
Complex & Intelligent Systems (2023) 9:3211–3228
https://doi.org/10.1007/s40747-022-00919-y

ORIG INAL ART ICLE

Evolutionary convolutional neural network for image classification
based onmulti-objective genetic programming with leader–follower
mechanism

Qingqing Liu1,2 · Xianpeng Wang3 · Yao Wang2 · Xiangman Song1

Received: 24 July 2022 / Accepted: 6 November 2022 / Published online: 29 November 2022
© The Author(s) 2022

Abstract
As a popular research in the field of artificial intelligence in the last 2 years, evolutionary neural architecture search (ENAS)
compensates the disadvantage that the construction of convolutional neural network (CNN) relies heavily on the prior knowl-
edge of designers. Since its inception, a great deal of researches have been devoted to improving its associated theories,
giving rise to many related algorithms with pretty good results. Considering that there are still some limitations in the exist-
ing algorithms, such as the fixed depth or width of the network, the pursuit of accuracy at the expense of computational
resources, and the tendency to fall into local optimization. In this article, a multi-objective genetic programming algorithm
with a leader–follower evolution mechanism (LF-MOGP) is proposed, where a flexible encoding strategy with variable length
and width based on Cartesian genetic programming is designed to represent the topology of CNNs. Furthermore, the leader–
follower evolution mechanism is proposed to guide the evolution of the algorithm, with the external archive set composed of
non-dominated solutions acting as the leader and an elite population updated followed by the external archive acting as the
follower. Which increases the speed of population convergence, guarantees the diversity of individuals, and greatly reduces
the computational resources. The proposed LF-MOGP algorithm is evaluated on eight widely used image classification tasks
and a real industrial task. Experimental results show that the proposed LF-MOGP is comparative with or even superior to 35
existing algorithms (including some state-of-the-art algorithms) in terms of classification error and number of parameters.

Keywords Evolutionary neural architecture search · Multi-objective genetic programming · Leader–follower mechanism

B Xianpeng Wang
wangxianpeng@ise.neu.edu.cn

Qingqing Liu
liuqingqing@stumail.neu.edu.cn

Yao Wang
yaowang@stumail.neu.edu.cn

Xiangman Song
songxiangman@ise.neu.edu.cn

1 National Frontiers Science Center for Industrial Intelligence
and Systems Optimization, Northeastern University,
Shenyang 110819, China

2 Liaoning Engineering Laboratory of Data Analytics and
Optimization for Smart Industry, Shenyang 110819, China

3 Key Laboratory of Data Analytics and Optimization for Smart
Industry (Northeastern University), Ministry of Education,
Shenyang 110819, China

Introduction

Convolutional neural network (CNN) is a typical represen-
tative of neural network architectures. Due to its powerful
feature extraction capability, it has shown excellent advan-
tages on a variety of competing vision-related tasks, includ-
ing images classification [1,2], text detection[3], industrial
data analysis [4], etc. In the past few years, researchers have
conducted a variety of interesting studies on CNNs, includ-
ing the design of architectures (depth, width, etc.) and the
enhancement of learning capabilities (feature extraction and
exploitation, propagation of loss functions, etc.). Represen-
tatives of CNNs include AlexNet [5], GoogLeNet [6], VGG
[7],ResNet [8],DenseNet [9], etc., all ofwhich have achieved
quite remarkable results.

Although these CNNs have been designed with great suc-
cess, the construction of CNN architectures is by no means
an easy task. For machine learning scholars, CNNs are like a
finely craftedwork of art that requires constant tuning to opti-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-022-00919-y&domain=pdf
http://orcid.org/0000-0001-8132-9446

3212 Complex & Intelligent Systems (2023) 9:3211–3228

mize the mechanisms and parameters of the network until a
good combination, a suitable regular planner, and optimized
parameters are found. This process is inseparable from a
wealth of prior knowledge and a huge amount of work, and
many scholars have put considerable efforts just to design a
satisfactory network architecture [10].

Fortunately, the potential of evolutionary algorithm (EA)
in neural architecture searching (ENAS) has attracted con-
siderable attention in the last few years and has yielded
very promising results [11,12]. Systematic reviews of ENAS
can be found in [13,14], where several representative algo-
rithms are introduced, such as Genetic CNN and Evo-CNN
(CNN architectures searching based on genetic algorithm)
[15,16], EAS and Meta-QNN (CNN architectures searching
based on Q-learning) [17,18], Large-scale Evolution [19],
CGP-CNN (CNN architectures searching based on Carte-
sian genetic programming) [20], NAS (CNN architectures
searching based on reinforcement learning) [21], and CNN-
GA and AE-CNN (CNN architectures searching based on
genetic algorithm and block encoding) [22,23], etc. Experi-
mental results of these methods have shown that pretty good
performance in searching for the optimal network structures
and excellent results have been achieved. But there are still
some important limitations that need to be addressed. First,
some of these algorithms still require considerable exper-
tise, e.g., the EAS algorithm is based on a primary network,
while the selection of the primary network still requires
considerable empirical knowledge. Second, the performance
of some ENAS algorithms is highly dependent on compu-
tational resources, e.g., it takes 28 days to train NAS on
CIFAR10 even with 800 GPUs. Third, some of these meth-
ods, such as genetic CNNs, employ the encoding strategy
with a fixed length or a fixed width, which means that the
depth or width of CNNs is fixed. Since the performance of
CNNs depends heavily on their depth and width, it is desir-
able that the architecture of CNNs could be flexible and
versatile to ensure good generalization ability to different
tasks.

The purpose of this paper is to design an algorithm that
can autonomously evolve neural networks for the task of
image classification, which can overcome the limitations of
the existing methods described above. In view of the excel-
lent performance of genetic programming in many practical
applications, the idea of the binary diagram of Cartesian
genetic programming (CGP) [24] is introduced into this paper
to encode the structure of CNN architectures. The main con-
tributions of this paper are as follows:

(1) A flexible coding strategy of variable length and width
is proposed based on CGP, and 22 alternative function
blocks are designed.Where the tree-like structure of CGP
with fewer structural constraints can represent the topol-
ogy of CNNs well. Meanwhile, the efficient alternative

function blocks can make the algorithm more efficient
and can expand the search space, which in turn provides
more possibilities for finding more high-quality architec-
tures.

(2) A multi-objective genetic programming with a leader–
follower mechanism is designed, where the external
archive of non-dominated solutions and the elite pop-
ulation act as leader and follower, respectively. This
mechanism can speed up the convergence while prevent-
ing the algorithm from getting trapped in a local optimum
to a large extent.

(3) The effectiveness of the proposed algorithm is validated
on eight benchmark datasets that are widely adopted
in images classification tasks and a real-world indus-
trial dataset. Computational results illustrate the superior
performance of the proposed algorithm over various
state-of-the-art algorithms.

The rest of this paper is organized as follows. The next sec-
tion presents an introduction of the background and related
works on the design of CNNs. Then the details of the pro-
posed LF-MOGP are presented in the subsequent section
followed by which the experiment design is introduced to
evaluate the performance of the proposed algorithm. Then
the results and analysis of the experiments are given. The
penultimate section presents a case of LF-MOGP applied to
a real-world industrial problem of slab number recognition.
Finally, the conclusion and future works are presented.

Background

Cartesian genetic programming algorithm

As an evolutionary computation technique, genetic program-
ming (GP) is capable of automatically evolving models to
solve real-world problems based on the principles of evolu-
tion and natural selection in the biological world [25], which
iswell-known for its flexibility and high interpretability com-
pared to other evolutionary algorithms and is widely adopted
in image classification, scheduling and regression tasks [26].
As a highly representative branch of GP, CGP can flexi-
bly encode various computing structures while avoiding the
bloat problem in GP [27–29]. Which is capable of achiev-
ing high robustness and generalization due to its remarkable
self-organization, self-learning, and self-adaptive properties,
and is more effective than other GP algorithms in many com-
plex problems such as parameters optimization, scheduling,
resource allocation, and complex network analysis [30,31].

The general form of CGP is shown in Fig. 1, which is
represented by a directed graph with index nodes. In this
form, there are n inputs and m outputs, and the output is
obtained from the nodes of the last column. The size of the

123

Complex & Intelligent Systems (2023) 9:3211–3228 3213

Fig. 1 General form of Cartesian-GP

Fig. 2 Examples of ResNet

directed graph shown in Fig. 1 is n × c. The nodes of the
same column cannot be connected to each other, and the
connection between columns is also restricted by the level-
back (e.g. level-back = 3 means that the nodes in i th column
can connect to column i − 3 at most). The red dashed path
‘a-b-c-d’ represents a simple neural network with five nodes.

ResNet block

The creation of ResNet is a landmark event in the develop-
ment of CNNs, which has made extraordinary contributions
tomitigating gradient loss and utilizing features. The success
of ResNet is mainly attributed to the design of its building
blocks, especially the shortcut connections. During forward
propagation, the presence of the hopping structure allows the
input signal to propagate directly from any lower level to the
higher level, and the loss will not be attenuated by any inter-
mediate weight matrix. For the hopping structure, when the
input and output dimensions are the same, the correspond-
ing dimensions can be added directly and without any other
operation. But if the two dimensions are inconsistent, the
smaller dimension will be expanded by 0-padding or 1 × 1
convolution to make the input and output dimensions consis-
tent. Figure 2 shows a typical example of ResNet consisting
of three convolution layers and a skip connection, where the
line chart shows the jump propagation of loss values.

Proposed algorithm

Algorithm overviewwith leader-and-follower
mechanism

Algorithm 1 Framework of LF-MOGP
Input: Population size N , elite population size K , maximum

generations T ;

Output: Ensemble model EM∗;
t ← 0;

E = ∅,Ft = ∅ ;// Set the external archive E

and the elite population Ft to be empty

P ← Initialize a population by Algorithm 2;

Evaluate each solution in P for accuracy and complexity;

Sort solutions in P by the non-dominated sorting method;

E ← Put all non-dominated solutions in P into E;

Ft ← Select K elite individuals from the rest dominated

solutions in P into Ft by crowding distance;

while t < T do
ξ ←Uniformly generate a number from [0,1];

if ξ > t/(t + T) then
{p1, p2} ← Randomly select two different solutions

from E;

{p′
1, p

′
2} ← MUTATION(p1), MUTATION(p2);

{q1, q2} ← Randomly select two different solutions

from E;

{q ′
1, q

′
2} ← CROSSOVER(q1, q2);

end

else
{p1, p2} ← Randomly select p1 from E and p2 from

Ft ;

{p′
1, p2

′ } ←MUTATION(p1), MUTATION(p2);

{q1, q2} ← Randomly select q1 from E and q2 from

Ft ;

{q ′
1, q

′
2} ← CROSSOVER(q1, q2);

end
˜E = E

⋃{p′
1, p

′
2}

⋃{q ′
1, q

′
2};

E ← Update E with ˜E by non-dominated sorting;
˜F = Ft

⋃{p′
1, p

′
2}

⋃{q ′
1, q

′
2}

⋃

˜E \ E;
Ft ← Select K elite individuals from the solutions in ˜F

by non-dominated sorting and crowding distance;

t ← t + 1;
end

123

3214 Complex & Intelligent Systems (2023) 9:3211–3228

The framework of the proposed LF-MOGP is shown in
Algorithm 1, which consists of the following steps. In the
beginning, the items such asE,Ft ,P are initialized,where the
initialization of the population based on the basic functional
blocks is explained in detail in Algorithm 2, and the basic
blocks designed in our algorithm are described in Sect. 3.2.

Then, the CNN corresponding to each solution in the pop-
ulation is constructed and evaluated separately. Here two
evaluation metrics are introduced, the maximization of clas-
sification accuracy (Acc) and theminimization of complexity
of the model, their detailed descriptions can be found in
Sect. 3.6.

After that, the comparisons of the non-dominated rela-
tionship of all the solutions are performed, and then the
leader–follower mechanism comes into play, the flow dia-
gram of the leader–follower mechanism is shown in Fig. 3
(the red line represents the leaderE and the yellow circle rep-
resents the follower Ft , and the black arrow represents the
update of the solution set). Specifically, the non-dominated
solutions are stored in E, which will act as the leader dur-
ing evolution. For the rest solutions in P, K elite solutions
will be selected based on the crowding distance and stored
in Ft , which will act as the follower during evolution. In the
early stage of the algorithm, the non-dominated solutions in
external archive E will act as the leader. That is, the parent
solutions are mainly selected from E, which helps to achieve
a fast convergence speed.While in the later stage of the algo-
rithm, the parent solutions are selected fromboth the leaderE
and follower Ft , which can improve the search diversity thus
preventing the algorithm from falling into local optimum. In
the main loop of the LF-MOGP algorithm, the leader and
the follower will be updated iteratively and will collaborate
to achieve optimization of the relevant metrics with higher
accuracy and lower model complexity, as shown in the third
graph of Fig. 3, migrating to the upper right corner.

For the generation of new solutions, based on the char-
acteristics of CGP encoding, we design both mutation and
crossover operators. Obviously, the leader–follower mech-
anism allows the evolutionary process to focus on non-
dominated solutions rather than the whole population at
the early stage, which can greatly reduce the computational
resource requirements and also speed up the convergence
rate. The new solutions generated are also used to update the
solutions in Ft , thus allowing Ft to follow the changes of
E, which can improve the individuals’ diversity in the later
stage of the algorithm. That is, the leader–follower mecha-
nism is able to achieve a better balance between exploration
and exploitation while reducing computational resources.

Encoding and decoding strategy

Since the optimal structure of a CNN (including width and
depth) is unknown when dealing with a specific problem, the

encoding strategy employedmust satisfy the variability of the
depth and width of the CNN so that the proposed LF-MOGP
algorithm has the opportunity to find the optimal structure
of the CNN without the limitation of the search space. In
this regard, CGP has exactly such flexibility, and each node
function in CGP can be easily replacedwith an efficient func-
tion block, which makes CGP a good representation of CNN
structure. In addition, the CGP-based encoding strategy has
fewer restrictions on crossover and variation operations. It
does not have the traditional restrictions on the length or
width of the parent individuals by the crossover and vari-
ation operators, which can further expand the search space
and provide the possibility of finding the optimal structure
of CNNs.

As mentioned above each node in CGP is replaced with
an efficient function block. To increase the efficiency of
the algorithm, the ResNet block mentioned in Sect. 2.2 is
introduced as a basic block. Besides, another four types of
functional blocks, namely, ConvBlock, Pooling, Concat, and
Sum are also designed. These blocks contain several sub-
blocks depending on their internal parameter settings. Table 1
shows the specific design of parameters in each functional
block and its corresponding sub-blocks.

These functional blocks follow the following naming
rules. Taking ConvBlocks as an example, their names are
changed from C1 to C9, and the number and size of con-
volution kernels are increased accordingly. That is, these
9 ConvBlocks CB_32_1, CB_32_3, CB_32_5, CB_64_1,
CB_64_3, CB_64_5, CB_128_1, CB_128_3, CB_128_5 are
denoted as C1, C2,..., C9 in that order. ResNet Blocks are
also named in a similar way. The average and max pooling
are denoted by P1 and P2, respectively. The names of the
other function blocks are consistent with their symbols.

ConvBlock is used for feature extraction. The parameters
of the convolution are as follows. The kernel size is chosen
from {1 × 1, 3 × 3, 5 × 5}, the step is set to 1, and the
input will be padded with 0 before the convolution operation.
To alleviate the gradient dispersion during training, a batch
normalization is performed after each convolution.
ResNet Block is processed by the standard convolution. The
size of the convolution kernel is selected from {1× 1, 3× 3,
5× 5}, padding for half of the size of the convolution kernel
size. After convolution, the batch normalization and ReLU
function will be adopted. The specific form of ResNet is
shown in Fig. 2 above.
Pooling includes the maximum one and the average one. The
size of the filter is set to 2×2, and the step is set to 2. Since the
pooling process is equivalent to downscaling the features, the
number of pooling layers is bounded by the size of the input
image of d × d, and the maximum number of the adopted
pooling block is log2d.
Concat is designed to merge the feature maps at the chan-
nel level. If the two feature maps to be concatenated have

123

Complex & Intelligent Systems (2023) 9:3211–3228 3215

Fig. 3 Illustrative diagram of the leader-and-follower mechanism

Table 1 Detailed settings of the
alternate blocks Type ConvBlock ResNet Block Pooling Concat Sum

symbol CB(c, k) RB(c, k) AP MP Concat Sum

Variations c ∈ {32, 64, 128} c ∈ {32, 64, 128} k=2 – –

k ∈ {1, 3, 5} k ∈ {1, 3, 5}
Name C1, C2, ... ,C9 R1, R2, ..., R9 AP MP Concat Sum

the same number of rows and columns, they will be merged
directly at the channel level, otherwise, wewill down-sample
the one with a larger feature map by the maximum pooling
to make the two features have the same size. Then the final
feature map F can be represented as follows:

F = min(M1, M2) × min(N1, N2) × (C1 + C2), (1)

where theM1×N1×C1 andM2×N2×C2 are twodimensions
of the input images.
Sum is designed to merge the feature maps at the pixel level.
Similar to the Concat block, if the two feature maps to be
summed are in different numbers of rows or columns, we
will down-sample the one with a larger feature map by the
maximum pooling to make the two features have the same
size. In addition, if the two features to be summed have dif-
ferent channels, the one with the smaller number of channels
will be expanded with a 1× 1 convolution operator to make
them have the same dimension. The output of the featuremap
F can be represented as follows:

F = min(M1, M2) × min(N1, N2) × max(C1,C2) (2)

where theM1×N1×C1 andM2×N2×C2 are twodimensions
of the input images.

Figure 4 illustrates the procedure of how to decode the
genotype of a solution into its corresponding CNN architec-
ture. As shown in Fig. 4, a solution consists of three items,
node_id , is_active and gene. Specifically, the gene of the
first node is (C4, 0, 0), and according to the naming rules
mentioned earlier, C4 indicates that Convblock is selected,
the number of convolution kernels is 64, and the size of the

Fig. 4 Illustrative diagram of encoding and decoding strategy

convolution kernel is 1 × 1. The blocks and their specific
symbols can be referenced in Table 1. With respect to the
pooling block in the dotted box in the corresponding CNN
architecture below, it does not actually work here because
the sixth value of is_active is False.

123

3216 Complex & Intelligent Systems (2023) 9:3211–3228

Population initialization

The initialization procedure of the population is illustrated
in Algorithm 2, where each solution is produced according
to the employed encoding and decoding strategy.

Algorithm 2 Population Initialization
Input: Population size N , size of the training instance d×d,

minimum nodes Nl , maximum nodes Nu ;
Output: Initialized population P;
, P ← ∅;
n p ← log2 d ; // Get the maximum number of
pooling layers
for i = 1, · · · , N do

n pi ← 0;
k ← Uniformly generate the number of nodes (depth of
the network) in (Nl , Nu];
gene ← Initialize an empty array of size (k, 3) to store
the block type and connection IDs;
is_active ← Initialize a boolean array of size k to store
the activation type of the nodes;
for j = 1, · · · , k do

b ← Randomly choose a block from the alternative
blocks;
if b is POOLING BLOCK then

end
n pi ← n pi + 1;
if n pi > n p then

b ← Reselect one block from remaining blocks;
end
(cm, cn) ← Randomly generate connection ID from
[0, j) for cm and cn respectively;
gene j ← Determine the jth value of gene (gene j)
based on b and (cm, cn);

end
Si ← Get the solution by combining gene and is_ative;
P ← P ∪ Si ;

end
Return P

The generation of a solution consists of the following
steps. First, the parameters and an empty solution are initial-
ized. The next step is to select the type and connections for
each block of the solution. Notice that, since the pooling is a
downsampling operation, so the number of the adopted pool-
ing blocks must be less than log2 d [20], otherwise, b must
be re-selected from the rest of the blocks except the pool-
ing ones. Furthermore, each block can only be connected to
the nodes whose position precedes it, that is, both cm and cn
must be less than j . When all the genotypes of the k nodes
are determined, they will be encoded into the correspond-
ing blocks according to the encoding strategy described in

Sect. 3.2. Finally, the solution Si corresponding to a CNN
network is obtained by combining the gene and is_active.

Mutation

The mutation operation proposed in our method includes the
following three types, Adding, Removing, andModi f ying,
respectively. The detailed process of the mutation operation
is presented in Algorithm 3. The process of mutation opera-
tion consists of the following steps. First, the number of nodes
in the parent individual p is counted and one position is ran-
domly selected for the mutation. Second, a mutation type
is randomly selected from the three alternative types, and
then the mutation operation is performed. Please note that
this mutation process may result in a dimension mismatch
in the mutated offspring. For this possible case, a dimension
matching discriminant and restoration module is proposed
to determine if there is a mismatch in the dimension or the
image size in the mutated offspring. If so, the 1× 1 convolu-
tion will be adopted to make the two dimensions consistent,
and the maxpool operation will be used to downsample the
large-size input so that the two inputs have the same size.
Finally, the mutated offspring q is obtained and returned.

Algorithm 3Mutation Operation of LF-MOGP
Input: Parent solution p;
Output: Mutated offspring q;
L ← Count the number of nodes in p;
pm ← Randomly choose a position to mutate from (0-L);
type ← Randomly choose a mutation type from {Adding,
Removing, Modifying};
if type is Adding then

Perform Adding: Randomly select a block and insert it
into position pm

end
else if type is Removing then

Perform Removing: Remove the block at position pm
end
else if type is Modi f ying then

Perform Modi f ying: Modify the associated parameters
of the block at position pm

end
q ← Evaluate and repair dimensions of p;
Return q

Figure 5 illustrates the implementation of the muta-
tion process, where the third mutation strategy Modi f ying
includes two methods, which are modifying connection
nodes of block andmodifying the configuration of block (size
or number of convolutional kernels, etc.)

123

Complex & Intelligent Systems (2023) 9:3211–3228 3217

Fig. 5 Illustration of the mutation process implementation

Crossover

Unlike the traditional crossover operation that requires two
parent individuals to have the same length, in our algorithm,
the two parent individuals can have different lengths. Fewer
constraints here, so a larger search space is gained. The
detailed procedure of this crossover operation is presented
in Algorithm 4.

Specifically, the crossover operation consists of the fol-
lowing steps. First, based on the two random crossover
positions the single-point crossover operation is performed.
After restructuring, new offsprings are preliminary gener-
ated. A simple example to illustrate the crossover process
is presented in Fig. 6. Next, a dimension matching discrim-
inant is carried out, and if necessary, their dimensions are
repaired in a similar way like the mutation operator. Finally,

Algorithm 4 Crossover Operation of LF-MOGP
Input: genotype of parents P1, P2;
Output: Crossed offspring Q1, Q2;
pos1, pos2 ← Randomly choose two crossover positions of
P1, P2;
P11, P12 ← Separate genotype of P1 at position pos1;
P21, P22 ← Separate genotype of P2 at position pos2;
Q1 ← Combine genotypes P11, P22;
Q2 ← Combine genotypes P21, P12;
Q1, Q2 ← Evaluate and repair dimensions of the new off-
spring;
Return Q1, Q2

the offspring solutions generated by the crossover operation
are obtained.

123

3218 Complex & Intelligent Systems (2023) 9:3211–3228

Fig. 6 Illustration of the crossover process implementation

Fitness evaluation

The evaluation of a solution consists of two conflicting objec-
tives: the classification accuracy (Acc) and the complexity
of the corresponding CNN. The classification accuracy is
calculated by the ratio of the number of incorrectly classi-
fied images to the total number of images, which is widely
adopted in image classification tasks. The complexity is
calculated by the number of trainable parameters of the cor-
responding CNN, as done by Sun et al. [22]. The purpose of
choosing these two metrics is to obtain CNN architectures
with high accuracy but low complexity.

Experiment design

Benchmark datasets

In the experiments, eight benchmark datasets that are widely
used for images classification tasks are adopted to evaluate
the performance of the proposed LF-MOGP. These bench-
mark datasets include CIFAR10, CIFAR100, Fashion, MB,
MRI, MRB, MRD, and MRDBI. CIFAR10 and CIFAR100
cover the colorful images of objects such as cars and boats.
The difference between them is that CIFAR100 covers 100
categories of objects, and each image of CIFAR100 con-
tains a fine label except for super label. Fashion covers some
fashion objects such as coats and shirts, and images covered
in Fashion are grayscale. MNIST and its variants are estab-
lished for the classification of ten hand-written digits (i.e.,
0-9). The variants MRI, MRB, MRD, andMRDBI introduce
different obstacles toMB (e.g., rotation, random noise, back-
ground images), which significantly increase the complexity
of the classification tasks. The examples of these benchmark
datasets are shown in Figs. 7, 8, and 9, respectively. A more
detailed description of these datasets is provided in Table 2.

flower

tank

airplane

automobile

(CIFAR10)

(CIFAR100)

Fig. 7 Examples for benchmarks dataset of CIFAR10 and CIFAR100

Fig. 8 Examples for benchmarks datasets of Fashion

Fig. 9 Examples for benchmarks datasets of MNIST and its variants

Experimental setting

The LF-MOGP algorithm is implemented in Pytorch, and all
the experiments are carried out on a personal computer with
one GeForce RTX 3090 GPU, Intel(R) Xeon(R) Silver 4110
CPU, and 32 GB RAM. The relevant details of the exper-
iments can be described as follows. The maximum of the
rows, columns, level_back, the minimum, and maximum of
active nodes allowed in the neural networks are set to 5, 30,
10, 7, 30, respectively, which are determined by preliminary
experimental experiences. Additionally, 22 alternative basic
blocks are designed, which are shown in Table 1. The popu-
lation size of P is set to 30, and the maximum of generations
for population evolution is set to 100. The maximum of the

123

Complex & Intelligent Systems (2023) 9:3211–3228 3219

Table 2 Summary of benchmark datasets used in the experiments

Dataset Description Number of categories Train-test(×1e3)

CIFAR10 Common objects 10 50–10

CIFAR100 Common objects 100 50–10

Fashion Fashion objects 10 50–20

MB MNIST with basic digits 10 12–50

MBI MNIST with background image 10 12–50

MRB MNIST with random background 10 12–50

MRD MNIST with rotated digits 10 12–50

MRDBI MNIST with rotated digits and background image 10 12-50

training epoch is set to 100. The learning rate is initially set to
1e-3 and is adjusted by cosine with an adjustment period of
80. The Adaptive Gradient method (Adam), where the beta
is set to (0.9, 0.999), is chosen as the optimizer.

Experiment results

Overall results

To verify the effectiveness of the proposed LF-MOGP algo-
rithm, a series of comparison experiments with 36 powerful
competitor algorithms including the state-of-the-art ones are
conducted.

Since the re-implementation of the competitor algo-
rithms may not be able to achieve the same performance
reported in the original papers. To make a fair compari-
son, for each dataset in our experiment, we collected the
experimental results of these algorithms from the original
papers. Furthermore, the competitor algorithms were often
experimented with different datasets. Therefore, different
competitor algorithms may be chosen for different datasets.
More specifically, the best classification performance results
of the proposed LF-MOGP and its competitors are shown
in Tables 3, 4, and 5, which correspond to the MNIST and
its variant datasets, Fashion, and CIFAR, respectively. Note
that all the results on the competitors given in the tables are
reported in their papers, where the symbol ‘−’ implies that
there is no public recorded result by the corresponding peer
competitors.

In Table 5, not only the classification error but also the
number of trainable parameters and ‘GPU Days’ are inves-
tigated to evaluate both the accuracy and complexity. Note
that ‘GPUDays’ is just a reference indicator of computational
consumption because the performance of different GPUs is
different, and the specific experimental environment of each
algorithm can be seen in the last row of Table 5. Specifically,

if the algorithm employs 3GPUs and runs for 7 days, then the
corresponding ‘GPUDays’ will be 21. In contrast, the classi-
fication errors and training epochs are given in Table 4, while
Table 3 only gives the classification errors due to fact that
the competitors only reported the best classification errors of
their algorithms and do not report other relevant results.

A. MNIST and its variants
As shown in Table 3, regarding the best classification

performance, LF-MOGP can outperform all the compared
competitors on the MNIST and its variants, except for the
third-best performance on the MRD dataset. More specif-
ically, the best classification error for MB, MRB, MBI
and MRDBI obtained by the ENAS algorithms, are 0.79%,
2.44%, 4.06% and 17.92%, respectively. However, our LF-
MOGP can further reduce the best classification error to
0.52%, 2.41%, 3.08% and 14.98%. Especially for the MB
dataset, our LF-MOGP achieves a classification accuracy of
nearly 99.5%. Moreover, for the MRDBI dataset whose dif-
ficulty of the classification is highest, the best performance
among the compared algorithms is 17.92% obtained by
SEECNN, but our LF-MOGP reduces the classification error
to 14.98%, which demonstrates the advantage of LF-MOGP
in dealingwith complex classification tasks.When compared
with the two GP-based algorithms(IEGP and FGP), the pro-
posed LF-MOGP also demonstrates an absolute advantage,
with significantly lower classification errors than both algo-
rithms on all queryable datasets.

B. Fashion
Ninepeer competitors including the fourmethods (2C1P2F,

2C1P, 3C2F, 3C1P2F+Dropout) collected from the web-
site (https://github.com/zalandoresearch/fashion-mnist) of
the Fashion dataset are adopted here to evaluate the perfor-
mance of LF-MOGP, and the statistical results are shown in
Table 4. As shown in Table 4,

LF-MOGP obtained the second-best classification error,
and among all the competitors, the lowest classification error
is 3.09% obtained by Fine-Tuning DARTS. However, it is

123

https://github.com/zalandoresearch/fashion-mnist

3220 Complex & Intelligent Systems (2023) 9:3211–3228

Table 3 The best classification
error rates of LF-MOGP and its
competitors on MNIST and its
variants

Method Model MB MRD MRB MBI MRDBI

Handcrafted CAE-2 [32] 2.48 9.66 10.90 15.50 45.23

TIRBM [33] − 4.20 − − 35.5

PGBM+DN-1 [34] − − 6.08 12.25 36.76

RandNet-2 [35] 1.25 8.47 13.47 11.65 43.69

PCANet-2 [35] 1.06 7.37 6.19 10.95 35.86

LDANet-2 [35] 1.05 7.52 6.81 12.42 38.54

SVM+RBF [36] 3.03 10.38 14.58 22.61 32.62

SVM+Poly [36] 3.69 13.61 16.62 24.01 37.59

NNet [36] 4.69 17.62 20.04 27.41 42.17

SAA-3 [36] 3.46 11.43 11.28 23.00 24.09

DBN-3 [36] 3.11 12.30 6.73 16.31 28.51

ENAS IPPSO [37] 1.13 − − − 33

SEECNN [38] 0.79 4.33 2.44 4.06 17.92

EvoCNN [16] 1.18 5.22 2.8 4.53 35.30

IEGP [39] 1.18 5.72 6.41 10.59 −
FGP [40] 1.18 7.37 6.54 7.48 −
LF-MOGP (ours) 0.52 5.45 2.41 3.08 14.98

worth pointing out that Fine-Tuning DARTS is a handcrafted
model, where the cutout and random erasing data augmen-
tation techniques were adopted during training. Besides,
Fine-Tuning DARTS is a DARTS-based fine tuning algo-
rithm, while the proposed LF-MOGP does not use any
additional data augmentation techniques and is trained from
scratch instead of fine tuning. Except for the Fine-Tuning
DARTS, LF-MOGP reduces the best two classification errors
by 2.52% and 2.72%, respectively, compared to VGG16
and GoogleNet. Compared to the three ENAS algorithms
(EvoCNN, SEECNN and FPSO), LF-MOGP achieves the
highest classification accuracy without significantly increas-
ing parameters. Compared with FPSO, the number of param-
eters of our model increases by 0.12M, but the accuracy of
our model is higher. Besides, LF-MOGP reduces the clas-
sification error by 1.68% compared to EvoCNN, while the
number of parameters is reduced by 1.24M, which is very
promising, and the classification error is reduced by 1.6%
compared to SEECNN.
C. CIFAR10 and CIFAR100

The comparison results of LF-MOGPagainst the competi-
tors are presented in Table 5. For CIFAR10, the classification
errors of LF-MOGP are lower than that of all the handcrafted
models. Besides, the best CNN evolved by LF-MOGP has
a smaller number of parameters, which demonstrates the
significant superiority of the proposed algorithm over the
handcrafted models. In comparison to the ENAS methods

on CIFAR10, the proposed LF-MOGP is not inferior, except
that the classification error of LF-MOGP is 0.72% higher
than that of PNAS, while the running time is only 4% of
PNAS.

Regarding the GPU Days and parameters, the best results
of the ENAS algorithm are 1.65 and 0.7M obtained by FPSO.
However, its accuracy is not very promising, due to the fact
that its classification error is 2.15% higher than that of our
LF-MOGP.

In addition to PNAS, the top five ENAS algorithms
with the minimal classification errors are CNN-GA, Genetic
CNN, Large-scale Evolution, EvoCNN, NATS-Bench, and
their classification errors are 4.78%, 5.01%, 5.40%, 5.47%,
5.63%, respectively. Compared with them, the proposed LF-
MOGP can further reduce the classification error by 0.65%,
0.88%, 1.27%, 1.34% and 1.50%, respectively. The CNN
evolved by LF-MOGP is more lightweight with only 1.07M
parameters, which is conducive to extending the algorithm to
practical applications. Moreover, LF-MOGP also has a sig-
nificant advantage in terms of ‘GPU Days’. Compared with
the above ENAS algorithms, the proposed LF-MOGP algo-
rithm takes the shortest running time to search for the optimal
CNN architecture except for FPSO.

For CIFAR100, the best error obtained by LF-MOGP is
about 26.37%. Compared with the Handcrafted algorithms,
LF-MOGP can outperform all of them except DenseNet.
More specifically, although the classification error of LF-

123

Complex & Intelligent Systems (2023) 9:3211–3228 3221

Table 4 The best classification
error rates, parameters and train
epoch of LF-MOGP and its
competitors on Fashion dataset

Method Model Error Rates Parameters Epoch

Handcrafted 2C1P2F 8.40 3.27M 300

2C1P 7.50 100K 30

3C2F 9.30 − −
3C1P2F+Dropout 7.40 − 150

GoogleNet [6] 6.30 101M −
AlexNet [5] 10.10 60M −
VGG16 [7] 6.50 26M 200

Fine-Tuning DARTS [41]|† 3.09 3.2M −
ENAS SEECNN [38] 5.38 − −

EvoCNN [16] 5.47 3.68M 100

FPSO [42] 4.93 2.32M −
LF-MOGP (ours) 3.78 2.44M 100

†Best classification error for handcrafted neural networkmodels available on Fashion dataset,
which uses the cutout and random erasing data augmentation techniques during training

MOGP is a little higher than that of DenseNet, the number
of parameters of the model obtained by our LF-MOGP is
only one-third of that obtained by DenseNet. Compared with
the ENAS algorithms, the classification error of LF-MOGP
is slightly inferior to those obtained by CNN-GA, Large-
scale Evolution and Genetic CNN. However, the number
of parameters of our evolved model is also much less than
those obtained by the three algorithms. Moreover, our LF-
MOGP can reduce the error by 0.77%, 0.74%, and 0.12%
compared to ME-HDSS, MetaQNN, and NATS-Bench algo-
rithms, respectively. Thus, it can be seen that our LF-MOGP
is still very competitive with these state-of-the-art algorithms
on the CIFAR100 dataset.

Analysis of strategy effectiveness and evolutionary
behavior

Effectiveness regarding the leader–follower mechanism

The leader–follower mechanism (details in Sect. 3.1) is an
important strategy proposed in this study. To verify its neces-
sity and effectiveness, further experiments are carried out on
CIFAR10 in this section. The comparison of the evolutionary
behavior of LF-MOGPwith and without the leader–follower
mechanism is illustrated in Fig. 10.)

As can be seen from Fig. 10a, the Pareto front obtained by
LF-MOGP is much superior to that obtained by the one with-
out the leader–followermechanism. In addition, according to
Fig. 10b, the evolutionary process of the mean ACC of top
5 individuals obtained by LF-MOGP also outperform that
obtained by the one without the leader–follower mechanism.

The experiment results show that the leader–followermecha-
nism is effective and can guide the search to more promising
regions in the search space.

Evolutionary behavior

To analyze the evolutionary behavior (especially conver-
gence) of the proposed LF-MOGP, we show the evolutionary
process of the Pareto front obtained by our algorithm in
Fig. 11, using theMBI dataset as an example. The figure con-
tains three parts, namely the evolutionary process of Pareto
front (with a sampling period of 20 generations), and the two
convergence trajectories of theACCand complexity (number
of parameters) metrics obtained by our algorithm.

As can be seen from the Fig. 11a, the quality of the
Pareto front steadily improves as the number of generations
increases, with the highest accuracy of 97.6% obtained by
the non-dominated solutions on the validation set. Accord-
ing to Fig. 11b, both the mean ACC of the population and
the best ACC of the individual show a steady increase against
the generation, and tend to converge at the 80th generation.
Similarly, from Fig 11c, it appears that the parameters of the
individual with the best accuracy, as well as the mean param-
eters of the population, decreases obviously with the increase
of generation, and their trajectories also tend to converge at
around the 80th generation.

Discussion

In summary, LF-MOGP achieves promising performance on
the eight datasets. Compared with the ENAS algorithms,

123

3222 Complex & Intelligent Systems (2023) 9:3211–3228

Ta
bl
e
5

T
he

be
st
cl
as
si
fic
at
io
n
er
ro
r
ra
te
s,
pa
ra
m
et
er
s,
G
PU

D
ay
s,
an
d
ex
pe
ri
m
en
ta
le
nv
ir
on
m
en
to

f
L
F-
M
O
G
P
an
d
its

co
m
pe
tit
or
s
on

C
IF
A
R
10

an
d
C
IF
A
R
10
0

M
et
ho
d

M
od
el

C
IF
A
R
10

C
IF
A
R
10
0

Pa
ra
m
et
er
s

E
xp
er
im

en
ta
le
nv
ir
on
m
en
t

E
rr
or

G
PU

D
ay
s

E
rr
or

G
PU

D
ay
s

H
an
dc
ra
ft
ed

M
ax
ou
t[
43
]

9.
38

−
38
.5
7

−
−

−
A
ll-
C
N
N
[4
4]

9.
08

−
33
.7
1

−
−

N
V
ID

IA
m
od
er
n

N
IN

[4
5]

8.
81

−
35
.6
8

−
−

−
H
ig
hw

ay
N
et
w
or
k
[4
6]

7.
76

−
−

−
−

N
V
ID

IA
Te
sl
a
K
40

V
G
G
[7
]

6.
66

−
−

−
20
.0
4
M

N
V
ID

IA
T
ita
n
B
la
ck

R
es
N
et
(d
ep
th
=
10
1)

[8
]

6.
60

−
44
.7
4

−
1.
70

M
−

D
en
se
N
et
(K

=
24

)
[9
]

5.
19

−
19
.6
4

−
15
.3
0
M

−
E
N
A
S

G
en
et
ic
C
N
N
[1
5]

5.
01

30
25
.1
0

−
−

/4
.6

M
−

M
et
aQ

N
N
[4
7]

6.
92

21
00
0

27
.1
4

−
−/

−
N
V
ID

IA
G
eF
or
ce

G
T
X
20
80

C
G
P-
C
N
N
[4
8]

6.
34

30
−

−
1.
75
M
/4
.6
0M

N
V
ID

IA
G
eF
or
ce

G
T
X
10
80
T
i

N
A
S
[2
1]

6.
01

22
40
0

−
−

2.
50

M
/−

−
PN

A
S
[4
9]

3.
41

22
5

−
−

3.
20

M
/−

−
E
vo
C
N
N
[1
6]

5.
47

−
−

−
6.
68

M
/−

N
V
ID

IA
Te
sl
a
V
ol
ta
V
10
0

L
ar
ge
-s
ca
le
E
vo
lu
tio

n
[1
9]

5.
40

−
23
.0
0

−
5.
40

M
/−

−
C
N
N
-G

A
[2
2]

4.
78

35
22
.0
3

40
2.
90

M
/4
.1
0M

−
N
A
T
S-
B
en
ch

[5
0]

5.
63

−
26
.4
9

−
−/

−
−

M
E
-H

D
SS

[5
1]

6.
35

−
27
.1
1

−
−/

−
−

FP
SO

[4
2]

6.
28

1.
65

−
−

0.
70

M
/−

−
L
F-
M
O
G
P
(o
ur
s)

4.
13

10
26
.3
7

13
1.
07

M
/4
.1
2M

N
V
ID

IA
G
eF
or
ce

30
90

*
Fo

r
th
e
pa
ra
m
et
er
,i
ti
s
sa
m
e
in

C
IF
A
R
10

an
d
C
IF
A
R
10
0
fo
r
th
e
ha
nd
cr
af
te
d
m
od
el
,b
ut

th
e
E
N
A
s
al
go
ri
th
m

w
ill

ge
td

if
fe
re
nt

m
od
el
s
on

di
ff
er
en
td

at
as
et
s,
so

th
er
e

w
ill

be
tw
o
pa
ra
m
et
er

qu
an
tit
ie
s,
of

w
hi
ch

th
e
le
ft
an
d
ri
gh
ta
re

th
e
pa
ra
m
et
er
s
of

C
IF
A
R
10

an
d
C
IF
A
R
10
0
re
sp
ec
tiv

el
y

123

Complex & Intelligent Systems (2023) 9:3211–3228 3223

Fig. 10 Evolutionary behavior of LF-MOGP with and without the leader–follower mechanism

Fig. 11 LF-MOGP evolutionary behavior on MBI

LF-MOGP performed best on five datasets, second best on
two datasets, and third best on one dataset. The advan-
tages aremore obvious when comparedwith theHandcrafted
algorithms. The main reasons for the good performance of
LF-MOGP can be analyzed as follows:

(1) Benefit from the encoding strategy of variable length-
width designed in LF-MOGP. This encoding strategy is
conducive to feature extraction and ensures that richer
features can be extracted, and rich features are the basic
guarantee for completing the classification tasks. In addi-
tion, LF-MOGP is essentially a block-based algorithm,
while CGP is a tree-like structure with fewer structural
constraints on the CNNs, so encoding the blocks with
CGP can provide a larger search space for the algorithm.

(2) The proposed leader–follower mechanism has the advan-
tage of accelerating the convergence speed of the algo-
rithm aswell as fewer resource requirements. An external
archive of non-dominated solutions acts as the leader and
the evolution operation is mainly performed on solutions
from the external archive, which can greatly reduce the
computational resources. In addition, an elite population
is updated by new solutions that cannot enter the exter-
nal archive, which means that the elite population can
be viewed as a follower of the external archive. During
evolution, if the diversity of the external archive tends to
deteriorate, the solutions from the elite population will
be selected to generate new solutions with good diver-
sity, which can help the algorithm avoid getting trapped
in the local optimum.

123

3224 Complex & Intelligent Systems (2023) 9:3211–3228

Input

MB MBIMRBMRD MRDBI Fashion CIFAR10

RB_64_3

RB_64_3

RB_128_5

MP

CB_32_1

MP

CB_32_3

CB_64_3

full

Input

full

Input

RB_128_3

RB_64_3
RB_128_1

CB_32_3

RB_32_3

RB_128_5

AP

AP

RB_64_5 RB_32_1

Concat

CB_32_3

full

Input

CB_128_3 CB_128_1

CB_32_5 CB_128_3

CB_32_5

MP

RB_64_3

Sum

Sum

RB_128_1

MP

full

Input

RB_128_5

CB_32_5

CB_32_3

AP

RB_128_5

RB_32_5

RB_32_5

AP

CB_32_5

full

Input

CB_32_5

RB_64_1

MP

CB_64_5

CB_128_3

CB_64_1

AP

full

RB_128_3

Input

MP RB_64_3 Concat

CB_64_3 RB_32_1

CB_32_1 CB_32_3

CB_32_1

RB_64_5

Concat

Sum

CB_64_5

Sum

CB_64_5

RB_128_5

CB_64_3

full

CB_32_3 CB_128_3 CB_64_1

RB_128_1 Concat

RB_128_3 RB_128_1

AP
RB_64_3

RB_128_1
Concat

AP

CB_128_3

Fig. 12 Best CNNs evolved by LF-MOGP

Best CNNs evolved by LF-MOGP

Evolved CNN architectures

The best CNNs evolved by LF-MOGP on the seven bench-
mark datasets are presented in Fig. 12. Based on these best
CNNs, the following conclusions can be drawn. First, the
depth and width of these CNNs are different on different
datasets, which indicates that LF-MOGP can design CNNs
in a targeted manner according to the data characteristics of
different tasks. Second, it breaks the limitations of traditional
CNNs construction. For example, the fully connected layer
can also use features from previous layers, which is signifi-
cantly different from the classical fully connected layer that
only completes the classification task based on the features
obtained in the last layer, which improves the utilization of
features. In addition, in conventional CNNs, pooling after
convolution is a regular operation, whereas here they can be
performed simultaneously, whichmakes the scale of features
richer and thus the CNNs constructed by LF-MOGP become
more flexible and powerful for feature extraction and utiliza-
tion. Finally, the best CNNs evolved by LF-MOGP on the
seven benchmark datasets are relatively lightweight, and thus
it is more friendly to resources and hardware. Such CNNs are
more suitable for practical applications such as applications
on mobile devices.

Convergence performance of the best CNNs

To better understand the convergence performance of the
best CNNs evolved by LF-MOGP, we plot the trajectories
of classification accuracy and loss value on the validation set
during the training process. Note that here is the validation
set instead of the test set, because the test set is not allowed
to participate in the training process. To organize the paper
properly, the convergence curves of six representative CNNs
with the best performance are provided in Fig. 13. From the
observation of the convergence curves, the following conclu-
sions can be drawn. First, these CNNs can converge within
100 epochs, so the convergence rate is relatively fast. Second,
the convergence curves indicate that the settings of the rele-
vant hyperparameters are feasible to ensure that each model
can be adequately trained, such as the number of training
epochs. In addition, the settings of the learning rate and its
adjustment strategy are reasonable to enable the CNNs to
achieve convergence as soon as possible.

Real-world application

Nowadays, intelligent methods based on computer vision
have been widely used in industrial applications [52], so in
this section, LF-MOGP is further validated on the online clas-
sification of the real-world industrial slab numbers. The slab

123

Complex & Intelligent Systems (2023) 9:3211–3228 3225

Fig. 13 Convergence performance of the best CNNs

Fig. 14 Example of real-word industrial slab data

number is used as a unique identification for each slab in the
hot rolling process to help the site operator to put the slab
into the designated heating furnace for heating and then com-
plete the hot rolling production. Figure 14 shows an example
of industrial slab number image data, where the sequence of
slab numbers is on the left and the segmented slab number
characters images are on the right. At present, the identifica-
tion of slab numbers is done by operators 24 h a day, which
is labor-intensive and inefficient, and any mistake will cause
serious economic losses to the production line. Therefore, it
is important to design a stable and efficient intelligent slab
number identification algorithm to reduce labor costs and
improve production efficiency.

Table 6 shows the classification results of the proposed
LF-MOGP and several comparative algorithms on the real-
world slab dataset. As can be seen from Table 6, the best
CNN architecture evolved by LF-MOGP achieves the high-
est classification accuracy of 98.07% without a significant
increase in the number of parameters compared to the rival
algorithms. In fact, the number of parameters is less than
those obtained by VGG and ResNet. The application scenar-
ios for real-world problems are generally limited computing
resources. Therefore, the evolved CNNs have a very high

practical application value with high accuracy and low com-
plexity.

The identification results for some practical slab num-
bers are presented in Fig. 15, where the characters marked
in red mean misidentified numbers. From this figure, it can
be seen that the CNN evolved by LF-MOGP can identify
the slab number correctly in most cases even for those slabs
with quite low quality characters. Such slab numbers are
also very hard to distinguish by experienced human experts.
It is worth noting that LF-MOGP is designed for single-
label image classification. When dealing with slab number
sequence recognition, ourmethod can first recognize the seg-
mented character images with a batch size of 10 without
disturbing the order, and then reconvert the recognition result
into a slab number sequence.

Conclusion and future work

In this paper, a CGP-based autonomous evolutionary convo-
lutional neural network search algorithm (LF-MOGP) was
proposed to evolve goodCNNs for image classification tasks.
In this algorithm, a flexible variable length-width encoding
strategy was designed based on CGP and 22 basic func-
tional blocks, which can help to expand the search space. To
achieve convergence acceleration and reduce computational
resources, a leader–follower strategy was proposed to guide
the evolution process. The proposed LF-MOGP is tested on
eight benchmark datasets and a real-world industrial dataset,
and the experimental results illustrated that LF-MOGP out-
performed 35 existing algorithms in the literature in terms
of classification accuracy, model complexity, and computa-

123

3226 Complex & Intelligent Systems (2023) 9:3211–3228

Table 6 Classification results
on the real-world slab numbers
dataset

Model LeNet [53] VGG [7] ResNet [8] DenseNet [9] LF-MOGP

Parameters(M) 0.27 13.84 11.69 6.97 7.7

Acc (%) 96.56 96.95 97.21 97.26 98.07

Fig. 15 Example of
identification results of
LF-MOGP and several
comparative algorithms (the red
characters indicate recognition
errors)

LeNet

VGG

ResNet

DenseNet

Ours

8M4995L510

8N4095L510

8M4095L510

8M4885L510

8M4095L510

8N5055L520

8N5055L520

8M5055L520

8N5055L520

8M5055L520

8M5055L030

8M5065L030

8M5855L030

8M5855L030

8M5055L030

8M5051010

8M5051010

8M505L010

8M5051010

8M505L010

8N50801520

8M50301520

8M5030L520

8N50801520

8M5080L520

Labels 8M4095L510 8M5055L520 8M5055L030 8M505L010 8M5080L520

Images

tional resource requirement. Since the CNNs constructed by
LF-MOGP are relatively lightweight, it has greater potential
for industrial applications, which is our main future work.

Acknowledgements This research was supported by the Major Pro-
gram of National Natural Science Foundation of China (71790614), the
Fund for theNationalNatural Science Foundation ofChina (62073067),
the 111 Project (B16009), and the Fundamental Research Funds for the
Central Universities (N2128001).

Declarations

Conflict of interest The authors declare that they do not have any
commercial or associative interest that represents a conflict of interest
in connection with the submitted work.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Xue G, Liu S, Ma Y (2020) A hybrid deep learning-based fruit
classification using attention model and convolution autoencoder.
Complex & Intelligent Systems. https://doi.org/10.1007/s40747-
020-00192-x

2. Gadekallu, T.R., Alazab,M., Kaluri, R.,Maddikunta, P.K.R., Bhat-
tacharya, S., Lakshmanna, K., M, P.: Hand gesture classification
using a novel CNN-crow search algorithm. Complex & Intelligent
Systems 7(4), 1855–1868 (2021). https://doi.org/10.1007/s40747-
021-00324-x

3. Shaaban MA, Hassan YF, Guirguis SK (2022) Deep convolutional
forest: a dynamic deep ensemble approach for spam detection

in text. Complex & Intelligent Systems. https://doi.org/10.1007/
s40747-022-00741-6

4. Yu J, Zhang C,Wang S (2021) Multichannel one-dimensional con-
volutional neural network-based feature learning for fault diagnosis
of industrial processes. Neural Comput Appl 33(8):3085–3104.
https://doi.org/10.1007/s00521-020-05171-4

5. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifi-
cation with deep convolutional neural networks. Commun ACM
60:84–90

6. Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going
deeper with convolutions. In: 2015 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–9 (2015). https://doi.org/10.
1109/CVPR.2015.7298594

7. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556
(2014)

8. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/
CVPR.2016.90

9. Huang, G., Liu, Z., VanDerMaaten, L.,Weinberger, K.Q.: Densely
connected convolutional networks. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2261–2269 (2017).
https://doi.org/10.1109/CVPR.2017.243

10. Lecun Y, Bengio Y, Hinton GE (2015) Deep learning. Nature
521(7553):436–444

11. ZhuH, ZhangH, Jin Y (2021) From federated learning to federated
neural architecture search: a survey. Complex Intell Syst 7(2):639–
657. https://doi.org/10.1007/s40747-020-00247-z

12. Chu J, Yu X, Yang S, Qiu J, Wang Q (2022) Architecture entropy
sampling-based evolutionary neural architecture search and its
application in osteoporosis diagnosis. Complex & Intelligent Sys-
tems. https://doi.org/10.1007/s40747-022-00794-7

13. Liu, Y., Sun, Y., Xue, B., Zhang,M., Yen,G.G., Tan, K.C.: A survey
on evolutionary neural architecture search. IEEE Transactions on
Neural Networks and Learning Systems, 1–21 (2021). https://doi.
org/10.1109/TNNLS.2021.3100554

14. Hao J, Cai Z, Li R, Zhu W (2022) Saliency: a new selection crite-
rion of important architectures in neural architecture search. Neural
Comput Appl 34(2):1269–1283. https://doi.org/10.1007/s00521-
021-06418-4

15. Xie, L., Yuille, A.: Genetic cnn. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 1379–1388 (2017)

16. Sun Y, Xue B, Zhang M, Yen GG (2020) Evolving deep
convolutional neural networks for image classification. IEEE

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s40747-020-00192-x
https://doi.org/10.1007/s40747-020-00192-x
https://doi.org/10.1007/s40747-021-00324-x
https://doi.org/10.1007/s40747-021-00324-x
https://doi.org/10.1007/s40747-022-00741-6
https://doi.org/10.1007/s40747-022-00741-6
https://doi.org/10.1007/s00521-020-05171-4
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1007/s40747-020-00247-z
https://doi.org/10.1007/s40747-022-00794-7
https://doi.org/10.1109/TNNLS.2021.3100554
https://doi.org/10.1109/TNNLS.2021.3100554
https://doi.org/10.1007/s00521-021-06418-4
https://doi.org/10.1007/s00521-021-06418-4

Complex & Intelligent Systems (2023) 9:3211–3228 3227

Trans Evol Comput 24(2):394–407. https://doi.org/10.1109/
TEVC.2019.2916183

17. Cai, H., Chen, T., Zhang,W., Yu,Y.,Wang, J.: Efficient architecture
search by network transformation. In: AAAI (2018)

18. Mundt, M., Majumder, S., Murali, S., Panetsos, P., Ramesh, V.:
Meta-learning convolutional neural architectures for multi-target
concrete defect classificationwith the concrete defect bridge image
dataset. In: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11188–11197 (2019). https://doi.org/10.
1109/CVPR.2019.01145

19. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan,
J., Le, Q., Kurakin, A.: Large-scale evolution of image classifiers.
arXiv preprint arXiv:1703.01041 (2017)

20. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming
approach to designing convolutional neural network architectures.
In: Proceedings of theGenetic andEvolutionaryComputationCon-
ference, pp. 497–504 (2017)

21. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578 (2016)

22. Sun Y, Xue B, Zhang M, Yen GG, Lv J (2020) Automatically
designing cnn architectures using the genetic algorithm for image
classification. IEEE Trans Cybernet 50(9):3840–3854. https://doi.
org/10.1109/TCYB.2020.2983860

23. Sun Y, Xue B, Zhang M, Yen G (2020) Completely automated
cnn architecture design based on blocks. IEEE Trans Neural Netw
Learn Syst 31:1242–1254

24. Miller JF, Smith SL (2006) Redundancy and computational effi-
ciency in cartesian genetic programming. IEEETrans Evol Comput
10(2):167–174

25. Agapitos A, Loughran R, Nicolau M, Lucas S, O’Neill M,
Brabazon A (2019) A survey of statistical machine learning
elements in genetic programming. IEEE Trans Evol Comput
23(6):1029–1048. https://doi.org/10.1109/TEVC.2019.2900916

26. Huynh QN, Chand S, Singh HK, Ray T (2018) Genetic program-
mingwithmixed-integer linear programming-based library search.
IEEE Trans Evol Comput 22(5):733–747. https://doi.org/10.1109/
TEVC.2018.2840056

27. Miller, J.F.:What bloat? cartesian genetic programming on boolean
problems. (2003)

28. Miller JF, Smith SL (2006) Redundancy and computational effi-
ciency in cartesian genetic programming. IEEETrans Evol Comput
10:167–174

29. Fang W, Gu M (2021) FMCGP: frameshift mutation carte-
sian genetic programming. Complex Intell Syst 7(3):1195–1206.
https://doi.org/10.1007/s40747-020-00241-5

30. Miller JF, Harding, SL (2011) GECCO 2011 tutorial: Cartesian
genetic programming. In: Proceedings of the 13th Annual Confer-
ence Companion on Genetic and Evolutionary Computation, New
York, NY, USA, pp 1261–1284. https://doi.org/10.1145/2001858.
2002136

31. Esparcia-Alcázar AI, Almenar F, Vos TEJ, Rueda U (2018)
Using genetic programming to evolve action selection rules in
traversal-based automated software testing: results obtained with
the TESTAR tool. Memetic Comput 10(3):257–265. https://doi.
org/10.1007/s12293-018-0263-8

32. Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Contrac-
tive auto-encoders: Explicit invariance during feature extraction.
In: Proceedings of the 28th International Conference on Interna-
tional Conference on Machine Learning, Madison, WI, USA, pp.
833–840

33. Sohn, K., Lee, H.: Learning invariant representations with local
transformations. In: in Proceedings of 29 Th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK (2012)

34. Sohn K, Zhou G, Lee C, Lee H (2013) Learning and select-
ing features jointly with point-wise gated boltzmann machines.

In: Proceedings of the 30th International Conference on Machine
Learning, Atlanta, Georgia, USA, pp 217–857

35. Chan T-H, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) PCANet:
A simple deep learning baseline for image classification? IEEE
Trans Image Process 24(12):5017–5032. https://doi.org/10.1109/
tip.2015.2475625

36. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.:
An empirical evaluation of deep architectures on problems with
many factors of variation. In: Proceedings of the 24th International
Conference on Machine Learning.ICML ’07, pp. 473–480. Asso-
ciation for Computing Machinery, New York, NY, USA (2007).
https://doi.org/10.1145/1273496.1273556

37. Wang, B., Sun, Y., Xue, B., Zhang, M.: Evolving deep con-
volutional neural networks by variable-length particle swarm
optimization for image classification. In: 2018 IEEE Congress on
Evolutionary Computation, pp. 1–8 (2018)

38. He X,Wang Y,Wang X, HuangW, Zhao S, Chen X (2021) Simple-
encoded evolving convolutional neural network and its application
to skin disease image classification. Swarm andEvolutionaryCom-
putation 67:100955

39. Bi, Y., Xue, B., Zhang, M.: An automated ensemble learning
framework using genetic programming for image classification.
Proceedings of the Genetic and Evolutionary Computation Con-
ference (2019)

40. Bi Y, Xue B, Zhang M (2021) Genetic programming with image-
related operators and a flexible program structure for feature learn-
ing in image classification. IEEETransEvolComput 25(1):87–101.
https://doi.org/10.1109/TEVC.2020.3002229

41. Tanveer,M.S.,KarimKhan,M.U.,Kyung,C.-M.: Fine-tuning darts
for image classification. In: 2020 25th International Conference on
Pattern Recognition (ICPR), pp. 4789–4796 (2021). https://doi.
org/10.1109/ICPR48806.2021.9412221

42. Huang, J., Xue, B., Sun, Y., Zhang, M.: A flexible variable-length
particle swarm optimization approach to convolutional neural net-
work architecture design. In: 2021 IEEECongress on Evolutionary
Computation (CEC), pp. 934–941 (2021). https://doi.org/10.1109/
CEC45853.2021.9504716

43. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Ben-
gio, Y.: Maxout networks. Computer Science, 1319–1327 (2013)

44. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.:
Striving for simplicity: The all convolutional net. arXiv preprint
arXiv:1412.6806 (2014)

45. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint
arXiv:1312.4400 (2014) 1312.4400 [cs.NE]

46. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway Networks.
arXiv (2015). https://doi.org/10.48550/ARXIV.1505.00387

47. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing Neural Net-
work Architectures using Reinforcement Learning. arXiv (2016).
https://doi.org/10.48550/ARXIV.1611.02167

48. Suganuma, M., Kobayashi, M., Shirakawa, S., Nagao,
T.: Evolution of Deep Convolutional Neural Networks
Using Cartesian Genetic Programming. Evolutionary Com-
putation 28(1), 141–163 (2020). https://doi.org/10.1162/
evco_a_00253. _eprint:https://direct.mit.edu/evco/article-
pdf/28/1/141/2020362/evco_a_00253.pdf

49. Liu, C., Zoph, B., Shlens, J., Hua, W., Li, L., Fei-Fei, L., Yuille,
A.L., Huang, J., Murphy, K.: Progressive neural architecture
search. CoRR abs/1712.00559 (2017) arxiv:1712.00559

50. Dong X, Liu L, Musial K, Gabrys B (2022) Nats-bench: Bench-
marking nas algorithms for architecture topology and size. IEEE
Trans Pattern Anal Mach Intell 44(7):3634–3646. https://doi.org/
10.1109/TPAMI.2021.3054824

51. O’Neill D, Xue B, Zhang M (2021) Evolutionary neural archi-
tecture search for high-dimensional skip-connection structures on
densenet style networks. IEEE Trans Evol Comput 25(6):1118–
1132. https://doi.org/10.1109/TEVC.2021.3083315

123

https://doi.org/10.1109/TEVC.2019.2916183
https://doi.org/10.1109/TEVC.2019.2916183
https://doi.org/10.1109/CVPR.2019.01145
https://doi.org/10.1109/CVPR.2019.01145
http://arxiv.org/abs/1703.01041
http://arxiv.org/abs/1611.01578
https://doi.org/10.1109/TCYB.2020.2983860
https://doi.org/10.1109/TCYB.2020.2983860
https://doi.org/10.1109/TEVC.2019.2900916
https://doi.org/10.1109/TEVC.2018.2840056
https://doi.org/10.1109/TEVC.2018.2840056
https://doi.org/10.1007/s40747-020-00241-5
https://doi.org/10.1145/2001858.2002136
https://doi.org/10.1145/2001858.2002136
https://doi.org/10.1007/s12293-018-0263-8
https://doi.org/10.1007/s12293-018-0263-8
https://doi.org/10.1109/tip.2015.2475625
https://doi.org/10.1109/tip.2015.2475625
https://doi.org/10.1145/1273496.1273556
https://doi.org/10.1109/TEVC.2020.3002229
https://doi.org/10.1109/ICPR48806.2021.9412221
https://doi.org/10.1109/ICPR48806.2021.9412221
https://doi.org/10.1109/CEC45853.2021.9504716
https://doi.org/10.1109/CEC45853.2021.9504716
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1312.4400
https://doi.org/10.48550/ARXIV.1505.00387
https://doi.org/10.48550/ARXIV.1611.02167
https://doi.org/10.1162/evco_a_00253
https://doi.org/10.1162/evco_a_00253
http://arxiv.org/abs/1712.00559
https://doi.org/10.1109/TPAMI.2021.3054824
https://doi.org/10.1109/TPAMI.2021.3054824
https://doi.org/10.1109/TEVC.2021.3083315

3228 Complex & Intelligent Systems (2023) 9:3211–3228

52. Tang L, Meng Y (2021) Data analytics and optimization for smart
industry. Front EngManag 8(2):157–171. https://doi.org/10.1007/
s42524-020-0126-0

53. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based
learning applied to document recognition. Proc IEEE86(11):2278–
2324. https://doi.org/10.1109/5.726791

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s42524-020-0126-0
https://doi.org/10.1007/s42524-020-0126-0
https://doi.org/10.1109/5.726791

	Evolutionary convolutional neural network for image classification based on multi-objective genetic programming with leader–follower mechanism
	Abstract
	Introduction
	Background
	Cartesian genetic programming algorithm
	ResNet block

	Proposed algorithm
	Algorithm overview with leader-and-follower mechanism
	Encoding and decoding strategy
	Population initialization
	Mutation
	Crossover
	Fitness evaluation

	Experiment design
	Benchmark datasets
	Experimental setting

	Experiment results
	Overall results
	Analysis of strategy effectiveness and evolutionary behavior
	Effectiveness regarding the leader–follower mechanism
	Evolutionary behavior

	Discussion
	Best CNNs evolved by LF-MOGP
	Evolved CNN architectures
	Convergence performance of the best CNNs

	Real-world application

	Conclusion and future work
	Acknowledgements
	References

