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Abstract—Cooperative spectrum sensing has been shown to
be able to greatly improve the sensing performance in cognitive
radio networks. However, if cognitive users belong to different
service providers, they tend to contribute less in sensing in order
to increase their own throughput. In this paper, we propose an
evolutionary game framework to answer the question of “how
to collaborate” in multiuser de-centralized cooperative spectrum
sensing, because evolutionary game theory provides an excellent
means to address the strategic uncertainty that a user/player may
face by exploring different actions, adaptively learning during
the strategic interactions, and approaching the best response
strategy under changing conditions and environments using
replicator dynamics. We derive the behavior dynamics and the
evolutionarily stable strategy (ESS) of the secondary users. We
then prove that the dynamics converge to the ESS, which renders
the possibility of a de-centralized implementation of the proposed
sensing game. According to the dynamics, we further develop
a distributed learning algorithm so that the secondary users
approach the ESS solely based on their own payoff observations.
Simulation results show that the average throughput achieved
in the proposed cooperative sensing game is higher than the
case where secondary users sense the primary user individually
without cooperation. The proposed game is demonstrated to
converge to the ESS, and achieve a higher system throughput
than the fully cooperative scenario, where all users contribute to
sensing in every time slot.

Index Terms—Spectrum sensing, cognitive radio networks,
game theory, behavior dynamics.

I. INTRODUCTION

W ITH the emergence of new wireless applications and
devices, the last decade has witnessed a dramatic

increase in the demand for radio spectrum, which has forced
government regulatory bodies, such as the Federal Commu-
nications Commission (FCC), to review their policies. Since
the frequency bands allocated to some licensed spectrum
holders experience very low utilization [1], the FCC has
been considering opening the under-utilized licensed bands
to secondary users on an opportunistic basis with the aid of
cognitive radio technology [2]. When the licensed spectrum
holders (primary users) are sensed as inactive, the secondary
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users can operate in the licensed spectrum, if they do not
interfere with the primary user.

Since primary users should be carefully protected from in-
terference due to secondary users’ operation, spectrum sensing
has become an essential function of cognitive radio devices
[3]. Recently, cooperative spectrum sensing with relay nodes’
help and multi-user collaborative sensing has been shown to
greatly improve the sensing performance [4]-[10]. In [4], the
authors proposed collaborative spectrum sensing to combat
shadowing/fading effects. The work in [5] proposed light-
weight cooperation in sensing based on hard decisions to
reduce the sensitivity requirements. The authors of [6] showed
that cooperative sensing can reduce the detection time of
the primary user and increase the overall agility. How to
choose proper secondary users for cooperation was investi-
gated in [7]. The authors of [8] studied the design of sensing
slot duration to maximize secondary users’ throughput under
certain constraints. Two energy-based cooperative detection
methods using weighted combining were analyzed in [9].
Spatial diversity in multiuser networks to improve spectrum
sensing capabilities of centralized cognitive radio networks
were exploited in [10].

In most of the existing cooperative spectrum sensing
schemes [4]-[10], a fully cooperative scenario is assumed:
all secondary users voluntarily contribute to sensing and fuse
their detection results in every time slot to a central controller
(e.g., secondary base station), which makes a final decision.
However, sensing the primary band consumes a certain amount
of energy and time which may alternatively be diverted to
data transmissions, and it may not be optimal to have all
users participate in sensing in every time slot, in order to
guarantee a certain system performance. Moreover, with the
emerging applications of mobile ad hoc networks envisioned
in civilian usage, the secondary users may be selfish and not
serve a common goal. If multiple secondary users occupy
different sub-bands of one primary user and can overhear
the others’ sensing outcomes, they tend to take advantage of
the others and wait for the others to sense so as to reserve
more time for their own data transmission. Therefore, it is of
great importance to study the dynamic cooperative behaviors
of selfish users in a competing environment while boosting
the system performance simultaneously.

In this paper, we model cooperative spectrum sensing as
an evolutionary game, where the payoff is defined as the
throughput of a secondary user. Evolutionary games have been
previously applied to modeling networking problems, such
as resource sharing mechanism in P2P networks [11] and
congestion control [12] using behavioral experiments. In this
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paper, we incorporate practical multiuser effect and constraints
into the spectrum sensing game. The secondary users want
to fulfill a common task, i.e., given a required detection
probability to protect the primary user from interference, sense
the primary band collaboratively for the sake of getting a high
throughput by sharing the sensing cost. The users who do
not take part in cooperative sensing can overhear the sensing
results and have more time for their own data transmission.
However, if no user spends time in sensing the primary
user, all of them may get a very low throughput. Therefore,
secondary users need to try different strategies at each time
slot and learn the best strategy from their strategic interactions
using the methodology of understanding-by-building.

In order to study the evolution of secondary users’ strate-
gies and answer the question that how to cooperate in the
evolutionary spectrum sensing game, we propose to analyze
the process of secondary users updating their strategy profile
with replicator dynamics equations [16], since a rational player
should choose a strategy more often if that strategy brings a
relatively higher payoff. We derive the evolutionarily stable
strategy (ESS) of the game, and prove the convergence to the
ESS through analyzing the users’ behavior dynamics. Then
we extend our observation to a more general game with
heterogeneous users, analyze the properties of the ESSs, and
develop a distributed learning algorithm so that the secondary
users approach the ESS only with their own payoff history.
Simulation results show that as the number of secondary users
and the cost of sensing increases, the users tend to have less
incentive to contribute to cooperative sensing. However, in
general they can still achieve a higher average throughput in
the spectrum sensing game than that of the single-user sensing.
Furthermore, using the proposed game can achieve a higher
total throughput than that of asking all users to contribute to
sensing at every time slot.

The rest of this paper is organized as follows. In Section
II, we present the system model and formulate the multiuser
cooperative spectrum sensing as a game. In Section III,
we introduce the background on evolutionary game theory,
analyze the behavior dynamics and the ESS of the proposed
game, and develop a distributed learning algorithm for ESS.
Simulation results are shown in Section IV. Finally, Section
V concludes the paper.

II. SYSTEM MODEL AND SPECTRUM SENSING GAME

A. Hypothesis of Channel Sensing

When a secondary user is sensing the licensed spectrum
channel in a cognitive radio network, the received signal 𝑟(𝑡)
from the detection has two hypotheses when the primary user
is present or absent, denoted by 𝐻1 and 𝐻0, respectively.
Then, 𝑟(𝑡) can be written as

𝑟(𝑡) =

{
ℎ𝑠(𝑡) + 𝑤(𝑡), if 𝐻1;
𝑤(𝑡), if 𝐻0.

(1)

In (1), ℎ is the gain of the channel from the primary user’s
transmitter to the secondary user’s receiver, which is assumed
to be slow flat fading; 𝑠(𝑡) is the signal of the primary user,
which is assumed to be an i.i.d. random process with mean
zero and variance 𝜎2𝑠 ; and 𝑤(𝑡) is an additive white Gaussian

noise (AWGN) with mean zero and variance 𝜎2𝑤. Here 𝑠(𝑡)
and 𝑤(𝑡) are assumed to be mutually independent.

Assume we use an energy detector to sense the licensed
spectrum, then the test statistics 𝑇 (𝑟) is defined as

𝑇 (𝑟) =
1

𝑁

𝑁∑
𝑡=1

∣𝑟(𝑡)∣2, (2)

where 𝑁 is the number of collected samples.
The performance of licensed spectrum sensing is charac-

terized by two probabilities. The probability of detection, 𝑃𝐷,
represents the probability of detecting the presence of primary
user under hypothesis 𝐻1. The probability of false alarm,
𝑃𝐹 , represents the probability of detecting the primary user’s
presence under hypothesis 𝐻0. The higher the 𝑃𝐷, the better
protection the primary user will receive; the lower the 𝑃𝐹 , the
more spectrum access the secondary user will obtain.

If the noise term 𝑤(𝑡) is assumed to be circularly symmetric
complex Gaussian (CSCG), using central limit theorem the
probability density function (PDF) of the test statistics 𝑇 (𝑟)
under 𝐻0 can be approximated by a Gaussian distribution
𝒩 (𝜎2𝑤 ,

1
𝑁 𝜎

4
𝑤) [8]. Then, the probability of false alarm 𝑃𝐹

is given by [8][14]

𝑃𝐹 (𝜆) =
1

2
erfc

((
𝜆

𝜎2𝑤
− 1

)√
𝑁

2

)
, (3)

where 𝜆 is the threshold of the energy detector, and erfc(⋅)
denotes the complementary error function, i.e.,

erfc(𝑥) =
2√
𝜋

∫ ∞

𝑥

𝑒−𝑡2𝑑𝑡.

Similarly, if we assume the primary signal is a complex PSK
signal, then under hypothesis 𝐻1, the PDF of 𝑇 (𝑟) can be ap-
proximated by a Gaussian distribution 𝒩 ((𝛾+1)𝜎2𝑤,

1
𝑁 (2𝛾+

1)𝜎4𝑤) [8], where 𝛾 =
∣ℎ∣2𝜎2

𝑠

𝜎2
𝑤

denotes the received signal-to-
noise ratio (SNR) of the primary user under 𝐻1. Then, the
probability of detection 𝑃𝐷 can be approximated by [8][14]

𝑃𝐷(𝜆) =
1

2
erfc

((
𝜆

𝜎2𝑤
− 𝛾 − 1

)√
𝑁

2(2𝛾 + 1)

)
. (4)

Given a target detection probability 𝑃𝐷 , the threshold 𝜆
can be derived, and the probability of false alarm 𝑃𝐹 can be
further rewritten as

𝑃𝐹 (𝑃𝐷, 𝑁, 𝛾)
△
=

1

2
erfc

(√
2𝛾 + 1erf−1(1− 2𝑃𝐷) +

√
𝑁

2
𝛾

)
,

(5)
where erf−1(⋅) denotes the inverse function of the error
function erf(⋅).

B. Throughput of a Secondary User

When sensing the primary user’s activity, a secondary user
cannot simultaneously perform data transmission. If we denote
the sampling frequency by 𝑓𝑠 and the frame duration by 𝑇 ,
then the time duration for data transmission is given by 𝑇 −
𝛿(𝑁), where 𝛿(𝑁) = 𝑁

𝑓𝑠
represents the time spent in sensing.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 25,2010 at 17:15:09 EDT from IEEE Xplore.  Restrictions apply. 



892 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 3, MARCH 2010

When the primary user is absent, in those time slots where
no false alarm is generated, the average throughput of a
secondary user is

𝑅𝐻0(𝑁) =
𝑇 − 𝛿(𝑁)

𝑇
(1− 𝑃𝐹 )𝐶𝐻0 , (6)

where 𝐶𝐻0 represents the data rate of the secondary user under
𝐻0. When the primary user is present, and not detected by the
secondary user, the average throughput of a secondary user is

𝑅𝐻1(𝑁) =
𝑇 − 𝛿(𝑁)

𝑇
(1− 𝑃𝐷)𝐶𝐻1 , (7)

where 𝐶𝐻1 represents the data rate of the secondary user under
𝐻1.

If we denote 𝑃𝐻0 as the probability that the primary user
is absent, then the total throughput of a secondary user is

𝑅(𝑁) = 𝑃𝐻0𝑅𝐻0(𝑁) + (1− 𝑃𝐻0)𝑅𝐻1(𝑁). (8)

In dynamic spectrum access, it is required that the sec-
ondary users’ operation should not conflict or interfere with
the primary users, and 𝑃𝐷 should be one in the ideal case.
According to (5), however, 𝑃𝐹 is then also equal to one, and
the total throughput of a secondary user (8) is zero, which
is impractical. Hence, a primary user who allows secondary
spectrum access usually predetermines a target detection prob-
ability 𝑃𝐷 very close to one [8], under which we assume the
secondary spectrum access will be prohibited as a punishment.
Then, from the secondary user’s perspective, he/she wants to
maximize his/her total throughput (8), given that 𝑃𝐷 ≥ 𝑃𝐷 .
Since the target detection probability 𝑃𝐷 is required by the
primary user to be very close to 1, and we usually have
𝐶𝐻1 < 𝐶𝐻0 due to the interference from the primary user
to the secondary user, the second term in (8) is much smaller
than the first term and can be omitted. Therefore, (8) can be
approximated by

�̃�(𝑁) ≈ 𝑃𝐻0𝑅𝐻0(𝑁) = 𝑃𝐻0

𝑇 − 𝛿(𝑁)

𝑇
(1− 𝑃𝐹 )𝐶𝐻0 . (9)

We know from (5) that given a target detection probability
𝑃𝐷 , 𝑃𝐹 is a decreasing function of 𝑁 . As a secondary user
reduces 𝑁 (or 𝛿(𝑁)) in the hope of having more time for data
transmission, 𝑃𝐹 will increase. This indicates a tradeoff for
the secondary user to choose an optimal 𝑁 that maximizes
the throughput �̃�(𝑁). In order to reduce both 𝑃𝐹 and 𝑁 , i.e.,
keep low false alarm 𝑃𝐹 with a smaller 𝑁 , a good choice for
a secondary user is to cooperatively sense the spectrum with
the other secondary users in the same licensed band.

C. Spectrum Sensing Game

A diagram of a cognitive radio network where multiple
secondary users are allowed to access one licensed spec-
trum band is shown in Fig. 1, where we assume that the
secondary users within each others’ transmission range can
exchange their sensory data about primary user detection. The
cooperative spectrum sensing scheme is illustrated in Fig. 2.
We assume that the entire licensed band is divided into 𝐾
sub-bands, and each secondary user operates exclusively in
one of the 𝐾 sub-bands when the primary user is absent.
Transmission time is slotted into intervals of length 𝑇 . Before

Fig. 1: System model.

Fig. 2: Cooperative spectrum sensing.

each data transmission, the secondary users need to sense the
primary user’s activity. Since the primary user will operate in
all the sub-bands once becoming active, the secondary users
within each other’s transmission range can jointly sense the
primary user’s presence, and exchange their sensing results
via a narrow-band signalling channel, as shown in Fig 2. In
this way, each of them can spend less time detecting while
enjoying a low false alarm probability 𝑃𝐹 via some decision
fusion rule [13], and the spectrum sensing cost (𝛿(𝑁)) can be
shared by whoever is willing to contribute (C).

However, according to their locations and quality of the
received primary signal, it may not be optimal to have all sec-
ondary users participate in spectrum sensing at every time slot,
in order to guarantee certain system performance. Moreover,
all secondary users cooperating in sensing may be difficult,
if the users do not serve a common authority, and instead
act selfishly to maximize their own throughput. In this case,
once a secondary user is able to overhear the detection results
from the other users, he/she can take advantage of that by
refusing to take part in spectrum sensing, called denying (D).
Although each secondary user in the cognitive radio network
still achieves the same false alarm probability 𝑃𝐹 , the users
who refuse to join in cooperative sensing have more time for
their own data transmission. The secondary users get a very
low throughput if no one senses the spectrum, in the hope that
someone else does the job.

Therefore, we can model the spectrum sensing as a non-
cooperative game. The players of the game are the secondary
users, denoted by 𝒮 = {𝑠1, ⋅ ⋅ ⋅ , 𝑠𝐾}. Each player 𝑠𝑘 has the
same action/strategy space, denoted by 𝒜 = {C,D}, where
“C” represents pure strategy contribute and “D” represents
pure strategy refuse to contribute (denying). The payoff func-
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tion is defined as the throughput of the secondary user. Assume
that secondary users contributing to cooperative sensing forms
a set, denoted by 𝒮𝑐 = {𝑠1, ⋅ ⋅ ⋅ , 𝑠𝐽}. Denote the false alarm
probability of the cooperative sensing among set 𝒮𝑐 with
fusion rule “RULE” and a target detection probability 𝑃𝐷 by

𝑃𝒮𝑐

𝐹

△
= 𝑃𝐹 (𝑃𝐷, 𝑁, {𝛾𝑖}𝑖∈𝒮𝑐 ,RULE). Then the payoff for a

contributor 𝑠𝑗 ∈ 𝒮𝑐, can be defined as

�̃�𝐶,𝑠𝑗 = 𝑃𝐻0

(
1− 𝛿(𝑁)

∣𝒮𝑐∣𝑇
)
(1− 𝑃𝒮𝑐

𝐹 )𝐶𝑠𝑗 , if ∣𝒮𝑐∣ ∈ [1,𝐾],

(10)
where ∣𝒮𝑐∣, i.e., the cardinality of set 𝒮𝑐, represents the number
of contributors, and 𝐶𝑠𝑗 is the data rate for user 𝑠𝑗 under
hypothesis𝐻0. Therefore, if user 𝑠𝑗 chooses to cooperate, then
he/she will share the sensing time with the other cooperative
users, and the cost is divided equally by all cooperative users.
In (10), we assume that the spectrum sensing cost is equally
divided among all the contributors; otherwise, there may be
fairness issue. The payoff for a user 𝑠𝑖 /∈ 𝒮𝑐, who selects
strategy 𝐷, is then given by

�̃�𝐷,𝑠𝑖 = 𝑃𝐻0(1− 𝑃𝒮𝑐

𝐹 )𝐶𝑠𝑖 , if ∣𝒮𝑐∣ ∈ [1,𝐾 − 1], (11)

since 𝑠𝑖 will not spend time sensing. Therefore, if user 𝑠𝑗
chooses not to contribute to sensing, he/she will rely on the
contributors’ decision, have more time for data transmission
and can expect a higher throughput. If no secondary user
contributes to sensing and waits for the others to sense, i.e.,
∣𝒮𝑐∣ = 0, from (5), we know that lim𝑁→0 𝑃𝐹 = 1, especially
for the low received SNR regime and high 𝑃𝐷 requirement.
In this case, the payoff for a denier becomes

�̃�𝐷,𝑠𝑖 = 0, if ∣𝒮𝑐∣ = 0. (12)

The decision fusion rule can be selected as the logical-OR
rule, logical-AND rule, or majority rule [8]. In this paper,
we use the majority rule to derive the 𝑃𝒮𝑐

𝐹 , though the other
fusion rules could be similarly analyzed. Denote the detection
and false alarm probability for a contributor 𝑠𝑗 ∈ 𝒮𝑐 by 𝑃𝐷,𝑠𝑗

and 𝑃𝐹,𝑠𝑗 , respectively. Then, under the majority rule we have
the following

𝑃𝐷 = Pr[at least half users in 𝒮𝑐 report 𝐻1∣𝐻1], (13)
and

𝑃𝐹 = Pr[at least half users in 𝒮𝑐 report 𝐻1∣𝐻0], (14)
Hence, given a 𝑃𝐷 for set 𝒮𝑐, each individual user’s target
detection probability 𝑃𝐷,𝑠𝑗 can be obtained by solving the
following equation

𝑃𝐷 =

∣𝒮𝑐∣∑
𝑘=⌈ 1+∣𝒮𝑐∣

2 ⌉

(∣𝒮𝑐∣
𝑘

)
𝑃 𝑘
𝐷,𝑠𝑗 (1− 𝑃𝐷,𝑠𝑗 )

∣𝒮𝑐∣−𝑘, (15)

where we assume each contributor 𝑠𝑗 ∈ 𝒮𝑐 takes equal
responsibility in making the final decision for fairness concern
and therefore 𝑃𝐷,𝑠𝑗 is identical for all 𝑠𝑗’s. Then, from (5)
we can write 𝑃𝐹,𝑠𝑗 as

𝑃𝐹,𝑠𝑗 =
1

2
erfc

(√
2𝛾𝑠𝑗 + 1erf−1(1 − 2𝑃𝐷,𝑠𝑗 ) +

√
𝑁

2∣𝒮𝑐∣𝛾𝑠𝑗
)
,

(16)
and can further obtain 𝑃𝒮𝑐

𝐹 by substituting (16) in (14).

Since secondary users try to maximize their own payoff
values, i.e., the average throughput, given the three possible
outcomes in (10)-(12), the selfish users’ behaviors are highly
unpredictable. Contributing to cooperative sensing can provide
a stable throughput, however, the stable throughput is achieved
at the cost of less time for data transmission; being a free-
rider may save more time for useful data transmission, but
the secondary users also face the risk of having no one sense
the spectrum and get zero throughput. Therefore, how should a
selfish but rational secondary user collaborate with other self-
ish users in cooperative spectrum sensing? Always contribute
to sensing, or always free ride, or neither? In the next, we
will answer this question by analyzing the rational secondary
users’ behavior dynamics and derive the equilibrium strategy,
with the aid of evolutionary game theory.

III. EVOLUTIONARY SENSING GAME AND STRATEGY

ANALYSIS

In this section, we first introduce the concept of evolution-
arily stable strategy (ESS), and then use replicator dynamics
to model and analyze the behavior dynamics of the secondary
users in the sensing game.

A. Evolutionarily Stable Strategy

Evolutionary game theory provides a good means to address
the strategic uncertainty that a player faces in a game by tak-
ing out-of-equilibrium behavior, learning during the strategic
interactions, and approaching a robust equilibrium strategy.
Such an equilibrium strategy concept widely adopted in evo-
lutionary game theory is the Evolutionarily Stable Strategy
(ESS) [22], which is “a strategy such that, if all members of
the population adopt it, then no mutant strategy could invade
the population under the influence of natural selection”. Let
us define the expected payoff as the individual fitness, and use
𝜋(𝑝, 𝑝) to denote the payoff of an individual using strategy 𝑝
against another individual using strategy 𝑝. Then, we have the
following formal definition of an ESS [22].

Definition 1 A strategy 𝑝∗ is an ESS if and only if, for all
𝑝 ∕= 𝑝∗,

1) 𝜋(𝑝, 𝑝∗) ≤ 𝜋(𝑝∗, 𝑝∗), (equilibrium condition)
2) if 𝜋(𝑝, 𝑝∗) = 𝜋(𝑝∗, 𝑝∗), 𝜋(𝑝, 𝑝) < 𝜋(𝑝∗, 𝑝) (stability

condition).

Condition 1) states that 𝑝∗ is the best response strategy
to itself, and is hence a Nash equilibrium (NE). Condition
2) is interpreted as a stability condition. Suppose that the
incumbents play 𝑝∗, and a collection of mutants play 𝑝. Then
conditions 1) and 2) ensure that as long as the fraction of
mutants playing 𝑝 is not too large, the average payoff to 𝑝 will
fall short of that to 𝑝∗. Since strategies with a higher fitness
value are expected to propagate faster in a population through
strategic interactions, evolution will cause the population using
mutation strategy 𝑝 to decrease until the entire population uses
strategy 𝑝∗.

Since data transmission for each secondary user is contin-
uous, the spectrum sensing game is played repeatedly and
evolves over time. Moreover, new secondary users may join in
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the spectrum sensing game from time to time, and the existing
secondary users may even be unaware of their appearance and
strategies. Hence, a stable strategy which is robust to mutants
using different strategies is especially preferred. Therefore,
we propose to use evolutionary game theory [17] to analyze
the behavior dynamics of the players and further derive the
ESS as the secondary users’ optimal collaboration strategy in
cooperative spectrum sensing.

B. Evolution Dynamics of the Sensing Game

When a set of rational players are uncertain of each
other’s actions and utilities, they will try different strategies
in every play and learn from the strategic interactions using
the methodology of understanding-by-building. During the
process, the percentage (or population share) of players using a
certain pure strategy may change. Such a population evolution
is characterized by replicator dynamics in evolutionary game
theory. Specifically, consider a population of homogeneous
individuals with identical data rate 𝐶𝑠𝑖 and received primary
SNR 𝛾𝑖. The players adopt the same set of pure strategies
𝒜. Since all players have the same 𝐶𝑠𝑖 and 𝛾𝑖, payoffs
for playing a particular strategy depend only on the other
strategies employed, not on who is playing them. Therefore,
all players have the same payoff function 𝑈 . At time 𝑡, let
𝑝𝑎𝑖(𝑡) ≥ 0 be the number of individuals who are currently
using pure strategy 𝑎𝑖 ∈ 𝒜, and let 𝑝(𝑡) =

∑
𝑎𝑖∈𝒜 𝑝𝑎𝑖(𝑡) > 0

be the total population. Then the associated population state
is defined as the vector 𝑥(𝑡) = {𝑥𝑎1(𝑡), ⋅ ⋅ ⋅ , 𝑥∣𝒜∣(𝑡)}, where
𝑥𝑎𝑖(𝑡) is defined as the population share 𝑥𝑎𝑖(𝑡) = 𝑝𝑎𝑖(𝑡)/𝑝(𝑡).
By replicator dynamics, at time t the evolution dynamics of
𝑥𝑎𝑖(𝑡) is given by the following differential equation [17]

�̇�𝑎𝑖 = 𝜖[�̄�(𝑎𝑖, 𝑥−𝑎𝑖)− �̄�(𝑥)]𝑥𝑎𝑖 , (17)

where �̄�(𝑎𝑖, 𝑥−𝑎𝑖) is the average payoff of the individuals
using pure strategy 𝑎𝑖, 𝑥−𝑎𝑖 is the set of population shares
who use pure strategies other than 𝑎𝑖, �̄�(𝑥) is the average
payoff of the whole population, and 𝜖 is some positive number
representing the time scale. The intuition behind (17) is as
follows: if strategy 𝑎𝑖 results in a higher payoff than the
average level, the population share using 𝑎𝑖 will grow, and the
growth rate �̇�𝑎𝑖/𝑥𝑎𝑖 is proportional to the difference between
strategy 𝑎𝑖’s current payoff and the current average payoff
in the entire population. By analogy, we can view 𝑥𝑎𝑖(𝑡) as
the probability that one player adopts pure strategy 𝑎𝑖, and
𝑥(𝑡) can be equivalently viewed as a mixed strategy for that
player. If a pure strategy 𝑎𝑖 brings a higher payoff than the
mixed strategy, strategy 𝑎𝑖 will be adopted more frequently,
and thus 𝑥𝑎𝑖(𝑡), the probability of taking 𝑎𝑖, will increase.
The rate of the probability increase �̇�𝑎𝑖 is proportional to the
difference between pure strategy 𝑎𝑖’s payoff and the payoff
achieved by the mixed strategy.

For the spectrum sensing game with heterogeneous players,
whose 𝛾𝑖 and/or 𝐶𝑠𝑖 are different from each other, denote the
probability that user 𝑠𝑗 adopts strategy ℎ ∈ 𝒜 at time 𝑡 by
𝑥ℎ,𝑠𝑗 (𝑡), then the time evolution of 𝑥ℎ,𝑠𝑗 (𝑡) is governed by
the following dynamics equation [17]

�̇�ℎ,𝑠𝑗 =
[
�̄�𝑠𝑗 (ℎ, 𝑥−𝑠𝑗 )− �̄�𝑠𝑗 (𝑥)

]
𝑥ℎ,𝑠𝑗 , (18)

where �̄�𝑠𝑗 (ℎ, 𝑥−𝑠𝑗 ) is the average payoff for player 𝑠𝑗 using
pure strategy ℎ, 𝑥−𝑠𝑗 is the set of strategies adopted by players
other than 𝑠𝑗 , and �̄�𝑠𝑗 (𝑥) is 𝑠𝑗’s average payoff using mixed
strategy 𝑥𝑠𝑗 . Eq. (18) indicates that if player 𝑠𝑗 achieves a
higher payoff by using pure strategy ℎ than using his/her
mixed strategy 𝑥𝑠𝑗 , strategy ℎ will be adopted more frequently,
the probability of using ℎ will increase, and the growth rate
of 𝑥ℎ,𝑠𝑗 is proportional to the excess of strategy ℎ’s payoff
and the payoff of the mixed strategy �̄�𝑠𝑗 (𝑥).

C. Analysis of Sensing Game with Homogeneous Players

A strategy is ESS if and only if it is asymptotically stable
to the replicator dynamics [17][21]. Therefore, we can derive
the ESS of the proposed spectrum sensing game by proving
its asymptotical stability. In this subsection, we study the ESS
of games with homogeneous players, and will discuss the
heterogeneous case in the next.

As shown in Fig. 1, players of the sensing game are
secondary users within each other’s transmission range. If the
transmission range is small, we can approximately view that
all the received 𝛾𝑠𝑗 ’s are very similar to each other. As the
𝛾𝑠𝑗 ’s are usually very low, in order to guarantee a low 𝑃𝐹

given a target 𝑃𝐷, the number of sampled signals 𝑁 should
be large. Under these assumptions, we can approximately view
𝑃𝒮𝑐

𝐹 as the same for different 𝒮𝑐’s, denoted by 𝑃𝐹 . Further
assume that all users have the same data rate, i.e. 𝐶𝑠𝑖 = 𝐶,
for all 𝑠𝑖 ∈ 𝒮. Then, the payoff functions defined in (10)-(12)
become

𝑈𝐶(𝐽) = 𝑈0

(
1− 𝜏

𝐽

)
, if 𝐽 ∈ [1,𝐾], (19)

and
𝑈𝐷(𝐽) =

{
𝑈0, if 𝐽 ∈ [1,𝐾 − 1];
0, if 𝐽 = 0,

(20)

where 𝑈0 = 𝑃𝐻0(1− 𝑃𝐹 )𝐶 denotes the throughput achieved
by a free rider who relies on the contributors’ sensing out-
comes, 𝐽 = ∣𝒮𝑐∣ denotes the number of contributors, and
𝜏 = 𝛿(𝑁)

𝑇 denotes the fraction of the entire sensing time shared
by all contributors over the duration of a time slot. It can be
seen from (19) and (20) that, when there is more than one
contributor, if a player chooses to contribute to sensing, the
payoff 𝑈𝐶(𝐽) is in general smaller than a free-rider’s payoff
𝑈𝐷(𝐽), due to the sensing cost 𝜏

𝐽 . However, in the worst case,
when no one contributes to sensing (𝐽 = 0), the payoff 𝑈𝐷(𝐽)
is the smallest.

As the secondary users are homogeneous players, (17) can
be applied to the special case as all players have the same
evolution dynamics and equilibrium strategy. Denote 𝑥 as the
probability that one secondary user contributes to spectrum
sensing, then the average payoff for pure strategy C can be
obtained as

�̄�𝐶(𝑥) =

𝐾−1∑
𝑗=0

(
𝐾 − 1

𝑗

)
𝑥𝑗(1− 𝑥)𝐾−1−𝑗𝑈𝐶(𝑗 + 1)1. (21)

Similarly, the average payoff for pure strategy D is given by

�̄�𝐷(𝑥) =
𝐾−1∑
𝑗=0

(
𝐾 − 1

𝑗

)
𝑥𝑗(1− 𝑥)𝐾−1−𝑗𝑈𝐷(𝑗). (22)
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Since the average payoff �̄�(𝑥) = 𝑥�̄�𝐶+(1−𝑥)�̄�𝐷, then (17)
becomes

�̇� = 𝜖𝑥(1 − 𝑥)[�̄�𝐶(𝑥)− �̄�𝐷(𝑥)
]
. (23)

In equilibrium 𝑥∗, no player will deviate from the optimal
strategy, indicating �̇�∗ = 0, and we obtain 𝑥∗ = 0, or 1,
or the solution of �̄�∗

𝐶(𝑥) = �̄�∗
𝐷(𝑥). Then, by equating (21)

and (22), we can have the following 𝐾 th-order equation (see
Appendix VI-A)

𝜏(1 − 𝑥∗)𝐾 +𝐾𝑥∗(1− 𝑥∗)𝐾−1 − 𝜏 = 0, (24)

and further solve the remaining equilibrium.
Next we show that the dynamics defined in (17) converge to

the above-mentioned equilibriums, which are asymptotically
stable and hence the ESS. Note that the variable in (17) is
the probability that a user chooses strategy 𝑎𝑖 ∈ {𝐶,𝐷}, so
we need to guarantee that 𝑥𝐶(𝑡) + 𝑥𝐷(𝑡) = 1 in the dynamic
process. We show this in the following proposition.

Proposition 1 The sum of the probability that a secondary
user chooses strategy “C” and “D” is equal to one in the
replicator dynamics of a symmetric sensing game.

Proof: See Appendix VI-B.
In order to prove that the replicator dynamics converge to

the equilibrium, we first show that all non-equilibria strategies
of the sensing game will be eliminated during the dynamic
process. It suffices to prove that (17) is a myopic adjustment
dynamic [16].

Definition 2 A system is a myopic adjustment dynamic if∑
ℎ∈𝒜

�̄�𝑠𝑗 (ℎ, 𝑥−𝑠𝑗 )�̇�ℎ,𝑠𝑗 ≥ 0, ∀𝑠𝑗 ∈ 𝒮. (25)

Inequality (25) indicates that the average utility of a player
will not decrease in a myopic adjustment dynamic system.
We then prove that the dynamics (17) satisfy Definition 2.

Proposition 2 The replicator dynamics (17) are myopic ad-
justment dynamics.

Proof: See Appendix VI-C.
In the following theorem, we show that the replicator

dynamics in (17) converge to the ESS.

Theorem 1 Starting from any interior point 𝑥 ∈ (0, 1), the
replicator dynamics defined in (17) converge to the ESS 𝑥∗.
In specific, when 𝜏 = 1, the replicator dynamics converge to
𝑥∗ = 0; when 𝜏 = 0, the replicator dynamics converge to
𝑥∗ = 1; when 0 < 𝜏 < 1, the replicator dynamics converge
to the solution of (24).

Proof: See Appendix VI-D.
In practice, the time spent in sensing should be a positive

value which is smaller than the duration of a time slot, i.e.,

1Since the average payoff for pure strategy C is the payoff of a player
choosing C against another 𝐾 − 1 players, who contribute to sensing with
probability 𝑥, �̄�𝐶(𝑥) can be expressed as �̄�𝐶(𝑥) =

∑𝐾−1
𝑗=0 𝑈𝐶(𝑗+1) Pr(𝑗),

where Pr(𝑗) denotes the probability that there are in total 𝑗 contributors among
𝐾 − 1 other players. Because Pr(𝑗) =

(𝐾−1
𝑗

)
𝑥𝑗(1 − 𝑥)𝐾−1−𝑗 , we can

obtain �̄�𝐶(𝑥) as shown in (21).

we have 0 < 𝛿(𝑁) < 𝑇 and 0 < 𝜏 = 𝛿(𝑁)
𝑇 < 1. Therefore,

the optimal strategy for the secondary users is to contribute to
sensing with probability 𝑥∗, where 𝑥∗ is the solution of (24).

D. Analysis of Sensing Game with Heterogeneous Players

For games with heterogeneous players, it is generally very
difficult to represent �̄�𝑠𝑗 (ℎ, 𝑥−𝑠𝑗 ) in a compact form, and
directly obtain the ESS in closed-form by solving (18). There-
fore, we first analyze a two-user game to gain some insight,
then generalize the observation to a multi-user game.

1) Two-Player Game: When there are two secondary users
in the cognitive radio network, i.e., 𝒮 = {𝑠1, 𝑠2}, according
to equations (10)-(12) we can write the payoff matrix as in

Table I, where for simplicity we define 𝐴
△
= 1 − 𝑃𝒮𝑐

𝐹 , with

TABLE I: Payoff table of a two-user sensing game

C D
C 𝐷1𝐴(1− 𝜏

2 ),𝐷2𝐴(1− 𝜏
2 ) 𝐷1𝐵1(1− 𝜏),𝐷2𝐵1

D 𝐷1𝐵2,𝐷2𝐵2(1 − 𝜏) 0,0

𝒮𝑐 = {𝑠1, 𝑠2}, 𝐵𝑖
△
= 1− 𝑃𝐹,𝑠𝑖 , 𝐷𝑖

△
= 𝑃𝐻0𝐶𝑖, and 𝜏 = 𝛿(𝑁)

𝑇 .
Let us denote 𝑥1 and 𝑥2 as the probability that user 1

and user 2 take action “C”, respectively, then we have the
expected payoff �̄�𝑠1(𝐶, 𝑥2) when user 1 chooses to contribute
to sensing as

�̄�𝑠1(𝐶, 𝑥2) = 𝐷1𝐴(1− 𝜏
2
)𝑥2 +𝐷1𝐵1(1− 𝜏)(1− 𝑥2), (26)

and the expected payoff �̄�𝑠1(𝑥) as

�̄�𝑠1(𝑥) =𝐷1𝐴(1− 𝜏

2
)𝑥1𝑥2 +𝐷1𝐵1(1 − 𝜏)𝑥1(1 − 𝑥2)

+𝐷1𝐵2(1− 𝑥1)𝑥2.
(27)

Thus we get the replicator dynamics equation of user 1
according to (18) as

�̇�1 = 𝑥1(1− 𝑥1)𝐷1

[
𝐵1(1 − 𝜏)− 𝐸1𝑥2

]
, (28)

where 𝐸1 = 𝐵2+𝐵1(1−𝜏)−𝐴(1− 𝜏
2 ). Similarly the replicator

dynamics equation of user 2 is written as

�̇�2 = 𝑥2(1− 𝑥2)𝐷2

[
𝐵2(1 − 𝜏)− 𝐸2𝑥1

]
, (29)

where 𝐸2 = 𝐵1 +𝐵2(1 − 𝜏)−𝐴(1 − 𝜏
2 ).

At equilibrium we know �̇�1 = 0 and �̇�2 = 0, then from (28)
and (29) we get five equilibria: (0, 0), (0, 1), (1, 0), (1, 1), and

the mixed strategy equilibrium
(

𝐵2(1−𝜏)
𝐸2

, 𝐵1(1−𝜏)
𝐸1

)
.

According to [20], if an equilibrium of the replicator
dynamics equations is a locally asymptotically stable point
in a dynamic system, it is an ESS. So we can view (28)
and (29) as a nonlinear dynamic system and judge whether
the five equilibria are ESSs by analyzing the Jacobian matrix.
By taking partial derivatives of (28) and (29), we obtain the
Jacobian matrix as

𝐽𝑚 =

[
𝐷1(1− 2𝑥1)𝐸11 −𝑥1(1− 𝑥1)𝐷1𝐸1

−𝑥2(1− 𝑥2)𝐷2𝐸2 (1 − 2𝑥2)𝐷2𝐸22

]
, (30)

where 𝐸11 = 𝐵1(1−𝜏)−𝐸1𝑥2, and 𝐸22 = 𝐵2(1−𝜏)−𝐸2𝑥1.
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The asymptotical stability requires that det(𝐽𝑚) > 0 and
tr(𝐽𝑚) <0. Substituting the five equilibria to (30), we can
obtain the ESS according to different values of 𝐴, 𝐵1, and
𝐵2 and conclude the following optimal collaboration strategy
for cooperative sensing game with two heterogeneous players:

1) When 𝐴(1− 𝜏
2 ) < 𝐵1, there is one ESS (1, 0), and the

strategy profile user 1 and user 2 adopt converges to
(C,D);

2) When 𝐴(1− 𝜏
2 ) < 𝐵2, there is one ESS (0, 1), and the

strategy profile converges to (D,C);
3) When 𝐴(1− 𝜏

2 ) > 𝐵2 and 𝐴(1− 𝜏
2 ) > 𝐵1, there is one

ESS (1, 1), and the strategy profiles converges to (C,C);
4) When 𝐴(1− 𝜏

2 ) < 𝐵1 and 𝐴(1− 𝜏
2 ) < 𝐵2, there are two

ESSs (1, 0) and (0, 1), and the strategy profile converges
to (C,D) or (D,C) depending on different initial strategy
profiles.

In order to explain the above-mentioned conclusions and
generalize them to a multi-player game, we next analyze the
properties of the mixed strategy equilibrium, although it is
not an ESS. Let us take the derivative of 𝑥∗1 = 𝐵2(1−𝜏)

𝐸2

with respect to the performance of a detector (𝐴, 𝐵2) and
the sensing cost 𝜏 , then we get2

∂𝑥∗1
∂𝐴

=
𝐵2(1− 𝜏/2)(1 − 𝜏)

𝐸2
2

> 0, (31)

∂𝑥∗1
∂𝐵2

=
[𝐴(1 − 𝜏/2)−𝐵1](1 − 𝜏)

𝐸2
2

< 0, (32)

and
∂𝑥∗1
∂𝜏

=
(𝐴/2−𝐵1)𝐵2

𝐸2
2

< 0. (33)

From (31) we know that when cooperative sensing brings
a greater gain, i.e., as 𝐴 increases, 𝑥∗1 (and 𝑥∗2) increases.
This is why when 𝐴(1 − 𝜏

2 ) > 𝐵𝑖, 𝑖 = 1, 2, the strategy
profile converges to (C,C). From (32) we find that the in-
centive of a secondary user 𝑠𝑖 contributing to cooperative
sensing decreases as the other user 𝑠𝑗’s detection performance
increases. This is because when user 𝑠𝑖 learns through repeated
interactions that 𝑠𝑗 has a better 𝐵𝑗 , 𝑠𝑖 tends not to sense the
spectrum and enjoys a free ride. Then 𝑠𝑗 has to sense the
spectrum; otherwise, he is at the risk of having no one sense
and receiving a very low expected payoff. That is why when
𝐴(1 − 𝜏

2 ) < 𝐵1 (or 𝐴(1 − 𝜏
2 ) < 𝐵2), the strategy profile

converges to (C,D) (or (D,C)). When the sensing cost (𝜏 )
becomes higher, the secondary users will be more reluctant to
contribute to cooperative sensing and 𝑥∗1 decreases, as shown
in (33).

2) Multi-Player Game: From the above-mentioned obser-
vation, we can infer that if some user 𝑠𝑖 has a better detection
performance 𝐵𝑖, the other users tend to take advantage of
𝑠𝑖. If there are more than two users in the sensing game,
the strategy of the users with worse 𝐵𝑖’s (and 𝛾𝑖’s) will
converge to “D”. Using replicator dynamics, users with better
detection performance tend to contribute to spectrum sensing

2Inequality (32) holds because 𝐴(1 − 𝜏/2) − 𝐵1 < 0; otherwise 𝑥∗
1 =

𝐵2(1−𝜏)
𝐸2

> 1, which is impractical. Inequality (33) holds because in practical
applications, we have 𝑃𝐹,𝑠𝑖 < 0.5, 𝐵𝑖 = 1 − 𝑃𝐹,𝑠𝑖 > 0.5, and 𝐴 < 1;

therefore, 𝐴
2

< 𝐵𝑖, and
∂𝑥∗

1
∂𝜏

< 0.

(i.e., choose C), because they are aware of the low throughput
if no one senses the spectrum. Similarly, if the secondary users
have different data rates, the user with a lower rate 𝐶𝑠𝑗 tends
to take advantage of those with higher rates (i.e., they choose
D), since the latter suffer relatively heavier losses if no one
contributes to sensing and they have to become more active
in sensing.

The work in [7] discussed how to select a proper subset of
secondary users in cooperative sensing so as to optimize de-
tection performance. However, their approach assumes that the
information about the received SNR’s (𝛾𝑖’s) is available at the
secondary base station. In our evolutionary game framework,
the secondary users can learn the ESS by using replicator
dynamics only with their own payoff history. Therefore, it
is suitable for distributed implementation when there exists
no secondary base station and the secondary users behave
selfishly. In the next section we propose a distributed learning
algorithm and further justify the convergence with computer
simulations.

E. Learning Algorithm for ESS

In the above cooperative sensing games with multiple play-
ers, we have shown that the ESS is solvable. However, solving
the equilibrium requires the knowledge of utility function as
well as exchange of private information (e.g., 𝛾𝑠𝑗 and 𝐶𝑠𝑗 )
and strategies adopted by the other users. This results in a lot
of communication overhead. Therefore, a distributed learning
algorithm that gradually converges to the ESS without too
much information exchange is preferred.

From (18), we can derive the strategy adjustment for the
secondary user as follows. Denote the pure strategy taken by
user 𝑠𝑗 at time 𝑡 by 𝐴𝑠𝑗 (𝑡). Define an indicator function 1ℎ

𝑠𝑗 (𝑡)
as

1ℎ
𝑠𝑗 (𝑡) =

{
1, if 𝐴𝑠𝑗 (𝑡) = ℎ;
0, if 𝐴𝑠𝑗 (𝑡) ∕= ℎ. (34)

At some interval 𝑚𝑇 , we can approximate �̄�𝑠𝑗 (ℎ, 𝑥−𝑠𝑗 ) by

�̄�𝑠𝑗 (ℎ, 𝑥−𝑠𝑗 )
.
=

∑
0≤𝑡≤𝑚𝑇 �̃�𝑠𝑗 (𝐴𝑠𝑗 (𝑡), 𝐴−𝑠𝑗 (𝑡))1

ℎ
𝑠𝑗 (𝑡)∑

0≤𝑡≤𝑚𝑇 1ℎ
𝑠𝑗 (𝑡)

,

(35)
where �̃�𝑠𝑗 (𝐴𝑠𝑗 (𝑡), 𝐴−𝑠𝑗 (𝑡)) is the payoff value for 𝑠𝑗 as de-
termined by (10)-(12). The numerator on the right hand side of
(35) denotes the cumulative payoff of user 𝑠𝑗 when 𝑠𝑗 chooses
pure strategy ℎ from time 0 to 𝑚𝑇 , while the denominator
denotes the cumulative total of the number of times when
strategy ℎ has been adopted by user 𝑠𝑗 during this time period.
Hence, (35) can be used to approximate �̄�𝑠𝑗 (ℎ, 𝑥−𝑠𝑗 ), and the
approximation is more precise as 𝑚→ ∞. Similarly, �̄�𝑠𝑗 (𝑥)
can be approximated by the average payoff of user 𝑠𝑗 from
time 0 to 𝑚𝑇

�̄�𝑠𝑗 (𝑥)
.
=

1

𝑚

∑
0≤𝑡≤𝑚𝑇

�̃�𝑠𝑗 (𝐴𝑠𝑗 (𝑡), 𝐴−𝑠𝑗 (𝑡)). (36)

Then, the derivative �̇�ℎ,𝑠𝑗 (𝑚𝑇 ) can be approximated by
substituting the estimations (35) and (36) into (18). Therefore,
the probability of user 𝑠𝑗 taking action ℎ can be adjusted by

𝑥ℎ,𝑠𝑗 ((𝑚+ 1)𝑇 ) = 𝑥ℎ,𝑠𝑗 (𝑚𝑇 )

+ 𝜂𝑠𝑗
[
�̄�𝑠𝑗 (ℎ, 𝑥−𝑠𝑗 )− �̄�𝑠𝑗 (𝑥)

]
𝑥ℎ,𝑠𝑗 (𝑚𝑇 ) ,

(37)
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Fig. 3: ESS and average throughput vs. 𝜏 .

TABLE II: Learning algorithm for ESS

1. Initialization:
⋄ for ∀𝑠𝑗 , choose a proper stepsize 𝜂𝑠𝑗 ;
⋄ for ∀𝑠𝑗 , ℎ ∈ 𝒜, let 𝑥(ℎ, 𝑠𝑗)← 1/∣𝒜∣.

2. During a period of 𝑚 slots, in each slot, each user 𝑠𝑗 :
⋄ chooses an action ℎ with probability 𝑥(ℎ, 𝑠𝑗);
⋄ receives a payoff determined by (10)-(12);
⋄ records the indicator function value by (34).

3. Each user 𝑠𝑗 approximates �̄�𝑠𝑗 (ℎ, 𝑥−𝑠𝑗 ) and �̄�𝑠𝑗 (𝑥)
by (35) and (36), respectively.

4. Each user 𝑠𝑗 updates the probability of each action by (37).
5. Go to Step 2 until converging to a stable equilibrium.

with 𝜂𝑠𝑗 being the step size of adjustment chosen by 𝑠𝑗 .
Eq. (37) can be viewed as a discrete-time replicator dynamic

system. It has been shown in [18] that if a steady state is
hyperbolic and asymptotically stable under the continuous-
time dynamics, then it is asymptotically stable for sufficiently
small time periods in corresponding discrete-time dynamics.
Since the ESS is the asymptotically stable point in the
continuous-time replicator dynamics and also hyperbolic [16],
if a player knows precise information about �̇�ℎ,𝑠𝑗 , adapting
strategies according to (37) can converge to an ESS. With
the learning algorithm, users will try different strategies in
every time slot, accumulate information about the average
payoff values based on (35) and (36), calculate the probability
change of some strategy using (18), and adapt their actions
to an equilibrium. The procedures of the proposed learning
algorithm are summarized in Table II.

By summarizing the above learning algorithm and analysis
in this section, we can arrive at the following cooperation
strategy in the de-centralized cooperative spectrum sensing:

Cooperation Strategy in Cooperative Spectrum Sensing:
Denote the probability of contributing to sensing for user 𝑠𝑖 ∈
𝒮 by 𝑥𝑐,𝑠𝑖 , then the following strategy will be used by 𝑠𝑖:

∙ if starting with a high 𝑥𝑐,𝑠𝑖 , 𝑠𝑖 will rely more on the
others and reduce 𝑥𝑐,𝑠𝑖 until further reduction of 𝑥𝑐,𝑠𝑖
decreases his throughput or 𝑥𝑐,𝑠𝑖 approaches 0.

∙ if starting with a low 𝑥𝑐,𝑠𝑖 , 𝑠𝑖 will gradually increase 𝑥𝑐,𝑠𝑖
until further increase of 𝑥𝑐,𝑠𝑖 decreases his throughput or

𝑥𝑐,𝑠𝑖 approaches 1.
∙ 𝑠𝑖 shall reduce 𝑥𝑐,𝑠𝑖 by taking advantage of those users

with better detection performance or higher data rates.
∙ 𝑠𝑖 shall increase 𝑥𝑐,𝑠𝑖 if cooperation with more users

can bring a better detection performance than the case
of single-user sensing without cooperation.

In the next section, we will demonstrate the convergence
to ESS of the proposed distributed learning algorithm through
simulations.

IV. SIMULATION RESULTS AND ANALYSIS

The parameters used in the simulation are as follows. We
assume that the primary signal is a baseband QPSK modulated
signal, the sampling frequency is 𝑓𝑠 = 1MHz, and the frame
duration is 𝑇 = 20 ms. The probability that the primary user is
inactive is set as 𝑃𝐻0 = 0.9, and the required target detection
probability 𝑃𝐷 is 0.95. The noise is assumed to be a zero-
mean CSCG process. The distance between the cognitive radio
network and the primary base station is very large, so the
received 𝛾𝑠𝑗 ’s are in the low SNR regime, with an average
value of −12 dB.

A. Sensing Game with Homogeneous Players

We first illustrate the ESS of the secondary users in a
homogeneous𝐾-user sensing game as in Section III-C, where
the data rate is 𝐶 = 1 Mbps. In Fig. 3(a), we show the
equilibrium probability of being a contributor 𝑥∗. The x-
axis represents 𝜏 = 𝛿(𝑁)

𝑇 , the ratio of sensing time duration
over the frame duration. From Fig. 3(a), we can see that 𝑥∗

decreases as 𝜏 increases. For the same 𝜏 , 𝑥∗ decreases as the
number of secondary users increases. This indicates that the
incentive of contributing to cooperative sensing drops as the
cost of sensing increases and more users exist in the network.
This is because the players tend to wait for someone else
to sense the spectrum and can then enjoy a free ride, when
they are faced with a high sensing cost and more counterpart
players. In Fig. 3(b), we show the average throughput per
user when all users adopt the equilibrium strategy. We see
that there is a tradeoff between the cost of sensing and the
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Fig. 4: Behavior dynamics of a homogeneous K-user sensing game.

throughput for an arbitrary number of users, and the optimal
value of 𝜏 is around 0.25. For comparison, we also plot the
throughput for a single-user sensing (dotted line “single”),
where the optimal value of 𝜏 is around 0.15. Although the
cost of sensing increases, we see that as more users share the
sensing cost, the average throughput per user still increases,
and the average throughput values for the cooperative sensing
game are higher than that of the single-user sensing case.

B. Convergence of the Dynamics

In Fig. 4, we show the replicator dynamics of the game with
homogeneous users, where 𝜏 = 0.5. We observe in Fig. 4(a)
that starting from a high initial probability of cooperation, all
users gradually reduce their degree of cooperation, because
being a free-rider more often saves more time for one’s own
data transmission and brings a higher throughput. However,
too low a degree of cooperation greatly increases the chance
of having no user contribute to sensing, so the users become
more cooperative starting from a low initial probability of
cooperation as shown in Fig. 4(b). It takes less than 20
iterations to attain the equilibrium by choosing a proper step
size 𝜂𝑠𝑖 = 3.

In Fig. 5, we show the replicator dynamics for the game
with three heterogeneous players, using the learning algorithm
discussed in Section III-E. We choose 𝜏 = 0.5, 𝛾1 = −14 dB,
𝛾2 = −10 dB, and 𝛾3 = −10 dB. As expected, starting from a
low initial probability of cooperation, the users tend to increase
the degree of cooperation. During the iterations, the users with
a worse 𝛾𝑖 (user 1) learn that listening to the detection results
from the users with a better 𝛾𝑖 can bring a higher throughput.
Hence, user 1’s strategy converges to “D” in the long run,
while the users with better detection performance (user 2 and
user 3) have to sense the spectrum to guarantee their own
throughput.

C. Comparison of ESS and Full Cooperation

In Fig. 6, we compare the total throughput of a 3-user
sensing game using their ESS and the total throughput when

the users always participate in cooperative sensing and share
the sensing cost, i.e., 𝑥𝑠𝑖 = 1. In the first four groups of
comparison we assume a homogeneous setting, where 𝛾𝑖
of each user takes value from {−13,−14,−15,−16} dB,
respectively. In the last four groups, a heterogeneous setting
is assumed, where 𝛾1 equals to {−12,−13,−14,−15} dB,
respectively, and 𝛾2 and 𝛾3 are kept the same as in the
homogeneous setting. We find in the figure that using ESS
has better performance than all secondary users cooperating
in sensing at every time slot. This is because under ESS, the
users can take turns to jointly complete the common task, and
on average contribute less time to sensing and enjoy a higher
throughput. This indicates that in order to guarantee a certain
detection performance, it is not necessary to force all users to
contribute in every time slot, and ESS can achieve a satisfying
system performance even when there exist selfish users.

V. CONCLUSION

Cooperative spectrum sensing with multiple secondary users
has been shown to achieve a better detection performance than
single-user sensing without cooperation. However, how to col-
laborate in cooperative spectrum sensing over de-centralized
cognitive radio networks is still an open problem, as selfish
users are not willing to contribute their energy/time to sensing.
In this paper, we propose an evolutionary game-theoretic
framework to develop the best cooperation strategy for coop-
erative sensing with selfish users. Using replicator dynamics,
users can try different strategies and learn a better strategy
through strategic interactions. We study the behavior dynamics
of secondary users, derive and analyze the property of the
ESSs, and further propose a distributed learning algorithm
that aids the secondary users approach the ESSs only with
their own payoff history. From simulation results we find that
the proposed game has a better performance than having all
secondary users sense at every time slot, in terms of total
throughput. Moreover, the average throughput per user in the
sensing game is higher than in the single-user sensing case
without user cooperation.
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VI. APPENDIX

A. Proof of Equation (24)

Subtracting �̄�𝐷(𝑥) from �̄�𝐶(𝑥) we get

�̄�𝐶(𝑥)− �̄�𝐷(𝑥)

=

𝐾−1∑
𝑗=0

(
𝐾 − 1

𝑗

)
𝑥𝑗(1− 𝑥)𝐾−1−𝑗 [𝑈𝐶(𝑗 + 1)− 𝑈𝐷(𝑗)]

=

𝐾−1∑
𝑗=0

(
𝐾 − 1

𝑗

)
𝑥𝑗(1− 𝑥)𝐾−1−𝑗 [𝑈0(1− 𝜏

𝑗 + 1
)− 𝑈0] +𝑀𝑡

=− 𝑈0𝜏

𝐾−1∑
𝑗=1

(
𝐾 − 1

𝑗

)
𝑥𝑗(1− 𝑥)𝐾−1−𝑗 1

𝑗 + 1
+𝑀𝑡

=− 𝜏𝑈0

𝑥𝐾

𝐾−1∑
𝑗=1

𝐾!

(𝑗 + 1)!(𝐾 − 𝑗 − 1)!
𝑥𝑗+1(1− 𝑥)𝐾−𝑗−1 +𝑀𝑡

=− 𝜏𝑈0

𝑥𝐾

𝐾∑
𝑗=2

(
𝐾

𝑗

)
𝑥𝑗(1− 𝑥)𝐾−𝑗 +𝑀𝑡

=
𝜏𝑈0

𝑥𝐾
[(1− 𝑥)𝐾 +𝐾𝑥(1− 𝑥)𝐾−1 − 1] +𝑀𝑡

=
𝑈0

𝐾

[
𝜏 (1− 𝑥)𝐾 +𝐾𝑥(1− 𝑥)𝐾−1 − 𝜏

𝑥

]
,

(38)

with 𝑀𝑡 = (1− 𝑥)𝐾−1𝑈0(1− 𝜏). By using L’Hôpital’s rule,
we know that lim𝑥→0 �̄�𝐶(𝑥)−�̄�𝐷(𝑥) = lim𝑥→0

𝑈0

𝐾 [−𝐾𝜏(1−
𝑥)𝐾−1+𝐾(1−𝑥)𝐾−1−𝐾𝑥(𝐾−1)(1−𝑥)𝐾−2] = 𝑈0(1−𝜏) >
0. Thus, 𝑥 = 0 is not a solution to equation �̄�𝐶(𝑥)−�̄�𝐷(𝑥) =
0, and the solution must satisfy 𝜏(1−𝑥)𝐾 +𝐾𝑥(1−𝑥)𝐾−1−
𝜏 = 0.

B. Proof of Proposition 1

Summing 𝑥𝑎𝑖 in (17) over 𝑎𝑖 yields

�̇�𝐶+ �̇�𝐷 = 𝜖[𝑥𝐶�̄�(𝐶, 𝑥𝐷)+𝑥𝐷�̄�(𝐷, 𝑥𝐶)−(𝑥𝐶+𝑥𝐷)�̄�(𝑥)].
(39)

Since �̄�(𝑥) = 𝑥𝐶�̄�(𝐶, 𝑥𝐷) + 𝑥𝐷�̄�(𝐷, 𝑥𝐶), and initially a
user chooses 𝑥𝐶 + 𝑥𝐷 = 1, (39) is reduced to �̇�𝐶 + �̇�𝐷 = 0.
Therefore, 𝑥𝐶(𝑡) + 𝑥𝐷(𝑡) = 1 holds at any 𝑡 during the
dynamic process. A similar conclusion also holds in an
asymmetric game.

C. Proof of Proposition 2

Substituting (17) into (25), we get∑
𝑎𝑖∈𝒜

�̇�𝑎𝑖 �̄�(𝑎𝑖, 𝑥−𝑎𝑖)

=
∑
𝑎𝑖∈𝒜

𝜖�̄�(𝑎𝑖, 𝑥−𝑎𝑖)[�̄�(𝑎𝑖, 𝑥−𝑎𝑖)− �̄�(𝑥)]𝑥𝑎𝑖

= 𝜖
∑
𝑎𝑖∈𝒜

𝑥𝑎𝑖�̄�
2(𝑎𝑖, 𝑥−𝑎𝑖)− 𝜖

[ ∑
𝑎𝑖∈𝒜

𝑥𝑎𝑖 �̄�(𝑎𝑖, 𝑥−𝑎𝑖)
]2
.

(40)

According to Jensen’s inequality, we know (40) is non-
negative, which completes the proof. In addition, we can show
(25) also holds for a game with heterogeneous players in a
similar way.

D. Proof of Theorem 1

From the simplified dynamics (23), we know that the sign
of �̇�𝐶(𝑡) is determined by the sign of �̄�𝐶(𝑥)− �̄�𝐷(𝑥), given
𝑥 ∈ (0, 1) and 𝜖 > 0. �̄�𝐶(𝑥) and �̄�𝐷(𝑥) are simplified as the
following

�̄�𝐶(𝑥) =𝑈0 − 𝑈0(1− 𝑥)𝐾−1𝜏

− 𝑈0

𝐾−1∑
𝑗=1

(
𝐾 − 1

𝑗

)
𝑥𝑗(1 − 𝑥)𝐾−𝑗−1 𝜏

𝑗 + 1
,

�̄�𝐷(𝑥) =𝑈0 − 𝑈0(1− 𝑥)𝐾−1.

(41)

Furthermore, the difference �̄�𝐶(𝑥) − �̄�𝐷(𝑥) is calculated in
Appendix VI-A as

�̄�𝐶(𝑥) − �̄�𝐷(𝑥) =
𝑈0

𝐾

[
𝜏(1 − 𝑥)𝐾 +𝐾𝑥(1− 𝑥)𝐾−1 − 𝜏

𝑥

]
.

(42)
According to different values of parameter 𝜏 , we prove the
theorem in three different cases.

Case I (𝜏 = 1): from (41) we know �̄�𝐶(𝑥) < �̄�𝐷(𝑥),
𝑑𝑥
𝑑𝑡 < 0, and the replicator dynamics converge to 𝑥∗ = 0.

Case II (𝜏 = 0): from (41) we have �̄�𝐶(𝑥) > �̄�𝐷(𝑥),
𝑑𝑥
𝑑𝑡 > 0, and the replicator dynamics converge to 𝑥∗ = 1.

Case III (0 < 𝜏 < 1): Define Φ(𝑥) = �̄�𝐶(𝑥) − �̄�𝐷(𝑥) =
𝑈0

𝐾𝑥𝑓(𝑥), with 𝑓(𝑥) = 𝜏(1 − 𝑥)𝐾 + 𝐾𝑥(1 − 𝑥)𝐾−1 − 𝜏 .
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When 𝑥 → 0, using L’Hôpital’s rule, we know from (42)
that lim𝑥→0 Φ(𝑥) = (1 − 𝜏)𝑈0 > 0. When 𝑥 → 1,
lim𝑥→1 Φ(𝑥) = − 𝜏

𝐾 < 0. Since Φ(0) > 0, Φ(1) < 0, and
Φ(𝑥) is a continuous function of 𝑥 in (0, 1), then Φ(𝑥) must
have at least one intersection with the x-axis, i.e., ∃�̃�, such
that Φ(�̃�) = 0. If there is only one such �̃�, then we can infer
that Φ(𝑥) > 0 when 𝑥 < �̃�, and Φ(𝑥) < 0 when 𝑥 > 𝑥. Since
Φ(𝑥) has the same sign as 𝑓(𝑥) when 0 < 𝑥 < 1, it suffices to
prove that there exists only one solution in (0, 1) to equation
𝑓(𝑥) = 0. Taking derivative of 𝑓(𝑥) with respect to 𝑥, we get

𝑑𝑓(𝑥)

𝑑𝑥
= (1 − 𝑥)𝐾−2

[− (𝐾 − 𝜏)𝑥 + (1− 𝜏)]. (43)

When 𝑥 = 1−𝜏
𝐾−𝜏 , 𝑑𝑓(𝑥)

𝑑𝑥 = 0. Observing (43) we find that
𝑓(𝑥) is increasing when 0 < 𝑥 < 1−𝜏

𝐾−𝜏 with 𝑓(0) = 0, while
decreasing when 1−𝜏

𝐾−𝜏 < 𝑥 < 1 with 𝑓(1) = −𝜏 < 0. This
means equation 𝑓(𝑥) = 0 has only one root 𝑥∗ in (0, 1), which
is the equilibrium solved in (24). When 0 < 𝑥 < 𝑥∗, 𝑓(𝑥) >
0; and when 𝑥∗ < 𝑥 < 1, 𝑓(𝑥) < 0. Since Φ(𝑥) has the same
sign as 𝑓(𝑥), we can conclude that for 0 < 𝑥 < 𝑥∗, Φ(𝑥) > 0,
i.e., 𝑑𝑥

𝑑𝑡 > 0; for 𝑥∗ < 𝑥 < 1, Φ(𝑥) < 0, i.e., 𝑑𝑥
𝑑𝑡 < 0. Thus,

the replicator dynamics converge to the equilibrium 𝑥∗.
Therefore, we have proved the convergence of replicator

dynamics to the ESS 𝑥∗.
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Leão, “Modelling resource sharing dynamics of VoIP users over a WLAN
using a game-theoretic approach,” in Proc. IEEE INFOCOM, pp. 915-
923, Phoenix, AZ, Apr. 2008.

[13] Z. Chair and P. K. Varshney, “Optimal data fusion in multiple sensor
detection systems,” IEEE Trans. Aerospace Elect. Syst., vol. 22, pp. 98-
101, Jan. 1986.

[14] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
New York: Springer-Verlag, 1994.

[15] C.-H. Chan, et al., “Evolution of cooperation in well-mixed N-person
snowdrift games,” Physica A (2008), doi:10.1016/j.physa.2008.01.035.

[16] D. Fudenberg and D. K. Levine, The Theory of Learning in Games.
MIT Press, 1998.

[17] J. W. Weibull, Evolutionary Game Theory. MIT Press, 1995.
[18] M. Hirsch and S. Smale, Differential Equations, Dynamical Systems,

and Linear Algebra. New York: Academic Press, 1974.
[19] D. Fudenberg and D. K. Levine, Game Theory. MIT Press, 1991.
[20] R. Cressman, Evolutionary Dynamics and Extensive Form Games. MIT

Press, 2003.
[21] L. Samuelson, Evolutionary Games and Equilibrium Selection. MIT

Press, 1998.
[22] J. Maynard Smith, Evolution and the Theory of Games. Cambridege

University Press, 1982.
[23] B. Wang, K. J. R. Liu, and T. C. Clancy, “Evolutionary game framework

for behavior dynamics in cooperative spectrum sensing,” in Proc. IEEE
Globecom, pp. 1-5, New Orleans, LA, Nov. 2008.

Beibei Wang (S’07) received the B.S. degree in
electrical engineering (with the highest honor) from
the University of Science and Technology of China,
Hefei, in 2004, and the Ph.D. degree in electrical en-
gineering from the University of Maryland, College
Park in 2009, where she is currently a postdoctoral
researcher.

Her research interests include dynamic spec-
trum allocation and management in cognitive radio
systems, wireless communications and networking,
game theory, multimedia communications, and net-

work security. Dr. Wang was the recipient of the Graduate School Fellowship,
the Future Faculty Fellowship, and the Dean’s Doctoral Research Award from
the University of Maryland.

Author Name K. J. Ray Liu (F’03) is a Distin-
guished Scholar-Teacher of University of Maryland,
College Park. He is Associate Chair of Graduate
Studies and Research of Electrical and Computer
Engineering Department and leads the Maryland
Signals and Information Group conducting research
encompassing broad aspects of information science
and technology including communications and net-
working, information forensics and security, multi-
media signal processing, and biomedical engineer-
ing. Dr. Liu is the recipient of numerous honors and

awards including best paper awards from IEEE Signal Processing Society,
IEEE Vehicular Technology Society, and EURASIP; IEEE Signal Processing
Society Distinguished Lecturer, EURASIP Meritorious Service Award, and
National Science Foundation Young Investigator Award. He also received
various teaching and research recognitions from University of Maryland
including university-level Invention of the Year Award; and Poole and Kent
Senior Faculty Teaching Award and Outstanding Faculty Research Award,
both from A. James Clark School of Engineering. Dr. Liu is a Fellow of
IEEE and AAAS.

Dr. Liu is President-Elect and was Vice President - Publications of IEEE
Signal Processing Society. He was the Editor-in-Chief of IEEE SIGNAL

PROCESSING MAGAZINE and the founding Editor-in-Chief of EURASIP
JOURNAL ON APPLIED SIGNAL PROCESSING. His recent books include
Cooperative Communications and Networking, Cambridge University Press,
2008; Resource Allocation for Wireless Networks: Basics, Techniques, and Ap-
plications, Cambridge University Press, 2008; Ultra-Wideband Communica-
tion Systems: The Multiband OFDM Approach, IEEE-Wiley, 2007; Network-
Aware Security for Group Communications, Springer, 2007; Multimedia
Fingerprinting Forensics for Traitor Tracing, Hindawi, 2005; Handbook on
Array Processing and Sensor Networks, IEEE-Wiley, 2009.

T. Charles Clancy (M’05) is a senior researcher
with the Laboratory for Telecommunications Sci-
ences, and an adjunct professor of Electrical Engi-
neering at the University of Maryland. He received
his M.S. in Electrical Engineering from the Univer-
sity of Illinois and Ph.D. in Computer Science from
the University of Maryland. His research interests
include next-generation wireless networks and secu-
rity. Specific areas of work include developing SDR
architectures for high-throughput and low-latency
signal processing, and security issues in cognitive

radio networks.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 25,2010 at 17:15:09 EDT from IEEE Xplore.  Restrictions apply. 


