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Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system
requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a
discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization
can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum.
Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-
Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann,
and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we
first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary
algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant
colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison
between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural
networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

1. Introduction

The adaptation of creatures to their environments results
from the interaction of two processes, namely, evolution and
learning. Unlike evolution, which is based on the Darwinian
model of a species, learning is based on the connectionist
model of the brain. Evolution is a slow stochastic process at
the population level that determines the basic structures of a
species, while learning is a process of gradually improving an
individual’s adaptation ability to its environment by tuning
the structure of the individual. Evolutionary algorithms
(EAs) are stochastic search methods inspired by the Dar-
winian model, while neural networks are learning models
based on the connectionist model. Compared to the con-
nectionist model-based learning process, fuzzy systems are
a high-level abstraction of human cognition.

Neural networks, fuzzy systems, and evolutionary algo-

rithms are the three major soft-computing paradigms for

computational intelligence. Neural networks and fuzzy sys-

tems are two major approaches to system modeling. Adapt-

ing neural networks or fuzzy systems involves the solution

of two optimization problems: structural optimization and

parametric optimization. Structural optimization is the first

step that tries to find an optimum system structure; it is a

discrete (combinatorial) optimization problem and is very

hard to solve using conventional calculus-based optimization

techniques. After the system structure is determined, para-

metric optimization is applied to find the optimum system

parameters in a continuous parametric space. Parametric

optimization can be solved using conventional optimization

techniques; however, the solution may be easily trapped at a
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bad local optimum. Evolutionary computation is particularly
suited to the adaptation (learning) of neural and fuzzy sys-
tems.

Evolutionary computation is a major research area for
adaptation and optimization. The approach originates from
the Darwin’s principle of natural selection, also called
survival of the fittest. In the Darwinian model, knowledge
acquired by an individual cannot be transferred into its
genome and subsequently passed onto the next genera-
tion. Combination of learning and evolution, embodied by
evolving neural networks, has better adaptability to a dy-
namic environment [1, 2]. The interaction of learning upon
evolution accelerates evolution, and this can take the form of
the Lamarckian evolution or be based on the Baldwin effect
[3]. The Lamarckian strategy allows the inheritance of the
acquired traits during an individual’s life into the genetic
code so that the offspring can inherit its characteristics.
Although the Lamarckian theory is biologically unfounded,
EAs as artificial biological systems can benefit from it,
and also the Lamarckian theory properly characterizes the
evolution of human cultures. On the other hand, the Baldwin
effect is biologically plausible, wherein learning makes indi-
viduals adapt better to their environments, thus, increasing
their reproduction probability. Learning actually smoothes
the fitness landscape and, thus, facilitates evolution. Fitness
landscape is referred to as the set of all possible genotypes and
their respective fitness values. The learned behaviors become
instinctive behaviors in subsequent generations, and there is
no direct alteration of the genotype. The Baldwin effect is
purely Darwinian, although it has consequences similar to
those of the Lamarckian evolution [4].

EAs are especially useful for an optimization problem in
a domain, where the calculus is difficult to implement or is
inapplicable. In EAs, individuals in a population compete
and exchange information with one another by using three
basic genetic operators, namely, crossover or recombination,
mutation, and selection. The procedure of a typical EA is
given in Algorithm 1.

The EA approach is a general-purpose directed stochastic
global search. It performs search over a large, complex, non-
continuous, nondifferentiable, and multimodal surface and
can reliably and fast solve hard problems. It can always reach
the nearoptimum or the global optimum. EAs are extendable
and easy to hybridize. EAs possess inherent parallelism by
evaluating multipoints simultaneously. The evaluation func-
tion must be calculated for all the individuals of the pop-
ulation, leading to a computation load that is much higher
than that of a simple random search or a gradient search.

We now give some terminologies used in the EA literature
that are an analogy to their biological counterparts [5, 6].
A set of individuals in a generation is called a population,
P (t) = {x1, x2, . . . , xNP}, where xi is the ith individual,
also termed a chromosome, sometimes called a genome,
and NP is the size of the population. The chromosome is
often represented as a string in EAs. Each chromosome x
comprises of a string of parameters xi, called genes, that
is, x = [x1 x2 · · · xn], where n is the number of genes
in the chromosome. Each gene encodes a parameter of the
problem into the chromosome. A gene is usually encoded

as a binary string or a real number. The value of a gene is
an allele. A genotype represents a coded solution, that is, a
chromosome. A phenotype represents a decoded solution.
The mapping of a set of genotypes to a set of phenotypes
is referred to as genotype-phenotype map. Fitness is the
value of the objective (fitness) function for a chromosome
x, namely, f (x). The set of all possible genotypes and
their respective fitness values is called a fitness landscape.
Natural selection causes traits to become more prevalent
when they contribute to fitness. Natural selection is different
from artificial selection. Genetic drift and gene flow are
two other mechanisms in biological evolution. Genetic flow,
also known as genetic migration, is the migration of genes
from one population to another. The termination criterion
is necessary for terminating an EA, and it can be selected as a
maximum number of generations or the convergence of the
genotypes of the individuals. Convergence of the genotypes
occurs when all the bits or values in the same positions of
all the strings are identical. Phenotypic convergence without
genotypic convergence is also possible.

This paper is organized as follows. In Section 2, we in-
troduce the genetic algorithm (GA). The simple GA, real-
coded GA, GAs for sequence optimization, some improved
variants of the GA, parallel GAs, and two-dimensional GAs
are described. Section 3 deals with the evolutionary strategies
(ESs). A comparison between the ES and the GA is also
made in Section 3. Three other EAs, namely, the genetic
programming (GP), the evolutionary programming (EP),
and the memetic algorithm, are described in Section 4. A few
theoretical topics are introduced in Section 5. Three other
population-based optimization methods including particle
swarm optimization (PSO), the immune algorithm, and ant
colony optimization (ACO) are treated in Section 6. Multi-
objective, multimodal, and constraint-satisfaction optimiza-
tions are dealt with in Section 7. In Section 8, fuzzy logic
is used to construct evolutionary algorithms. A comparison
between EA and simulated annealing (SA) is given in
Section 9. In Sections 10 to 12, the applications of EAs to the
construction of neural networks, fuzzy systems, and neuro-
fuzzy systems are, respectively, described. A summary is given
in Section 13.

2. Genetic Algorithms

The GA [7] is the most popular EA. A simple GA consists
of a population generator and selector, a fitness estimator,
and three genetic operators, namely, selection, mutation, and
crossover. The mutation operator inverts randomly chosen
bits with a certain probability. The crossover operator com-
bines parts of the chromosomes of two individuals and
generates two new offsprings, which are used to replace low-
fitness individuals in the population. The search process is
terminated when certain termination criterion is satisfied.

2.1. Encoding/Decoding. The GA uses binary coding. For a
chromosome x, each gene xi, i = 1, . . . ,n, has its value (allele)
encoded as a binary string of li bits, and the total length of the



Applied Computational Intelligence and Soft Computing 3

Algorithm EA
(1) Set t = 0.
(2) Randomize initial population P (0).
(3) Repeat until the termination criterion is satisfied:

(a) Evaluate fitness of each individual in P (t).
(b) Select individuals as parents from P (t) based on fitness.
(c) Apply crossover on the parents, and generate P ′(t + 1).
(d) Apply mutation on P ′(t + 1), and generate P (t + 1).
(e) Set t = t + 1.

Algorithm 1: Principle of EA.

chromosome is l =
∑n

i=1 li. For a chromosome of bitlength
l, there are 2l possible values. If xi ∈ [x−i , x+

i ] has a coding
sli . . . s2s1, si ∈ {0, 1}, then the decoding function is given by

xi = x−i +
(

x+
i − x−i

) 1

2li − 1

⎛

⎝

li−1
∑

j=0

s j2
j

⎞
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In binary coding, there is the so-called Hamming cliffs
phenomenon, where large Hamming distances between the
binary codes of adjacent integers occur. Gray coding is
another approach to encoding the parameters into bits. The
decimal value of a Gray-encoded integer variable increases
or decreases by 1 if only one bit is changed. However, the
Hamming distance does not monotonously increase with the
difference in integer values. Based on a Markov chain analysis
of the GA, there is little difference between the performance
of binary and Gray’s codings for all possible functions
[8]. Also, Gray’s coding does not necessarily improve the
performance for functions that have fewer local minima in
the Gray representation than in the binary representation
[8]. This reiterates the no-free-lunch theorem [9]; namely,
no representation is superior for all classes of problems.
Conversion between binary and Gray codings is formulated
in [6, 8, 10].

Binary coding is a nonlinear coding, which is undesirable
when approaching the optimum. GAs usually use fixed-
length binary coding. There are also some variable-length
encoding methods such as encoding both the value and the
position of each bit in the chromosome [11] and the delta
coding [12].

2.2. Selection/Reproduction. Selection provides a driving
force in the GA. From a population P (t), those individuals
with strong fitness will be selected for reproduction so as
to generate a population of the next generation, P (t + 1).
Chromosomes with high fitness are selected and are assigned
a higher probability of reproduction. The selection mecha-
nism is split into two phases, namely, parental selection and
replacement strategy.

2.2.1. Sampling Mechanism. The sampling of chromosomes
can be in either a stochastic, a deterministic, or a hybrid
manner. Among the conventional selection methods, the
roulette-wheel selection [7] is a stochastic method, while the
ranking selection [13] and the tournament selection [14]

are hybrid methods. The roulette-wheel selection [7, 14]
is a simple and popular selection scheme. Segments of the
roulette wheel are allocated to individuals of the population
in proportion to the individuals’ relative fitness scores. The
selection can be done by assigning a chromosome xi a
probability

Pi =
f (xi)

∑NP
i=1 f (xi)

, i = 1, 2, . . . ,NP . (2)

Consequently, a chromosome with a larger fitness has a
possibility of getting more offsprings. Typically, the popula-
tion size NP is relatively small, and this fitness-proportional
selection may select a disportionately large number of unfit
chromosomes. This easily induces premature convergence
when all the individuals in the population become very
similar after a few generations. The GA, thus, degenerates
into a Monte Carlo’s type search method. Scaling a raw
objective function to some positive function is a method
to mitigate these problems, and this can prevent the best
chromosomes from producing too many expected offsprings
[14].

The ranking selection [13] can eliminate some of the
problems inherent in the fitness-proportional selection. It
can maintain a more constant selective pressure. Individuals
are sorted and assigned a rank from 1 toNP according to their
fitness values. The selection probability is linearly assigned
according to their ranks [6, 13]. The tournament selection
[14] involves multiple, typically 2, individuals at a time. Dur-
ing each tournament, only the best performing individual
enters the mating pool. The tournament will be performed
repeatedly NP times until the mating pool is filled. Due to its
cheaper computational cost, binary tournament is practically
equivalent to linear ranking in terms of selection pressure.
The elitism strategy [15] always copies the best individual of
a generation to the next generation. Although elitism may
increase the possibility of premature convergence, it im-
proves the performance of the GA in most cases and, thus,
is integrated in most GA implementations [16].

2.2.2. Replacement Strategy. Replacement strategy decides
as to how many individuals of one population will be re-
placed to generate the population for a new generation.
Some replacement strategies are the complete generational
replacement [7], replace random [7], replace worst, replace
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oldest, and deletion by kill tournament [17]. In the crowding
strategy [18], an offspring replaces one of the parents
whom it most resembles using the similarity measure of
the Hamming distance; this effectively eliminates premature
convergence and allows for great exploration capability. All
these replacement strategies may result in a situation where
the best individuals in a generation may fail to reproduce. In
[19], this problem is solved by introducing into the system
a new variable that stores the best individuals obtained so
far. The elitism strategy cures the same problem without
changing the system state [16].

2.3. Crossover. Crossover, the primary exploration operator
in the GA, searches the range of possible solutions based on
existing solutions. Crossover, as a binary operator, exchanges
information between two parent chromosomes at randomly
selected positions and produces two new offsprings. Some
commonly used crossover techniques are the one-point [7],
two-point [18], multipoint [20], and uniform [21] cross-
overs. The crossover points are typically at the same, random
positions for both parent chromosomes.

The one-point crossover requires one crossover point on
the parent chromosomes, and all the data beyond that point
are swapped between the two parent chromosomes. The one-
point crossover is easy to model analytically, and it generates
bias toward bits at the ends of the strings. The two-point
crossover selects two points on the parent chromosomes,
and everything between the two points is swapped. This
method causes a smaller schema disruption than the one-
point crossover but generates bias at a different level, since
it does not sample all regions of the string equally, and the
ends of the string are rarely sampled. This problem can
be solved by wrapping around the string. The multipoint
crossover treats each string as a ring of bits divided by
m crossover points into m segments, and each segment
is exchanged at a fixed probability. The uniform crossover
exchanges bits of a string rather than segments. Individual
bits in the parent chromosomes are compared, and each
of the nonmatching bits is probabilistically swapped with
a fixed probability, typically 0.5. The uniform crossover is
unbiased. The half uniform crossover (HUX) [22] swaps
exactly half of the nonmatching bits.

The one-point and two-point crossover operations pre-
serve schemata due to low disruption rates but are less
exploratory. In contrast, the uniform crossover is more ex-
ploratory but has a high disruptive nature. The uniform
crossover is more suitable for small populations, while the
two-point crossover is better for large populations. The two-
point crossover performs consistently better than the one-
point crossover [21]. However, when all the chromosomes
are very similar or even the same in the population, it is
difficult to generate a new structure by crossover only, and
premature convergence takes place.

2.4. Mutation. Mutation is a unary operator that requires
only one parent to generate an offspring. A mutation op-
erator typically selects a random position of a random chro-
mosome and replaces the corresponding gene or bit by other

information. Mutation helps to regain the lost alleles and
thus introduces genetic diversity into the population so as to
prevent premature convergence from happening.

Mutations can be classified into point mutations and
large-scale mutations. Point mutations are changes to a single
position, which can be substitutions, deletions, or insertions
of a gene or a bit. Large-scale mutations can be similar to
the point mutations but operate at multiple positions si-
multaneously, at one point with multiple genes or bits,
or even on the chromosome scale. Functionally, mutations
introduce the necessary amount of noise to do hillclimbing.
Two additional large-scale mutation operators are the in-
version and rearrangement operators [7, 14]. The swap op-
erator is the most primitive reordering operator, based on
which many new unary operators including inversion can be
derived.

High mutation rate can lead genetic search to random
search. High mutation rate may change the value of an
important bit and, thus, slow down the fast convergence of
a good solution or slow down the process of convergence
at the final stage of the iterations. Thus, mutation is made
occasionally in the GA. In the simple GA, the mutation is
typically selected as a substitution operation that changes one
random bit in the chromosome at a time. An empirically
derived formula that can be used as the probability of
mutation Pm at a starting point is Pm = 1/(T

√
l), where T

is the total number of generations, and l is the string length
[23].

The random nature of mutation and its low probability of
occurrence make the convergence of the GA slow. The search
process can be expedited by using the directed mutation
technique [24] that deterministically introduces new points
into the population by using gradient or extrapolation of
the information acquired so far. It is commonly agreed that
crossover plays a more important role if the population size
is large, and mutation is more important if the population
size is small [25].

2.5. Other Genetic Operators. A large number of non-
canonical genetic operators are described in the literature.
The best known are hill-climbing operators [26], typically
gradient-descent ones. In the parallel GA (PGA) [26], some
or all individuals of the population improve their fitness
by hillclimbing. Given an individual, this operator finds an
alternative similar individual that represents a local min-
imum close to the original individual in the solution space.
The combination of genetic operators and local search can
be based on either the Lamarckian strategy or the Baldwin
effect.

The bit climber [27] is a simple stochastic bit-flipping
operator. The fitness is computed for an initial string. A bit
of the string is randomly selected and flipped, and the fitness
is computed at the new point. If the fitness is lower than
its earlier value, the new string becomes the current string.
The operation repeats until no bit flip improves the fitness.
The bit-based descent algorithm is several times faster than
an efficient GA [27]. It can also be used as a local-search
operator in the GA.
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Most selection schemes are based on individuals’ fitness.
The entropy-Boltzmann selection method [28], stemming
from the entropy and the important sampling methods in
the Monte Carlo simulation, tends to escape from local
optima. It avoids premature convergence systematically. The
adaptive fitness consists of the usual fitness together with
the entropy change due to the environment, which may vary
from generation to generation.

2.6. Real-Coded Genetic Algorithms for Continuous Numerical
Optimization. The floating-point and fixed-point coding
techniques are two computer representation methods for real
numbers and are widely used in continuous numerical op-
timization. The fixed-point coding allows more gradual mu-
tation than the floating-point coding for the change of a
single bit, and fixed-point coding is sufficient in most cases.
The floating-point coding is capable of representing large
or unknown domains, while the binary and fixed-point
techniques may have to sacrifice accuracy for large domain.
The real-coded GA using the floating-point or the fixed-
point coding has an advantage over the binary-coded GA in
exploiting local continuities in function optimization [29].
The real-coded GA is faster, more consistent from run to run
and provides a higher precision than the binary-coded GA
[30].

2.6.1. Crossover. In analogy to crossover operators for the
binary-coded GA, crossover operators for the real-coded GA
such as the one-point, two-point, multipoint, and uniform
crossover operators are also defined [21]. Each gene (xi) in
a real-coded chromosome corresponds to a bit in a binary-
coded chromosome. A blend of these crossover operators
uniformly selects values which lie between the two points
representing the two parents [31]. Crossover can also be
defined as a linear combination of two parent vectors x1

and x2 and generates two offsprings. This can be achieved
by symmetrically interpolating the two parent chromosomes
[6, 32] or extrapolating toward the better individual [6, 10,
30]. In [33], the crossover operator is defined as that which
generates four chromosomes from two parents according to
a strategy of combining the maximum, minimum, or average
of all the parameters encoded in the chromosome and
vectors having elements as the lower and upper bounds
for the corresponding parameters in x, respectively. These
potential offsprings spread over the domain. Only the one
with the largest fitness is used as the offspring of the crossover
operation.

2.6.2. Mutation. Mutation can be conducted by replacing
one or more genes xi, i = 1, . . . ,n, with a randomly selected
real number x′i from the domain of the corresponding
parameter. The popular uniform mutation substitutes the
value of a randomly selected gene with a random value
between its upper and lower bounds [29]. A nonuniform
mutation capable of fine-tuning the system is defined by
adding a random term to xi [30]. This operator searches
the space uniformly when t is small and gradually searches
locally as t increases. This is similar to an annealing process.

The Gaussian mutation [32] is usually applied in the real-
coded GA. Given the chromosome x, the Gaussian mutation
produces a new offspring x′ with one or multiple genes
defined by

x′i = xi + N(0, σi), (3)

where N(0, σi) is a random number drawn from a normal
distribution with zero mean and standard deviation σi.
The parameter σi is traditionally selected as a linearly or
exponentially decreasing function such as σi(t) = 1/

√

(1 + t).
The Cauchy mutation replaces the Gaussian distribution by
the Cauchy distribution, and it is more likely to generate
an offspring further away from its parent than the Gaussian
mutation due to the long flat tails of the Cauchy distribution
[34]. Cauchy mutation performs better when the current
search point is far from the global minimum, while the
Gaussian mutation is better at finding a local minimum in
a good region. The two mutation operators are combined in
[34], where for each parent two offsprings are generated, each
by one of the mutation methods, and only the better one is
selected.

In [33], offspring obtained by crossover further undergo
the mutation operation. Three new offsprings are generated
by allowing one parameter, some of the parameters, and all
the parameters in the chromosome to change by a randomly
generated number, subject to constraints on each parameter.
Only one of the offsprings will be used to replace the chro-
mosome with the smallest fitness value, according to a
predefined probability criterion that, as in the SA [35],
allows uphill move in a controlled fashion. Hence, the search
domain is significantly enlarged.

2.7. Genetic Algorithms for Sequence Optimization. For se-
quence optimization problems, such as scheduling and the
travelling salesperson (TSP), permutation encoding is a
natural representation for a set of symbols, and each symbol
can be identified by a distinct integer. This representation
avoids missing or duplicate alleles [36].

Genetic operators should be defined so that infeasible
solutions do not occur, or a way is viable for repairing
or rejecting infeasible solutions. Genetic operators for re-
ordering a sequence of symbols can be unary operators
such as inversion and swap [7], or binary operators which
combine features of inversion and crossover, such as the
partial matched crossover (PMX), the order crossover (OX),
and the cycle crossover (CX) [14], the edge recombination
(ER) [37], as well as intersection and union [38]. The
TSP is a benchmark for GAs. In [38], the performance of
some genetic operators for sequences has been empirically
compared for the TSP. A general survey of various genetic
operators for the TSP is given in [30].

Random keys representation [39] encodes each symbol
by a random number in (0, 1). By sorting the random keys in
a descending or ascending order, we can get a decoded solu-
tion. For example, given a TSP of 6 cities, if the chromosome
for a route is encoded as (0.32, 0.96, 0.35, 0.27, 0.93, 0.87), by
sorting the genes in the descending order, the largest random
key is 0.96, and, thus, the second city is the beginning of



6 Applied Computational Intelligence and Soft Computing

the route, and the whole route is 2 → 5 → 6 → 3 →
1 → 4. This representation avoids infeasible offspring by
representing solutions in a soft manner, such that the real-
coded GA and the ES can be applied directly for sequence
optimization problems. The ordering messy GA (OmeGA)
[40] is specialized for solving sequence optimization prob-
lems. The OmeGA uses the mechanics of the fast messy GA
[41] and represents the solutions using random keys.

2.8. Exploitation versus Exploration. The convergence anal-
ysis of the simple GA is based on the concept of schema
[7]. A schema is a bit pattern which functions as a set of
binary strings. The schema theorem [7, 14] asserts that the
proportions of the better schemata to the overall population
increases as the generation progresses, and eventually the
search converges to the best solution with respect to the opti-
mization function [14]. However, the GA often converges
rather prematurely before the optimal solution is found.

Exploitation means taking advantage of the existing
information, while exploration means searching new areas.
Exploitation is achieved by the selection procedure, while
exploration is achieved by crossover and mutation. An
increase in exploration is at the expense of exploitation. The
balance between exploitation and exploration controls the
performance of the GA and is determined by the choice of
the control parameters, namely, the probability of crossover
Pc, the probability of mutation Pm, and the population size
NP . Some tradeoffs are made for selecting the optimal control
parameters [42]: increasing PC results in fast exploration but
a high disruption rate of good strings; increasing Pm tends to
transform the genetic search into a random search but helps
to reintroduce lost alleles into the population; increasing NP

increases the genetic diversity in the population and reduces
the probability of premature convergence, while it increases
the time for convergence. These control parameters depend
on one another, and their choices depend on the nature of
the problem. For a small NP , one can select relatively large
Pm and PC and vice versa. Typically, Pc is selected as 0.6 to
0.9 and Pm as 0.001 to 0.01 [14]. Empirical evidence shows
that the optimal Pm in the GA differs according to whether
or not crossover is used. When crossover is used, Pm should
be selected as a small constant [43]; otherwise, the GA can
start with a high Pm, decreasing towards the end of the run
[43, 44]. In [45], the population size is suggested to be NP =
1.65 × 20.21l, l being the string length. Empirically, the GA
with NP within 20 to 30, Pc in the range 0.75 to 0.95, and Pm
in the range 0.005 to 0.01 provide a good performance [23].

Adaptation of control parameters helps to avoid pre-
mature convergence. More emphasis should be paid on ex-
ploration at the beginning of a search process, while more
emphasis should be on exploitation at a later stage. A simple
method to adapt Pm is given by [46], which selects a relatively
large initial value of Pm and then linearly reduces it with the
generation index t until a small final value of Pm is reached.
Pm can also be modified depending on the tradeoff between
exploration and exploitation [42, 44]:

Pm(t) = α0e−γ0t/2

NP

√
l

, (4)

where constants α0 > 0 and γ0 ≥ 0, and l is the length of the

chromosome. In [23], α0 is selected as 1.76 and γ0 as 0.

In an adaptive GA [42], Pc and Pm are not predefined but

determined adaptively for each solution of the population.

Pc and Pm range from 0 to 1.0 and 0 to 0.5, respectively. Low

values of Pc and Pm are assigned to high-fitness solutions,

while low-fitness solutions are assigned very high values of Pc
and Pm. The best solution of every population is protected,

not subjected to crossover but subjected to a minimal

amount of mutation. All subaverage solutions are mutated

by Pm = 0.5 and, thus, are completely disrupted, and totally

new solutions are created. This adaptive GA significantly

outperforms the simple GA and effectively avoids local

minima.

The genetic diversity of the population can be eas-

ily improved so as to prevent premature convergence by

adapting the size of the population [11, 30, 47] and using

partial restart [22]. Partial restart can be implemented by a

fixed restart schedule at a fixed number of generations or
implemented when premature convergence occurs [48].

The binary coding of the GA results in limited accu-

racy and slow convergence. Adaptation can be introduced

into coding. Some examples of adaptive coding are the delta

coding [12], the dynamic parameter encoding (DPE) [49],

and the fuzzy coding [50, 51].

2.9. Variants of the Genetic Algorithms. The messy GA [11]

starts with a large initial population. In the primordial stage,

the population is halved at regular intervals, and only the

selection operation is applied. A dynamical population size

also helps to reduce premature convergence. A variable-

length encoding method is employed. The fast messy GA

[41] is an improved version of the messy GA. The GENITOR

[52] employs an elitist selection that is a deterministic,

rank-based selection method so that the best NP individuals

found so far are preserved by using a cross-generational

competition. This selection strategy is similar to the (λ + µ)
strategy of the ES. The CHC algorithm [22] also borrows

from the (λ + µ) strategy of the ES. Incest prevention is

introduced to prevent mating between similar individuals.
The highly disruptive form of crossover, namely, the HUX
[22], is applied, and mutation is not performed. Diversity
is reintroduced by restarting partial population whenever
convergence is detected. This is implemented by randomly
flipping a fixed proportion of the best individual found so

far as template and introducing the better offspring into the

population. The GA with varying population size (GAVaPS)

[30, 47] introduces the concept of age of a chromosome in

the number of generations as the selection mechanism. A

chromosome will die off when its age reaches its lifetime

decided by its fitness. Each chromosome from the population

has equal probability to reproduce, independent of its fitness.

Some strategies for assigning lifetime values are proposed to

tune the size of the population to the current stage of search.

Both the CHC and the GAVaPS significantly outperform the

simple GA.
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2.10. Parallel Genetic Algorithms. Parallel GAs can be
grouped into global parallelized GAs, coarse-grained parallel
GAs and fine-grained parallel GAs. Global parallelized GAs
implement the GA by evaluating individuals and the genetic
operations in explicitly parallel mode. The speedup is
proportional to the number of processors. In coarse-grained
parallel GAs, the population is divided into a few isolated
subpopulations, called demes. Individuals can migrate from
one deme to another, and an existing GA such as the simple
GA, the GENITOR [52], and the CHC can be executed within
each deme. The demes swap a few strings once in a few
generations. The GENITOR II [53] is a coarse-grained par-
allel implementation of the GENITOR. Individuals migrate
at fixed intervals to neighboring nodes. Immigrants replace
the worst individuals in the target deme. The PGA [26] is
an asynchronous parallel GA, wherein each individual of
the population improves its fitness by hillclimbing. On the
other hand, fine-grained GAs, also called cellular GAs or
massively parallel GAs, partition the population into many
very small demes, typically one individual per deme. The
fine-grained parallel GA [54–56] organizes its population
as a two-dimensional grid of chromosomes. Selection and
mating are confined in a local area, and this can reduce
the selection pressure to achieve more exploration of the
search space. Local mating can find very fast multiple optimal
solutions in the same run and is much more robust [55].
The performance of the algorithm degrades as the size of the
neighborhood increases.

2.11. Two-Dimensional Genetic Algorithms. Under the sce-
nario of two-dimensional problems such as image process-
ing, linear encoding used by conventional EAs causes a loss
of two-dimensional correlations, and, thus, extra problem-
specific operators must be introduced. If an image is encoded
by concatenating horizontal lines, crossover operations
result in a large vertical disruption. In two-dimensional
GAs [57–59], each individual is a two-dimensional binary
string. Conventional mutation and reproduction operators
can be applied in the normal way, but the conventional
two-point crossover operator samples the matrix elements
in a two-dimensional string very unevenly. Some genetic
operators for two-dimensional strings are also defined, such
as the crossover operator that exchanges rectangular blocks
between pairs of matrices [58] and an unbiased crossover
operator called UNBLOX (UNiform BLOck CROSSover)
[57]. The UNBLOX is a two-dimensional wrap-around
crossover and can sample all the matrix positions equally.

The convergence rates of two-dimensional GAs are high-
er than that of the simple GA for bitmaps [57]. In [59], a
two-dimensional crossover operator is defined for learning
the architecture and weights of a neural network, where a
neural network is interpreted as an oriented graph, and the
crossover operation is performed by swapping the subgraphs
connected to a common selected neuron.

3. Evolutionary Strategies

The evolutionary strategies (ESs) [32, 60], also known as
evolution strategies, are another most popular EA. The ES

was originally developed for numerical optimization [32],
and was later extended to discrete optimization [61]. The
objective parameters x and strategy parameters �σ are directly
encoded into the chromosome by using a regular numerical
representation, and thus no coding or decoding is necessary.
In contrast to the GA, the primary search operator in the ES
is mutation.

3.1. Crossover, Mutation, and Selection. The canonical ES
uses only mutation operations. Crossover operators used
for the real-coded GA can be introduced into the ES.
For example, the crossover operator can be defined by
recombining two parents x1 and x2 such that the ith gene
of the generated offspring x′ takes the average value of the
ith genes of the two parents or selected as either x1,i or
x2,i. An offspring obtained from recombination is required
to be mutated before it is evaluated and entered into the
population. Mutation is applied to a parent or an offspring
generated by crossover. For a chromosome x, the Gaussian
mutation, as defined by (3), produces a new offspring x′ with
one or more genes defined by

x′i = xi + N(0, σi). (5)

The optimal σi is evolved by encoding it into the chromo-
some. σi is usually mutated first, and then xi is mutated by
using σ ′i :

σ ′i = σie
N(0,δσi), (6)

where δσi is a parameter of the method.
The (λ+µ) and (λ,µ) schemes are the two major selection

schemes applied in the ES, where µ is the population size and
λ the number of offsprings generated from the population.
Both selection schemes are deterministic ranking-based
sampling methods, which make the ES more robust than the
GA. The (λ + µ) scheme selects the µ fittest individuals from
the (λ + µ) candidates to form the next generation, while the
(λ,µ) scheme selects the µ fittest individuals from λ (λ ≥ µ)
offspring. The (λ + µ) scheme is the elitist and, therefore,
guarantees a monotonically improving performance. This
scheme, however, is unable to deal with changing environ-
ments and jeopardizes the self-adaptation mechanism with
respect to the strategy parameters, especially within a small
population. Thus, the (λ,µ) scheme is recommended, with a
ratio of λ/µ = 7/1 being optimal [62].

3.2. Evolutionary Strategies versus Genetic Algorithms. There
are some differences between the ES and the GA as following.

(1) The selection procedure in the ES is deterministic
ranking based, and each individual in the population
has the same mating probability, while selection in
the GA is random, and the chances of selection and
mating are proportional to an individual’s fitness.

(2) Selection in the ES is implemented after crossover
and mutation, while selection in the GA is carried out
before crossover and mutation are applied.
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(3) In the ES, the strategy parameters σi are evolved
automatically by encoding them into chromosomes,
while the control parameters in the GA need to be
prespecified.

(4) In the GA, mutation is used to regain the lost genetic
diversity, while, in the ES, mutation functions as
a hill-climbing search operator. For the Gaussian
mutation, the tail part of the normal distribution may
generate a chance for escaping from a local optimum.

(5) Other differences are embodied in the encoding
methods and genetic operators.

However, the line between the two techniques is now
being blurred, since both of the techniques borrow ideas
from each other. For example, the CHC [22] has both the
properties of the GA and the ES.

3.3. New Mutation Operators. Advances in the ES are mainly
focused on the design of new mutation operators. This
enables the ES to evolve significantly faster. The covariance
matrix-adaptation-(CMA-) based mutation operator makes
the ES two orders of magnitude faster than the conventional
ES [63, 64]. The set of all mutation steps which yield
improvements is called an evolution path of the ES [63]. The
CMA-type ES [63, 64] technique uses information embed-
ded in the evolution path to accelerate the convergence. The
CMA is a completely derandomized self-adaptation scheme,
and subsequent mutation steps are uncorrelated with the
previous ones. The mutation operator is defined by

x′ = x + δBz, (7)

where δ is a adaptive global step size, z is a random
vector whose elements are drawn from a normal distribution
N(0, 1), and the columns of the rotation matrix B are the
eigenvectors of the covariance matrix C of the mutation
points. The CMA implements the principal component
analysis (PCA) of the previously selected mutation steps to
determine the new mutation distribution [64].

Two self-organizing ESs given in [65] are derived from
the self-organizing map (SOM) [66] and the neural-gas-
(NG-) [67] based mutation operators, respectively. These
ESs are not population based. The self-organizing networks
are used to generate trial points, one trial point being
generated per iteration by using the network nodes. The
function is evaluated for the generated trial points only,
not for the network nodes. The network is used only to
track the probability distribution of the trial points that
improve the current best known function value. The SOM-
type ES has the problem that the number of nodes increases
exponentially with the number of function parameters due
to its grid topology. The NG-type ES does not have such a
problem, but may suffer from premature convergence; this
can be corrected by introducing an additional adaptation
term. Both ESs are empirically more reliable than the CMA-
type ES, yet without the necessity for parameter tuning.

4. Other Evolutionary Algorithms

In addition to the GA [7] and the ES [32], the GP [19]
and the EP [68] are also popular approaches to evolutionary
computation. The memetic algorithm [69] is also a popular
method that combines the ideas in the neo-Darwinian
paradigm and the Lamarckian strategy. In the community
of EAs, the canonical EAs are modified by incorporating
problem-specific knowledge, by defining problem-specific
genetic operators, or by hybridizing heuristics from different
EAs such that the capability of EAs to practical applications
is maximized. The boundaries between different branches of
EAs overlap.

4.1. Genetic Programming. The GP [19] is a variant of the GA
for symbolic regression such as evolving computer programs,
rather than evolving simple strings. It can also be used for
automatic discovery of empirical laws. The major difference
between the GA and the GP lies in coding. The GP has
chromosomes of both variable length and data structure,
and hierarchical trees are used to encode chromosomes. Each
tree represents the parse tree for a given program. The GP
is particularly suitable for problems in which the optimal
underlying structure must be discovered. It, however, suffers
from the so-called bloat phenomenon, resulting from the
growth of noncoding branches in the individuals. The
bloat phenomenon may cause an excessive consumption of
computer resources and increase the expense for fitness
evaluation.

4.2. Evolutionary Programming. The EP [68] was origi-
nally presented for evolving artificial intelligence to predict
changes in an environment, which was coded as a sequence of
symbols from a finite alphabet. Each chromosome is encoded
as a finite state machine. The EP was later generalized
for solving numerical optimization problems based on the
Gaussian mutation [70, 71]. The EP and the ES are very
similar the EP corresponds to the (λ + λ) strategy of the
ES. The major differences between the two methods are
in crossover and selection. The EP does not use crossover,
but uses a probabilistic competition for selection. A more
comprehensive comparison between the two methods is
given in [72]. For continuous functional optimization, it is
generally known that both of the methods work better than
the GA [62].

4.3. Memetic Algorithms. The memetic algorithm, also called
the cultural algorithm and genetic local search [69, 73, 74],
was inspired by Dawkins’ notion of meme [75], which is
a unit of information that reproduces itself when people
exchange ideas. Unlike genes, memes are typically adapted
by the people who transmit them before they are passed
onto the next generation. Although it was motivated by the
evolution of ideas, the memetic algorithm can be considered
as the GA or an EA making use of local search, wherein
evolution and learning are combined using the Lamarckian
strategy. The memetic algorithm is considerably faster than
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the simple GA. Basically, the memetic algorithm combines
local search heuristics with crossover operators.

5. Theoretical Aspects

Theoretical breakthroughs in evolutionary computation are
still limited. Holland’s schema theorem [7] and Goldberg’s
building-block hypothesis [14] are the most important theo-
retical foundations on the GA as well as the EA mechanism.

5.1. Schema Theorem and Building-Block Hypothesis. A sche-
ma is a template describing a subset of strings with the
same bits (0 or 1) at certain positions. The combined effect
of selection, crossover, and mutation gives the reproductive
schema’s growth inequality [7]

m(H , t + 1) ≥ m(H + t)
f (H)

f (t)

[

1− Pc
δ(H)

l − 1
− o(H)Pm

]

,

(8)

where H is a schema defined over the three-letter alphabet
{0, 1,∗} of length l, ∗ is a do not-care symbol, m(H , t) is
the number of examples of a particular schema H within a
population at generation t, o(H) is the order of H , defined
as the number of fixed positions (0s or 1s) in the template,
δ(H), the defining length of H , is the distance between the
first and last specific string positions, f (H) is the average

fitness of all strings in the population matched byH , and f (t)
is the average fitness of the whole population at generation t.

The schema theorem can be readily derived from (8) [7]:
above-average schemata with short defining length and low
order will receive exponentially increasing trials in subsequent
generations of the GA. Thus, schemata with high fitness and
small defining lengths grow exponentially with time. Thus,
the GA simultaneously processes a large number of schemata.
For a population of NP individuals, the GA implicitly
evaluates approximately N3

P schemata in one generation
[14]. However, there are a lot of criticisms on the schema
theorem. The schema growth inequality provides a lower
bound for one-generation transition of the GA. For multiple
generations, the prediction of the schema may be useless or
misleading due to the inexactness of the inequality [76].

The building-block hypothesis is the assumption that
strings with high fitness can be located by sampling building
blocks with high fitness and combining the building blocks
effectively. This is given as [6]: the GA seeks near-optimal
performance by the juxtaposition of short, low-order, and
highly fit schemata, called building block.

GA-deceptive functions are a class of functions, where
low-order building blocks are misleading, and their combi-
nations cannot generate higher-order building blocks [14,
77]. A fitness landscape with the global optimum surrounded
by a part of the landscape of low-average payoff is highly
unlikely to be found by the GA, and, thus, the GA may
converge to a suboptimal solution. Deceptive problems
remain to be hard problems for EAs. The messy GA [11] was
specifically designed to handle bounded deceptive problems.
Due to deceptive problems, the building-block hypothesis
is facing strong criticism [76]. The static building-block

hypothesis was proposed as the underlying assumption
for defining deception, and augmented GAs for deceptive
problems were also proposed [76].

5.2. Dynamic Analysis of Evolutionary Algorithms. Thus far,
the selection of control parameters, the roles of crossover
and mutation, replacement strategies, and convergence prop-
erties, still remain unsolved. Recently, more attempts have
been made on characterizing the dynamics of EAs [17, 78–
80]. The search process of EAs can be analyzed within the
framework of Markov’s chains [71]. In [18], a Markov chain
analysis was conducted for a population of one-locus binary
genes to reach different levels of convergence in an expected
number of generations under random selection. The exact
model introduced in [78] provides a complete model as to
how all strings in the search space are processed by a simple
GA using infinite population assumptions. In [79], another
exact model for the simple GA has been obtained in the form
of a Markov chain, and the trajectory is followed by finite
populations related to the evolutionary path predicted by
the infinite population model. An exact infinite population
model of a simple GA for permutation-based representations
has been developed in [80], wherein various permutation
crossover operators are represented by the mixing matrices.
In [17], a Markov chain analysis has been made to model the
expected time for a single member of the optimal class to take
over finite populations in the case of different replacement
strategies.

6. Other Population-Based
Optimization Methods

There are also some other well-known computational tech-
niques inspired by biological adaptive systems such as collec-
tive behavior of animals and insects as well as the immune
systems of mammals. These population-based optimization
methods, including the PSO, the immune algorithm, and the
ACO, belong to a branch of swarm intelligence, an emergent
collective intelligence of groups of simple agents [81]. They
are general-purpose methods for discrete and continuous
function optimization.

6.1. Particle Swarm Optimization. PSO originates from stud-
ies of synchronous bird flocking and fish schooling [82–85].
It is somewhat similar to EAs but requires only primitive
mathematical operators, less computational bookkeeping,
and generally fewer lines of code. Thus, it is computationally
inexpensive in terms of both memory requirement and
speed. It evolves populations or swarms of individuals called
particles.

For an optimization problem of n variables, a swarm of
NP particles is defined. Each particle has its own trajectory
in the n-dimensional space, namely, position xi and velocity
vi, and moves in the search space by successively updating its
trajectory. Populations of particles modify their trajectories
based on the best positions visited earlier by themselves
and other particles. All particles are evaluated by the fitness
function to optimize. The particles are flown through the
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solution space by following the current optimum particles.
The algorithm initializes a group of particles with random
positions (solutions) and then searches for optima by
updating generations (iterations). In every iteration, each
particle is updated by following the two best values, namely,
the particle best pbest, denoted x∗i , i = 1, . . . ,NP , which is
the best solution it has achieved so far, and the global best
gbest, denoted xg , which is the best value obtained so far
by any particle in the population. The best value for the
population in a generation is a local best, lbest. The PSO
has been extended to handle multiobjective optimization
problems [86].

6.2. Immune Algorithms. The network theory for the
immune system [87] is based on the clonal selection theory
[88, 89]. The basic components of the immune system are
two types of lymphocytes, namely B lymphocytes and T
lymphocytes. B lymphocytes generate antibodies on their
surfaces to resist their specific antigens, while T lymphocytes
regulate the production of antibodies from B lymphocytes.
The clonal selection theory describes the basic features of
an immune response to an antigenic stimulus. The clonal
operation is an antibody random map induced by the affinity
and includes four steps, namely, clone, clonal crossover,
clonal mutation, and clonal selection.

Artificial immune networks [90–92] employ two types
of dynamics, namely, the short-term dynamics and the
metadynamics. The short-term dynamics correspond to a
set of cooperating or competing agents, while the meta-
dynamics refine the results of the short-term dynamics.
Thus, the short-term dynamics are closely related to neural
networks, and the metadynamics are similar to the GA.
The immune algorithm, also called the clonal selection
algorithm, introduces suppress cells to change search scope
and memory cells to keep the candidate solutions. It is an
EA inspired by the immune system and is very similar to
the GA. In the immune algorithm, antigen is defined as the
problem to be optimized, and antibody is the solution to
the objective function. Learning involves raising the relative
population size and affinity of those lymphocytes. The
immune algorithm first recognizes the antigen and produces
antibodies from memory cells. Then it calculates affinity
between antibodies, which can be treated as fitness. Antibod-
ies are dispersed to the memory cell, and the concentration
of antibodies is controlled by stimulating or suppressing
antibodies. A diversity of antibodies for capturing unknown
antigen is generated using genetic reproduction operators.
The immune mechanism can also be defined as a genetic
operator and integrated into a GA [93].

6.3. Ant Colony Optimization. The ACO [94–98] is a
metaheuristic approach for solving discrete or continuous
optimization problems such as COPs. The ACO heuristic was
inspired by the foraging behavior of ants. Ants are capable of
finding the shortest path between the food and the colony
(nest) due to a simple pheromone laying mechanism. Ants
use their pheromone trails for communicating information.
The optimization is the result of the collective work of all

ants in the colony. All the ants contribute to the pheromone
reinforcement, and old trails will vanish due to evaporation.
Different ACO algorithms arise from different pheromone
value update rules.

The ant system [94] is an evolutionary approach, where
several generations of artificial ants search for good solutions.
Every ant of a generation builds up a complete solution,
step by step, going through several decisions by choosing
the nodes on a graph according to a probabilistic state
transition rule, called the random proportional rule. A tabu
list is used to save the nodes already visited during each
generation. When a tour is completed, the tabu list is used
to compute the ant’s current solution. Once all the ants have
built their tours, the pheromone is updated on all edges i →
j according to a global pheromone-updating rule. A shorter
tour gets a higher reinforcement. Each edge has a long-term
memory (LTM) to store the pheromone. The ant colony
system (ACS) [95] improves the ant system [94] by applying
a local pheromone updating rule during the construction of
a solution. The global updating rule is applied only to edges
that belong to the best ant tour. Some important subsets of
ACO algorithms, such as the most successful ACS and min-
max ant system (MMAS) algorithms, have been proved to
converge to the global optimum [97].

7. Multiobjective, Multimodal, and
Constraint-Satisfaction Optimizations

7.1. Multiobjective Optimization. Multiobjective optimiza-
tion aims to optimize a system with multiple conflicting
objectives:

min f(x) =
(

f1(x), f 2(x), . . . , fm(x)
)T

, (9)

where x = (x1, x2, . . . , xn)T ∈ X ⊂ Rn. A tradeoff between
the conflicting objectives is necessary.

A weighted sum of these objectives, typically a nor-
malized version, is usually used as the compromise of the
system. This method may have difficulties in normalizing the
individual objectives as well as in selecting the weights. The
lexicographic-order optimization is based on the ranking of
the objectives in terms of their importance. Fuzzy logic can
be used to define a tradeoff of multiple objectives [99]. The
Pareto method is popular for multiobjective optimization.
It is based on the principle of nondominance. The Pareto
optimum gives a set of solutions for which there is no way
of improving one criterion without deteriorating another
[14, 100]. A solution x1 is said to dominate x2, denoted x1 ≻
x2, if x1 is better or equal to x2 in all attributes and strictly
better in at least one attribute. The space in Rn formed by
Pareto optimal solutions is called the Pareto optimal frontier,
P ∗.

The vector-evaluated GA (VEGA) [101] is the first GA for
multiobjective optimization. The population is divided into
equal-sized subpopulations, each independently searching
the optimum of a single objective. Crossover is performed
across subpopulation boundaries. Some heuristics are used
to prevent the system from converging toward solutions



Applied Computational Intelligence and Soft Computing 11

which are not with respect to any criterion. This algorithm,
however, has bias toward some regions [102].

Nondominated sorting was introduced to rank a search
population according to the Pareto optimality [14]. The
procedure of identifying nondominated sets of individuals is
repeated until the whole population is ranked. Equal prob-
ability of reproduction is assigned to all nondominated in-
dividuals in the population. The nondominated sorting GA
(NSGA) [102] implements a nondominated sorting in the
GA along with a niching and speciation method [14] to
find multiple Pareto’s optimal points simultaneously. This
ranking is supplemented by a GA technique known as
sharing, which lowers the objective function values of designs
that are too similar, keeping the algorithm from converging
to a single optimum [14]. The NSGA-II [103] improves
the NSGA by introducing elitism and a crowed comparison
operator.

Other popular EAs for multiobjective optimization may
be based on the global non-elitist selection such as the niched
Pareto GA (NPGA) [104], or the global elitist methods such
as the strength Pareto EA (SPEA) [105], the Pareto envelope-
based selection algorithm (PESA) [106], the Pareto archived
ES (PAES) [107] as well as the SPEA-II [108], or the local
selection such as the evolutionary local selection algorithm
(ELSA) [109]. All these algorithms have the ability of finding
multiple Pareto-optimal solutions in one single run.

7.2. Multimodal Optimization. Multimodal optimization is
to identify a number of local optima and to maintain these
solutions while continuing to search other local optima.
Multimodality causes difficulty to any search method. Each
peak in the solution landscape can be treated as a separate
environment niche. A niche makes a particular subpopu-
lation (species) unique. The niching mechanism embodies
both cooperation and competition.

Crossover between individuals from different niches may
lead to unviable offspring and is usually avoided [14]. It in-
troduces a strong selection advantage to the niche with the
largest population and, thus, prevents a thorough explo-
ration of the fitness landscape [110]. A finite population
will quickly concentrate on one region of the search space.
Increasing the population size, decreasing the crossover
probability, and biasing the crossover operator can also slow
down symmetry breaking and, thus, increase the likelihood
of finding the global optimum, which, in turn, slows down
the rate of exploitation.

For multimodal optimization, three techniques, namely,
niching, demes, and local search, are effective in identifying
a number of local optima. Niching can be implemented by
preventing or suppressing the crossover of solutions that are
dissimilar to each other. It is also necessary to prevent a large
subpopulation from creating a disproportionate number
of offsprings. Niching techniques are usually based on the
ideas of crowding [18] and/or sharing [14], which prevent
a single genotype from dominating a population. Crowding
makes individuals within a single niche compete with each
other over limited resources and, thus, allows other less-fit
niches to form within the population. Sharing treats fitness
as a shared resource among similar individuals and, thus,

encourages the development of new niches. Crowding is
simple, while sharing is far more complex, yet far more
effective in multimodal optimization [14]. Sequential nich-
ing [111] modifies the evaluation function in the region
of the solution to eliminate the solution found once an
optimum is found. The GA continues the search for new
solutions without restarting the population.

The demes technique is to split the population into
subpopulations or demes. The demes evolve independently
except for an occasional migration of individuals between
demes. In the cellular GA [55], local mating explores the peak
in each deme and finds and maintains multiple solutions.
Depending on the convergence status and the solution ob-
tained so far, the forking GA [112] divides the whole search
space into subspaces. It is a multipopulation scheme that
includes one parent population and one or more child
populations, each exploiting a subspaces [112].

In the local-selection scheme [113], fitness is the result
of an individual’s interaction with the environment and its
finite shared resources. Individual fitnesses are compared to
a fixed threshold, rather than to one another, to decide as to
who gets the opportunity to reproduce. Local selection is an
implicitly niched scheme. It maintains genetic diversity in a
way similar to, yet generally more efficient than, fitness shar-
ing. Local selection minimizes interactions among individu-
als and is, thus, suitable for parallel implementations. Local
selection can effectively avoid premature convergence, and it
applies minimal selection pressure upon the population.

7.3. Constraint-Satisfaction Optimization. For optimization
problems with constraints, any vector x ∈ Rn which
satisfies all the constraints is a feasible solution. For pure-
equality constraints, one can use the Lagrange multiplier
method. Inequality constraints can be converted into equal-
ity constraints by introducing extra slack variables, and the
Lagrange multiplier method then applied. This is the Karush-
Kuhn-Tucker (KKT) method. The penalty method is usually
used to transform constraint optimization problems into
unconstrained optimization problems by converting equality
and/or inequality constraints into a new objective function,
so that, beyond the constraints, the objective function is
abruptly reduced due to a penalty term on infeasible solu-
tions. In EAs, infeasible solutions in a population needs to be
handled. One can simply reject the infeasible individuals or,
more commonly, penalize the infeasible individuals. A survey
on handling constraints within the GA is given in [114].

8. Evolutionary Algorithms Based on
Fuzzy Logic

Conventional GA parameter coding is static for the entire
search. This results in finite accuracy in the solution. Fuzzy
parameter-coding changes provides a more uniform per-
formance in the GA search, and there is an intermediate
mapping between the genetic strings and the search space
parameters. Examples of fuzzy-encoding techniques are the
fuzzy GA parameter coding [50] and the fuzzy coding [51].
The fuzzy coding [51] provides the value of a parameter on
the basis of the optimum number of selected fuzzy sets and



12 Applied Computational Intelligence and Soft Computing

their effectiveness in terms of the degree of membership.
The GA optimizes membership functions (MFs) and the
number of fuzzy sets, while the actual parameter value is
obtained through defuzzification. Fuzzy encoding with a
suitable combination of MFs is able to find better optimized
parameters than both the GA using binary encoding methods
and the gradient-descent technique for parameter learning
of neural networks [51]. Each parameter in the fuzzy coding
always falls within the desired range, and prior knowledge
can be integrated easily. The only information required is
the type of parameters and their ranges. In the fuzzy-coding
approach, each parameter is encoded in two sections. In the
first section, the fuzzy sets associated with each parameter
are encoded in bits, with one representing the corresponding
fuzzy set selected. The second section lists the corresponding
degrees of membership for each fuzzy set, evaluated at a
parameter.

Fuzzy encoding has two advantages over binary encoding
[115]. Firstly, the resulting codebooks are highly nonuniform
so that all necessary domain knowledge is captured to orient
toward promising search areas. Secondly, fuzzy encoding
supports a so-called weak encoding of optimized structures
which could be helpful in the representation of neural net-
works. The weak encoding, in contrast to its strong counter-
part, does not imply a one-to-one correspondence between
the genotype and the phenotype. Rather, a single genotype
induces a fuzzy family of phenotypes.

By dynamically adjusting selected control parameters or
genetic operators during the evolution, adaptive GAs provide
an appropriate exploration and exploitation behavior to
avoid premature convergence and improve the final results.
The dynamic parametric GA [116] and the fuzzy adaptive GA
(FAGA) [117] are GAs that use fuzzy logic to adjust control
parameters. The main idea is to use a fuzzy controller with
inputs as any combination of current performance measures
and current control parameters of the GA and outputs as new
control parameters of the GA. In [116], the fuzzy inference
system (FIS) used for adjusting the control parameters of the
GA is adapted by another GA. Some aspects of the FAGA,
such as the steps for its design and a taxonomy for the FAGA,
are reviewed and analyzed in [117]. Fuzzy encoding, fuzzy
crossover operations, and fuzzy fitness can be integrated
into EAs [115]. Some adaptive fuzzy crossover operators,
which are based on fuzzy connectives for real-coded GAs, are
defined in [118].

9. Evolutionary Algorithms versus
Simulated Annealing

Both EAs and SA are stochastic global optimization meth-
ods. They are guided search methods directed toward an
increasing or decreasing cost. The capability of an EA to
converge to a premature local minimum or a global optimum
is usually controlled by suitably selecting the probabilities of
crossover and mutation. This is comparable to the controlled
lowering of the temperature in the SA. Thus, the SA can
be viewed as a subset of EAs with a population of one
individual and a changing mutation rate. The SA is a

serial algorithm, while EAs involve a selection process that
requires global coordination. The SA is generally too slow
for practical use, while EAs are much more effective in
finding the global minimum due to their simplicity and
parallel nature. The binary representation is also suitable for
hardware implementation. EAs explore the domain of the
target function at many points and, thus, can escape from
local minima. The inherent parallel property also offsets their
high computational cost. However, for some well-defined
numerical optimization problems, the simple hill-climbing
algorithm used in the SA usually outperforms EAs [119].

Hybridization of the SA and EAs, which inherits the
parallelization of EAs and incorporates the hill-climbing
property of the SA, retains the best properties of both par-
adigms [120–124]; that is, the guided evolutionary SA
(GESA) [120] incorporates the idea of SA into the selection
process of EAs. The concept of family is introduced, where
a family is defined as a parent together with its children.
Competitions within a family and between families exist. The
GESA is a practicable method which yields better solutions
than those of the ES. The genetic SA [121] provides a
completely parallel, easily scalable hybrid GA/SA method.
The hybrid method combines the recombinative power of
the GA and the annealing schedule of the SA. An existing
serial implementation can be incorporated directly. The
performance of the algorithm scales up linearly with an
increasing number of processing elements, which enables
the algorithm to utilize massive parallel architecture with
maximum effectiveness. In addition, careful choice of control
parameters is not required, and this is a significant advantage
over the SA and the GA. In the hybrid SA/EA system [122,
123], at each temperature, a separate SA operator is used
to create an offspring for each individual until a predefined
condition is reached. After the offsprings are created, parents
for the next generation are selected. The iteration continues
by following a temperature schedule until the temperature is
nearly zero. In [124], each individual in the population can
intelligently plan its own annealing schedule in an adaptive
fashion according to the given problem at hand.

10. Constructing Neural Networks Using
Evolutionary Algorithms

Neural network learning is a search process for the minimiza-
tion of a criterion or error function. In order to make use
of existing learning algorithms, one needs to select a lot of
parameters, such as the number of hidden layers, the number
of units in each hidden layer, the type of learning rule, the
transfer function, as well as learning parameters. Conven-
tional gradient-based methods cannot avoid local minima.
EAs can be used to optimize the structure of any neural
network and the corresponding parameters or to optimize
specific network performance and algorithmic parameters.
EAs are suitable for learning networks with nondifferentiable
activation function. When EAs are used to construct neural
networks, a drastic reduction in development time and
simpler designs can be achieved. The general applicability
saves a lot of human effort in developing different training
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algorithms for different types of neural networks. To date,
EAs are mainly used for training FNNs [1, 125]. Considerable
research has been conducted on the evolution of connection
weights, see the survey [1] and the references therein.

Usually, an individual in an EA is selected as a whole
network. Competition occurs among those individual net-
works, based on the performance of each network. EAs
evolve network parameters based on a fitness measure for the
whole network. The fitness function can be defined as 1/(1 +
E), where E is the error or criterion function for network
training. The complete set of network parameters is coded
as a chromosome. There are also occasions when EAs are
used to evolve one hidden unit of the network at a time. The
competing units are individual units. During each successive
run, candidate hidden units compete so that the optimal
single unit is added in that run. The search space of EAs at
each run is much smaller. However, the entire set of hidden
units may not be the global optimal placement.

10.1. Permutation Problem. Permutation of network param-
eters does not result in a change in the error function but
results in a topological symmetry and consequently in a
high number of symmetries in the error function. Thus,
the number of local minima is high. This is the so-
called permutation problem [126]. For example, for a three-
layer feedforward neural network (FNN), by exchanging
the indices of two hidden nodes and keeping all their
weights unchanged, the function of the network does not
change. The order of the parameters in the chromosomes is
quite different. The permutation problem makes crossover
operator very ineffective in producing good offspring. For
two networks with permuted parameters, crossover almost
certainly leads nowhere, and, thus, the algorithm converges
very slowly. The permutation problem can be resolved by
sorting the strings appropriately before crossover [126].
When evolving the architecture of the network, crossover is
usually avoided, and only mutations are adopted [1, 127].

10.2. Hybrid Training. As far as the computation speed is
concerned, it is hard to say whether EAs can compete with
the gradient-descent method or not, since the best method is
always problem dependent. For large networks, EAs may be
inefficient. When gradient information is readily available, it
can be used to accelerate the evolutionary search. The hybrid
of evolution and gradient search is an effective alternative to
gradient descent in learning tasks, when the global optimum
is at a premium.

EAs are inefficient in fine-tuning local search although
they are good at global search. This is especially true for
the GA. By incorporating a local-search procedure such as
gradient descent into the evolution, the efficiency of ev-
olutionary training can be improved significantly. Neural
networks can be trained by alternating an EA step for locating
a near-optimal region in the weight space and a local-search
step for finding a local optimum in that region [128, 129].
Hybridization of EAs and local search can be based either
on the Lamarckian strategy or on the Baldwin effect. Since
Hinton and Nowlan constructed the first computational

model of the Baldwin effect in 1987 [130], many authors
have reported excellent results using hybrid methods (see
[1, 2, 128, 131] and the references given in [1]). Although
the Lamarckian evolution is biologically implausible, it has
proved effective within computer applications. Nevertheless,
the Lamarckian strategy distorts the population, and thus the
schema theorem no longer applies [132]. The Baldwin effect
only alters the fitness landscape, and the basic evolutionary
mechanism remains purely Darwinian. As a result, the
schema theorem still applies to the Baldwin effect [4].

10.3. Evolving Network Parameters. Coding of network
parameters is most important for the convergence speed of
search. When using the binary GA, the fixed-point coding
is usually superior to the floating-point coding [128]. For
crossover, it is usually better to only exchange the parameters
between two chromosomes, but not to change the bits of
each parameter [128]. The modifications of network param-
eters can be conducted by mutation. Due to the limitation
of the binary coding, real numbers are usually used to
represent network parameters directly [133]. The ES and
the EP are particularly well suited for continuous function
optimization. These mutation-based approaches reduce the
negative impact of the permutation problem.

Each instance of the neural network is encoded by con-
catenating all the network parameters in one chromosome.
A heuristic is to put connection weights terminating at
the same unit together. Hidden units are essentially feature
extractors and detectors. Separating inputs to the same hid-
den unit far apart might increase the difficulty of construct-
ing useful feature detectors because they might be destroyed
by crossover operations.

10.4. Evolving Network Architecture. The architecture of a
neural network is referred to as its topological structure,
that is, connectivity. Design of the optimal architecture can
be treated as a search problem in the architecture space,
where each point represents an architecture. Given certain
performance (fitness) criteria, such as minimal training error
and lowest network complexity, the fitness values of all
architectures form a discrete and multimodal surface in the
space.

Direct and indirect encoding methods are used for
encoding architecture. For direct encoding, every connection
of the architecture is encoded into the chromosome, while,
for indirect encoding, only the most important parameters of
an architecture, such as the number of hidden layers and the
number of hidden units in each hidden layer, are encoded.
Only the architecture of a network is evolved, whereas net-
work parameters corresponding to the architecture have to
be learned after a near-optimal architecture is found.

10.4.1. Direct Encoding. In direct encoding, the connectivity
from nodes i to j, denoted ci j , can be represented by a
bit. An Nn node architecture is represented by an Nn ×
Nn matrix, C = [ci j]. The binary string representing the
architecture is the concatenation of all the rows of the
matrix. For an feedforward neural network (FNN), only the
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Figure 1: Direct encoding of a 2-2-1 FNN architecture. The number
above each node denotes the cardinal of the node.

upper triangle of the matrix will have nonzero entries, and
thus only this part of the connectivity matrix needs to be
encoded into the chromosome. For example, given a 2-3-
2 FNN shown in Figure 1, only the upper triangle of the
connectivity matrix needs to be encoded in the chromosome,
and we get “011100 11100 0011 011 11 0.” When ci j is
represented by a real-valued connection weight, both the
architecture and connection weights of the network are
evolved simultaneously.

A chromosome is required to be converted back to a
neural network in order to evaluate the fitness of each
chromosome. The neural network is then trained after being
initialized with random weights. The training error is used
to measure the fitness. In this way, EAs explore all possible
connectivities. The direct encoding scheme has the problem
of scalability. A large network would require a very large
matrix, and, thus, the computation time is significantly
increased.

10.4.2. Indirect Encoding. The direct encoding scheme of
network architectures is very good at fine-tuning and gen-
erating a compact architecture, while the indirect encoding
scheme is suitable for finding a particular type of network
architecture quickly. Indirect encoding can effectively reduce
the chromosome length of the architecture by encoding
only some characteristics of the architecture. The details of
each connection are either predefined or specified by some
rules. For example, for the multilayer perceptron (MLP), two
adjacent layers are in complete connection, and, therefore,
its architecture can be encoded by the number of hidden
layers and the number of hidden units in each layer. Indirect
encoding may not be very good at finding a compact network
with a good generalization ability since EAs can only search
a limited subset of the whole feasible architecture space. This
parametric representation method is most suitable when the
type of architecture is known.

Developmental rule representation results in a more
compact genotypical representation of architectures [1, 131,
134]. Instead of direct optimization of architectures, a
developmental rule is encoded and optimized and is then
used to construct architectures. This approach is capable
of preserving promising building blocks found so far and
can, thus, lessen the damage of crossover [134]. The con-
nectivity pattern of the architecture in the form of a
matrix is constructed from a basis, namely, a single-element
matrix, by repeatedly applying suitable developmental rules

to nonterminal elements in the current matrix until a
connectivity pattern is fully specified. The developmental
rule representation method normally separates the evolution
of architectures from that of connection weights.

10.5. Simultaneously Evolving Architecture and Parameters.
The evolution of the architecture without connection weights
has the problem of noisy fitness evaluation [1, 127]. The
noise comes from the random initialization of the weights
and the training algorithm used. The noise identified is
caused by the one-to-many mapping from genotypes to phe-
notypes. This drawback can be alleviated by simultane-
ously evolving the network architecture and the connection
weights.

In [33], an improved GA is used for training a three-
layer FNN with switches at its links. The weights of the
links govern the input-output mapping while the switches
of the links govern the network architecture. A given fully
connected FNN may become a partially connected network
after learning. The GA equipped with the backpropagation
(BP) [135] can be used to train both the architecture and
the weights of the multilayer perceptron [128, 136, 137].
In [128], the Quickprop algorithm [138] is used to tune
a solution and to reach the nearest local minimum from
the solution found by the GA. The population is initialized
with chromosomes of different hidden-layer sizes. Mutation,
multipoint crossover, addition of a neuron, elimination
of a neuron, and Quickprop training are used as genetic
operators. The GA searches and optimizes the architecture,
the initial weight settings for that architecture, as well as the
learning rate. The operators of Quickprop training [138] and
elimination of a neuron can be treated as the Lamarckian
strategy on evolution. In the genetic backpropagation (G-
Prop) method [136], the GA selects the initial weights and
changes the number of neurons in the hidden layer by
applying five specific genetic operators, namely, mutation,
multipoint crossover, addition, elimination, and substitution
of hidden units. The BP algorithm is then used to train
these weights, and this makes a clean division between global
and local search. This strategy avoids Lamarckism. The G-
Prop method [136] is modified in [137] by integrating the
Quickprop as a training operator, as performed in [128].
This method, thus, implements the Lamarckian evolution. It
is pointed out in [2] that the Lamarkian approach is more
effective than the two-phase and Baldwinian approaches in
difficult problems. The EPNet [127] is a hybrid evolution-
ary/learning method for fully connected FNNs using the
EP and the Lamarckian strategy, where the hybrid training
operator that consists of a modified BP and SA is used for
modifying the connection weights.

10.6. Evolving Activation Functions and Learning Rules.
Activation functions and learning rules can also be evolved
[1]. For example, the learning rate and the momentum factor
of the BP algorithm can be evolved [139], and learning
rules evolved to generate new learning rules [140, 141]. EAs
are also used to select proper input variables for neural
networks from a raw data space of a large dimension, that
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is, to evolve input features [142]. The activation functions
can be evolved by selecting among some popular nonlinear
functions such as the Heaviside, sigmoidal, and Gaussian
functions. A neural network with evolutionary neurons has
been proposed in [143]. The activation function for each
neuron is an unknown general function, whose adequate
functional form is achieved by symbolic regression used in
the GP [19] during the learning period. Some mathematical
operators are used as the operator at the nodes of the tree.

11. Constructing Fuzzy Systems Using
Evolutionary Algorithms

Fuzzy inference systems (FISs) are highly nonlinear systems
with many input and output variables. EAs can be employed
for generating fuzzy rules and adjusting MFs of fuzzy sets.
Sufficient system information must be encoded, and the
representation must be easy for evaluation and reproduction.
A fuzzy rule base can be evolved by encoding the number
of the rules and the MFs constituting those rules into one
chromosome. All the input and output variables as well as
their corresponding MFs in the fuzzy rules are encoded.
The genetic coding of each rule is a concatenation of the
shape and location parameters of the MFs of all the variables.
For example, for the Gaussian MF, one needs to encode the
center and width of its base. If the fuzzy rule is given by the
following.

IF x1 is A1 and x2 is A2 THEN y is B, (10)

where x1 and x2 are the input variables, y is the output
variable, and A1, A2, and B are linguistic variables, which
are described by MFs, then each chromosome can be en-
coded by concatenating the coding of all the rules in the rule
base, where the center and width parameters for all the input
and output variables are encoded for each rule.

The ES approach is more suitable for the design of
fuzzy systems due to its real coding for real-parameter
optimization. As in neural networks, FISs also have the per-
mutation problem. If some rules in two individuals are
ordered in different manners, the rules should be aligned
before crossover is applied [144]. Specific genetic operators
such as rule insertion and rule deletion, where a whole rule
is added or deleted at a specified point of the string, are also
applied [144]. In [145], automatic optimal design of fuzzy
systems is conducted by using the GESA [120].

12. Constructing Neurofuzzy Systems Using
Evolutionary Algorithms

EAs can replace the popular gradient-descent technique for
training neuro-fuzzy systems so as to avoid local minima.
EAs can optimize both the architecture and parameters of
neurofuzzy systems. Put it alternatively, EAs are used to
evolve both the fuzzy rules and their respective MFs and
connection weights [146–151].

The fuzzy neural network [146] has the architecture of
a standard two-level OR/AND representation of Boolean
functions of symbols. The fuzzy neural network can be de-

veloped by using a three-phase procedure [152]. A collec-
tion of fuzzy sets are first selected and kept unchanged
during the successive phases of the model development.
The architectural optimization is then performed by using
the GP, whereas the ensuing parameters are optimized by
gradient-based learning. The fuzzy genetic neural system
(FuGeNeSys) [147] and the genetic fuzzy rule extractor
(GEFREX) [148] are synergetic models of fuzzy logic, neural
networks, and the GA. They both are general methods for
fuzzy supervised learning of multiple-input multiple-output
(MIMO) systems, wherein the Mamdani fuzzy model is used.
Each individual in the population is made up of a set of
Nr rules, with each rule comprising n inputs (antecedents)
and m outputs (consequents). The two methods employs
the fine-grained GA [55] but are different in genetic coding
and fitness function. In the GEFREX [148], the genetic
coding involves only the premises of the fuzzy rules. This
coding is a mix of floating-point and binary parts, where the
floating-point part codes the significant values of the MFs,
and the binary part is used for feature selection. At most
nNr antecedents are required. The binary part is used when
the feature selection option is enabled during the learning
phase. The GEFREX is also able to detect significant features
when requested during the learning phase. The optimal con-
sequences can be obtained using the singular value decom-
position (SVD). Different crossover and mutation operators
are used for the binary- and real-coded genes.

In [149], the ES and the SA are combined to simul-
taneously optimize the number of fuzzy rules of a given
neurofuzzy system while training its parameters. In [150],
the training of hybrid fuzzy polynomial neural networks
(HFPNN) is comprised of both a structural phase using the
GA and the ensuing parametric phase based on the least-
squares- (LS-) based learning. The fuzzy adaptive learning
control network (FALCON) [151] is a five-layer neuro-
fuzzy system. The FALCON-GA is a three-phase hybrid
learning algorithm for structure/parameter learning, namely,
the fuzzy ART for clustering supervised training data, the
GA for finding proper fuzzy rules, and the BP for tuning
input/output MFs.

13. Summary

Evolutionary computation is a general-purpose method for
adaptation and optimization. In this paper, we give a com-
prehensive introduction to evolutionary computation. In
addition to the popular GA and ES methods, we have also
described many other evolutionary computation methods
such as the GP, the EP, the memetic algorithm, the ACO, the
PSO, and the immune algorithm. The applications of EAs to
neural, fuzzy, as well as neurofuzzy systems are dealt with.

Recently, more and more nature-inspired new comput-
ing paradigms are emerging and are used for learning and
optimization. Some computation techniques at the molecu-
lar level are DNA computing [153], membrane computing
[154], and quantum computing [155]. DNA computing is
based on the information-processing capability of organic
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molecules. Membrane computing abstracts from the struc-
ture and functioning of living cells. Quantum computing is
based on the theory of quantum physics, which describes
the behavior of particles of atomic size. Other computing
paradigms include those inspired by chemical reaction and
diffusion at the molecular level, such as the autocatalytic
network [156].
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