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Abstract—Cooperative spectrum sensing has been shown to
be able to greatly improve the sensing performance in cognitive
radio networks. However, if cognitive users belong to different
service providers, they tend to contribute less in sensing in order
to increase their own throughput. In this paper, we propose an
evolutionary game framework to answer the question of ‘“how
to collaborate” in multiuser de-centralized cooperative spectrum
sensing, because evolutionary game theory provides an excellent
means to address the strategic uncertainty that a user/player may
face by exploring different actions, adaptively learning during
the strategic interactions, and approaching the best response
strategy under changing conditions and environments using
replicator dynamics. We derive the behavior dynamics and the
evolutionarily stable strategy (ESS) of the secondary users. We
then prove that the dynamics converge to the ESS, which renders
the possibility of a de-centralized implementation of the proposed
sensing game. According to the dynamics, we further develop
a distributed learning algorithm so that the secondary users
approach the ESS solely based on their own payoff observations.
Simulation results show that the average throughput achieved
in the proposed cooperative sensing game is higher than the
case where secondary users sense the primary user individually
without cooperation. The proposed game is demonstrated to
converge to the ESS, and achieve a higher system throughput
than the fully cooperative scenario, where all users contribute to
sensing in every time slot.

Index Terms—Spectrum sensing, cognitive radio networks,
game theory, behavior dynamics.

I. INTRODUCTION

ITH the emergence of new wireless applications and

devices, the last decade has witnessed a dramatic
increase in the demand for radio spectrum, which has forced
government regulatory bodies, such as the Federal Commu-
nications Commission (FCC), to review their policies. Since
the frequency bands allocated to some licensed spectrum
holders experience very low utilization [1], the FCC has
been considering opening the under-utilized licensed bands
to secondary users on an opportunistic basis with the aid of
cognitive radio technology [2]. When the licensed spectrum
holders (primary users) are sensed as inactive, the secondary
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users can operate in the licensed spectrum, if they do not
interfere with the primary user.

Since primary users should be carefully protected from in-
terference due to secondary users’ operation, spectrum sensing
has become an essential function of cognitive radio devices
[3]. Recently, cooperative spectrum sensing with relay nodes’
help and multi-user collaborative sensing has been shown to
greatly improve the sensing performance [4]-[10]. In [4], the
authors proposed collaborative spectrum sensing to combat
shadowing/fading effects. The work in [5] proposed light-
weight cooperation in sensing based on hard decisions to
reduce the sensitivity requirements. The authors of [6] showed
that cooperative sensing can reduce the detection time of
the primary user and increase the overall agility. How to
choose proper secondary users for cooperation was investi-
gated in [7]. The authors of [8] studied the design of sensing
slot duration to maximize secondary users’ throughput under
certain constraints. Two energy-based cooperative detection
methods using weighted combining were analyzed in [9].
Spatial diversity in multiuser networks to improve spectrum
sensing capabilities of centralized cognitive radio networks
were exploited in [10].

In most of the existing cooperative spectrum sensing
schemes [4]-[10], a fully cooperative scenario is assumed:
all secondary users voluntarily contribute to sensing and fuse
their detection results in every time slot to a central controller
(e.g., secondary base station), which makes a final decision.
However, sensing the primary band consumes a certain amount
of energy and time which may alternatively be diverted to
data transmissions, and it may not be optimal to have all
users participate in sensing in every time slot, in order to
guarantee a certain system performance. Moreover, with the
emerging applications of mobile ad hoc networks envisioned
in civilian usage, the secondary users may be selfish and not
serve a common goal. If multiple secondary users occupy
different sub-bands of one primary user and can overhear
the others’ sensing outcomes, they tend to take advantage of
the others and wait for the others to sense so as to reserve
more time for their own data transmission. Therefore, it is of
great importance to study the dynamic cooperative behaviors
of selfish users in a competing environment while boosting
the system performance simultaneously.

In this paper, we model cooperative spectrum sensing as
an evolutionary game, where the payoff is defined as the
throughput of a secondary user. Evolutionary games have been
previously applied to modeling networking problems, such
as resource sharing mechanism in P2P networks [11] and
congestion control [12] using behavioral experiments. In this
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paper, we incorporate practical multiuser effect and constraints
into the spectrum sensing game. The secondary users want
to fulfill a common task, i.e., given a required detection
probability to protect the primary user from interference, sense
the primary band collaboratively for the sake of getting a high
throughput by sharing the sensing cost. The users who do
not take part in cooperative sensing can overhear the sensing
results and have more time for their own data transmission.
However, if no user spends time in sensing the primary
user, all of them may get a very low throughput. Therefore,
secondary users need to try different strategies at each time
slot and learn the best strategy from their strategic interactions
using the methodology of understanding-by-building.

In order to study the evolution of secondary users’ strate-
gies and answer the question that how to cooperate in the
evolutionary spectrum sensing game, we propose to analyze
the process of secondary users updating their strategy profile
with replicator dynamics equations [16], since a rational player
should choose a strategy more often if that strategy brings a
relatively higher payoff. We derive the evolutionarily stable
strategy (ESS) of the game, and prove the convergence to the
ESS through analyzing the users’ behavior dynamics. Then
we extend our observation to a more general game with
heterogeneous users, analyze the properties of the ESSs, and
develop a distributed learning algorithm so that the secondary
users approach the ESS only with their own payoff history.
Simulation results show that as the number of secondary users
and the cost of sensing increases, the users tend to have less
incentive to contribute to cooperative sensing. However, in
general they can still achieve a higher average throughput in
the spectrum sensing game than that of the single-user sensing.
Furthermore, using the proposed game can achieve a higher
total throughput than that of asking all users to contribute to
sensing at every time slot.

The rest of this paper is organized as follows. In Section
II, we present the system model and formulate the multiuser
cooperative spectrum sensing as a game. In Section III,
we introduce the background on evolutionary game theory,
analyze the behavior dynamics and the ESS of the proposed
game, and develop a distributed learning algorithm for ESS.
Simulation results are shown in Section IV. Finally, Section
V concludes the paper.

II. SYSTEM MODEL AND SPECTRUM SENSING GAME
A. Hypothesis of Channel Sensing

When a secondary user is sensing the licensed spectrum
channel in a cognitive radio network, the received signal r(t)
from the detection has two hypotheses when the primary user
is present or absent, denoted by H; and Hj, respectively.
Then, r(t) can be written as

(1) _{ hs(t) + w(t),

w(t),

In (1), & is the gain of the channel from the primary user’s
transmitter to the secondary user’s receiver, which is assumed
to be slow flat fading; s(t) is the signal of the primary user,
which is assumed to be an i.i.d. random process with mean
zero and variance 02; and w(#) is an additive white Gaussian

if Hy;

if Hp. M

noise (AWGN) with mean zero and variance o2

and w(t) are assumed to be mutually 1ndependent
Assume we use an energy detector to sense the licensed

spectrum, then the test statistics 7'(r) is defined as

71N t2
=5 2

where [V is the number of collected samples.

The performance of licensed spectrum sensing is charac-
terized by two probabilities. The probability of detection, Pp,
represents the probability of detecting the presence of primary
user under hypothesis H;. The probability of false alarm,
Pr, represents the probability of detecting the primary user’s
presence under hypothesis Hy. The higher the Pp, the better
protection the primary user will receive; the lower the Pr, the
more spectrum access the secondary user will obtain.

If the noise term w(t) is assumed to be circularly symmetric
complex Gaussian (CSCG), using central limit theorem the
probability density function (PDF) of the test statistics T'(r)
under HO can be approximated by a Gaussian distribution
N (%, +0o4) [8]. Then, the probability of false alarm Pp

is given by [8][14]
1 A |N
= §erfC ((E — 1) E) s

where A is the threshold of the energy detector, and erfc(-)
denotes the complementary error function, i.e.,

=w

Similarly, if we assume the primary signal is a complex PSK
signal, then under hypothesis H;, the PDF of T'(r ) can be ap-
proximated by a Gaussian dlstrlbutlon N((v+1)o2, +(2v+

. Here s(t)

@)

Pp(X) 3)

erfc(x

1)o) [8], where v = L ‘ 1=7= denotes the received signal-to-
noise ratio (SNR) of the prlmary user under ;. Then, the
probability of detection Pp can be approximated by [8][14]

1 A N

Given a target detection probability Pp, the threshold A
can be derived, and the probability of false alarm Pr can be
further rewritten as

Pr(Pp,N,~) 2 %erfc <\/2v + lerf ' (1 —2Pp) + 4/ g’y>
®)

where erf !(-) denotes the inverse function of the error
function erf(-).

B. Throughput of a Secondary User

When sensing the primary user’s activity, a secondary user
cannot simultaneously perform data transmission. If we denote
the sampling frequency by f, and the frame duration by 7T,
then the time duration for data transmission is given by T —
O(N), where 6(N) = fﬁ represents the time spent in sensing.
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When the primary user is absent, in those time slots where
no false alarm is generated, the average throughput of a
secondary user is

T — §(N)
T
where C'y, represents the data rate of the secondary user under
Hy. When the primary user is present, and not detected by the
secondary user, the average throughput of a secondary user is

T — §(N)
Ry, (N) = -7
where C, represents the data rate of the secondary user under
H;.
If we denote Pp, as the probability that the primary user
is absent, then the total throughput of a secondary user is

R(N) = Py Rity(N) + (1 = Prg ) Rer, (N). - (8)

Ry, (N) = (1 = Pp)Chy, (6)

(1_PD)CH17 (7)

In dynamic spectrum access, it is required that the sec-
ondary users’ operation should not conflict or interfere with
the primary users, and Pp should be one in the ideal case.
According to (5), however, Pr is then also equal to one, and
the total throughput of a secondary user (8) is zero, which
is impractical. Hence, a primary user who allows secondary
spectrum access usually predetermines a target detection prob-
ability Pp very close to one [8], under which we assume the
secondary spectrum access will be prohibited as a punishment.
Then, from the secondary user’s perspective, he/she wants to
maximize his/her total throughput (8), given that Pp > Pp.
Since the target detection probability Pp is required by the
primary user to be very close to 1, and we usually have
Ch, < Cp, due to the interference from the primary user
to the secondary user, the second term in (8) is much smaller
than the first term and can be omitted. Therefore, (8) can be
approximated by

T — §(N)
T

We know from (5) that given a target detection probability
Pp, Pris a decreasing function of N. As a secondary user
reduces N (or §(V)) in the hope of having more time for data
transmission, Pr will increase. This indicates a tradeoff for
the secondary user to choose an optimal /N that maximizes
the throughput R(N ). In order to reduce both Pr and N, i.e.,
keep low false alarm Pr with a smaller /N, a good choice for
a secondary user is to cooperatively sense the spectrum with
the other secondary users in the same licensed band.

R(N) ~ Py, Ry, (N) = Py, (1—Pp)Ch,. (9)

C. Spectrum Sensing Game

A diagram of a cognitive radio network where multiple
secondary users are allowed to access one licensed spec-
trum band is shown in Fig. 1, where we assume that the
secondary users within each others’ transmission range can
exchange their sensory data about primary user detection. The
cooperative spectrum sensing scheme is illustrated in Fig. 2.
We assume that the entire licensed band is divided into K
sub-bands, and each secondary user operates exclusively in
one of the K sub-bands when the primary user is absent.
Transmission time is slotted into intervals of length T'. Before

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 3, MARCH 2010

- & @ B %, O l’l‘imar.y
//@ e & \\\ L base station
r" @ \\L/ s
0 v 3 && ;
V& F,’
\\ @ @ @ i &/’/\ Cognitive radio
\\\ & & // network

Fig. 1: System model.

A D sensing Ddata transmission

Signaling
Sk

-

Frequency

17}
by

w

Fig. 2: Cooperative spectrum sensing.

each data transmission, the secondary users need to sense the
primary user’s activity. Since the primary user will operate in
all the sub-bands once becoming active, the secondary users
within each other’s transmission range can jointly sense the
primary user’s presence, and exchange their sensing results
via a narrow-band signalling channel, as shown in Fig 2. In
this way, each of them can spend less time detecting while
enjoying a low false alarm probability Pr via some decision
fusion rule [13], and the spectrum sensing cost (6(N)) can be
shared by whoever is willing to contribute (C).

However, according to their locations and quality of the
received primary signal, it may not be optimal to have all sec-
ondary users participate in spectrum sensing at every time slot,
in order to guarantee certain system performance. Moreover,
all secondary users cooperating in sensing may be difficult,
if the users do not serve a common authority, and instead
act selfishly to maximize their own throughput. In this case,
once a secondary user is able to overhear the detection results
from the other users, he/she can take advantage of that by
refusing to take part in spectrum sensing, called denying (D).
Although each secondary user in the cognitive radio network
still achieves the same false alarm probability Pr, the users
who refuse to join in cooperative sensing have more time for
their own data transmission. The secondary users get a very
low throughput if no one senses the spectrum, in the hope that
someone else does the job.

Therefore, we can model the spectrum sensing as a non-
cooperative game. The players of the game are the secondary
users, denoted by & = {s1,--- , sx }. Each player s; has the
same action/strategy space, denoted by A = {C,D}, where
“C” represents pure strategy contribute and “D” represents
pure strategy refuse to contribute (denying). The payoff func-
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tion is defined as the throughput of the secondary user. Assume
that secondary users contributing to cooperative sensing forms
a set, denoted by S, = {s1,---,s}. Denote the false alarm
probability of the cooperative sensing among set S. with
fusion rule “RULE” and a target detection probability Pp by
Pge = Pr(Pp, N, {vi}ics,, RULE). Then the payoff for a
contributor s; € S;, can be defined as

d(N)
ST

Uc,s; = P, (1 ) (1—Ppe)Cy,, if |S.| € [1,K],

(10
where |S,|, i.e., the cardinality of set S., represents the number
of contributors, and C, S is the data rate for user s; under
hypothesis Hy. Therefore, if user s; chooses to cooperate, then
he/she will share the sensing time with the other cooperative
users, and the cost is divided equally by all cooperative users.
In (10), we assume that the spectrum sensing cost is equally
divided among all the contributors; otherwise, there may be
fairness issue. The payoff for a user s; ¢ S., who selects
strategy D, is then given by

Up.s, = Pu,(1 = P5)C,, if |S]e[1,K—-1], (1)

since s; will not spend time sensing. Therefore, if user s;
chooses not to contribute to sensing, he/she will rely on the
contributors’ decision, have more time for data transmission
and can expect a higher throughput. If no secondary user
contributes to sensing and waits for the others to sense, i.e.,
|Sc| = 0, from (5), we know that limy_,o Pr = 1, especially
for the low received SNR regime and high Pp requirement.
In this case, the payoff for a denier becomes

Ups, =0, if |S.|=0. (12)

The decision fusion rule can be selected as the logical-OR
rule, logical-AND rule, or majority rule [8]. In this paper,
we use the majority rule to derive the PSe, though the other
fusion rules could be similarly analyzed. Denote the detection
and false alarm probability for a contributor s; € S¢ by Pp s,
and Pr;,, respectively. Then, under the majority rule we have
the following

Pp = Prfat least half users in S, report Hy|H;],
and
Pp = Pr|at least half users in S, report Hy|Hp],  (14)

Hence, given a Pp fOE' set S¢, each individual user’s target
detection probability Pp s, can be obtained by solving the
following equation

13)

|Sel
_ S|\ - ~ B
Po=}_ Ckyhﬂ—%mwﬁ (15)

k::(lJr‘zSCl]

where we assume each contributor s; € S, takes equal
responsibility in making the final decision for fairness concern
and therefore Pp ,, is identical for all s;’s. Then, from (5)
we can write P, as

1 _ | N
PF,S]' = ierfc (\/2’}/3]. + lerf71(1 — 2PD,S]') + m’}/sj> 5

(16)
and can further obtain ch by substituting (16) in (14).

893

Since secondary users try to maximize their own payoff
values, i.e., the average throughput, given the three possible
outcomes in (10)-(12), the selfish users’ behaviors are highly
unpredictable. Contributing to cooperative sensing can provide
a stable throughput, however, the stable throughput is achieved
at the cost of less time for data transmission; being a free-
rider may save more time for useful data transmission, but
the secondary users also face the risk of having no one sense
the spectrum and get zero throughput. Therefore, how should a
selfish but rational secondary user collaborate with other self-
ish users in cooperative spectrum sensing? Always contribute
to sensing, or always free ride, or neither? In the next, we
will answer this question by analyzing the rational secondary
users’ behavior dynamics and derive the equilibrium strategy,
with the aid of evolutionary game theory.

III. EVOLUTIONARY SENSING GAME AND STRATEGY
ANALYSIS

In this section, we first introduce the concept of evolution-
arily stable strategy (ESS), and then use replicator dynamics
to model and analyze the behavior dynamics of the secondary
users in the sensing game.

A. Evolutionarily Stable Strategy

Evolutionary game theory provides a good means to address
the strategic uncertainty that a player faces in a game by tak-
ing out-of-equilibrium behavior, learning during the strategic
interactions, and approaching a robust equilibrium strategy.
Such an equilibrium strategy concept widely adopted in evo-
lutionary game theory is the Evolutionarily Stable Strategy
(ESS) [22], which is “a strategy such that, if all members of
the population adopt it, then no mutant strategy could invade
the population under the influence of natural selection”. Let
us define the expected payoff as the individual fitness, and use
7(p,p) to denote the payoff of an individual using strategy p
against another individual using strategy p. Then, we have the
following formal definition of an ESS [22].

Definition 1 A strategy p* is an ESS if and only if, for all
p#P,
D 7(p,p*) < w(p*,p*), (equilibrium condition)
2) if m(p,p*) = 7(p*,p*), 7(p,p) < 7(p*,p)
condition).

(stability

Condition 1) states that p* is the best response strategy
to itself, and is hence a Nash equilibrium (NE). Condition
2) is interpreted as a stability condition. Suppose that the
incumbents play p*, and a collection of mutants play p. Then
conditions 1) and 2) ensure that as long as the fraction of
mutants playing p is not too large, the average payoff to p will
fall short of that to p*. Since strategies with a higher fitness
value are expected to propagate faster in a population through
strategic interactions, evolution will cause the population using
mutation strategy p to decrease until the entire population uses
strategy p*.

Since data transmission for each secondary user is contin-
uous, the spectrum sensing game is played repeatedly and
evolves over time. Moreover, new secondary users may join in
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the spectrum sensing game from time to time, and the existing
secondary users may even be unaware of their appearance and
strategies. Hence, a stable strategy which is robust to mutants
using different strategies is especially preferred. Therefore,
we propose to use evolutionary game theory [17] to analyze
the behavior dynamics of the players and further derive the
ESS as the secondary users’ optimal collaboration strategy in
cooperative spectrum sensing.

B. Evolution Dynamics of the Sensing Game

When a set of rational players are uncertain of each
other’s actions and utilities, they will try different strategies
in every play and learn from the strategic interactions using
the methodology of understanding-by-building. During the
process, the percentage (or population share) of players using a
certain pure strategy may change. Such a population evolution
is characterized by replicator dynamics in evolutionary game
theory. Specifically, consider a population of homogeneous
individuals with identical data rate C;, and received primary
SNR ;. The players adopt the same set of pure strategies
A. Since all players have the same Cy, and +;, payoffs
for playing a particular strategy depend only on the other
strategies employed, not on who is playing them. Therefore,
all players have the same payoff function U. At time ¢, let
Da;(t) > 0 be the number of individuals who are currently
using pure strategy a; € A, and let p(t) = >, ¢ 4 Pa,(t) >0
be the total population. Then the associated population state
is defined as the vector x(t) = {4, (t), - ,x4/(t)}, where
Zq, (t) is defined as the population share z,, (t) = pa, (t)/p(t).
By replicator dynamics, at time ¢ the evolution dynamics of
Zq,(t) is given by the following differential equation [17]

b0, = elU(as,-0,) - Ua)]aa,,

i

17)

where U(a;,r_q,) is the average payoff of the individuals
using pure strategy a;, *_,, is the set of population shares
who use pure strategies other than a;, U(z) is the average
payoff of the whole population, and € is some positive number
representing the time scale. The intuition behind (17) is as
follows: if strategy a; results in a higher payoff than the
average level, the population share using a; will grow, and the
growth rate &, /x4, is proportional to the difference between
strategy a;’s current payoff and the current average payoff
in the entire population. By analogy, we can view z, (t) as
the probability that one player adopts pure strategy a,;, and
x(t) can be equivalently viewed as a mixed strategy for that
player. If a pure strategy a; brings a higher payoff than the
mixed strategy, strategy a; will be adopted more frequently,
and thus x,, (t), the probability of taking a;, will increase.
The rate of the probability increase &,, is proportional to the
difference between pure strategy a;’s payoff and the payoff
achieved by the mixed strategy.

For the spectrum sensing game with heterogeneous players,
whose ~; and/or C;, are different from each other, denote the
probability that user s; adopts strategy h € A at time ¢ by
Tp,s, (t), then the time evolution of wj, s, (t) is governed by
the following dynamics equation [17]

[Us, (hyx_s,) — Us, (x)] @n,s,, (18)

xh,Sj =
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where Uy, (h,z_s,) is the average payoff for player s; using
pure strategy h, x_s; is the set of strategies adopted by players
other than s;, and Uy, (x) is s;’s average payoff using mixed
strategy ;. Eq. (18) indicates that if player s; achieves a
higher payoff by using pure strategy h than using his/her
mixed strategy ., strategy h will be adopted more frequently,
the probability of using h will increase, and the growth rate
of xps; is proportional to the excess of strategy h’s payoff
and the payoff of the mixed strategy Uy, ().

C. Analysis of Sensing Game with Homogeneous Players

A strategy is ESS if and only if it is asymptotically stable
to the replicator dynamics [17][21]. Therefore, we can derive
the ESS of the proposed spectrum sensing game by proving
its asymptotical stability. In this subsection, we study the ESS
of games with homogeneous players, and will discuss the
heterogeneous case in the next.

As shown in Fig. 1, players of the sensing game are
secondary users within each other’s transmission range. If the
transmission range is small, we can approximately view that
all the received y,,’s are very similar to each other. As the
7vs; s are usually very low, in order to guarantee a low Pg
given a target Pp, the number of sampled signals N should
be large. Under these assumptions, we can approximately view
ch as the same for different S.’s, denoted by PF. Further
assume that all users have the same data rate, i.e. Cs, = C,
for all s; € S. Then, the payoff functions defined in (10)-(12)
become

Uc(J) = Up (1—3), if J e [1, K], (19)
and : .
Up, ifJe[l,K—1];

UD(‘])—{ 0, ifJ:[o | (20)

where Uy = Py, (1 — Pr)C denotes the throughput achieved
by a free rider who relies on the contributors’ sensing out-
comes, J = |S.| denotes the number of contributors, and
T = 5(:JFV ) denotes the fraction of the entire sensing time shared
by all contributors over the duration of a time slot. It can be
seen from (19) and (20) that, when there is more than one
contributor, if a player chooses to contribute to sensing, the
payoff Uc(J) is in general smaller than a free-rider’s payoff
Up(J), due to the sensing cost § Howeyver, in the worst case,
when no one contributes to sensing (J = 0), the payoff Up(J)
is the smallest.

As the secondary users are homogeneous players, (17) can
be applied to the special case as all players have the same
evolution dynamics and equilibrium strategy. Denote z as the
probability that one secondary user contributes to spectrum
sensing, then the average payoff for pure strategy C can be
obtained as

K-1

Uc(z) =Y

K -1\ ,
( . )x](l - o)1 Us(+ DL @21
— J
j=
Similarly, the average payoff for pure strategy D is given by

K-1

Up(a)= Y (K - 1)xj<1 — KU, (@2)

im0 N

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 25,2010 at 17:15:09 EDT from IEEE Xplore. Restrictions apply.



WANG et al.: EVOLUTIONARY COOPERATIVE SPECTRUM SENSING GAME: HOW TO COLLABORATE? 895

Since the average payoff U(z) = 2Uc + (1 —x)Up, then (17)
becomes . = =
i =ex(l —z)[Uc(z) — Up(x)]. (23)

In equilibrium z*, no player will deviate from the optimal
strategy, indicating * = 0, and we obtain x* = 0, or 1,
or the solution of U} (x) = Uj(z). Then, by equating (21)
and (22), we can have the following K th_order equation (see
Appendix VI-A)

(1 -2 X + Ka*(1 —2*)5 "t -7 =0, (24)

and further solve the remaining equilibrium.

Next we show that the dynamics defined in (17) converge to
the above-mentioned equilibriums, which are asymptotically
stable and hence the ESS. Note that the variable in (17) is
the probability that a user chooses strategy a; € {C, D}, so
we need to guarantee that z¢(t) + xp(t) = 1 in the dynamic
process. We show this in the following proposition.

Proposition 1 The sum of the probability that a secondary
user chooses strategy “C” and “D” is equal to one in the
replicator dynamics of a symmetric sensing game.

Proof: See Appendix VI-B. ]

In order to prove that the replicator dynamics converge to

the equilibrium, we first show that all non-equilibria strategies

of the sensing game will be eliminated during the dynamic

process. It suffices to prove that (17) is a myopic adjustment
dynamic [16].

Definition 2 A system is a myopic adjustment dynamic if

Z USJ' (h,x_sj )ih,sj >0, Vs; €S.
heA

(25)

Inequality (25) indicates that the average utility of a player
will not decrease in a myopic adjustment dynamic system.
We then prove that the dynamics (17) satisfy Definition 2.

Proposition 2 The replicator dynamics (17) are myopic ad-
justment dynamics.

Proof: See Appendix VI-C. ]
In the following theorem, we show that the replicator
dynamics in (17) converge to the ESS.

Theorem 1 Starting from any interior point x € (0,1), the
replicator dynamics defined in (17) converge to the ESS x*.
In specific, when T = 1, the replicator dynamics converge to
z* = 0; when T = 0, the replicator dynamics converge to
z* = 1; when 0 < 7 < 1, the replicator dynamics converge
to the solution of (24).

Proof: See Appendix VI-D. ]
In practice, the time spent in sensing should be a positive
value which is smaller than the duration of a time slot, i.e.,

ISince the average payoff for pure strategy C is the payoff of a player
choosing C against another K — 1 players, who contribute to sensing with
probability x, U () can be expressed as U (z) = Zf;ol Uc(j+1) Pr(j),
where Pr(j) denotes the probability that there are in total j contributors among
K — 1 other players. Because Pr(j) = (Kjfl)xj(l — 2)K=177 we can
obtain Ug (x) as shown in (21).

we have 0 < §(N) < T and 0 < 7 = w < 1. Therefore,
the optimal strategy for the secondary users is to contribute to
sensing with probability x*, where x* is the solution of (24).

D. Analysis of Sensing Game with Heterogeneous Players

For games with heterogeneous players, it is generally very
difficult to represent U, (h,z_s,) in a compact form, and
directly obtain the ESS in closed-form by solving (18). There-
fore, we first analyze a two-user game to gain some insight,
then generalize the observation to a multi-user game.

1) Two-Player Game: When there are two secondary users
in the cognitive radio network, i.e., S = {s1, s2}, according
to equations (10)-(12) we can write the payoff matrix as in
Table I, where for simplicity we define A 29 ch, with

TABLE I: Payoff table of a two-user sensing game

C D
C DlA(l - %),DQA(l - %) DlBl(l - T),D2B1
D DlBg,DgBQ(l - T) 0,0

SC = {81,82}, .Bz é 1-— PRS“ D, é PHOCi, and T = L:,Jy)

Let us denote x; and xo as the probability that user 1
and user 2 take action “C”, respectively, then we have the
expected payoff Us, (C, x2) when user 1 chooses to contribute
to sensing as

- T
IJS1 (C, LL‘Q) = DlA(l — 5)1}2 + D1B1(1 — T)(l — :L‘Q), (26)
and the expected payoff Uy, (z) as
— T
(]51 (LL') :DlA(l — 5)3;‘11}2 + DlBl(l — T):L‘l(l — LL‘Q)

+ D1B2(1 — :L‘l)l‘g.
27
Thus we get the replicator dynamics equation of user 1
according to (18) as

T :l‘l(l —l‘l)Dl |:Bl(1 —7') —E11'21|7 (28)
where By = By+B1(1—-7)—A(1-7). Similarly the replicator
dynamics equation of user 2 is written as

To :l‘g(l —IQ)DQ |:BQ(1 —7') —E21'1?|7 (29)

where Ey = By + Bo(1 — 1) — A(1 = 7).

At equilibrium we know 1 = 0 and &5 = 0, then from (28)
and (29) we get five equilibria: (0, 0), (0,1), (1,0), (1,1), and
the mixed strategy equilibrium %2_7), %1_7) .

According to [20], if an equilibrium of the replicator
dynamics equations is a locally asymptotically stable point
in a dynamic system, it is an ESS. So we can view (28)
and (29) as a nonlinear dynamic system and judge whether
the five equilibria are ESSs by analyzing the Jacobian matrix.
By taking partial derivatives of (28) and (29), we obtain the
Jacobian matrix as

Dl(l — 21}1)E11 —xl(l — :L‘l)DlEl
—1‘2(1 — IQ)DQEQ (1 — 2I2)D2E22 ’

where E11 = Bl(l—T)—ElIg, and E22 = BQ(I—T)—EQIl.

Im = (30)
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The asymptotical stability requires that det(J,,,) > 0 and
tr(.J,,) <O. Substituting the five equilibria to (30), we can
obtain the ESS according to different values of A, Bj, and
Bs and conclude the following optimal collaboration strategy
for cooperative sensing game with two heterogeneous players:

1) When A(1 — %) < By, there is one ESS (1,0), and the
strategy profile user 1 and user 2 adopt converges to
(C.D);

2) When A(1 — %) < By, there is one ESS (0,1), and the
strategy profile converges to (D,C);

3) When A(1—3%) > By and A(1—5) > By, there is one
ESS (1, 1), and the strategy profiles converges to (C,C);

4) When A(1—7%) < By and A(1—35) < By, there are two
ESSs (1,0) and (0,1), and the strategy profile converges
to (C,D) or (D,C) depending on different initial strategy
profiles.

In order to explain the above-mentioned conclusions and
generalize them to a multi-player game, we next analyze the
properties of the mixed strategy equilibrium, although it is
not an ESS. Let us take the derivative of z] = Ba(1=r)

E
with respect to the performance of a detector (A, Bs) and
the sensing cost 7, then we get?

Oxi  Bo(l1—1/2)(1—17)
= 0 31
A 3 -0 Gl
or; [AQ—17/2) - Bi(1—1)
= 0 32
B = <0, (32
and ox;  (A/2— B1)B
Ty — D1)D2
=——7"—<0. 33
or E2 33)

From (31) we know that when cooperative sensing brings
a greater gain, i.e., as A increases, ] (and x3) increases.
This is why when A(1 — 7) > B;, i = 1,2, the strategy
profile converges to (C,C). From (32) we find that the in-
centive of a secondary user s; contributing to cooperative
sensing decreases as the other user s;’s detection performance
increases. This is because when user s; learns through repeated
interactions that s; has a better B, s; tends not to sense the
spectrum and enjoys a free ride. Then s; has to sense the
spectrum; otherwise, he is at the risk of having no one sense
and receiving a very low expected payoff. That is why when
A(l = %) < By (or A(1 = %) < By), the strategy profile
converges to (C,D) (or (D,C)). When the sensing cost (1)
becomes higher, the secondary users will be more reluctant to
contribute to cooperative sensing and z7 decreases, as shown
in (33).

2) Multi-Player Game: From the above-mentioned obser-
vation, we can infer that if some user s; has a better detection
performance B;, the other users tend to take advantage of
s;. If there are more than two users in the sensing game,
the strategy of the users with worse B;’s (and ~;’s) will
converge to “D”. Using replicator dynamics, users with better
detection performance tend to contribute to spectrum sensing

%Inequality (32) holds because A(1 — 7/2) — By < 0; otherwise =} =

% > 1, which is impractical. Inequality (33) holds because in practical

applications, we have Pr,, < 0.5, B; = 1— Pp,, > 0.5, and A < 1,
therefore, % < Bj, and ‘98% < 0.
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(i.e., choose C), because they are aware of the low throughput
if no one senses the spectrum. Similarly, if the secondary users
have different data rates, the user with a lower rate Cl S tends
to take advantage of those with higher rates (i.e., they choose
D), since the latter suffer relatively heavier losses if no one
contributes to sensing and they have to become more active
in sensing.

The work in [7] discussed how to select a proper subset of
secondary users in cooperative sensing so as to optimize de-
tection performance. However, their approach assumes that the
information about the received SNR’s (;’s) is available at the
secondary base station. In our evolutionary game framework,
the secondary users can learn the ESS by using replicator
dynamics only with their own payoff history. Therefore, it
is suitable for distributed implementation when there exists
no secondary base station and the secondary users behave
selfishly. In the next section we propose a distributed learning
algorithm and further justify the convergence with computer
simulations.

E. Learning Algorithm for ESS

In the above cooperative sensing games with multiple play-
ers, we have shown that the ESS is solvable. However, solving
the equilibrium requires the knowledge of utility function as
well as exchange of private information (e.g., vs; and Cj;)
and strategies adopted by the other users. This results in a lot
of communication overhead. Therefore, a distributed learning
algorithm that gradually converges to the ESS without too
much information exchange is preferred.

From (18), we can derive the strategy adjustment for the
secondary user as follows. Denote the pure strategy taken by
user s; at time ¢ by A, (¢). Define an indicator function 1Qj (t)

1, if A, (t) = h;

as
hopy
L, (t) = { 0, if A (£) # h.
At some interval mT, we can approximate Uy, (h, z_,) by

- . Zogtng Us; (A, (1), A, (t))lgj (t)
Us;(hsx—s;) = h )
ZOStSmT 15j (t)

(35)
where Usj (As; (t), A, (t)) is the payoff value for s; as de-
termined by (10)-(12). The numerator on the right hand side of
(35) denotes the cumulative payoff of user s; when s; chooses
pure strategy h from time O to m7’, while the denominator
denotes the cumulative total of the number of times when
strategy h has been adopted by user s; during this time period.
Hence, (35) can be used to approximate U, ;(hyz—s;), and the
approximation is more precise as m — oo. Similarly, U, ()
can be approximated by the average payoff of user s; from
time O to mT

Usj(x)i% ST (A, (), A, (1)

0<t<mT

(34)

(36)

Then, the derivative &y, ,; (mT) can be approximated by
substituting the estimations (35) and (36) into (18). Therefore,
the probability of user s; taking action h can be adjusted by
Ths;, (m+1)T) = ap,,, (MT)

+ TIS] [USJ' (h7x—5j) - USJ' (.’L‘):I xh,Sj (mT)7
(37)
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TABLE II: Learning algorithm for ESS

. Initialization:
o for Vs, choose a proper stepsize s ;
o for Vs;, h € A, let z(h,s;) < 1/] Al
2. During a period of m slots, in each slot, each user s;:
© chooses an action h with probability z(h, s;);
¢ receives a payoff determined by (10)-(12);
¢ records the indicator function value by (34).
. Each user s; approximates US]. (h,z—s;) and l_]s]. (z)
by (35) and (36), respectively.
4. Each user s; updates the probability of each action by (37).
5. Go to Step 2 until converging to a stable equilibrium.

—_

(98]

with 7, being the step size of adjustment chosen by s;.

Eq. (37) can be viewed as a discrete-time replicator dynamic
system. It has been shown in [18] that if a steady state is
hyperbolic and asymptotically stable under the continuous-
time dynamics, then it is asymptotically stable for sufficiently
small time periods in corresponding discrete-time dynamics.
Since the ESS is the asymptotically stable point in the
continuous-time replicator dynamics and also hyperbolic [16],
if a player knows precise information about zy, s, adapting
strategies according to (37) can converge to an ESS. With
the learning algorithm, users will try different strategies in
every time slot, accumulate information about the average
payoff values based on (35) and (36), calculate the probability
change of some strategy using (18), and adapt their actions
to an equilibrium. The procedures of the proposed learning
algorithm are summarized in Table II.

By summarizing the above learning algorithm and analysis
in this section, we can arrive at the following cooperation
strategy in the de-centralized cooperative spectrum sensing:

Cooperation Strategy in Cooperative Spectrum Sensing:
Denote the probability of contributing to sensing for user s; €
S by x.,, then the following strategy will be used by s;:

o if starting with a high z.,, s; will rely more on the
others and reduce z.,, until further reduction of z,
decreases his throughput or z. , approaches 0.

o if starting with a low z. s, s; will gradually increase x g,
until further increase of z. s, decreases his throughput or

T¢,s;, approaches 1.

e s; shall 