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1. Introduction 

At the present time, many sings seem to indicate that we live a global energy and 

environmental crisis. The scientific community argues that the global warming process is, at 

least in some degree, a consequence of modern societies unsustainable development. A key 

area in that situation is the citizens mobility. World economies seem to require fast and 

efficient transportation infrastructures for a significant fraction of the population. 

The non-stopping overload process that traffic networks are suffering calls for new 

solutions. In the vast majority of cases it is not viable to extend that infrastructures due to 

costs, lack of available space, and environmental impacts. Thus, traffic departments all 

around the world are very interested in optimizing the existing infrastructures to obtain the 

very best service they can provide. 

In the last decade many initiatives have been developed to give the traffic network new 

management facilities for its better exploitation. They are grouped in the so called Intelligent 

Transportation Systems. 

Examples of these approaches are the Advanced Traveler Information Systems (ATIS) and 

Advanced Traffic Management Systems (ATMS). Most of them provide drivers or traffic 

engineers the current traffic real/simulated situation or traffic forecasts. They may even 

suggest actions to improve the traffic flow. 

To do so, researchers have done a lot of work improving traffic simulations, specially 

through the development of accurate microscopic simulators. In the last decades the 

application of that family of simulators was restricted to small test cases due to its high 

computing requirements. Currently, the availability of cheap faster computers has changed 

this situation. 

Some famous microsimulators are MITSIM(Yang, Q., 1997), INTEGRATION (Rakha, H., et 

al., 1998), AIMSUN2 (Barcelo, J., et al., 1996), TRANSIMS (Nagel, K. & Barrett, C., 1997), etc. 

They will be briefly explained in the following section. 

Although traffic research is mainly targeted at obtaining accurate simulations there are few 

groups focused at the optimization or improvement of traffic in an automatic manner — not 

dependent on traffic engineers experience and “art”. 
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One of the most important problems in traffic optimization is traffic light cycles1 
optimization. This is a hard Combinatorial Problem which seems not to have a known 
deterministic solution at the present time. 
In our group we have been working on the optimization of traffic lights cycles for the better 
performance of urban traffic networks. As shown in (Brockfeld, Elmar, et al., 2001), traffic 
light cycles have a strong influence in traffic flow results. For that reason we decided to 
focused on that problem. We have combined a Genetic Algorithm (GA) as optimization 
technique with a traffic microscopic simulator running on a scalable MIMD multicomputer2. 
We have tested the fore mentioned three pillar model with some works (Sánchez, J. J. et al., 
2004), (Sánchez, J. J. et al., 2005 A), (Sánchez, J. J. et al., 2005 B), (Sánchez, J. J. et al., 2006), 
(Sánchez, J. J. et al., 2007) and (Sánchez, J. J. et al., 2008). 
The rest of this chapter is organized as follows. In section 2 we give a wide survey of the 
current State of the Art. In 2.4 we briefly expose our own contribution to the matter. In 
section 3 we explain with some detail the proposed methodology. In section 4 we outline the 
achieved goals obtained with the explained methodology. Finally, section 5 gives some 
ideas of research foreseeable trends. 

2. State of the art 

In this subsection we want to give a survey o some significant works in the area. We have 
categorized works in three classes: those mostly related to Advanced Traveler Information 
Services (ATIS); those mainly about Advanced Traffic Management Systems (ATMS), and in 
a third subset we have called Advanced Traffic Optimization Systems (ATOS), those where 
traffic is not just managed but optimized — or tried to be optimized — in an automatic 
manner, without human interaction. 

2.1 Advanced traveler information services 
Advanced Traveler Information Services are those services that can potentially help drivers 
to make better decisions in order to reduce their travel time. There are many initiatives in 
this area. Here we show some examples. 
In (Florian, D. G, 2004), this thesis provides an empirical study of the impact of ATIS on 
transportation network quality of service using an application of DynaMIT (Dynamic 
network assignment for the Management of Information to Travelers). The main results are 
that the provision of dynamic route guidance can simultaneously benefit the individual 
performance of drivers, both guided and unguided, as well as the system performance of 
existing transportation infrastructure. 
In (Hafstein, S. F., et al., 2004) a high resolution cellular automata freeway traffic simulation 
model applied to a Traffic Information System. They provide a simulation for current traffic 
zones without loop detectors, and 30 min. and 60 min. future traffic forecasts. They run a 
java applet in a web page in order to give the network users this useful information. 

                                                 
1 Traffic light cycle: the finite sequence of states — e.g. green, orange, etc. — that a traffic 
light runs iteratively. 
2 MIMD: Multiple Instruction Multiple Data: A type of parallel computing architecture 
where many functional units perform different operations on different data. For example a 
network of PC's working in parallel. 
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2.2 Advanced traffic management systems. 
Advanced Traffic Management Systems are those systems that help engineers to better 
manage traffic networks. There are many works around this topic, most of them focused on 
traffic simulation. Some examples are the following. 
The INTEGRATION model has been used to simulate traffic for the Salt Lake Metropolitan 
Area (Rakha, H., et al., 1998).The objective of this paper is threefold. First, the feasibility of 
modeling a large-scale network at a microscopic level of detail is presented. Second, the 
unique data collection challenges that are involved in constructing and calibrating a large-
scale network microscopically are described. Third, the unique opportunities and 
applications from the use of a microscopic as opposed to a macroscopic simulation tool are 
described. 
The MITSIM model (Yang, Q., 1997) has been used to evaluate aspects of both the traffic 
control system and the ramp configurations of the Central Artery/Tunnel project in Boston. 
It explicitly incorporates traffic prediction, time variant traffic information, and dynamic 
route choice. 
AIMSUN2 has been used to simulate the Rings Roads of Barcelona (Barcelo, J., et al., 1996). 
Uses parallel computers to shorten the execution time. 
Traffic simulation using CA models has also been performed on vector supercomputers to 
simulate traffic in shortest possible time (Nagel, K. & Schleicher, A., 1994). 
The INTELSIM model is used in (Aycin, M. F. & Benekohal, R. F., 1998) and (Aycin, M. F. & 
Benekohal, R. F., 1999). In those works a linear acceleration car-following model has been 
developed for realistic simulation of traffic flow in intelligent transportation systems (ITS) 
applications. The authors argue that the new model provides continuous acceleration 
profiles instead of the stepwise profiles that are currently used. The brake reaction times and 
chain reaction times of drivers are simulated. As a consequence, they say that the good 
performance of the system in car-following and in stop-and-go conditions make this model 
suitable to be used in ITS. 
Moreover, in (Aycin, M. F. & Benekohal, R. F., 1999) they compare many car-following 
methods with their proposed method, and with field data. 
In (Bham et al., 2004) they proposed a ``high fidelity'' model for simulation of high volume 
of traffic at the regional level. Their model uses concepts of Cellular Automata and Car-
Following models. They propose the concept of Space Occupancy (SOC) used to measure 
the traffic congestion. Their aim is to simulate high volume of traffic with shorter execution 
time using efficient algorithms on a personal computer. Like in our case, they based their 
simulator on Cellular Automata concepts. Although their model could be more accurate 
than the one of ourselves, in our work we go further using our simulator inside a GA for 
optimizing the traffic — not just for simulating traffic. 
In (Tveit, O., 2003), Dr. Tveit, a senior researcher with SINTEF

3, explains that a common 
cycle time4 for a set of intersections is a worse approach than a distributed and 

                                                 
3 SINTEF means The Foundation for Scientific and Industrial Research at the Norwegian 
Institute of Technology. 
4 Common cycle time: This is a very simple way of programming traffic lights in an 
intersection or groups of intersections. All the traffic lights share a cycle length. The starting 
point of each one of the states or stages in the particular cycle of every traffic light may be 
different, but the cycle period is the same for all of them. 
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individualized one. His conclusions appear sound and convincing, so we consider them in 
our approach. In our system every intersection has independent cycles. 
In (Smith, M. J., 1988) the use of responsive signals5, with network capacity (rather than total 
travel cost) as a control criterion is argued. The capacity of the network is maximized if the 
signals operate to equalize traffic density on the most occupied parts of the network. This is 
another example of multiple local optimizations instead of a global optimization, like the 
one of ours. 
In (Logi, F. & Ritchie, S.G., 2001) a knowledge based system is presented for traffic 
congestion management. The proposed model comprises a data fusion algorithm, an 
algorithm for selection the suitable control plan, and it presents the proposed plan with an 
explanation of the reasoning process for helping the traffic operators decisions. They 
presented also a validation example for displaying the ability of their system to reduce 
congestion. From our point of view, although this seems a very interesting approach to the 
matter, both the selection of control strategies and the estimation of future traffic are based 
on the experience of traffic engineers. In spite of this, in our methodology we use the 
combination of two widely accepted and trusted techniques. We use a more accurate 
estimation of future traffic — thought a microsimulator — and a genetic algorithm for the 
optimization of the traffic flow. 

2.3 Advanced traffic optimization systems 
TRANSIMS project used CA models to simulate traffic for the city of Fortworth-Dallas using 
parallel computers (Nagel, K. & Barrett, C., 1997). This paper presents a day-to-day re-
routing relaxation approach for traffic simulations. Starting from an initial plan-set for the 
routes, the route-based microsimulation is executed. The result of the microsimulation is fed 
into a rerouter, which re-routes a certain percentage of all trips. 
In (Wann-Ming Wey, et al., 2001), an isolated intersection is controlled applying techniques 
based on linear systems control theory to solve the linear traffic model problem. The main 
contribution of this research is the development of a methodology for alleviating the 
recurrent isolated intersection congestion caused by high transportation demand using 
existing technology. Again this work deals with very small scale traffic networks — one 
intersection. 
In (Schutter, B. De & Moor, B. De, 1997) the authors present a single intersection — two two 
ways streets — model describing the evolution of the queue lengths in each lane as a 
function of time, and how (sub)optimal traffic switching schemes for this system can be 
determined. 
In (Febbraro, A. Di, et al., 2002) Petri Nets are applied to provide a modular representation 
of urban traffic networks. An interesting feature of this model is the possibility of 
representing the offsets among different traffic light cycles as embedded in the structure of 
the model itself. Even though it is a very interesting work, the authors only optimize the 
coordination among different traffic light cycles. Our cycle optimization methodology is a 
complete flexible one because we implicitly optimize not only traffic light offsets but also 
every stage length. 

                                                 
5 Responsive signals: Traffic signals capable o adapting their state to the current traffic 
situation near them. 
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Another interesting work using Petri Nets is (Li, L et al., 2004) where they are applied to 
control a single intersection by means of programmable logic controllers (PLCs). They 
compare three methods for modeling the traffic lights at an intersection and found out that 
the more suitable is the one that combines Petri nets with PLCs. Again, in this research just 
one intersection is optimized, and not a whole traffic network. 
In (Spall, J.C. & Chin, D.C., 1994) the author presented a neural network (NN) approach for 
optimizing traffic light cycles. A neural network is used to implement the traffic lights 
control function. The training process of the NN is fed exclusively with real data. This being 
so, it would only be useful in systems with an on-line data acquisition module installed. 
However, so far such systems are not common at all. 
The “offset-time”6 between two traffic lights is optimized using Artificial Neural Networks 
(ANNs) at (López, S., et al. 1999). Although our system does not treat explicitly the offset 
time parameter we think that our system faces traffic optimization in a much more flexible 
manner. 
In (GiYoung L., 2001) a real-time local optimization of one intersection technique is 
proposed. It is based on fuzzy logic. Although an adaptive optimization may be very 
interesting — we checked out this in (Sánchez, J. J. et al., 2004) — we believe that a global 
optimization is a more complete approach to the problem. 
In (You-Sik, H. et al., 1999) authors present a fuzzy control system for extending or 
shortening the fixed traffic light cycle. By means of electrosensitive traffic lights they can 
extend the traffic cycle when many vehicles are passing on the road or reduce the cycle if 
there are few vehicles passing. Through simulation they presented efficiency improvement 
results. This work performs a local adaptation for a single traffic light instead of a global 
optimization. 
In (Rouphail, N., et al., 2000) an “ad hoc” architecture is used to optimize a 9 intersection 
traffic network. It uses Genetic Algorithms as an optimization technique running on a single 
machine. The CORSIM7 model is used within the evaluation function of the GA. In this work 
scalability is not addressed. Authors recognize that it is a customized non scalable system. 
Our system has the scalability feature thanks to the intrinsic scalability of the Beowulf 
Cluster and the parallel execution of the evaluation function within the GA. 
In (You Sik Hong, et al., 2001) the concept of the optimal green time algorithm is proposed, 
which reduces average vehicle waiting time while improving average vehicle speed using 
fuzzy rules and neural networks. Through computer simulation, this method has been 
proven to be much more efficient than using fixed time cycle signals. The fuzzy neural 
network will consistently improve average waiting time, vehicle speed, and fuel 
consumption. This work only considers a very small amount of traffic signals — two near 
intersections — in the cycle optimization. We do agree with them about the non-suitability 
of fixed cycles. 
An interesting combination of Genetic Algorithms and Traffic Simulation is published in 
(Taniguchi, E. & Shimamoto, H., 2004). In this work a routing and scheduling system for 
freight carrier vehicles is presented. They use Genetic Algorithms as optimization technique. 
The objective of the GA is the minimization of the costs of travel. A dynamic vehicle routing 

                                                 
6 Offset-time: the time since a traffic light turn green until the next traffic light — for 
example, in a boulevard — turns also green. 
7 CORSIM: Corridor Traffic Simulation Model (Halati A. et al., 1997). 
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algorithm is proposed and tested with a test road network. The implemented traffic 
simulation model is macroscopic. 
Another very interesting work is presented in (Varia, H.R. & Dhingra, S.L., 2004). A 
dynamic system-optimal (DSO) traffic assignment model is formulated for a congested 
urban network with a number of signalized intersections. They also combine traffic 
simulation with Genetic Algorithms. The aim of this work is to assign any traveler a route. A 
GA is used to minimize the users total travel time. A macroscopic model is used for the 
estimation of traffic delays. The DSO problem is solved with fixed signal timings, and with 
the optimization of signal timings. 
In (Vogel, A. et al., 2000) every intersection is optimized considering only local information. 
Moreover, it can be adapted to short and long term traffic fluctuations. In our case we 
perform a global optimization instead of multiple local optimizations. We think that our 
approach may be a more efficient exploitation of the traffic infrastructure. 
A very interesting work is published in (Wiering, M. et al., 2004). In this work, traffic is 
regarded as formed by a set of intersections to be optimized in a stand alone manner. They 
proposed to use reinforcement learning algorithms to optimize what they consider a multi-
agent decision problem. We do not agree with them. Although a local optimization can 
obviously reduce average waiting times of cars — as it seems to happen with simulated tests 
at this work — we think that a global optimization taking into account every intersection in 
a zone should be more profitable. 

2.4 Own contribution. 
In this subsection we have included our contribution to the art. In (Sánchez, J. J. et al., 2004) 
we presented our methodology for the optimization of Traffic Light Cycles in a Traffic 
Network. The very good results of a parallel speed-up study convinced us that it was 
advisable to use a “Beowulf Cluster” as parallel computing system. 
In OPTDES IV8 we shared a scalability study on that architecture. We ran tests using four 
networks from 80 up to 1176 cells. In that work we found out that our system had a very 
good performance for all cases. 
In (Sánchez, J. J. et al., 2005 A) we compared two versions of our microscopic traffic 
simulator: a stochastic versus a deterministic traffic simulator. There were three differences 
between the stochastic and the deterministic version: The cells updating order; the new 
vehicle creation time and the acceleration probability. From that work we realized that the 
stochastic simulator is a suitable — convergent — statistical process to compare with; and 
we demonstrated that the deterministic simulator outputs are highly linearly correlated 
with the stochastic ones. Therefore, our deterministic simulator can arrange the population 
ranking in order of fitness at least as well as the stochastic simulator, but with a remarkably 
lower computing time. 
In the research presented for CIMCA2005 (Sánchez, J. J., Galán, M. J., & Rubio, E., 2005 B) 
we described the difference between two sorts of encoding, yielding different crossover and 
mutation strategies. The main achievement in that work was to demonstrate — by means of 
a wide set of tests — that, at least for our particular case, a bit level crossover combined with 
a variable mutation probability means a great saving of computing time. Besides, we noticed 

                                                 
8 Optimization and Design in Industry IV, Tokyo, Japan, (September, 26-30th, 2004) 
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how that choice lets the algorithm cover the solution space faster due to a bigger gene 
variability between generations. This combination seems to avoid premature convergence. 
In ECT2006 we delivered a research (Sánchez, J. J. et al., 2006) that included two goals. First, 
we introduced a new methodology – such a visual one – helping those practitioners 
occupied tuning a GA by giving them much deeper knowledge of how the GA is doing than 
they had before. Furthermore, we tried this new methodology with a wide set of tests. We 
used it for tuning the genetic algorithm within our traffic optimization architecture applied 
to a particular network. 
We presented another research in Eurocast 2007 (Sánchez, J. J. et al., 2007). In that 
communication we shared a study considering three candidate criteria as a first step toward 
extending our fitness function towards a multicriteria one. The criteria where related to the 
total number of vehicles that left the network, the occupancy of the network and greenhouse 
gases emissions. We performed a correlation study and, although conclusions where not 
definitive, we obtained some interesting conclusions about the relationship among those 
parameters. 
Finally, soon we will publish an optimization research (Sánchez, J. J. et al., 2008) for another 
traffic network situated in Santa Cruz de Tenerife, Spain. Although the scale of that network 
is not as large as the one treated for the current paper, results are promising. 

3. Methodology 

3.1 Optimization model 
The architecture of our system comprises thre items, namely a Genetic Algorithm (GA) as 
Non- Deterministic Optimization Technique, a Cellular Automata (CA) based Traffic 
Simulator inside the evaluation routine of the GA, and a Beowulf Cluster as MIMD 
multicomputer. Through this section we will give a wide description for the GA and the CA 
based Traffic Simulator used in our methodology. Finally, a brief description of the Beowulf 
Cluster sill also be provided. 
 

 

Fig. 1. Model Architecture 

3.1.1 Genetic algorithm 
In this subsection we will describe the genetic algorithm utilized. 
3.1.1.1 Optimization criterion. Fitness function 

After testing several criteria we found out that we obtained the better results just by using 
the absolute number of vehicles that left the traffic network once the simulation finishes. 
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During the traffic simulation many new vehicles are created as if they were arriving at the 
inputs of the network. Furthermore, during the simulation many vehicles reach their 
destination point and leave the network. The number of vehicles that reach their destination 
point easily illustrates how the simulation was, and consequently helps us to compare a 
particular cycle combination with another. 
Other optimization criteria tested are the following: 

• Mean time at the network — Mean Elapsed Time, MET. During the simulation, the 
arrival and departure time of every vehicle is stored. With these values we can easily 
calculate the number of iterations (or seconds) it takes any vehicle to leave the network. 
Once the simulation finishes the average time at the network is calculated. 

• Standard Deviation values of vehicle times at the network. 

• A linear combination between the MET and the Standard Deviation of vehicle times at 
the network. 

• A linear combination between the MET and the total number of vehicles that have left 
the network during the simulation. 

• The traffic network mean occupancy density. To calculate this parameter we divided 
the network into small sections and counted the number of vehicles inside every 
section. 

As we search the optimization criteria for our system we encountered an unexpected 
problem. If we included the minimization of the MET in a multicriteria evaluation function 
we provoked a very undesirable effect. The chromosomes that blocked the network faster 
were the best marked. That is because only a few vehicles were able to leave the network (in 
a small amount of iterations) before it collapsed. Hence, we obtained very “good” values but 
caused by “false” optimal cycle combinations. Therefore, we resigned to include that 
criterion in our fitness function. 
3.1.1.2 Chromosome encoding 

In figure 1 we present the chosen encoding used in our methodology. In this figure we 
represent a chromosome example for a very simple traffic network. It consists of only two 
intersections and two traffic lights for each intersection. 
 

 

Fig. 2. Chromosome Codification 
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Below the traffic network we have put the stages9 of each traffic light separated in two 
different color regions, one for each one of the two intersections. The traffic light state at 
each stage may be green (G), orange (O) or red (R). 
This stages sequence is preestabilished, and wil cycle ad infinitum — or until we stop the 
corresponding simulation. The objective of our system is to optimize the duration of each 
stage (in seconds) in order to get the very best traffic behavior from the network under 
study. 
In figure 1 a chromosome encoding example I included. It can be seen that through several 
translation steps we obtained a binary Gray Code encoding (Black, P. E., 2005). We have 
proven out this methodology to be very efficient for our case in (Sánchez, J. J. et al., 2005 B). 
We use Gray Code because it is designed in such a manner that when a bit changes its value 
— when mutation occurs — the stage length value only increases or decreases one unit. This 
is a desirable feature because it makes the search space to conform with the “Hamming 
Distance Metric”. 
3.1.1.3 Initial population 

Before the GA starts we created an initial population. Initially we set a time range for every 
preestablished stage. Each individual is created by choosing a random value within its 
corresponding range. 
3.1.1.4 Random number generation 

For the random number generation we have employed the MT19937 generator of Makoto 
Matsumoto and Takuji Nishimura, known as the "Mersenne Twister" generator. It has 
passed the DIEHARD statistical tests (Matsumoto, M. & Nishimura, T., 1998). The seeds for 
that algorithm were obtained from the ``/dev/urandom'' device provided by the Red Hat 9 
operating system. 
3.1.1.5 Selection strategy 

We have chosen a Truncation and Elitism combination as selection strategy. It means that at 
every generation a little group of individuals — the best two individuals in our case — is 
cloned to the next generation. The remainder of the next generation is created by 
crossovering the individuals from a best fitness subset — usually a 66 percent of the whole 
population. 
This combination seems to be the most fitted to our problem among a set of selection 
strategies tested. However, we do not discard to change it if better results seem attainable. 
Other selection strategies previously tested — and discarded — for this problem are 
succinctly explained as follows: 

• Elitism: The population is ordered by fitness and a small set with the best individuals 
(elite) is cloned to the next generation. 

• Truncation: The population is ordered by fitness. Then the population is divided into 
two sets, one to survive and the another one is simply discarded. 

• Tournament: Small groups of individuals are chosen at random. The best fitness 
individual of each one of them is selected. 

• Random Tournament: Like the Tournament Selection but the best individual is not 
always selected. It will depend on a probability value. 

• Roulette Linear Selection: Every individual has a survival probability proportional to its 
fitness value. 

• Elitism plus Random Tournament. 

                                                 
9 Stage: Every one of the states associated to an intersection, that contains a set of traffic 
lights. 
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3.1.1.6 Crossover operator 

We have tested some different crossover operators: Uniform Crossover, Two Points 
Crossover at fixed points and Two Points Crossover at random points. We reached the 
conclusion that for our case the better one was the third one. 
For a couple of parents, it simply chooses two random points at each one of the two 
chromosomes, cut them into three pieces and then interchanges the central chunk of them. 
3.1.1.7 Mutation operator 

The value of a randomly chosen bit in the chromosome is just flipped. 
The mutation probability is not fixed. It starts with a very high mutation probability that 
will decrease multiplied by a factor value in the range (0,1) until it reaches probability 
values near to the inverse of the population size as approaching the end of the planned 
number of generations. 

3.1.2 Traffic simulator 
Traffic Simulation is known to be a very difficult task. There are mainly two different traffic 
simulations paradigms. The first one is the Macroscopic model. Macroscopic simulators are 
based on Fluid Dynamics, since they consider traffic flow as a continuous fluid. The second 
paradigm is the one that includes Microscopic simulators. For them, traffic is considered as a 
collection of discrete particles following some rules about their interaction. In the last decade 
there has been a common belief about the better performance of Microscopic simulators to 
do Traffic Modeling. One Microscopic model widely used is the Cellular Automata Model. 
There has been a large tradition of macroscopic approaches for traffic modeling. In the 50's 
some “first order” continuum theories of highway traffic appeared. In the 70's and later on 
some other “second order” models were developed in order to correct the formers' 
deficiencies. References (Helbing, D., 1995); (Kerner, B. S., & Konhäuser, P., 1994); (Kühne, 
R. D., et al., 1991); (Kühne, R. D., 1991); (Payne, H. J., 1979) and (Witham, G. B., 1974) may 
illustrate some of these models. However, in (Daganzo, C. F., 1995) “second order” models 
are questioned due to some serious problems like negative flows predictions and negative 
speeds under certain conditions. 
Nowadays the microscopic simulators are widely used. One reason for this fact is that 
macroscopic simulators can not model the discrete dynamics that arises from the interaction 
among individual vehicles (Benjaafar, S., et al., 1997). Cellular Automata are usually faster 
than any other traffic microsimulator (Nagel, K., & Schleicher, A., 1994), and, as said in 
(Cremer, M. & Ludwig, J., 1986) “the computational requirements are rather low with 
respect to both storage and computation time making it possible to simulate large traffic 
networks on personal computers” 
3.1.2.1 The cellular automata as inspiring model 

Cellular Automata Simulators are based on the Cellular Automata Theory developed by 
John Von Neumann (Neumann, J. von, 1963) at the end of the forties at the Logic of 
Computers Group of the University of Michigan. Cellular Automata are discrete dynamical 
systems whose behavior is specified in terms of local relation. Space is sampled into a grid, 
with each cell containing a few bits of data. As time advances, each cell decides its next state 
depending on the neighbors state and following a small set of rules. 
In the Cellular Automata model not only space is sampled into a set of points, but also time 
and speed. Time becomes iterations. A relationship between time and iterations is set. For 
instance, 1(sec.) ≡ 1 (iteration). Consequently, speed turns into “cells over iterations”. 
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In (Brockfeld, E. et al., 2003) we can find a well described list of microscopic models and a 
comparative study of them. Although conclusions are not definitive, this work seems to 
demonstrate that models using less parameters have a better performance. 
We have developed a traffic model based on the SK10 model (Krauss, S., et al., 1997) and the 
SchCh11 model (Schadschneider, A. et al., 1999). The SchCh model is a combination of a 
highway traffic model (Nagel, K. & Schreckenberg, M., 1992) and a very simple city traffic 
model (Biham et al., 1992). The SK model adds the “smooth braking” for avoiding abrupt 
speed changes. We decided to base our model in the SK model due to its better results for all 
the tests shown in (Brockfeld, E. et al., 2003). 
3.1.2.2 Our improved cellular automata model 

Based on the Cellular Automata Model we have developed a non-linear model for 
simulating traffic behavior. The basic structure is the same as the one used in Cellular 
Automata. However, in our case we add two new levels of complexity by creating two new 
abstractions: “Paths”and “Vehicles”. 
“Paths” are overlapping subsets included in the Cellular Automata set. There is one “Path” 
for every origin-destination pair. To do this, every “Path” has a collection of positions and, 
for each one of them, there exists an array of allowed next positions. In figure 2 we try to 
illustrate this idea. 
“Vehicles” consists of an array of structures, each one of them having the following 
properties: 
1.  Position: the Cellular Automaton where it is situated. Note that every cell may be 

occupied by one and only one vehicle. 
2.  Speed: the current speed of a vehicle. It means the number of cells it moves over every 

iteration. 
3.  Path: In our model, every vehicle is related to a “path”. 
 

 

Fig. 3. Paths in our Improved Cellular Automata Model 

These are the rules applied to every vehicle: 
1.  A vehicle ought to accelerate up to the maximum speed allowed. If it has no obstacle in 

its way (another vehicle, or a red traffic light), it will accelerate at a pace of 1 point per 
iteration, every iteration. 

2.  If a vehicle can reach an occupied position, it will reduce its speed and will occupy the 
free position just behind the preceding. 

                                                 
10 Stephan Krauss, the author. 
11 Andreas Schadschneider and Debashish Chowdhury, the authors. 
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3.  If a vehicle has a red traffic light in front of, it will stop. 
4.  Smooth Braking: Once the vehicle position is updated, then the vehicle speed is 

updated too. To do this, the number of free positions from the current position ahead is 
taken into account. If there is not enough free space for the vehicle to move forward on 
the next iteration going at its current speed (hypothetically, since in the next iteration 
the traffic situation may change), it will reduce its speed in one unit. 

5.  Multi-lane Traffic: When a vehicle is trying to move on, or update its speed, it is 
allowed to consider positions on other parallel lanes. For every origindestination couple 
(path), at every point there exists a list of possible next positions. The first considered is 
the one straight forward. If this one is not free, there may be more possible positions in 
parallel lanes that will be considered. Of course, this list of possible next positions is 
created taking the basic driving rules into account. 

By means of these rules we can have lots of different path vehicles running in the same 
network. This model may be seen as a set of N paths traditional Cellular Automata networks 
working I parallel over the same physical points. 
Note that, so far, we are not considering a different behavior for the green and the orange 
state. However, our architecture is designed in such a manner that we can modify this 
whenever we want to, with a small effort. 
3.1.3 Beowulf cluster 

The Architecture of our system is based on a five node Beowulf Cluster, due to its very 
interesting price/performance relationship and the possibility of employing Open Software 
on it. On the other hand, this is a very scalable MIMD computer, a very desirable feature in 
order to solve all sort — and scales — of traffic problems. 
Every cluster node consists of a Pentium IV processor at 3.06 GHz with 1 GB DDR RAM and 
80GB HDD. The nodes are connected through a Gigabit Ethernet Backbone. Every node has 
the same hardware, except the master node having an extra Gigabit Ethernet network card 
for “out world” connection. 
Every node has installed Red Hat 9 on it — Kernel 2.4.20-28.9, glibc ver. 2.3.2 and gcc ver. 
3.3.2. It was also necessary for parallel programming the installation of LAM/MPI (LAM 
6.5.8, MPI 2). 
In our application there are two kinds of processes, namely master and slave process. There is 
only one master process running on each test. At every generation it sends the chromosomes 
(MPI_Send) to slave processes, receives the evaluation results (MPI_Recv) and creates the 
next population. Slave processes are inside an endless loop, waiting to receive a new 
chromosome (MPI_Recv). Then they evaluate it and send the evaluation result (MPI_Send). 

4. Achieved goals and future aims 

The main goal obtain with this methodology is its application to two real world test cases in 
a simulated environment. To do so we have earned both collaboration agreements with 
Saragossa and Santa Cruz de Tenerife local governments. 

4.1 La Almozara 
In figures 4 and 5 the Saragossa district number 7 — “La Almozara”— is shown. We want to 
remark the large scale of the zone. 
In our simulated environment we improve 10% fitness, in comparison with results obtained 
with the times currently used in the zone. 
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Fig. 4. Eye view of "La Almozara" in Saragossa (from Google Maps). 
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Fig. 5. "La Almozara" Zone Scale. 
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The statistics provided reflected a scarcely occupied network (under 10%). Everything 
seems to indicate that when the traffic zone is that empty, no matter what is the combination 
of traffic light times, the network would have similar outputs. In other words, a nearly 
empty traffic network is not likely to be improved just by optimizing traffic light times. 
Nevertheless, we are carrying out a stud increasing the network occupation, and results 
seem really promising. 

4.2 Las Ramblas 
Illustrations 6 and 7 show the treated zone in Santa Cruz de Tenerife — Canary Islands. 
In figure 8 we represent the performance results using the solutions given to us by the Local 
Government — the first 9 points. The rest of the points represent the performance obtained 
using the solutions yielded by our method. One may observe that there is an obvious 
improvement using our times. Likewise, our 150 solutions seem to be more stable than 
theirs. 
Figure 9 shows the improvement — as a percentage — of the mean, best and worst values of 
our 150 solutions against the 9 supplied. 
This improvement (%) stays within a range fro 0.53 to 26.21. The smallest difference between 
the optimized results and the supplied simulated results is 12 vehicles — solution 43 with 
respect to supplied 'R1'. The biggest difference is 521 vehicles — distance from solution 69 to 
supplied 'R6'. 
The improvement stays within a range from 0.53 to 26.21. The smallest difference between 
the optimized results and the supplied simulated results is 12 vehicles — solution 43 with 
respect to supplied 'R1'. The biggest difference is 521 vehicles — distance from solution 69 to 
supplied 'R6'. 
One important conclusion is that we can clearl improve the supplied times in our simulated 
environment. So, we can seek optimal cycle time combinations for the traffic lights 
programming using our architecture with an appropriate amount of statistics. We have 
proven this with a real world test case (nevertheless, using a simulated environment). 
This is useful as reducing travel times in a city clearly means saving money and reducing 
environmental impact. 
It is important to note that our system is intrinsically adaptable to particularized 
requirements, such as “Path” preferences, minimum and maximum stage length, etc. In this 
sense, our system is flexible and adaptable. 

4.3 Future work aims 
Currently, we are planning to extend the model to a dynamic version. To do so we will need 
new agreements with traffic departments in order to obtain real time data. 
On a second step we plan to validate our model running real traffic lights with times 
provided by us. This will require real commitment from any public institution, and we are 
convinced that we will earn that confidence soon. 
Finally, we are considering the possibility of extending our model to take into account the 
“Pedestrians' Interaction” and including environmental aspects in the optimization criteria 
using a multiobjective approach. 

5. Research trends  

Forecasting research trends is always tricky. Fortunately, new discoveries surprise the 
scientific community every day, discarding common places and settled ideas. 
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Fig. 6. Eye View of "Las Ramblas", in Santa Cruz de Tenerife (from Google Maps) 
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Fig. 7. "Las Ramblas" Zone Scale 
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Fig. 8. Number of Vehicles Leaving the Network for the 9 Solutions Provided (on the Left) 
and the 50 Solutions Calculated by the System 

 

Fig. 9. Improvement of Fitness 

However, everything seems to indicate that human control of traffic will be progressively 

replaced by automatic control systems, at least in crowded scenarios. 

First, public traffic facilities, and then private vehicles, could be controlled by safe and 

automatic systems, maximizing the use of infrastructures, the safety of passengers, and 

minimizing the environmental impact of mobility. 
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