines how far new solutions are sampled from the mean value. This step-
size is also automatically updated in CMA-ES by using a cumulative step-size adaptation,
which increases the step-size when the mean vector m is updated in the expected direction
based on the previous update directions. When this is not the case the step-size is reduced
in order to facilitate a finer search.

2-4-4 Algorithm Parameters

The user-defined parameters of both the CoSyNE and CMA-ES algorithm are given in Table
2-1.

The basic CoSyNE framework as presented by Gomez [22] describes the use of conventional
genetic operators acting on the different sub populations, but does not specify which genetic
operators are used. In this research uniform crossover is used and each individual has a
probability of 0.3 to be mutated by a normal distributed noise. The population size was set
to 40 after investigating the convergences performances of different population sizes.

As mentioned the CMA-ES algorithm is designed to be a quasi-parameter free optimisation
algorithm and therefore many parameters are already identified by the developers. The only
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Table 2-1: The user defined parameters of the CoSyNE and CMA-ES algorithm.

Parameter CoSyNE CMA-ES

Population size 40 40
Crossover type Uniform -

Mutation Normal distributed noise (σ = 0.15) -
Mutation probability 0.3 -

variable that can be varied by the user is the population size λ, which in CMA-ES stands for
the number of new solutions sampled after each generation. In order to get a fair comparison
between both algorithms the population size was set equal to the population size used in the
CoSyNE algorithm.

2-5 Summary

Evolutionary algorithms are a class of optimisation approaches that mimic the process of
Darwinian evolution. Their main advantages are the fact that they do not need a gradient an
objective function (non-gradient-based) and explore the search space at multiple points at the
same time (parallel search). This makes them suitable and efficient optimisation algorithms
for engineering problems, for which the derivatives of the objective function may often be
discontinues and the search space are likely to be highly complex with many local minima.

The basic structure of EAs is based on evaluation, selection, reproduction and replacement.
First a population of different solutions is initialised. Every solution is evaluated in the
fitness function, which determines the quality of the solution and gives it a fitness score. The
fitness scores of all solutions are used to select the better performing solutions (parents) for
reproduction. New solutions are created by the variation operators, which combine or slightly
mutate the information of the selected solutions. These new solutions are then place back
into the population by replacing the worst performing solutions.

The fitness functions used in this research are aggregate fitness functions that score the
solutions on their ability to perform the desired task. In contrast to the often used behavioural
fitness functions, which limit the search for an optimal tasks fulfilment by imposing restrictions
on the behaviour. The ’bootstrap problem’ of aggregate fitness functions is avoided by an
incremental structure in which solutions that are not able to fulfil the main task are scored
on their ability to fulfil sub tasks.

The CoSyNE algorithm is one of the two EAs used in this research. It is a cooperative
co-evolutionary algorithm in which the solutions are decomposed into sub solutions. The
fitness of a sub solution is determined by combining different sub solutions into one complete
solutions and evaluating the complete solution in the fitness function. Each sub solution
is thereafter evolved using conventional EA operators. The decomposition of the complete
solution is expected to make the algorithm more efficient on high dimensional problems.

The second EA is CMA-ES, which is a well-known state-of-the-art optimisation algorithm.
It translates the selection, recombination and mutation processes into the updating of an
adaptive covariance matrix, which is thereafter used to sample new solutions for the next
generation.
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Chapter 3

Resonating Arm System

In this chapter the Resonating Arm (RA) will be discussed by explaining its purpose, back-
ground and working principles. Thereafter the mathematical model of the RA is derived, and
the friction model and simulation method are discussed.

3-1 Purpose and Background

This research is part of the ‘Resonating Arm Project’ which concerns the development of
robots arms that have the design and skills to perform their tasks in a natural dynamic man-
ner. This is achieved by creating a natural oscillatory motion through a smart combination
of springs, mechanisms and actuators. In this section we will discuss the purpose of the RA
and how this research builds upon previous results achieved in this project.

Purpose

The Resonating Arm is a novel concept for a robot arm with low-power actuators designed
for pick-and-place tasks. These tasks are in general highly repetitive which favours the use
of robots above human workers. Therefore robot arms are already widely being used to
perform pick-and-place tasks in numerous industries (e.g. the food handling industry). These
robot arms are typically equipped with high-power actuators to meet the fast handling speeds
required by the industry. The resonating arm is being developed to reducing this need for
powerful actuators while being fast enough to be used in an industrial environment.

The reduction of actuation power has a positive influence on many aspect. One of those
aspects is a possible increase in energy efficiency due to the fact that low-power actuators
demand less energy. Another aspect is safety which can be improved by the decreased maxi-
mum torque the actuators are able to generate. Furthermore the cost and mass of the robot
could be reduced by the implementation of low-power actuators, which are generally cheaper
and lighter.
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18 Resonating Arm System

In this research the reduction of actuation power is translated into the minimisation of the
maximum torque needed to perform the demanded pick-and-place tasks within a limited time
frame. The minimisation of this maximum torque enables the use of less powerful actuators
in the final design of the robot arm.

Background

The development of the Resonating Arm started in early 2011 when a research group was
formed by dr.ir. Martijn Wisse at the Delft University of Technology (TU Delft). The first
step in the development of the RA was taken by ir. Michiel Plooij who designed and built
the first RA prototype during his graduation project [26]. This research builds upon Plooij’s
graduation work and uses the morphological structure of the prototype to investigate whether
evolutionary algorithms could help to improve the system parameter values and optimise a
minimal torque controller.

3-2 Working Principles

The reduction of actuation power without a loss of handling speed can only be done by
designing a clever mechanism that does not rely on actuation power to generate the high
accelerations needed, the RA is such a mechanism. Its working principles will be explained
in this section by presenting the basic layout and thereafter the most important part of the
RA; the spring mechanism.

3-2-1 Basic Layout

The basic layout of the RA is equal to a SCARA type robot [27], it has a parallel-axis joint
layout in which the arms can move in the X-Y plane but are rigid in the Z-direction. Only
the end effector located at the end of the robot arm is able to move up and down in the
Z-direction allowing movement in all three dimensions.

In Figure 3-1 a drawing of the RA is presented and the most important parts of the system are
indicated. One of the parts is the spring which is attached to a small pulley and a large pulley.
A timing belt connects the two pulleys and creates a ratio between the angular displacement
of both pulleys. This timing belt together with the two pulleys and the spring is called the
spring mechanism and forms the core of the RA. Attached to the large pulley is the upper
arm and the lower arm is connected to the upper arm. To position the upper arm a motor is
connected to the large pulley, the lower arm is actuated by a second motor which is placed
at the pivot point between both arms. The end effector is not shown but would be located
at the end of the lower arm.

In the proceeding sections we will investigate the spring mechanism which is one of the most
important parts of the RA.
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Small pulley
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Figure 3-1: A drawing of the controlled mechanical system, called the Resonating Arm, which will
be optimised in this research. An important part of the Resonating Arm is its spring mechanism,
which is represented by the two pulleys, the spring and a timing belt connecting them. Furthermore
the systems consists of an upper and lower arm plus two actuators to control both degrees of
freedom. (source: [26])

3-2-2 Spring Mechanism

The spring mechanism is responsible for the high accelerations in the system needed to perform
the pick-and-place tasks quick enough. The high accelerations cannot be generated by the
low-power actuators since they are too weak to generate the required torques. A RA with
only low-power actuators and no spring mechanism would be very slow and therefore useless
for industrial applications.

The basic idea behind the use of a spring is the possibility of storing and transforming energy
from potential energy into the kinetic energy and vise versa. The potential energy stored in
the spring can be used to accelerate the upper arm by transforming it into kinetic energy and
deceleration is done by transforming kinetic energy back into potential energy. The spring
is stretched and potential energy is stored when the upper arm is moved away from its rest
position (in one line with the spring). When the upper arm is released this potential energy
will cause the upper arm to move in the direction of the rest position at which the potential
energy level is the lowest. When the arm accelerates it will pass the rest position at full speed
and from that moment on the spring mechanism will start to decelerate the arm by storing
potential energy.

The elongation of the spring is correlated with the potential energy stored in the spring and is
a non-linear function of the arm’s position. Since the angular displacement of the small pulley
depends on the angular displacement of the large pulley it is possible to derive the functions
describing the elongation and the stored potential energy given the angular displacement of
the large pulley. This angular displacement of the large pulley is equivalent to the angular
position of the upper arm.

Master of Science Thesis S.J. Pen
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The relation between the potential energy stored in the spring and the angular position of the
upper arm can be derived by determining the relation between spring elongation and angular
position of the upper arm. In Figure 3-2 the spring mechanism is depicted together with the
system parameters influencing this relation.

x

y

Θ

R1

R2

r1

r2

a = R1/R2

k l0

Figure 3-2: The spring mechanism driving the Resonating Arm. This mechanism consists of two
pulleys interconnected by a timing belt and a spring. The most important variables describing
this mechanism are the angular position of the large pulley Θ and the system parameters l0 r1,
r2, a and k, respectively the original length of the spring, the radii at which the spring ends are
attached to the large and small pulley, the ratio between the outer radii of the pulleys (R1/R2)
and the spring constant.

This relation is described by the difference between the spring length l(Θ) (m) at angle Θ
(rad) and the original spring length l0 (m) at its rest position Θ = 0,

∆l(Θ) = l(Θ)− l0

with l(Θ) depending on the system parameters r1, r2, a and l0 as follows,

l(Θ) =
√

lx(Θ)2 + ly(Θ)2 (3-1)

(3-2)

lx(Θ) = r1 sin(Θ) + r2 sin(a Θ) (3-3)

ly(Θ) = l0 + r1 − r1 cos(Θ) + r2 − r2 cos(a Θ) . (3-4)

In order to calculate the potential energy stored in the spring we use Hooke’s law F = −k ·∆l
and approximate the elasticity or spring force by stating that the elongation of a spring is
in direct proportion with the load applied to it by a constant k (N/m), called the spring
constant. As long as the material’s elastic limit is not exceeded this relation can be generally
applied to most springs.
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After integrating the spring force F over the spring elongation ∆l we are finally able to derive
the relation between the potential energy Ep and the angle Θ of the upper arm as shown
below,

Ep = −
∫

F · d∆l = −
∫

−k ·∆l · d∆l

=
1

2
· k ·∆l2

=
1

2
k



l0 −

√
√
√
√ (l0 + r1 + r2 − r2 cos(a Θ)− r1 cos(Θ))2 + . . .

(r2 sin(a Θ) + r1 sin(Θ))2





2

(3-5)

where k is the spring constant and r1, r2, a and l0 the variables defining the morphology of
the spring mechanism. In this relation we assume that the original spring length is equal
to the natural length of the spring, in reality this might not be the case but this will only
increase the total potential energy by a constant value and does not have any effect on the
dynamic behaviour of the spring mechanism.

In Figure 3-3(a) the relation between the potential energy and the angle (as derived in 3-5)
is plotted from −1.5 to +1.5 radians. the system parameter values used correspond with the
system parameter values of the first prototype, namely: r1 = 0.1 m, r2 = 0.02 m, a = 5 m/m,
l0 = 0.1 m and k = 150 N/m. Also the desired pick angle Θpick = −0.8 (rad) and desired
place angle Θplace = 0.8 (rad) of the prototype are indicated.
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(b) Torque curve

Figure 3-3: Potential energy (a) and torque (b) as a function of angle Θ of the upper arm for
morphological values. The spring mechanism in the Resonating Arm allows the existence of flat
plateaus in the potential energy curve (a) near the desired pick angle Θpick = −0.8 and desired
place angle Θplace = 0.8 at which energy is stored in the system but the derivative of the potential
energy curve is close to zero. This implies that at these angles the torque applied by the spring
mechanism is close to zero as visible in (b), this is ideal when the system has to be kept at these
positions using a low-power actuator, which maximum torque is limited.

In this plot two specific characteristics of the spring mechanism can be observed. First we
see the expected behaviour that the potential energy increases when the system moves away
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from the rest position at Θ = 0 due to the spring elongation. But more important are the two
plateaus in the potential energy curve at which the change in potential energy is relative small
compared to angles outside these plateaus. At these angles the derivative of potential energy
Ep over the angle Θ is close to zero and this equals spring mechanisms torque τs applied on
the upper arm as shown below,

Ep =

∫

−τs · dΘ

∂

∂Θ
Ep =

∂

∂Θ

∫

−τs · ∂Θ

τs = −
∂Ep

∂Θ

the equation describing the torque τs is given in Appendix C.

In Figure 3-3(b) the negative derivative of the potential energy curve is plotted as a function
of the angle Θ, this equals the torque applied by the spring mechanism on the upper arm. In
this plot we can verify that the torque applied to the upper arm is approximately zero at the
pick and place angles, this gives the system the possibility to story energy at these positions
and stay at them without having to use a strong actuator torque to counteract the spring
force. This property is extremely useful for the RA since it enables the system to stay at the
pick or place positions until a product is fully grabbed or placed and use the stored energy
to quickly accelerate the system in the direction of the other pick or place position.

3-3 Model

A model of the Resonating Arm is needed to simulate the many different control and system
parameter solutions. In this section the assumptions which have been made to limit the com-
plexity of the model are presented together with parameters used in the model. Thereafter the
equations of motion are derived using the TMT-method and the friction model is presented.

3-3-1 Assumptions and Model Parameters

Assumptions

The following assumptions have been made in order to construct a model of the Resonating
Arm with manageable complexity:

• The arms of the robot can be described as straight rods with infinite stiffness.

• The spring mechanism can be described as an inertia and an applied torque around the
pivot point of the large pulley.

• The spring used in the system has a linear spring characteristic and the elongation is
zero when the angle of the upper arm equals zero.

• The timing belt has no elastic properties and does not slip around the pulleys.

S.J. Pen Master of Science Thesis



3-3 Model 23

• The total friction in the system can be modelled by the total sum of a coulomb friction
model and a viscous friction model.

• The friction coefficients in both joints are equal to the estimated friction coefficients of
the Resonating Arm prototype.

• The friction coefficients do not vary when the forces on the pivot points changes.

• The controller has a direct influence on the torques applied by the actuators.

• The mass of the end effector (e.g. gripper with product) is 1 kg.

Model Parameters

Based on the assumptions, the Resonating Arm can be modelled as a double pendulum with
actuation on both pivot points. The configuration of the system can be described by two
generalised coordinates, namely the angles Θ1 and Θ2 as shown in Figure 3-4(a).

In Figure 3-4(b) 11 parameters are presented which define the masses, position of the centers
of mass and the inertia acting on the double pendulum model.

The two arms with lengths L1 and L2 are modelled as straight rods with uniform distributed
masses m1 and m2, negligible thickness and their centers of mass located at c1 = 1

2L1 and
c2 = 1

2L2. The inertia of the upper arm (I1) and the lower arm (I2) around their center of
mass has been determined by

Ii =
1

12
miL

2
i i = 1, 2 . (3-6)

The mass of the pivot mechanism (ma) and the end effector (mb) are seen as point masses
with a moment of inertia equal to zero. The variable I0 present the inertia of the spring
mechanism around the pivot point of the large pulley.

Together with the 5 parameters which define the spring mechanism (Figure 3-2) the total
amount of parameters sums up to 16 morphological parameters as summarised in Table 3-1.

In order to focus the optimisation on the complex parameter interaction of the spring mecha-
nism, which have the most substantial influence on the dynamics of the system, the parameters
describing the arms are kept constant during the optimisation. In Table 3-1 the values at
which the arm parameters will be set are presented, these values are chosen equal to the
parameter values used in the current prototype.

3-3-2 Equations of Motion

The equations of motion describe the dynamics of the system as a set of differential equations.
The differential equations describing the RA have been derived by applying the TMT-method
[28], this method is explained in Appendix A.

The TMT-method derives the equations of motion as a set of acceleration equations in the
form

M̄q̈ = f̄ (3-7)
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x0, y0

x1, y1

x2, y2

Θ1

Θ2

τ1 + τs

τ2

(a) State variables and torques

ma

mb

c1

c2

L1

L2

m1, I1

m2, I2

I0

(b) Center of masses and inertia

Figure 3-4: Top view of the Resonating Arm model with in (a) the two degrees of freedom of
the system Θ1 and Θ2 and the torques acting on the joints with τ1 and τ2 the actuator torques
and τs the torque caused by the spring mechanism. In (b) the position of the center of masses
and inertia are presented. The masses and inertia m1, I1 and m2, I2 represent the arm rods
which are assumed to have uniform distributed masses. Parameters ma and mb represent the
pivot mechanism and the end effector respectively, both are assumed to be point masses. The
inertia I0 is the inertia caused by the spring mechanism.

where q̈ holds the independent generalised accelerations and matrices M̄ and f̄ represent the
generalised mass matrix and the generalised force vector, respectively.

The matrices M̄ and f̄ are constructed by transforming the ’normal’ Newton-Euler equation
matrices M and f as follows

M̄ = TT MT , (3-8)

f̄ = TT [Σf −Mh] , (3-9)

with the transformation matrix T and vector h holding the convective accelerations.

The RA system can be defined by two independent variables; the angle of the upper arm
Θ1 and the angle of the lower arm Θ2. These variables are called independent generalised
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Table 3-1: Parameters for the Resonating Arm system corresponding to Figure 3-4 and 3-2. The
given parameter values indicate parameters which will not be optimised and will be predefined at
a value equal to that of the current prototype. The parameters without a given values will be
subject to optimisation and are able to vary during the optimisation process in order to find their
optimal values.

Spring mechanism

Radius at which the spring is connected to the large pulley r1 - m
Radius at which the spring is connected to the small pulley r2 - m
Ratio between the outer radii of the pulleys (R1/R2) a - m/m
Natural length of the spring l0 - m
Spring constant k - N/m
Momemt of inertia of spring mechanism I0 - kgm2

Arms

Arm lengths L1, L2 0.4 m
Arm masses m1, m1 0.2 kg
C.o.m. location of arms c1, c2 0.2 m
Moment of inertia of arms I1, I2 5 · 10−4 kgm2

Pivot mass ma 0.2 kg
End effector mass mb 1.0 kg

coordinates and are written as a vector q

q =

[

Θ1

Θ2

]

. (3-10)

The ’normal’ mass matrix M for the RA system is a square matrix with all masses and inertia
on the diagonal

M =





















I0 + I1 0 0 0 0 0 0 0 0 0
0 m1 0 0 0 0 0 0 0 0
0 0 m1 0 0 0 0 0 0 0
0 0 0 ma 0 0 0 0 0 0
0 0 0 0 ma 0 0 0 0 0
0 0 0 0 0 I2 0 0 0 0
0 0 0 0 0 0 m2 0 0 0
0 0 0 0 0 0 0 m2 0 0
0 0 0 0 0 0 0 0 mb 0
0 0 0 0 0 0 0 0 0 mb





















. (3-11)

The ‘normal’ force vector f defines all the torques and forces acting on the masses and inertia
present in the mass matrix, in our case these are the control torques on the upper arm (τ1),
the lower arm (τ2) and the torque from the spring mechanism (τs) also acting on the upper
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arm

f =





















τ1 + τs

0
0
0
0
τ2

0
0
0
0





















. (3-12)

The torque τs applied by the spring mechanism is derived by taking the partial derivative of
the potential energy Ep equation (3-5) with respect to the generalised coordinate Θ1

τs = −
∂Ep

∂Θ1
. (3-13)

The mass matrix M and force vector f can now be transformed by a matrix T which equals
the partial derivative of the transformation matrix T∗ with respect to q. This transformation
matrix T∗ expresses the positions and orientations of the centre of masses as a function of
the generalised coordinates

T∗(q) =





















Θ1

xm1

ym1

xma

yma

Θ2

xm2

ym2

xmb

ymb





















=





















Θ1

c1 sin Θ1

c1 cos Θ1

L1 sin Θ1

L1 cos Θ1

Θ2

L1 sin Θ1 + c2 sin Θ2

L1 cos Θ1 + c2 cos Θ2

L1 sin Θ1 + L2 sin Θ2

L1 cos Θ1 + L2 cos Θ2





















(3-14)

and by taking the derivative with respect to q we are able to find transformation matrix T

T =
∂T∗

∂q
. (3-15)

The convective accelerations matrix h is defined as

h =
∂Tq̇

∂q
q̇ (3-16)

Now all necessary matrices are constructed we are able to construct the generalised mass
matrix M̄ and the generalised force vector f̄ as explained at the start;

M̄ = TT MT (3-17)

f̄ = TT [Σf −Mh] (3-18)
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The equations of motion are now found and can be solved for q̈ as shown below,

M̄q̈ = f̄ (3-19)

M̄−1M̄q̈ = M̄−1M̄−1f̄ (3-20)

q̈ = M̄−1f̄ . (3-21)

The complete equation of motion can be found in Appendix B.

3-3-3 Friction Model

The friction torque τf in the arm joints is separately modelled as a combination of coulomb
friction τc and viscous friction τv

τf = τc + τv (3-22)

with

τc =







sign(Θ̇) · ccoulomb if Θ̇ 6= 0

sign(τext) · ccoulomb if Θ̇ = 0 and |τext| > ccoulomb

τext if Θ̇ = 0 and |τext| ≤ ccoulomb

(3-23)

τv = cviscous · Θ̇ (3-24)

The coulomb friction is a static phenomena and equals the coulomb friction coefficient ccoulomb

when the velocity Θ̇ is not equal to zero and its sign is depending on the sign of the velocity.
When the velocity is zero and the applied external torque τext is bigger than ccoulomb then the
friction torque will be equal to the coulomb friction coefficient with its sign equal to the of
the external torque. In case the velocity is zero and the external torque is smaller than the
friction coefficient then friction will be equal to the external torque. The viscous friction is a
dynamic friction which is determined by the viscous friction coefficient cviscous multiplied by
the velocity. The sum of these friction torques defines the friction model as shown in Figure
3-5.

Θ̇

ccoulomb

−ccoulomb

τc

(a) Coulomb friction

Θ̇

cviscous

τv

(b) Viscous friction

Θ̇

τf

(c) Total friction

Figure 3-5: The friction in the Resonating Arm is modelled as a static coulomb friction (a) with
friction coefficient ccoulomb and a dynamic viscous friction (b) with friction coefficient cviscous. The
coulomb friction is a constant friction independent of the velocity Θ̇, while the viscous friction is
depending on the velocity Θ̇. The total friction (c) is the sum of both friction types.
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It is difficult to determine the right values for the friction coefficients in the friction model
since the actual values of the robot will be influenced by many different aspects (e.g. the type
of bearings or the lubrication used). Therefore the friction coefficients used in this model
are equal to the estimated friction coefficients of the current prototype as presented in Table
3-2. From these friction coefficients it can be seen that the coulomb friction has the biggest
influence on the total friction in the system and that the influence of the viscous friction is
almost neglectable. Still the viscous friction is incorporated in the model to provide a more
comprehensive friction model for future optimisations with different friction coefficients.

Friction type Friction coefficient

Coulomb friction 0.48 Nm
Viscous friction 0.01 Nm/(rad/s)

Table 3-2: Coefficients of friction used in the friction model.

3-4 Summary

The Resonating Arm (RA) is a novel concept for a robot arm with low-power actuators
designed for pick-and-place tasks. It has SCARA type configuration with two arms that are
able to move in a horizontal plane. A special spring mechanism causes a nonlinear natural
behaviour of the system in which potential energy is stored at the pick and place positions.
This stored energy is used to perform the accelerations and decelerations of the arm, which
liberates the controller from this task and permits the use of smaller actuator torques.

A model of the RA has been constructed by deriving the equations of motion and adding a
friction model of coulomb and viscous friction.
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Chapter 4

Fuzzy Control

In this research fuzzy control has been used to generate a feedback control behaviour for
the RA. In this chapter we will shortly introduce fuzzy logic, explain why fuzzy control has
been used and briefly explain the basic principles of fuzzy control. In the last section we will
present two fuzzy controllers which will be used in this research and discuss their properties
and expected advantages and disadvantages.

4-1 Introduction

Fuzzy control is a common type of knowledge-based control in which the control laws, corre-
sponding to particular conditions of the system, are described in terms of if-then rules. It
makes use of the fuzzy set theory, introduced by Zadeh in 1965 [29], in which sets are defined
by its elements and their degree of membership.

Fuzzy control was first successfully applied by Mamdani and Assilian in 1975 [30] and devel-
oped to describe the control heuristics from human operators, expressed in (fuzzy) linguistic
input and output terms (e.g. ‘big’ and ‘small’), into a form usable for automated control.
Later in 1985 Takagi and Sugeno [31] recognised that these fuzzy terms could also be used to
describe a nonlinear control process in terms of interacting linear subcontrollers acting locally
on a state of the system. This latter type of fuzzy controller will be used in this research.

The combination of fuzzy control and reinforcement learning techniques became more and
more popular due to the fact that the tuning of fuzzy controllers appeared to be a complex
and tedious task. Also the use of evolutionary algorithms to tune fuzzy controllers has been
frequently applied and has been published in numerous papers [32–51].

4-2 Why Fuzzy Control?

In order to control the Resonating Arm (RA) system we require a nonlinear feedback con-
troller. Nonlinear since the RA is a highly nonlinear system for which linear control approaches
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will not be able to generate an optimal control. And feedback is required to control the system
from different starting positions.

To control the system optimal a nonlinear function f has to be found

u = f(x) (4-1)

which maps the current state inputs x to the optimal control outputs u.

One approach to find the optimal relation between state inputs and control outputs is by
performing an online optimisation of the control output based on the current states and the
predicted states of a model. This type of control, called model predictive control has been
effectively used for relatively slow systems, but is less effective when the system is quick and
the CPU budget for optimisation and prediction is small [52]. Since the RA is a relatively
fast system (with angular velocities up to 4 rad/s) online techniques are less practical and we
will thus have to rely on static mappings which are found offline.

Neural networks and fuzzy control are two often used techniques to provide a nonlinear
mapping between states and control output. Both of them are tuned offline and belong to the
class of universal approximators, meaning that they are able to approximate any input-output
mapping [53, 54].

Neural networks are inspired by the way our brains process information and create an input-
output mapping through interconnecting artificial neurons. Due to the complex interaction
between the artificial neurons neural networks are considered black-box controllers, which
means that it is considered difficult to extract general control rules from them or incorporate
general rules into them.

Fuzzy control does not have this problem since it is based on human reasoning and uses
logic rules to map inputs to outputs. This makes it much easier to understand the control
behaviour and to distill general control rules. Moreover, it becomes possible to incorporate
human knowledge into the controller. When human knowledge is available this could be used
to initialise the optimisation and increase the speed of convergence.

The fact that fuzzy control is a nonlinear feedback controller which uses a static input-output
mapping, together with the advantages of extracting and incorporating human knowledge
makes fuzzy control a suitable and convenient type of control to be used in the RA system.

4-3 Basic Concepts

In Figure 4-1 the general structure of a fuzzy controller is presented, which basically consists
of a rule base, an inferencing mechanism and two input/output interfaces that scale, fuzzify
and defuzzify. In this section we will discuss each of these elements.

4-3-1 Scaling and Fuzzification

Fuzzification is the process of transforming crisp input variables into fuzzy output variables
using fuzzy membership functions. Before this fuzzification process is applied, the inputs of
the controller are often scaled into a more convenient interval between -1 and 1.
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errors

scaling

fuzzi cation
inference 

mechanism

rule base

defuzzi cation

control actions

scaling

Figure 4-1: General fuzzy control structure.

In order to understand the fuzzification process we first need to define what fuzzy variables
are and how they are defined by fuzzy membership functions. Fuzzy variables differ from
‘normal’ variables in the way that they are able to represent a vague set of values. One can
compare this to the way humans use a vague definition (e.g. ‘very high’) when they want to
express the vague set of room temperatures they consider to be uncomfortable.

In Figure 4-2 an example is given of fuzzy variables defining different room temperature inter-
vals. As mentioned before fuzzy variables do not describe a precise set of parameter values,
but instead make use of so called membership degrees to define how much a parameter value
is part of that fuzzy variable. These membership degrees can be determined by evaluating the
membership functions of the fuzzy variables which give a value ranging from 0 ‘not a mem-
ber’ to 1 ‘fully a member’. In the room temperature example these membership functions are
described by the trapezoidals plotted below the different fuzzy variables.

highlowvery low co
m

fo
rt

ab
le

very high
1

0

20 ° Celsius15 25

µ

Figure 4-2: Five different linguistic variables or fuzzy variables covering different room temper-
ature intervals. Each fuzzy variable is described by a membership function µ(·) that defines the
degree (0 to 1) to which a certain temperature belongs to that fuzzy variable, where 0 corresponds
with not a member and 1 with fully a member. In this example the membership functions are
trapezoids and the sum of membership degree is always 1, however, this is not necessarily true
for all fuzzy controllers.

Master of Science Thesis S.J. Pen



32 Fuzzy Control

4-3-2 Rule Base and Inference

The rule base defines the input-output behaviour of the fuzzy controller. In this research a
zero order Takagi-Sugeno type fuzzy controller is used which means that the consequences
of the rules are defined as singletons (constants) and a rule Rr is described by the following
form:

Rr : IF x1 is A1
r and . . . and xk is Ak

r

THEN u1
r = ω1

r and . . . and ul
r = ωl

r

where xi represent the inputs for i = 1, . . . , k, Ai
r the fuzzy variables on the domains of

these inputs and uj
r the control outputs for j = 1, . . . , l with ωj

r the corresponding constant
consequent variables.

In the inference process the truth value of each rule is determined using the membership
degrees obtained from the fuzzification process. Many different types of inference mechanisms
exist but an often used method in combination with Takagi-Sugeno controllers is the product-
sum method, also called the weighted average, which is defined by

u =

∑m
r=1 µ(xr) · ωr
∑m

r=1 µ(xr)
(4-2)

with

µ(xr) = Πk
i=1µAi

r
(xi) (4-3)

in which the output u = [u1, . . . , ul] is determined by multiplying rule truth values µ(xr)
with the rule consequent part ωr = [ω1, . . . , ωl], taking the sum and dividing this value by
the sum of all rule truth values. The truth value of a rule µ(xr) is in this case determined
by multiplying all the different membership degrees µAi

r
(xi) of the fuzzy variables Ai with

i = 1, . . . , k in rule r.

4-3-3 Defuzzification and Scaling

Defuzzification is used to transform a fuzzy output into a crisp value, this is needed when the
outputs of the rules are defined as fuzzy variables, which is the case in Mamdani controllers.
Since in this research Takagi-Sugeno controllers with crisp consequents are used this defuzzi-
fication step is not needed. The only step that remains is scaling the output of the inference
mechanism onto the working domain of the control output.

4-4 Design of Two Fuzzy Control Variations

Two different fuzzy controllers denoted by fixed fuzzy controller and free fuzzy controller have
been designed and tested. In this section we will discuss the properties of these controllers
by presenting their inputs and outputs, the difference in the positioning of the membership
functions and their expected advantages and disadvantages.
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4-4-1 Inputs, Outputs and Scaling

The controllers used in this research are fuzzy variants of the linear proportional-derivative
(PD) controllers used in many control applications, which determine their control output u

based on the error e and the error derivative ė

u = f(x) (4-4)

with

x =

[

e

ė

]

(4-5)

where in fuzzy control the function f(·) will be determined by the fuzzy rules and membership
functions.

The number of inputs of the controllers used to control the 2-DOF RA is equal to four,
defining the errors between the desired angular positions and velocity of both arms as

e =

[

e1

e2

]

=

[

Θ1d −Θ1

Θ2d −Θ2

]

(4-6)

ė =

[

ė1

ė2

]

=

[

Θ̇1d − Θ̇1

Θ̇2d − Θ̇2

]

(4-7)

where Θ1d, Θ2d, Θ̇1d and Θ̇2d represent the desired angles and angular velocities, respectively.

The output u is defined as

u =

[

u1

u2

]

=

[

τ1

τ2

]

(4-8)

with τ1 and τ2 the control torques acting on the upper and lower arm.

A reduced version of this controller is used to control the 1-DOF systems considered in the
first and second experiment. For these system the control input is defined by e1 and ė1, and
the control output by u1.

Before fuzzification the e and ė are scaled by a factor between 1/3 and 3. This scaling factor
is used to bring the real inputs into the domain used by the fuzzy controller (between -1 and
1), but also provides the optimisation algorithm with a variable that has a global influence
on the relative widths of all membership functions. The same holds for the outputs which are
also scaled by a factor between 1/3 and 3.

4-4-2 Membership Functions

The membership functions are defined by Gaussian functions (Figure 4-3) which determine
the membership degree µ of a one-dimensional input variable x for fuzzy variable Ai as

µAi(x) = exp

(

−
(ci − x)2

2(σi)2

)

, (4-9)
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Ai

σi

ci

Figure 4-3: Gaussian function of the fuzzy term Ai on the ith input defined by its center ci and
its width σi.

where ci and σi are the centre and width of the Gaussian curve, respectively.

Gaussian functions are used since it has been shown that these yield the best approximation
property [55, 56]. Also for optimisation purposes it has been expected to be beneficial since
Gaussian functions have a non-zero output for all outputs meaning that each rule will have
some influence on the control output of each state in the state space.

In order to limit the size of the search space, both the values for the centers and widths of
the membership functions have been limited. The centers of the membership functions are
bounded between -1 and 1 relative to the scaled domains of the inputs. And the widths are
bounded between 0.01 and 1, which allows the membership functions to cover a relative small
or large part of the scaled input domain.

4-4-3 Fixed vs Free Fuzzy Control

The fixed fuzzy controller and free fuzzy controller have been constructed to investigate the
trade off between the approximation capabilities of the controller and the complexity of opti-
mising its parameters. The fixed fuzzy controller has a lower complexity than the free fuzzy
controller at the cost of approximation capabilities.

Fixed Fuzzy Control

The fixed fuzzy controller has its membership functions evenly distributed at fixed positions
on the interval [-1 1]. This facilitates a grid partitioning of the state space as shown in Figure
4-4 at which each crosspoint corresponds with a consequent of one of the rules in the rule
base. This means that membership functions are shared between the different rules and that
the total number of rules is equal to the number of combinations possible when considering
the different membership functions defined on the different inputs.

The N rules in the rule base of the fixed fuzzy controller have the following form

Rr : IF x1 is A1 and . . . and xk is Ak

THEN ur = ωr
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Figure 4-4: In the fixed fuzzy controller a grid partitioning is created through fixed membership
functions. Each crosspoint corresponds with a rule consequent which defines the control output.

where r = 1, 2, . . . , N , xi (i = 1, . . . , k) represent the k scaled inputs, Ai represent the fuzzy
terms characterised by the Gaussian membership functions µAi

r
(xi), ur = [u1, . . . , ul] the l

control outputs and ωr = [ω1, . . . , ωl] the corresponding constant consequent variables.

The parameters of the fixed fuzzy controller that still need to be optimised are the width
of the membership functions, the constant consequent variables and the scaling factors for
the inputs and outputs. The total number of parameters to be optimised for the fixed fuzzy
controller depends on the number of inputs, outputs and the number of membership functions
defined on each input. For simplicity the number of membership functions for each input is
set equal to m which yields,

parameters = m · inputs
︸ ︷︷ ︸

membership functions

+ minputs · outputs
︸ ︷︷ ︸

consequent variables

+ inputs + outputs
︸ ︷︷ ︸

scaling

(4-10)

where variables ‘inputs’ and ‘outputs’ represent the number of inputs and outputs, respec-
tively. In order to facilitate a fair comparison, the number of parameters which need to be
optimised are kept the same or nearly the same for both fuzzy controllers.

The advantage of this controller lies in the fact that the complete state space is evenly
partitioned from the start and therefore the optimisation does not have to consider the position
of the membership functions. This keeps the complexity of the optimisation low. Secondly,
the fixation of the membership functions and the fact that they are shared between rules
reduces the number of parameters needed to define a rule, therefore more rules can be defined
in comparison to the free fuzzy control when the same number of parameters is used. Of
course fixed membership functions will also decrease the flexibility of the controller, which
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means that certain control behaviours can only be approximated with large approximation
errors.

Free Fuzzy Control

The positions of the membership functions of the free fuzzy controller are variable and need
to be optimised by the EA. Additionally, membership functions are not being shared between
rules. This means that changing the position or width of one membership function will
only have an effect on one of the rules in the rule base. Therefore one can combine the
membership functions µA of each rule to describe a multidimensional fuzzy basis function µB

in the complete state space that corresponds to that rule,

µB(x) = Πk
i=1µAi

j
(xi) (4-11)

= Πk
i=1 exp

(

−
(ci

j − xi)
2

2(σi
j)2

)

(4-12)

Each rule has its own fuzzy basis function and it represents the area of the state space in
which that rule is most active, as graphically shown in Figure 4-5.

A1
1

A2
1

A1
2

A2
2

B1

B2

x1

x2

Figure 4-5: The free fuzzy controller has membership functions which positions are part of the
optimisation problem. Each rule consequent is defined by its own membership functions on the
inputs.

The N rules in the rule base of the fixed fuzzy controller have the following form

Rr : IF x is Br

THEN ur = ωr
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where r = 1, 2, . . . , N , x represent the scaled input vector, Bj represents a local fuzzy area in
the state space characterised by the Gaussian fuzzy basis function µBj

(x), ur = [u1, . . . , ul],
the l control outputs and ωr = [ω1, . . . , ωl] the corresponding constant consequent variables.

The total number of parameters to define a free fuzzy controller with b fuzzy basis functions
equals,

parameters = b · inputs · 2
︸ ︷︷ ︸

basis functions

+ b · outputs
︸ ︷︷ ︸

consequent variables

+ inputs + outputs
︸ ︷︷ ︸

scaling

(4-13)

where variables ‘inputs’ and ‘outputs’ represent the number of inputs and outputs, respec-
tively.

The advantages of using the free fuzzy controller is that the evolutionary algorithms will have
more influence on the positioning of the rules. Therefore all rules can be shifted towards places
in the state space where they are most valuable. This can also be seen as a disadvantage since
the use of free membership functions will make the optimisation problem more complex and
therefore harder to solve. This could lead to a slow convergence.

4-4-4 Control Equations

For both the fixed and free fuzzy controllers the weighted average method has been used to
determine the output of the controller. Therefore the control equation for both controllers
can be written as

f(x) =

∑N
j=1 ωj

(

Πk
i=1µAi

j
(xi)

)

∑N
j=1

(

Πk
i=1µAi

j
(xi)

) (4-14)

with

µAi
j
(xi) = exp

(

−
(ci

j − xi)
2

2(σi
j)2

)

(4-15)

where the centres ci
j are predefined in the fixed fuzzy controller and variable in the free

fuzzy controller and the widths σi
j and consequent singletons ωj are to be optimised by the

algorithm for both controllers.

4-5 Summary

Fuzzy control is a nonlinear feedback control strategy based on fuzzy variables and logic rules.
The advantages of fuzzy control above other nonlinear feedback control techniques such as
model predictive control and neural networks is that it is not limited by the speed of the
system and has the ability to extract and incorporate human knowledge from and into the
controller.

The basic structure of a fuzzy controller is composed of a scaling and fuzzification step in
which the control input is scaled into a domain between -1 and 1 and a membership degree
is determined for each of the fuzzy variables. These membership degrees are then used in
an inference mechanism which uses a rule base to determine the input-output relation of the
controller. At last the output of the inference mechanism is defuzzified when necessary and
scaled back into the appropriate domain of the control output.
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Two types of fuzzy controllers will be used in this research. One is the fixed fuzzy controller
for which the positions of the membership functions have been predefined. The other is the
free fuzzy controller for which the positions of the membership function are variable and need
to be optimised.
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Chapter 5

Experiments and Results

This chapter is divided into four sections. The first three sections present the three conducted
experiments and their results. The last section gives an analysis and discussion of these
results. In the first experiment, presented in Section 5-1, the effectiveness of fuzzy control in
combination with EAs is validated. The other two experiments concern the co-optimisation
of the 1 and 2-DOF RA, as presented in Section 5-2 and Section 5-3 respectively. The results
from each experiments give an answer to the three research sub questions, which are used
to answer the main research question to what extent (near) optimal solutions can be found
when co-optimising fuzzy control and system parameters for the RA.

In each experiment the two types of evolutionary algorithms (EAs) and two types of fuzzy
controllers (as presented in Chapter 2 and 4) will be used, allowing four different combinations
to be evaluated (Table 5-1). In Sections 5-1, 5-2 and 5-3 the best result found is presented
and used to answer the research question. In Section 5-4 all the obtained results from the
the different combinations are compared and discussed in order conclude which of the fuzzy
controls and EAs is the most effective.

Table 5-1: The four different combinations possible when combining the two types of evolutionary
algorithms (CMA-ES and CoSyNE) and the two types of fuzzy controllers (fixed and free). In
each of the three experiments all four combinations have been used to solve the optimisation
problems.

Combination Evolutionary Algorithm Fuzzy Logic Controller

1 CMA-ES Fixed fuzzy control
2 CoSyNE Fixed fuzzy control
3 CMA-ES Free fuzzy control
4 CoSyNE Free fuzzy control
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40 Experiments and Results

5-1 Evolutionary Algorithms and Fuzzy Control Validation

The first experiment is conducted to validate whether the fuzzy control approach in combi-
nation with the EAs is suitable for finding (near) optimal control solutions. This is done by
solving a minimum-time control problem in the form of a single mass on a frictionless surface
with a bounded control output. For this problem the optimal feedback control solution can
be derived analytically, which provides an useful baseline against which the solution found by
the EA can be compared.

In Figure 5-1 a schematic drawing of the system is given. At time t0 (s) the mass is positioned
away from the origin z(t0) 6= 0 (m) and has an initial speed ż(t0) (m/s). An external actuation
force u(t) (N), which is bounded between −1 and 1, acts on the mass. The equation of motion
can be derived using Newton’s Law F = ma with F = u(t), m = 1 (kg) and a = z̈(t);

z̈(t) = u(t) (5-1)

where the control signal u(t) is unspecified and bounded −1 ≤ u(t) ≤ 1.

The minimum-time control problem to be solved is written as:
Given any initial state with position z(t0) 6= 0 at time t0, find the optimal feedback control
signal u(t) = f(z(t), ż(t)) that minimises the final time tf needed to bring the state of the
system close to the origin where |z(tf )| ≤ ǫ and |ż(tf )| ≤ ǫ with ǫ = 0.03.

z

u(t)

z(t0)
ż(t0)

0

origin

Figure 5-1: A single mass system is an often used example to illustrate the optimal control
principle. In this system an actuation force equal to u(t) acts upon a mass, which slides on a
frictionless surface. The aim of this optimisation problem is to find a controller with a bounded
control output that minimises the final time tf needed to bring the the mass from state [z(t) 6= 0,
ż(t)] at t0 to a state close to the origin 0 at tf . Using optimal control theory it is possible to
derive the optimal feedback controller for this simple problem.

Note that the goal of the optimisation problem does not require the system to converge exactly
to the origin, but instead demands a convergence to an area near the origin. This is done since
it is very difficult to find a fuzzy controller that during simulation will exactly converge to
the origin. Therefore the system is assumed to be converged when the absolute error between
the states and the origin is smaller than or equal to 0.03 for both the position (m) and the
velocity (m/s). The states for which this is valid are said to be within the convergence bounds.
The value of 0.03 was found large enough for the optimised fuzzy controllers to let the system
converge for all initial states simulated in the optimisation.
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5-1-1 Analytical Derivation of the Optimal Solution

The control problem stated in this experiment can be solved analytically by applying the
Pontryagin’s Minimum Principle (PMP) for optimal control [57]. The advantage of the PMP is
that it simplifies the optimal control problem into a two-point boundary value problem (BVP).
Therefore, instead of finding a time varying control output, a set of ordinary differential
equations have to be solved that satisfy the stated boundary values (Appendix D).

Solving the Minimum-Time Control Problem

In order to solve the single mass minimum-time problem with the PMP the system is rewritten
as

ẋ = f(x(t), u(t))

=

[

0 1
0 0

]

x(t) +

[

0
1

]

u (5-2)

with

x(t) =

[

x1(t)
x2(t)

]

=

[

z(t)
ż(t)

]

.

The performance index of a minimum-time problem is

J(u) =

∫ tf

t0

1dt = tf − t0 (5-3)

where t0 is the fixed starting time and tf the final time needed to reach the origin.

With this performance index J(u) the Hamiltonian can be constructed as

H(x(t), u(t), λ(t)) = 1 + λ1(t)x2(t) + λ2(t)u(t). (5-4)

with λ1(t) and λ2(t) the costates.

With the obtained Hamiltonian (5-4) and the inequality property of the Hamiltonian, as
defined by the PMP [57], a minimisation problem is derived depending on the optimal costate
λ∗

2 and the control signal u(t),

H(x∗(t), u∗(t), λ
∗(t)) ≤ H(x∗(t), u(t), λ

∗(t)) (5-5)

1 + λ∗
1(t)x∗

2(t) + λ∗
2(t)u∗(t) ≤ 1 + λ∗

1(t)x∗
2(t) + λ∗

2(t)u(t)

λ∗
2(t)u∗(t) ≤ λ∗

2(t)u(t)

= min
|u(t)|≤1

[λ∗
2(t)u(t)] (5-6)

Since u(t) is bounded between +1 and -1 this function is minimised for u(t) = u∗(t) with

u∗(t) = −sign(λ∗
2(t)). (5-7)
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Substituting u∗(t) in the costate equations, as defined by the PMP [57], yields

λ̇∗
1(t) = −

(
∂H

∂x1

)

∗
= 0 (5-8)

λ̇∗
2(t) = −

(
∂H

∂x2

)

∗
= −λ∗

1(t) (5-9)

which are solved to derive λ∗
1(t) and λ∗

2(t),

λ∗
1(t) = λ∗

1(0), (5-10)

λ∗
2(t) = λ∗

2(0) − λ∗
1(0)t. (5-11)

Substituting the optimal costates in (5-7) yields the optimal feedforward controller

u∗(t) = −sign(λ∗
2(0)− λ∗

1(0) · t) (5-12)

with two unknown initial values λ∗
1(0) and λ∗

2(0). When λ∗
1(0) and λ∗

2(0) have different signs
the control output will remain +1 or −1. When both λ∗

1(0) and λ∗
2(0) have equal signs this

controller will switch between the values −1 and +1 exactly once at t = λ∗
2(0)/λ∗

1(0). This
type of control is called bang-bang control.

The optimal control solution for a given initial position can now be solved by finding the
initial values of the costates that will bring the system from the initial state to the fastest
reachable state located within the convergence bounds. However, in this experiment we are
interested in finding the optimal feedback controller defined by a feedback law that will give
the optimal control output for all initial states.

The optimal feedback controller can be found by solving the state equations (5-2) for both
x∗

1(t) and x∗
2(t)

ẋ∗
1(t) = x∗

2(t) (5-13)

ẋ∗
2(t) = u∗(t) (5-14)

which yields

x∗
1(t) = x∗

1(0) + x∗
2(0)t +

1

2
u∗(t)t2 (5-15)

x∗
2(t) = x∗

2(0) + u∗(t)t (5-16)

and eliminate t to get the state trajectories independent of time

x∗
1(t) = x∗

1(0) +
1

2 u∗
(x∗

2(t)2 − x∗
2(0)2) (5-17)

t = (x∗
2(t)− x∗

2(0))/u∗ , (5-18)

where u∗ = −sign(λ∗
2(0) − λ∗

1(0) · t) = ±1.

At some point in time the system will have to follow the state trajectories that will lead the
system towards the fastest reachable state located at the convergence bounds. This fastest
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5-1 Evolutionary Algorithms and Fuzzy Control Validation 43

final state is dependent on the initial state of the system, therefore two optimal final state
variables are used,

x∗
1(tf ) = x1f (5-19)

x∗
2(tf ) = x2f . (5-20)

Substituting the final state variables in the state trajectories equation (5-18) yields

x1f = x∗
1(0) +

1

2 u∗
(x2

2f − x∗
2(0)2) (5-21)

with u∗ = ±1.

In Figure 5-2(a) the initial state trajectories are plotted for different values of x1f and x2f

and for both u∗ = +1 and u∗ = −1. In this figure one can see that either two states are
on the same trajectory or the trajectories of the two states intersect. This intersection is
the state at which the controller should switch between the control actions -1 and +1 when
moving between two states that are not located on the same trajectories. The switch state
[x1s x2s] when moving from initial state [x10 x20] to the final state [x1f x2f ] can be calculated
by setting the two state trajectories equations equal to each other

x10 +
1

2 u∗
1

(x2
2s − x2

20) = x1f −
1

2 u∗
2

(x2
2f − x2

2s) (5-22)

which yields the switch states when switching from u∗
1 = +1 to u∗

2 = −1

x2s = ±

√

(x1f − x10) +
1

2
(x2

2f + x2
20) (5-23)

x1s = x1f +
1

2
(x2

2f − x2
2s) (5-24)

and when switching from u∗
1 = −1 to u∗

2 = +1

x2s = ±

√

(x10 − x1f ) +
1

2
(x2

2f + x2
20) (5-25)

x1s = x1f −
1

2
(x2

2f − x2
2s) . (5-26)

In Figure 5-2(b) two switching lines γ+ and γ− are presented which represent the optimal
switching states for all initial positions considering the fastest reachable state at the conver-
gence bounds. With a convergence bound of ǫ = 0.03 these lines are defined by:

γ− : x1 = −0.03 +
1

2
(0.032 − x2

2) = −0.0296 −
1

2
x2

2 for x2 ≥ 0.03 (5-27)

γ+ : x1 = 0.03 −
1

2
((−0.03)2 − x2

2) = 0.0296 +
1

2
x2

2 for x2 ≤ −0.03 . (5-28)

An insightful way of presenting the feedback control behaviour is shown in Figure 5-3 in which
the control action at multiple states in the state space is plotted as a control surface with
different colours corresponding to the different control outputs. In Figure 5-4 the optimal
control and state response are plotted over time when starting from the initial state [z, ż] =
[−0.8, 0]. These plots together with the derived switching line will be used as a comparison
for the plots and results from the fuzzy controllers obtained after optimising them with EAs.
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x2

x1

u = −1

u = +1

(a) State trajectories

x2

x1

u = −1

u = +1

γ−

γ+

(b) Optimal switching line

Figure 5-2: Two phase planes with state trajectories corresponding to the frictionless single mass
system presented in Figure 5-1. Variable x1 represents the position z and x2 the velocity ż. In (a)
the state trajectories are plotted for different desired final states and for both u∗ = +1 (solid lines)
and u∗ = −1 (dashed lines). In (b) the optimal switching lines γ− and γ+ are presented which
represent the states at which the controller should switch between the control actions u∗ = +1
and u∗ = −1 in order to ensure a minimal time in which the convergence boundary (represented
by the square around the origin) is reached.

Figure 5-3: The optimal control surface for a minimum-time frictionless mass control problem,
in which x1 = z and x2 = ż. This plot is similar to Figure 5-2(b), but here the value of the
control action is presented as a colour. Dark green stands for a control action of -1 and bright
yellow represents a control action of +1 (see colour scale).
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(b) Optimal position response
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(c) Optimal velocity response

Figure 5-4: The optimal control output and state response for a minimal time frictionless mass
control problem when starting from [z, ż] = [−0.8, 0]. The bang-bang controller generates a
switching behaviour from +1 to -1 at half of the convergence time.

5-1-2 Experimental Setup

The same minimal-time control problem has been solved in an experimental setup using the
fuzzy controllers and EAs. This section presents all the parameter values specific for this
experiment, the initial states and fitness functions used in the experiment.

Parameter Values

In Table 5-2 the experimental parameters and their values are presented. The number of
generations is set to 3000, which allowed both EAs to converge to a stable fitness score that
did not change significantly for the last 100 generations. The simulation time of 3 seconds gives
the system enough time to converge to the origin for all simulated initial states (presented
in the next section). The system was solved using the Runge-Kutta fourth order method
(RK4) with a step size of 0.01 seconds. This step size was found suitable since smaller step
sizes did not provide significant better results. For the fixed fuzzy controller 5 membership
functions are defined on each of the two inputs, which results in an optimisation problem of
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38 parameters in total. The free fuzzy controller uses 7 fuzzy basis functions and also results
in an optimisation problem of 38 parameters.

Table 5-2: Specific parameters used in the single mass experiment. Variable m represents the
number of fuzzy membership functions at each input for the fixed fuzzy controller and variable b
the total number of fuzzy basis functions used in the free fuzzy controller.

Parameter Value Units

Number of generations 3000
Simulation time 3 s

RK4 step size 0.01 s
Convergence bounds ±0.03 m

±0.03 m/s
Membership functions (free fuzzy contr.): m 5

Basis functions (fixed fuzzy contr.): b 7

Initial States

The feedback quality of a controller is determined by evaluating the system responses from
eight different initial states. At these initial states the system is at rest (żinit = 0), which is
also the case for the initial states of the RA when performing the pick-and-place task. The
initial positions zinit are evenly distributed between -1 and 1 (except the position 0, which is
equal to the desired position),

[zinit, żinit] ∈

{

[0.2,0], [0.4, 0], [0.6, 0], [0.8, 0],
[-0.2,0], [−0.4, 0], [−0.6, 0], [−0.8, 0]

}

(5-29)

The difference in starting position will cause each state trajectory to reach the optimal switch-
ing line at a different point in the state space. This will force the EA to find a feedback
controller that approximates the optimal control for each of the initial positions and thus will
give an approximation of the overall optimal feedback behaviour.

Fitness Function

The fitness function used to solve the minimum-time control problem is shown in Algorithm
4. The fitness function determines a fitness score depending on the time needed to get within
the convergence bounds. Two sub fitness functions are used because it is possible that the
simulated system did not converge within the simulation time. This makes the fitness function
an incremental fitness function, which is able to avoid the bootstrap problem when all solutions
resulted in simulation errors or did not converge to the desired state (as discussed in Section
2-4-1). The fitness function is constructed in such a way that the fitness score given to a
solution is always between 0 and 3 for which a lower score corresponds to a better solution.
A detailed description of the fitness function is given below:

Line 1-2: First it is checked whether the simulation failed due to numerical limitations. If
so, the time at which the first error occurred (tfail) and the total simulation time (tsimulation)
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are used to calculate the fitness score and a penalty of 2 is added.
Line 3-4: Second, if the simulation did not fail, it is checked whether the absolute error |e|
between the final states and the desired states at time tfinal was larger than the predefined
convergence bound ǫ. If so, the system is considered to be not converged and the error is
taken as a measure for the fitness plus a penalty score of 1.
Line 5-6: Finally, if the system did converge, the time needed for convergence (tconverged) is
used to determine the fitness.

Algorithm 4 Fitness function for the single mass optimisation

1: if simulation fails at some time tfail then

2: fitness←
(

1− tfail

tsimulation

)

+ 2

3: else if absolute error |etfinal
| > convergence bound ǫ then

4: fitness←
(

1− 1
1+e2

)

+ 1

5: else

6: fitness←
(

1− 1
1+tconverged

)

7: end if

Each initial state will be simulated in a separate simulation and will receive a fitness score
fsim from the fitness function. The final fitness score of the controller fctrl is set equal to the
sum of all fitness scores obtained from the eight simulations,

fctrl =
8∑

n=1

fsim(n) (5-30)

where n represents the simulation number.

This fitness function together with the initial states and experimental parameters mentioned
before define the optimisation of the minimum-time problem using the fuzzy controllers and
EAs. The obtained results of this experiment will be discussed in the following section.

5-1-3 Analysis of Results

The goal of the single mass experiment is to answer the question whether a (near) optimal
feedback control solution in the form of a fuzzy controller can be found when EAs are used
for optimisation. A solution is considered near optimal when the average convergence time
is at maximum 5% off from the optimal convergence time. Each controller-algorithm combi-
nation has been tested 20 times and the best performing solution was found by the CMA-ES
algorithm in combination with the free fuzzy controller.

Analysing the Control Surface

The control surface of the best performing fuzzy controller is presented in Figure 5-5 and
one can see a clear resemblance to the optimal control surface derived before (Figure 5-3).
All eight state trajectories converge to the convergence bounds and their switching states are
close the optimal switching line (represented by the dashed line).
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Figure 5-5: The control surface of the best controller found during the optimisation of fuzzy
controllers for a single mass control problem. Variable x1 represents the position z of the mass
and x2 its velocity ż. The value of the control action at each state is presented by a colour, where
dark green stands for a control action of -1 and bright yellow represents a control action of +1.
All control actions in between are indicated by the colour scale. The eight solid lines represent
the state trajectories of the system simulations starting from eight different initial positions.
Additionally, the convergence bounds and the optimal switching line (dashed) are presented.
From this figure it can be seen that the optimised control surface is a close approximation of the
optimal control surface presented in Figure 5-3.

This visual analysis also endorses the fact that if a part of the state space is not reached
during the simulations there exist a possibility that it will not be optimised towards the
optimal solution. This is visible in the upper left corner of the top view where a part of
the state space has a control solution far from the optimal solution. None of the eight state
trajectories is influenced by this control area and thus did it not influence the fitness score of
the controller. For this reason the control output at this area was not optimised.

Analysing the Simulation Runs

To investigate the actual quality of the control solution found by the EA, the state responses
from the eight initial positions are analysed. In Figure 5-6 a comparison is made between
the derived control action and state responses for one of the initial positions and the optimal
solution. It shows that the fuzzy controller output approximates the discrete step function of
the optimal control output as a smooth and continues function. The fact that this approxi-
mation is smooth and not discrete is due to the use of the Gaussian membership functions,
which are continues functions with a positive output for all inputs.

A numerical comparison of all eight simulations is presented in Table 5-3. Different conver-
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Table 5-3: The convergence time of the eight different simulation runs starting from eight
different initial states. Next to them the optimal convergence times are given and the difference
(error) between both. In both cases the system is assumed to be converged when the absolute
position and velocity errors are equal or below the convergence bound ǫ = 0.03.

Nr. Initial state Convergence time Optimal convergence time Difference

[z, ż] [seconds] [seconds] [seconds]

1 [-0.8,0] 1.79 1.73 0.06
2 [-0.6,0] 1.55 1.48 0.07
3 [-0.4,0] 1.27 1.18 0.09
4 [-0.2,0] 0.90 0.80 0.1
5 [0.2,0] 0.82 0.80 0.02
6 [0.4,0] 1.21 1.18 0.03
7 [0.6,0] 1.50 1.48 0.02
8 [0.8,0] 1.74 1.73 0.01

Average: 1.3475 1.2975 0.05 (4%)

gence times are compared against the optimal convergence times and the difference between
them is given. Also the average convergence time of all runs is presented. From the analysis
of the different convergence times we can derive that the optimised controller has an aver-
age convergence time error of about 4% when considering the convergence times of all eight
simulation runs. This is below the stated maximum error of 5% and therefore the solution is
considered near optimal.

5-1-4 Conclusion

From the results of this experiment it can be concluded that an evolutionary algorithm is able
to find near optimal control solutions in the form of a fuzzy controller. It has been observed
that the control actions for the different simulations are close approximations of the optimal
control actions. The average convergence time error is 4%, which is below the maximum error
of 5% stated at the beginning of the experiment. Additionally it has been observed that the
total control surface of the solution is very similar to the optimal control surface, however,
some areas which are not reached during the simulation of the different initial states are not
optimised since they do not influence the fitness score.

5-2 Co-Optimisation of 1-DOF Resonating Arm Validation

The second experiment concerns the optimisation of the RA with only one degree of freedom.
This 1-DOF RA consists of only one arm and the pivot mechanism has been replaced by the
gripper.

The focus of this experiment is on the advantages of evolutionary co-optimisation compared
to a more conventional stepwise optimisation. In this stepwise optimisation the system pa-
rameters are optimised first and thereafter the optimal controller is found. The effectiveness
of evolutionary co-optimisation is shown by optimising the RA in a stepwise optimisation and
comparing this solution with the solution found through evolutionary co-optimisation.
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(b) Position response
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(c) Velocity response

Figure 5-6: The control output and state response from the initial state starting at a position
of -0.8 m and a velocity of 0 m/s when simulating with the best control solution found during
the experiment. The dashed lines represent the optimal control output and corresponding state
response, which are very similar to the simulated output.

The optimisation goal of this second experiment is stated to be:
Find the fuzzy control and system parameters that minimise the maximum actuator torque
required to perform certain pick-and-place tasks. This actuator torque should allow the fuzzy
controller to move the system to a predefined region in the state space and it should be large
enough to stay at all positions in this region.

In this optimisation goal two criteria are defined which the maximum actuator torque has to
satisfy. The first criterion demands that the minimised actuator torque is large enough for
the fuzzy controller to move to a predefined region in the state space. This predefined region
is defined as a bounded area around the desired state, which is similar to the convergence
bounds used in the first experiment. The task of the fuzzy controller is to bring the state of
the system into this region, where a second controller (e.g. a PID controller) is assumed to
take over and provide a more precise positioning of the system. The control structure and
tuning of this second controller are not considered in this work, however, it is important to
realise that this controller should be able to counteract the torque of the spring mechanism.
If the maximum actuator torque is too low the second controller will not be able to keep the
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arm still during a pick or place handling. Therefore the second criterion demands that the
minimised actuator torque is large enough to counteract the spring mechanism torque at all
positions in the predefined region.

The predefined region in the state space is defined by a position interval and a maximum
velocity. This position interval represents all the desired positions at which the arm should
be able to stand still in order to pick or place an object. In this research this position interval
is defined as [Θa, Θb] = [0.75, 0.85] (rad). As mentioned before, the fuzzy controller will only
be optimised to bring the position of the arm in this interval and a second controller will
then perform the precise positioning. In order to support a smooth positioning, the second
controller will only take over the control when the velocity of the arm is below a certain
maximum. In this research the maximum is set at 0.05 (rad/s), which is a relative low
velocity.

5-2-1 Stepwise Optimisation of Control and System Parameters

A conventional stepwise optimisation will be applied in which the system parameters and
control parameters are optimised in a step-by-step process. First the system parameters
are analysed and optimised, and thereafter the optimal control is derived in order to find a
complete optimised 1-DOF RA solution.

Optimising the System Parameters

In Table 5-4 the system parameters to be optimised are summarised. In order to optimise these
parameters the general optimisation goal is transformed into a form which only depends on
the systems parameters. This simplified optimisation goal reads: Find the system parameters
that minimise the maximum actuator torque required to stay at all positions in the predefined
position interval.

Table 5-4: Six parameters describing the dynamic behaviour of the 1-DOF RA.

Parameter description Symbol Units

Radius at which the spring is connected to the large pulley r1 m
Radius at which the spring is connected to the small pulley r2 m
Ratio between the outer radii of the pulleys (R1/R2) a m/m
Initial length of the spring l0 m
Spring constant k N/m
Moment of inertia (spring mechanism) I0 kgm2

The problem with this optimisation goal is that the optimal solution has a spring constant
equal to zero (k = 0 N/m), which is equivalent to having no spring mechanism. No spring
mechanism means that the actuator torque needed to stay at the positions in the position
interval is zero, but also that no potential energy is stored to reduce the torque required to
move between the pick-and-place positions.

A possible solution to this problem is putting a constraint on the potential energy stored
at a certain position. This will lead to a optimisation problem that demands a minimised
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actuator torque to stay in the position interval while providing a certain level of potential
energy stored to accelerate and decelerate the arm between the pick-and-place positions.

This transforms the previously stated optimisation problem into:
Find the system parameters that minimise the maximum actuator torque required to stay at
all positions in the predefined position interval, while providing a predefined level of potential
energy at a predefined position.

In mathematical form this reads:

min: f(r1, r2, a, l0, k) = max(|τs(Θ)|) for all Θ ∈ [Θa, Θb] (5-31)

subject to: Ep(Θd) = Ep,desired. (5-32)

in which the function f(·) is minimised given a constraint on the potential energy Ep at the
angle Θd. The function f(·) equals the maximum torque needed to keep the system at all
positions in the interval [Θa, Θb] and depends on the parameters r1, r2, a, l0 and k. The
inertia I0 of the spring mechanism does not have an influence on the potential energy curve
and will have to be optimised separately.

The constraint optimisation problem was solved for a desired potential energy level of 0.40
Joule at Θd = 0.8 and the presented position interval [Θa, Θb] = [0.75, 0.85]. The desired
potential energy level of 0.40 Joule at Θd = 0.8 is equal to the amount of potential energy
stored in the prototype at that angle. In order to limit the size of the search space, the
parameter values of r1, r2, a, l0 and k were bounded around the parameter values of the
prototype. The optimised values, bounds and prototype values are summarised in 5-5.

Table 5-5: The six variables describing the 1-DOF RA. Given certain bounds, the values are
optimised to minimise the torque applied by the spring mechanism in an interval of 0.75 to 0.85
radians while maintaining a stored energy of 0.4 Joules at an angle of 0.8 radians. The value of
parameter k is indicated with a ’*’ since its optimality only holds for a desired energy level of 0.4
Joules, when the desired energy is changed this value will change, however, all other values will
still remain the same.

Parameter Symbol Prototype Optim. Optim. Units

value bounds value

Spring radius at large pulley r1 0.1 [0.05 − 0.20] 0.20 m
Spring radius at small pulley r2 0.02 [0.01 − 0.04] 0.0389 m

Transfer ratio a 5 [2.5 − 10] 5.1153 m/m
Initial length of spring l0 0.1 [0.05 − 0.20] 0.05 m

Spring stiffness k 150 [0− 200] 33.1861* N/m

Max. abs. torque at [Θa, Θb] : 0.0817 0.0218 Nm

Through optimisation of the prototype parameters the maximum absolute torque at the
position interval was reduced from 0.0817 Nm to 0.0218 Nm. The optimisation of the system
parameters is also reflected in the potential energy and torque curve as presented in Figure
5-7. One can observe that at the indicated interval [Θa, Θb] the potential energy curve has
been flattened; this corresponds with a smaller absolute torque as clearly visible in the torque
curve.

The inertia I of the spring mechanism does not influence the potential energy curve, but has
an influence on the torque needed to attain a certain acceleration. As known from Euler’s
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equation τ = IΘ̈ a higher inertia requires a higher torque to obtain the same acceleration.
Therefore the optimal value of the inertia equals its lower bound, which is equivalent to the
inertia of the prototype, namely 0.16 Nm2.

At this point it seems that all parameters have successfully been set to their optimal values.
However, it should be noted that this has been done for one specific potential energy level
Ep,desired, which was not proven to be optimal. Fortunately, the potential energy level is
directly correlated with the spring constant k (Equation 3-5). This means that any desired
potential energy level used in the optimisation will yield the same optimal values for r1, r2,
a and l0, and only changes the spring constant k.

The optimal potential energy level Ep,desired, and thus the optimal spring constant k, cannot
be determined without investigating the influence on the actuator torque required to move
between the pick-and-place positions. Since the optimal controller is not yet derived, an
optimal potential energy level has to be assumed. At this point we assume that a highest
level of potential energy will yield the lowest torque and thus the spring constant k is set to
its upper bound of 200 N/m. This assumption was later verified by solving the the optimal
control problem for different values of k.
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(b) Torque curve

Figure 5-7: The potential energy and torque curves of the spring mechanism with both the
prototype and the two optimised system parameter values. The goal of the optimisation was to
minimise torque applied by the spring mechanism between the angles Θa and Θb. This corresponds
with a minimisation of the derivative of the potential energy curve.

Optimising the Controller

The optimal controller is found by transforming the control part of the general optimisation
goal into the following form: Find the optimal control that minimises the maximum actuator
torque required to move the system to a predefined region in the state space.

Unfortunately, this problem cannot directly be solved by applying the Pontryagin’s Minimum
Principle as done in the first experiment. This is due to the fact that no cost-to-go or final-cost
can be assigned for the minimisation of the maximum used torque.

This problem has been solved by applying an iterative approach in which a minimum-time
problem is solved for a decreasing set of control bounds. When the control bounds are set
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too high the minimal-time problem will yield an optimal time below the time constraint of 1
second. By iteratively decreasing the bounds until the optimal time is equal to 1 second the
minimal-maximum-torque problem can be solved.

The Stepwise-Optimised Solution

The stepwise optimisation has provided an optimised solution for the system parameters and
control. In Figure 5-8 an example is given of the optimal control solution and state response
for an initial state of [Θ, Θ̇] = [−0.85, 0] given the optimised system parameters and a time
constraint of 1 second. This example will be used to compare the stepwise solutions with the
solutions found through evolutionary co-optimisation.
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(b) Optimal position response
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(c) Optimal velocity response

Figure 5-8: The optimal control solution for the 1-DOF RA with optimised system parameters
when starting from an initial state of [Θ, Θ̇] = [−0.85, 0] and moving towards the closest boundary
of the place state at [Θd, Θ̇d] = [0.75, 0.05].

5-2-2 Experimental Setup

After the stepwise optimisation the 1-DOF RA will be optimised through evolutionary co-
optimisation. This section presents the parameter values which are used to conduct this
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Table 5-6: Specific parameters used in the 1-DOF RA experiment. Variable m represents the
number of fuzzy membership functions at each input for the fixed fuzzy controller and variable b
the total number of fuzzy basis functions used in the free fuzzy controller.

Parameter Value Units

Number of generations 6000
Simulation time 1 s

RK4 step size 0.01 s
Membership functions (free fuzzy contr.): m 5

Basis functions (fixed fuzzy contr.): b 7

experiment together with the initial states and fitness functions.

Parameter Values

In Table 5-6 the different parameters corresponding to the 1-DOF RA experiment are pre-
sented. The number of generations is chosen to be 6000, which is large enough for the
algorithms to converge. The simulation time is set equal to the time constrain of 1 second.
The step size of the RK4 integration method is set to 0.01 seconds after validating that no
significant better results were found with smaller step sizes. The number of membership
functions per input for the fixed fuzzy controller is set to 5 and the number of basis functions
for the free fuzzy controller is set to 7. For both controllers this results in an optimisation
problem of 44 dimensions, in which 6 dimensions are due to the system parameters.

Initial States

The feedback quality of a controller is determined by evaluating the responses of the system
from three different simulations, each starting from a different initial state. These initial states
have an angular velocity Θ̇init equal to zero and their angular positions Θinit are located in the
middle and edges of the pick-position interval [−0.85,−0.75], opposite to the (place-)position
interval discussed earlier;

[Θinit, Θ̇init] ∈ {[−0.85, 0], [−0.8, 0], [−0.75, 0]} (5-33)

These points have been selected to optimise a feedback controller that is able to bring the
arm to the place-position interval starting from different initial positions in the pick-position
interval. Other initial positions and disturbances have not been considered in order to keep
the required simulation time low.

Fitness Function

The fitness function used for the optimisation of the 1-DOF RA is shown in Algorithm 5.
Before the fitness is determined using the maximum used torque during the simulation, two
checks are present to make sure that the solutions can still be given a score when the simu-
lation did fail or if the system did not converge to the desired state (see Section 2-4-1 about
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incremental fitness functions). The fitness score of each solution is always between 0 and 3.
A detailed description of the fitness function is given below:

Line 1-2: First it is checked whether the simulation failed due to numerical limitations. If
so, the time at which the first error occurred (tfail) and the total simulation time tsimulation

are used to calculate the fitness score and a penalty of 2 is added.
Line 3-4: Second, if the simulation did not fail, it is checked whether the absolute error
|e| between the final state and the desired state at time tfinal was larger than the predefined
convergence bound ǫ. If so, the system did not converge and the error is taken as a measure
for the fitness plus a penalty score of 1.
Line 5-8: Finally, if the system did converge, the maximum absolute torque used to move
between the pick-and-place positions and the maximum torque used to stay at the place-
position interval are determined. The maximum torque needed to stay or move is used to
determine the fitness.

Algorithm 5 Fitness function of the 1-DOF RA optimisation

1: if simulation fails at some time tfail then

2: fitness←
(

1− tfail

tsimulation

)

+ 2

3: else if absolute error |etsimulation
| > convergence bound ǫ then

4: fitness←
(

1− 1
1+e2

)

+ 1

5: else

6: τm ← max. abs. torque-to-move from pick position to place range

7: τp ← max. abs. torque-to-stay in place range

8: fitness←
(

1− 1
1+max(τm,τp)

)

9: end if

Similar to the first experiment the total fitness score ftotal of a solution is defined by the sum
of the fitness scores fsim obtained from the performed simulations,

ftotal =
3∑

n=1

fsim(n) (5-34)

in which n represents the number of the simulation.

The experimental setup has now been defined. In the next section the results of this experi-
ment are discussed.

5-2-3 Analysis of Results

The goal of the 1-DOF RA experiment is to answer the question whether a (near) optimal
solution can be found when co-optimising both a fuzzy controller and the system parameters
of the RA using an EA. This questions is answered in this section by presenting the best co-
optimised solution found after 20 optimisations with all controller-algorithm combinations.
The best solutions was found by the CMA-ES algorithm in combination with the free fuzzy
controller. An analysis of the performance of the other controller-algorithm combinations can
be found in Section 5-4.
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A first comparison between the co-optimised solution and the stepwise-optimised solution is
presented in Figure 5-9, where the dashed lines correspond with stepwise-optimised solution
and the solid lines correspond with the co-optimised solution. From this figure we have to
conclude that the co-optimised solution is able to use an even lower maximum torque than
the stepwise-optimised solution. In fact, when compared to the stepwise-optimised solution,
the co-optimised solution is able to reduce the required maximum absolute control torque by
43%, from 1.338 Nm to 0.768 Nm. In the next section the system parameters are analysed
to see how this is possible.
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(a) Optimised control actions
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(b) Optimised position responses
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(c) Optimised velocity responses

Figure 5-9: The control output and state response of the solution found by the EA starting from
[Θinit, Θ̇init] = [−0.85, 0]. The dashed lines represent the optimal control solution belonging to
the stepwise-optimised system. It can be seen that the solution found by the EA is able to use
a maximum torque which is less than the solution found in the stepwise optimisation. From this
result we can conclude that the EA found better system parameter values, which allow a lower
control torque.

Analysing the System Parameters

In Table 5-7 the parameter values of both solutions are presented and it can be seen that the
parameter values of the spring radius at the large pulley r2 and the transfer ration between
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the pulleys a found through evolutionary co-optimisation differ from the parameter values
found after the stepwise optimisation.

Table 5-7: The system parameters values found through evolutionary co-optimisation next to
the values found after a stepwise optimisation. The EA was able to find better values for the
system parameters, which allowed a lower maximum torque to be used during the pick-and-place
tasks.

Parameter Symbol Stepwise Co- Units

optim. optim.

Spring radius at large pulley r1 0.20 0.20 m
Spring radius at small pulley r2 0.0389 0.0351 m

Transfer ratio a 5.1153 5.0745 m/m
Initial length of spring l0 0.05 0.05 m

Spring stiffness k 200 200 N/m
Inertia (spring mechanism) I0 0.16 0.16 kgm2

Max. abs. control torque: 1.338 0.768 Nm

The influence of these parameters is shown in Figure 5-10 in which the potential energy
and torque curves are plotted for both the stepwise-optimised solution and the co-optimised
solution. Although the co-optimised solution uses the nonlinearity of the spring mechanism
to minimise the torque at the position interval [Θa, Θb], it did not minimise these torques to
a minimum. Instead the maximum torque at the position interval is close to the torque used
to move the system between the pick-and-place positions.
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(a) Potential energy curve
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(b) Torque curve

Figure 5-10: The potential energy and torque curves of the spring mechanism with parameter
values obtained from a stepwise optimisation and an evolutionary optimisation. The EA seems
to prefer a bigger torque at the pick-and-place intervals than the minimised torque found in the
stepwise optimisation.

This shows that the co-optimised solution was able to decrease the overall maximum torque by
increasing the torques at the position interval. The co-optimised solution uses the increased
spring mechanism torques to accelerate the arm directly from the start and therefore less
actuation torque is needed to perform the movement in time. This is a valuable insight,
which was not discovered before the evolutionary co-optimisation was applied.
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Eventually, this insight could also have been found through a further analysis of the mech-
anism. However, even when this was the case, this would result in an optimisation problem
that is difficult to solve in a stepwise optimisation. This is caused by the fact that the optimal
torque at the pick-and-place positions has to be equal to the optimal torque used to move
between the pick-and-place positions. Therefore the dependency of the system parameters on
the control solution is even stronger, which has to be solved through a cumbersome iterative
process of system optimisation and control optimisation.

Analysing the Control Solution

To investigate the fuzzy control solution found by the EA, the optimal control solution for
each of the three initial states has been solved for the co-optimised system.

In Figure 5-11 the actual control outputs and the optimal control outputs are shown. It can be
seen that for all initial states the same maximum torque is used, even though a lower torque
would have been able to bring the system to the desired state within the time constraint of
1 second. Moreover, the maximum torque used for all initial states is about equal to the
optimal torque needed to bring the system from the furthest state to the desired state.

The reason why the EA only optimised the control for the furthest initial state can be found by
analysing the optimisation goal stated at the beginning of this experiment. This goal demands
a minimised actuator torque that allows the controller to move the system to a predefined
region in the state space and is at the same time large enough to keep the system at all
positions in this predefined region. The initial state furthest from the desired region requires
the highest actuator torque and the EA will reduce this torque-to-move by increasing the
torque needed to stay at the position interval. The minimal actuator torque for that initial
state is found when the torque-to-move and the torque-to-stay have the same size. This
torque-to-stay will now dominate the minimal actuation torque of the other initial states, and
therefore a further minimisation of their torque-to-move does not influence the optimisation
outcome. After optimising the fuzzy controller this resulted in equal torques-to-move for all
initial states.

From a practical point of view this does not matter since the highest minimal maximum
torque for one of the initial positions will set the requirements for the actuators used in the
robot arm.

5-2-4 Conclusion

The results obtained in the 1-DOF RA experiments show that the co-optimisation of system
and control parameters using evolutionary algorithms is an effective optimisation approach.
The solutions found through evolutionary co-optimisation used a maximum absolute torque
of 0.768 Nm, which is 43% less torque compared to the solution found through a conven-
tional stepwise optimisation (1.338 Nm). Moreover, in the evolutionary co-optimisation no a
priori knowledge about the advantageous system dynamics was required, while the stepwise
optimisation required a thorough system analysis and assumptions to be made.

The solution found through evolutionary co-optimisation let to the insight that an increase
of the maximum torque required to stay at the pick-and-place positions, can result in a lower
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(a) Initial state: Θ = −0.85rad, Θ̇ = 0rad/s
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(b) Initial state: Θ = −0.80rad, Θ̇ = 0rad/s
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(c) Initial state: Θ = −0.75rad, Θ̇ = 0rad/s

Figure 5-11: The control output and state response starting from the three initial states. The
dashed lines represent the optimal control solution and the optimal state response for each initial
state. From the three plots we can see that the EA converged to a control solution at which an
equal torque is used for all initial states, this torque equals the minimal torque needed to bring
the system from the furthest state to the desired state in the desired time as can be seen in
Figure (a). In Figures (b) and (c) the used torque is higher than the optimal maximal torque and
therefore the system converges faster.

maximum torque needed to move between the pick-and-place positions. And that the overall
torque used by the system is minimised when both of the torque-to-stay and the torque-to-
move have the same size. Additionally, it was found that the minimal torque required by the
system is fully determined by the minimised torque needed to move from the initial position
that has the greatest distance from the desired position.

The near optimal solution found and the obtained insights lead to the conclusion that evolu-
tionary co-optimisation is an effective approach to optimise the 1-DOF RA.

5-3 Optimising the 2-DOF Resonating Arm

In the previous two experiments it was shown that the combination of EAs and fuzzy control
can effectively be used to find near optimal control and system parameter solutions. Based
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Table 5-8: Specific parameters used in the 2-DOF RA experiment. Variable m represents the
number of fuzzy membership functions at each input for the fixed fuzzy controller and variable b
the total number of fuzzy basis functions used in the free fuzzy controller.

Parameter Value Units

Number of generations 10 000
Simulation time 1 s

RK4 step size 0.01 s
Membership functions (free fuzzy contr.): m 3

Basis functions (fixed fuzzy contr.): b 17

on these results evolutionary co-optimisation will be used to optimise the fuzzy control and
system parameters for the 2-DOF RA .

The optimisation goal of the 2-DOF RA experiment is equal to the goal stated for the 1-DOF
RA experiment, which is:
Find the fuzzy control and system parameters that minimise the maximum actuator torque
required to perform certain pick-and-place tasks. This actuator torque should allow the fuzzy
controller to move the system to a predefined region in the state space and it should be large
enough to stay at all positions in this region.

The predefined region in the state space is defined by the interval [Θa, Θb] = [0.75, 0.85] (rad)
for the upper arm, an interval [−0.05, 0.05] (rad) for the lower arm and a maximum velocity
of 0.05 (rad/s) for both arms.

The experimental setup will be presented first, thereafter the best solution found during this
experiment is presented and discussed.

5-3-1 Experimental Setup

Since the addition of the second arm makes the problem considerably more complex the
number of generations and the controller parameters have been increased. These parameters
together with the initial positions and the fitness function are discussed in this section.

Parameter Values

In Table 5-8 the different parameters corresponding to the final experiment are presented.
The extra arm mainly increases the complexity of the controller, due to the extra control
output and two extra state inputs. This increased complexity makes the problem harder to
solve and therefore the number of generations is increased to 10 000. The simulation time
is still 1 second and a step size of 0.01 seconds for the RK4 method was still found suitable
to simulate the system. The number of membership functions per input is set to 3, which
yields a total optimisation problem of 186 variables. For the free fuzzy controller 17 fuzzy
basis functions are used, which corresponds to a total of 182 variables.
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Initial States

In this experiment the initial state of the extra lower arm is set to zero, which means that it
is always pointing away from the spring mechanism. The initial states of the upper arm are
equal to the ones used in the 1-DOF RA experiment. These starting positions are:

[Θ1,init, Θ̇1,init, Θ2,init, Θ̇2,init] ∈ {[−0.85, 0, 0, 0], [−0.8, 0, 0, 0], [−0.75, 0, 0, 0]} (5-35)

Fitness Function

The fitness function used for this optimisation is similar to the one used in the 1-DOF RA
optimisation, which was presented in Algorithm 5. The only changes are the fact that the
error now consists of four values and that two torques are used to move the system from the
initial positions to the desired positions. The maximum of the two torques-to-move and the
torque-to-stay is used to determine the fitness score, this means that the overall maximum
torque used in the system is minimised and no distinction is made between the upper and
lower arm actuators.

5-3-2 Analysis of Results

The goal of the 2-DOF RA experiment is to investigate the results found when co-optimisation
is applied on the complete system with both the upper and lower arm. In this section the
best solution is presented, which was found by the CMA-ES algorithm in combination with
the free fuzzy controller. A comparison between the two fuzzy controllers and EAs will be
given in the next section (Section 5-4).

In Figure 5-12(a) the control output for one of the initial states is plotted. The maximum
absolute torque used during the pick-and-place movement is 1.1 Nm and the maximum abso-
lute torque-to-stay at the pick-and-place locations is also approximately 1.1 Nm as shown in
Figure 5-13(b). The fact that these torques have the same size indicates that the optimisation
did indeed optimise the system and control parameters to a near optimal solutions, by finding
the right balance between the torque-to-move and the torque-to-stay.

In Figure 5-13(a) the potential energy curve corresponding to the 2-DOF system is plotted
and compared with the potential energy curve of the 1-DOF system. Here it can be seen
that the level of potential energy stored in the optimised 2-DOF RA is considerably lower
than the potential energy stored in the optimised 1-DOF RA. This may be the result of a
sub optimal convergence, but it is also possible that a higher level of potential energy will not
allow a lower torque-to-move. This latter explanation finds support in the findings of Plooij,
who observed that the sudden acceleration of the upper arm caused by the spring mechanism
increases the torque required to control the lower arm.

5-3-3 Conclusion

Co-optimisation of fuzzy control and system parameters of the 2-DOF RA results in working
solutions that are able to bring the upper and lower arm from their initial position to the
desired position.
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Figure 5-12: The control outputs and the phase trajectories of the the actuators and arm angles,
respectively, from an initial state of Θ1 = −0.85, Θ̇1 = 0, Θ2 = 0 and Θ̇2 = 0.
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Figure 5-13: The potential energy and torque curves corresponding to the best solutions found
for the 1-DOF system and the 2-DOF system.

Similar to the 1-DOF RA co-optimised solution, the value of the maximum absolute torque
required to stay at the pick-and-place positions is similar to the maximum absolute torques
needed to move the upper and lower arm to the desired state. This indicates that the algorithm
did balance the torque-to-stay and the torque-to-move in order to decrease the overall torque
of the system.

The level of potential energy stored in the 2-DOF RA solution is considerably less than the
potential energy stored in the 1-DOF RA solution. This might indicate that a high potential
energy level is less beneficial for the minimisation of the torques for both arms.

5-4 Discussion and Analysis

While the previous sections focused on the best solutions found in the experiments this last
section will discuss and analyse the performance of the different fuzzy controllers and EAs
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used in each of the conducted experiments.

5-4-1 Comparing the Fuzzy Controllers

For all three experiments conducted in this research the best control solution were found when
using the free fuzzy controller.

The limited approximation capabilities of the fixed fuzzy controller in comparison to the free
fuzzy controller are shown in Figure 5-14. In this figure the best control surfaces of the free
and fixed fuzzy controllers are presented for both the single mass and 1-DOF RA experiment.
In Figure 5-14(b) a clear stair-shaped approximation of the switching line is visible which
indicates the limitation of the fixed membership functions and for this reason the fixed fuzzy
controller performed considerably worse in comparison to the free fuzzy control. However,
for the 1-DOF RA experiment the performances differences between the fixed and free fuzzy
controllers are considerably less. An explanation can be found in Figure 5-14(c) and 5-14(d)
where the control surfaces of the free and fixed fuzzy controller optimised for the 1-DOF RA
are presented. The state trajectories in the 1-DOF RA experiment are much closer together
than the state trajectories in the single mass experiment, therefore the required approximation
of the optimal control surface is reduced to a smaller area of the state. This is relatively easier
to approximate with the fixed fuzzy controller.

It appears to be difficult to derive general control rules from the optimised fuzzy rules. In
Figure 5-14(a) and 5-14(c) the locations of the optimised fuzzy rules are indicated by crosses.
The dashed ellipses represent the area in which the rule is most active (two times the width
parameter σ of the Gaussian membership functions). In order to approximate the step func-
tion of the optimal controller the membership functions are positioned far from each other
and their widths are in most cases considerably small. This, however, does not mean that
their overall influence in the state space is small. This is due to the weighted average inference
method which makes the influence of one rule dependent on the locations and widths of all
other rules. Therefore little control information can be attained from analysing each control
rule separately.

The reduced complexity of the fixed fuzzy controller in comparison to the free fuzzy controller
results in a faster initial convergence as presented in Figure 5-15. In this figure an average
is given of the torques used by the solutions found during 20 optimisations. It can be seen
that for both the 1-DOF and 2-DOF RA the average torque of the fixed fuzzy controllers
(blue lines) show a faster convergence than the average torque of the free fuzzy controllers
(red lines). In this figure it can also be seen that for the CoSyNE algorithm the fixed fuzzy
controller yields an even better average performance than the free fuzzy controller.

The reason why the best solutions where still found with the free fuzzy controller can be seen
in Figure 5-16 in which the torques of the optimised solutions from the different controller-
algorithm combinations are presented in box plots. Although the average values of the solu-
tions found by the fixed controller with CMA-ES and free controller with CMA-ES combina-
tions are not so far apart, the lowest torque value is always found by the CMA-ES algorithm
in combination with the free fuzzy controller for both the 1-DOF and 2-DOF RA. It also
appears that the consistency of the fixed control solutions is better in comparison to the
free control solutions. This may be caused by a smaller amount of local optima due to the
decreased complexity of the fixed fuzzy controller.
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Figure 5-15: The average torques of the best solutions found during the optimisation runs of the
four controller-algorithm combinations. For both the 1-DOF and 2-DOF RA each combination
was tested 20 times. The blue lines represent the optimisation of the fixed fuzzy controller and the
red lines that of the free fuzzy controller. One can see that on average the fixed fuzzy controller
shows a faster initial converges than the free fuzzy controller.
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Figure 5-16: Boxplots representing the lower quartile, median, upper quartile, the smallest and
largest sample of the minimised torques of 20 solutions found for each of the four different
controller-algorithm combinations.

5-4-2 Comparing the Evolutionary Algorithms

For all experiments the best results where found by the CMA-ES algorithm and it therefore
appears to be the most effective algorithm for the optimisation of fuzzy controllers and system
parameters.

In Figure 5-17 the convergence of both algorithms is presented when optimising the 1-DOF
RA with both types of controllers. The dotted lines indicate that the average fitness does not
equal the average maximum torque used since some of the simulations obtained a penalty for
not converging to the desired states. When the convergence line is solid the values correspond
with the average maximum torque of all optimisation runs.
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From the convergence plots it can indeed be see that the CMA-ES algorithm obtained a
better solution than the CoSyNE algorithm for both controller types, however, the CoSyNE
algorithm shows a faster initial convergence.

The best 1-DOF RA solutions were found when applying the free fuzzy controller in combi-
nation with the CMA-ES algorithm. The cpu time required to perform the 6000 generations
was between 3 and 4.5 hours on a 3.10 GHz Intel Core i5-2400 desktop computer. In the
convergence plot (Figure 5-17(b)) it can be seen that after 1500 generations 75% of the runs
has already converged to a torque value below 1.3 Nm. This means that after 1 to 1.5 hours of
evolutionary co-optimisation 3/4 of the runs will already produce solutions which outperform
the stepwise optimised solution.

In Figure 5-18 the convergence of both algorithms is presented when optimising the 2-DOF
RA. Again, it can be seen that the CMA-ES algorithm yields the deepest convergence when
compared to the CoSyNE algorithm.

Also for the 2-DOF RA problem the best solutions were found when applying the free fuzzy
controller in combination with the CMA-ES algorithm. The cpu time required to perform the
10 000 generations was between 25 and 30 hours on a desktop computer (3.10 GHz Intel Core
i5-2400). This increase in CPU time is not only caused by the higher number of generations,
but also due to the higher complexity of the model and the controller, which requires more
parameters to be optimised and more time to for simulation. Although the consistency of the
solutions found after 10 000 generations is considerably low, it can also be seen that after 5
000 generations (12.5 to 15 hours) already 50% of the optimisation runs yielded in solutions
with a fitness score close to the final fitness score.

The deeper convergence debt of the CMA-ES algorithm can be explained by the fact that the
CMA-ES algorithm seems to be better in optimising the system parameters. In Figure 5-19
the normalised parameter values are plotted and one can see that the CMA-ES algorithm is
constantly finding better systems while the CoSyNE algorithm changes the best found system
parameters less often. This is assumed to be the result of the adaptive mutation size used in
the CMA-ES algorithm, which allows the algorithm to change the system parameters more
gradually.

In Figure 5-20(a) the potential energy curves corresponding to the different system parameter
solutions found by the CMA-ES and CoSyNE algorithm for the 1-DOF RA are presented.
This plot shows that the CMA-ES algorithm gives a more consistent convergence of the system
parameters than the CoSyNE algorithm. For the 2-DOF RA this consistency is lower as can
be seen in Figure 5-20(b), however the CMA-ES algorithm is still better than the CoSyNE
algorithm in reducing the slope of the potential energy curve in the place interval, which
might explain why it is able to reduce the torque further than the CoSyNE algorithm.

5-4-3 Conclusion

The best combination of fuzzy controllers and evolutionary algorithms used in this research is
the free fuzzy controller in combination with the the CMA-ES algorithm. The free membership
functions allowed a better approximation of the optimal control surface for the single mass
experiment and yielded better control solutions for the 1-DOF and 2-DOF RA experiments.
However, in general the decreased complexity of the fixed fuzzy controller resulted in a faster
convergence with a better consistency of the final performance of the solutions.
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The CMA-ES algorithm showed a deeper convergence in all experiments and has shown to
give more consistent solutions for the parameter values. Although CoSyNE is showing a
faster initial convergence than CMA-ES at the beginning of the optimisation, it is not able
to converge as deep as CMA-ES.
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(a) Free fuzzy control (single mass) (b) Fixed fuzzy control (single mass)

(c) Free fuzzy control (1-DOF RA) (d) Fixed fuzzy control (1-DOF RA)

Figure 5-14: The control surfaces generated by the best solutions found for the free and fixed
fuzzy controllers in the single mass and 1-DOF RA experiment. The value of the control action at
each state is presented by a colour, where dark green stands for a control action of -1 and bright
yellow represents a control action of +1. All control actions in between are indicated by the colour
scales. The solid lines represent the state trajectories of the simulated systems starting from the
different initial positions. Additionally, the optimal switching line is plotted for the single mass
controllers and for the free fuzzy controllers the locations of the optimised fuzzy base functions
are shown (crosses). The dashed ellipses represent the shape of the fuzzy base functions.
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Figure 5-17: The convergence of the four controller-algorithm combinations for the 1-DOF RA
experiment. The plotted line represents the median of 20 runs and the box represents the lower
quartile and the upper quartile, the lines connected to the box show the smallest and largest
sample. Although CoSyNE shows a faster initial convergence for the free fuzzy controller, the
CMA-ES algorithm is able to converge to a better solution for both types of controllers.
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Figure 5-18: The convergence of the four controller-algorithm combinations for the 2-DOF
RA experiment. The plotted line represents the median of 20 runs and the box represents the
lower quartile and the upper quartile, the lines connected to the box show the smallest and largest
sample. Although CoSyNE shows a quicker convergence for the free fuzzy controller, the CMA-ES
algorithm is able to converge to a better solution for both types of controllers.
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Figure 5-19: The normalised system parameters plotted for each generation when optimised
by the CoSyNE and CMA-ES algorithm. In these plots 0 represents the lower bound and 1 the
upper bound of the particular system parameter. The figures show that the CMA-ES algorithm
is able to give a faster convergence to a system parameter solution while the CoSyNE algorithm
is changing the system parameters with bigger steps and does not converge as quickly.
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Figure 5-20: The potential energy curves of all the different system parameters combinations
found after optimising the 1-DOF RA (a) and the 2-DOF RA (b) with the CMA-ES (20 runs) and
CoSyNE algorithm (20 runs). It can be seen that the CMA-ES algorithm gives more consistent
results in comparison to the CoSyNE algorithm when optimising the 1-DOF RA. Considering
the results of the 2-DOF RA we see that the both algorithms lack consistency but the CMA-ES
algorithm performed better in shaping the potential energy curve to decrease the torques at the
pick-and-place positions.
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Chapter 6

Conclusion and Recommendations

This thesis introduced the use of evolutionary co-optimisation of control and system pa-
rameters in the development of the Resonating Arm (RA); a novel concept for a low-power
pick-and-place robot arm. Co-optimisation of robotic designs combines the optimisation of
control and system parameters into one optimisation problem in order to find the optimal
combination of the system as a whole. To solve this parallel optimisation problem Evolution-
ary Algorithms (EAs) have been used which are known for their ability to find near optimal
solutions to complex and high dimensional optimisation problems. The optimisation goal of
the RA is set equal to the minimisation of the maximum torque needed to stay and move
between the pick-and-place positions.

Three experiments have been conducted to investigate the benefits and limitations of evolu-
tionary co-optimisation of the RA. In each experiment two types of fuzzy controllers (with
free and fixed membership positions) and two types of EAs (CoSyNE and CMA-ES) were
applied and each of the four combinations was investigated.

6-1 Conclusion

In the beginning of this thesis the question has been raised to what extent evolutionary
co-optimisation is able to find (near) optimal system and fuzzy control solutions for the
Resonating Arm. From the obtained results we conclude that evolutionary co-optimisation is
an effective approach to find near optimal solutions for the RA with one degree of freedom
(1-DOF), however more research is needed to effectively use it in the optimisation of the
2-DOF RA.

The results from the first experiment, in which a single mass minimal-time control problem
was solved, showed that the combination of fuzzy control and EAs is well able to generate
near optimal feedback control behaviours.

In the second experiment the 1-DOF RA has been optimised both in a conventional stepwise
manner and through evolutionary co-optimisation. It showed that the stepwise optimisation
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of control and system parameters requires a deep knowledge of the system and results in a
tedious and iterative process, which can easily end in suboptimal solutions. On the contrary,
evolutionary co-optimisation resulted in near optimal solutions requiring little knowledge of
the system. The 1-DOF RA solution found through evolutionary co-evolution required 43%
less torque to perform the pick-and-place tasks when compared to the stepwise optimised
1-DOF RA solution.

Two new insights could be derived after analysing the 1-DOF RA solutions found through
evolutionary co-optimisation. First, it was shown that an increase of the torques needed to
stay at the pick-and-place positions allows a decrease of the torques needed to move between
the pick-and-place positions, which in the optimal case are equal to each other. Secondly, it
was found that the maximum torque required by the system is fully determined by the torque
needed to fulfil the task beginning from the initial position that is the furthest from the final
state.

The third experiment considered the optimisation of the 2-DOF RA and it was shown that
evolutionary co-optimisation will generate solutions that are able to fulfil the pick-and-place
tasks. However, the consistency of the solutions was low and it is therefore difficult to say
whether these solutions are near optimal.

In order to answer the research subquestions, the performances of the two fuzzy controllers and
EAs have been compared. Although the membership functions with fixed positions resulted
in a faster convergence, better control solutions where found when using free membership
functions. Between the two EAs, CMA-ES yielded the best and most consistent solutions for
all experiments. CoSyNE did show a faster convergence in the beginning of the optimisation
but was not able to converge to near optimal solutions.

Although the findings in this work are the results of one specific optimisation problem, the
obtained conclusions are expected to be generally applicable to problems with slightly different
optimisation goals or system properties (i.e. the minimisation of energy use or a different
positioning of actuators). Moreover, the optimisation environment developed in this work can
easily be altered to solve these problems. This makes it a useful tool for future optimisations
of the Resonating Arm and systems alike.

6-2 Recommendations

More research is still needed in order to improve the effectiveness of evolutionary co-optimisation
in the optimisation of industrial manipulators. Especially considering the low consistency of
the solutions found when optimising the 2-DOF RA.

One aspect which needs further attention is the population size. When more solutions are
evaluated in one generation the convergence speed will decrease, but the global search per-
formance will improve. This might yield better solutions for the more complex 2-DOF RA
optimisation problem.

The performance could also be improved by implementing restarting techniques. These tech-
niques restart the EA when it is assumed to be stuck in a local optimum, in order to reinitiate
a broader search for the global optimum. Information about the search space can be preserved
by initialising the new generation with some of the old solutions from the last optimisation
[58].
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Another aspect that could improve the effectiveness of evolutionary co-optimisation is the
selection of the controller. Since the rule base structure of the fuzzy control approach did not
seem to bring much advantages, other control strategies, such as neural networks and fuzzy
neural networks should be considered.

Moreover, evolutionary co-optimisation could be applied on more detailed models of the
RA. The detail of these models could be increased by; incorporating the actuator dynamics,
using a different friction model for the lower arm and letting the friction of the upper arm
be dependent on the force of the spring mechanism acting on the pivot point. Also other
morphological concepts could be investigated by using evolutionary co-optimisation. For
example concepts that use a nonlinear spring or have a second spring mechanism to control
the lower arm.

This work sets one of the first steps in the application of evolutionary co-optimisation for the
development of industrial manipulators. By the means of future research more steps can be
taken in order to turn evolutionary co-optimisation into a generally applicable and fruitful
way of designing the industrial robots of the future.
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Appendix A

Equations of Motion Derivation using

TMT method

The TMT method is a simple, clear and computational efficient approach to derive the equa-
tions of motion for a multibody system. It combines the Lagrangian approach with the
Newton-Euler method, which allows the use of independent generalised coordinates while
using the simple Newton-Euler mass and force matrices [28].

By using this TMT method it becomes relatively easy to adjust the configuration of masses and
arms in order to derive the equations of motion for different arm and/or mass configurations.
This can become beneficial for future optimisations in which a more detailed mass distribution
is demanded or extra arms have to be added to the system.

In this appendix the derivation of the TMT-method is presented.

From Newton we know that the sum of the applied forces equals the mass times the accel-
eration in all directions and Euler showed us that the sum of applied moments at the centre
of mass equals the moment of inertia at the centre of mass times the angular acceleration,
therefore a mass moving in two dimensions can be described by
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Στ
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m 0 0
0 m 0
0 0 I











ẍ
ÿ
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 . (A-1)

If the system is described by multiple masses we can write their Newton-Euler relations as

Σf = Mẍ or (A-2)

Σf −Mẍ = 0 (A-3)

where x represent all positions and angles, f the force vector holding all forces and torques
acting on the masses and M the mass matrix with on its diagonal all masses and inertia.

Generally the masses in a system are connected to each other in some way, this implies the
existence of constraints on some of the positions and angles in the system. Using the concept
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78 Equations of Motion Derivation using TMT method

of virtual power we know that a mechanical system is in equilibrium if the virtual power is
zero for all virtual velocities that satisfy the constraints

δẋ {Σf −Mẍ} = 0. (A-4)

As mentioned we would like to express all coordinates present in state x in terms of the inde-
pendent generalised coordinates q. This is done by constructing a kinematic transformation
T as in

x = T(q) (A-5)

and the corresponding velocities become

ẋ =
∂T

∂q
= Tqq̇, and the virtual velocities (A-6)

δẋ = Tqδq̇ (A-7)

Replacing the virtual velocities in (A-4) yields

Tqδq̇ {Σf −Mẍ} = 0 (A-8)

since the generalised coordinates δq̇ are independent it must be that

Tq {Σf −Mẍ} = 0 (A-9)

Also the accelerations ẍ can be expressed in independent generalised coordinates by differen-
tiating equation (A-5) twice yielding

ẍ =
∂Tqq̇

∂q
(A-10)

= Tq

q̇

∂q
+

∂Tq

∂q
q̇ (A-11)

= Tqq̈ + h (A-12)

in which h = ∂Tq

∂q
q̇ is called the convective acceleration.

By substituting (A-12) in (A-8) we are now able to express the complete equations of motion
in terms of independent coordinates

Tq {Σf −M{Tqq̈ + h}} = 0 (A-13)

or in matrix vector notation:
M̄q̈ = f̄ (A-14)

with the reduced mass matrix: M̄ = TT MT

the first order kinematic transfer function: T = Tq

and the reduced force vector: f̄ = TT [Σf −Mh]
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Appendix B

Equations of Motion

The equations of motion for the Resonating Arm with one and two degrees-of-freedom:

1-DOF Resonating Arm:
[

Θ1

Θ̇1

]

d

dt
=

[
Θ̇1

(τ1+τs)

I0+ 64
375

]

2-DOF Resonating Arm:








Θ1

Θ2

Θ̇1

Θ̇2








d

dt
=













Θ̇1

Θ̇2

− sin(2 Θ1−2 Θ2) Θ̇2
1 1089−sin(Θ1−Θ2) Θ̇2

2 2112+12000 (τ1+τs)+12375 τ2

(

2 sin
(

Θ1
2

−
Θ2
2

)2
−1

)

2178 sin(Θ1−Θ2)2+12000 I0+638

sin(2 Θ1−2 Θ2) Θ̇2
2 2178+33000 τ2+140625 I0 τ2+24750 (τ1+τs)

(

2 sin
(

Θ1
2

−
Θ2
2

)2
−1

)

+sin(Θ1−Θ2) (24750 I0 Θ̇2
1+5808 Θ̇2

1)

4356 sin(Θ1−Θ2)2+24000 I0+1276













where Θ1, Θ̇1, Θ2 and Θ̇2 represent the generalised coordinates of the Resonating Arm system and their derivatives. The variables
τ1, τ2 and τs represent the two actuator torques and the torque applied by the spring mechanism, respectively.
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Appendix C

Spring Mechanism Equation

The equation describing the torque τs of the spring mechanism:

τs = k A
((

r1
2 + l0 r1 + r1 r2

)
sin(Θ1) +

(
a r2

2 + a l0 r2 + a r1 r2
)

sin(a Θ1) + (a r1 r2 − r1 r2) sin(Θ1 − a Θ1)
)

A =




l0

√

(l0 + r1 + r2 − r2 cos(a Θ1)− r1 cos(Θ1))2 + (r2 sin(a Θ1) + r1 sin(Θ1))2
− 1
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Appendix D

Pontryagin’s Minimum Principle

The Pontryagin’s Minimum Principle (PMP) is used in optimal control [57] to determine an
analytical solution to control problems of the form

ẋ(t) = f(x(t), u(t)) (D-1)

with x the state of the system and u the control action to be optimised.

The PMP minimises a certain performance index J(u(t)), which is defined by a cost-to-go
V (x(t), u(t)) at each time instance t0 ≤ t ≤ tf and a final-cost S(x(tf )) of the end state at
time tf as shown below,

J(u(t)) = S(x(tf )) +

∫ tf

t0

V (x(t), u(t)) dt. (D-2)

This performance index is used to construct the Hamiltonian H

H(x(t), u(t), λ(t)) = V (x(t), u(t)) + λ
T (t)f(x(t), u(t)) (D-3)

with f(x(t), u(t)) the system equations and λ
T (t) the transpose of the the costate vector λ(t),

which is yet unknown. This costate vector can be interpreted as a Lagrange multiplier or
dummy variable often used in the minimisation of functions subject to constraints.

For this Hamiltonian it holds that

H(x∗(t), u∗(t), λ
∗(t)) ≤ H(x∗(t), u(t), λ

∗(t)) (D-4)

for all time t ∈ [t0, tf ] and for all permissible control actions u ∈ U . For a minimum-time
optimal control problem this equation can be solved to find the optimal control u∗ as a
function of the optimal costate vector λ

∗.

The PMP describes the optimal trajectory of the state x∗ and λ
∗ as

ẋ∗(t) = +

(
∂H

∂λ

)

∗
(D-5)

λ̇
∗
(t) = −

(
∂H

∂x

)

∗
(D-6)
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82 Pontryagin’s Minimum Principle

in which the optimal control u∗ inside the optimal Hamiltonian H∗ can be replaced by the
derived function of the costate vector λ

∗.

The strength of this new form lies in the fact that the only unknown variables in this system
are the initial values of the state vector x and costate vector λ.

Since for a minimum-time problem the initial and desired final states are known, the optimal
control problem can be solved by finding the initial costates that yield an optimal state
trajectory from the initial state to the desired final state. Thus the optimal control problem
has been transformed into a two-point boundary value problem.
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