
Genetic Programming and Evolvable Machines, 6:3, 319–347, 2005

C© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s10710-005-2987-8

Evolutionary Design of Arbitrarily Large Sorting

Networks Using Development

LUKÁŠ SEKANINA sekanina@fit.vutbr.cz

MICHAL BIDLO bidlom@fit.vutbr.cz

Faculty of Information Technology,Brno University of Technology, Božetěchova 2, 612 66, Brno, Czech Republic

Submitted June 17, 2004; Revised February 9, 2005

Published online: 12 August 2005

Communicated by: Julian Miller

Abstract. An evolutionary algorithm is combined with an application-specific developmental scheme in order

to evolve efficient arbitrarily large sorting networks. First, a small sorting network (that we call the embryo) has

to be prepared to solve the trivial instance of a problem. Then the evolved program (the constructor) is applied on

the embryo to create a larger sorting network (solving a larger instance of the problem). Then the same constructor

is used to create a new instance of the sorting network from the created larger sorting network and so on. The

proposed approach allowed us to rediscover the conventional principle of insertion which is traditionally used

for constructing large sorting networks. Furthermore, the principle was improved by means of the evolutionary

technique. The evolved sorting networks exhibit a lower implementation cost and delay.

Keywords: evolutionary algorithm, development, sorting network, scalability

1. Introduction

Evolutionary design has really become a popular and successful design method in many

engineering areas in the recent years [4, 6]. For instance, innovative and useful solutions are

routinely discovered by evolutionary techniques in the field of evolvable hardware [13, 19,

30, 34]. Evolutionary design has allowed us (1) to discover novel solutions, with features

that are beyond the scope of the solutions generated by conventional engineering methods

and (2) to perform hard engineering work in some areas automatically.

In the engineering domain we can formulate the goal of the evolutionary design

as follows: to produce new, innovative and useful solutions to complex problems that

can automatically be created with the minimal effort and domain knowledge of a de-

signer. Therefore, the challenge of conventional design is being substituted by design-

ing an evolutionary process that automatically performs the design for a given problem.

This may be harder than performing the creative design directly, but makes automation

possible.

In fact, only relatively simple designs were successfully evolved so far. As Torresen

commented on the classical paradigm of evolutionary design, large objects require longer

chromosomes, i.e. the search space is also larger and so difficult to be effectively explored by

evolutionary algorithm [38]. It also gets difficult and time consuming to evaluate candidate

solutions as they get more complex. For instance, in case of digital combinational circuits,

the time of evaluation of a circuit doubles with adding a single input variable.



320 SEKANINA AND BIDLO

In order to eliminate the problem of scale in the evolutionary circuit design, designers

have introduced various approaches, which can be divided into three classes: functional

level evolution (e.g. [32]), incremental evolution (e.g. [38]) and development (e.g. [14, 16]).

We will be interested in development in this paper.

When a sort of development is included into an evolutionary algorithm, a chromosome has

to contain a prescription for constructing a target object rather than a description of a target

object itself. A number of approaches to development were tested and described in literature

to solve various problems. However, in most cases, the obtained solutions have shown the

same complexity as the solutions generated without development (e.g. [14, 16, 31]).

The goal of this paper is to combine evolutionary design with a form of development in

order to evolve “infinitely scalable” objects, in particular, arbitrarily large sorting networks.

We chose the sorting networks because (1) conventional solutions to designing arbitrarily

large sorting networks exist and, therefore, we can compare the results, (2) evolutionary

techniques have already been utilized to design a sorting network with the predefined

number of inputs (but not to design an arbitrarily large sorting network), and (3) sorting

networks are suitable for implementation in hardware which is our main research objective

in general (but not in this paper).

An approach is presented in which a sorting network can grow continually and infinitely.

First, a small sorting network (that we call the embryo) has to be prepared to solve the trivial

instance of a problem. Then the evolved program (the constructor) is applied on the embryo

to create a larger sorting network (solving a larger instance of the problem). Then the same

constructor is used to create a new instance of the sorting network from the created larger

sorting network and so on. Every new instance of the sorting network is able to perform

the function of all its previous instances. We will demonstrate that the constructor can be

designed automatically by means of evolutionary techniques. Furthermore, it will be shown

that some of evolved constructors are able to produce much more efficient sorting networks

(in terms of the comparison count and delay) than a traditional conventional solution can

offer. The proposed method improves Sekanina’s initial approach, described in [35], which

did not yield better solutions than conventional methods. His method also did not deal with

delay of resulting circuits.

This paper is organized as follows. Section 2 briefly surveys principles, models and

applications of development. In Section 3 basic concepts and design approaches to sorting

networks are presented. Section 4 introduces the proposed approach to the evolutionary

design of sorting networks with development. The obtained results are summarized in

Section 5 and discussed in Section 6. Conclusions are given in Section 7.

2. Development in evolutionary design

A multicellular organism is determined by its genetic information and the environment in

which lives. In the process of development an adult organism is formed from a zygote.

Genes, inherited from parent(s), are used to create proteins. Proteins activate or suppress

other genes, work as signals among cells, influence internal functions of the cells and

perform many other important roles. Therefore, they control the growth, position and

behavior of all cells. All these processes are very complex and not fully understood [1].

In case of evolutionary algorithms, the process of development is usually consid-

ered as a nontrivial genotype–phenotype mapping. While genetic operators work with



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 321

genotypes, the fitness calculation is applied on phenotypes created by means of a devel-

opmental system. Various approaches have been investigated in order to utilize non-trivial

genotype–phenotype maps (see survey in [28]). For instance, Dawkins’s biomorphs rep-

resent a very nice example [11]. These techniques have been referred to as, for example,

developmental encodings, morphogenesis, embryogenesis, generative systems, neuroge-

nesis, computational embryology, etc. Recently, Kumar has introduced a more general,

collective umbrella term, Computational Development [28].

In the context of evolutionary algorithms, computational development might be utilized

to achieve diverse objectives, including: adaptation, compacting genotypes, reduction of

search space, allowing more complex solutions in solution space, regulation, regeneration,

repetition, robustness, scalability, evolvability, parallel construction, emergent behavior and

decentralized control [28]. In particular, we mainly deal with scalability in this paper.

2.1. Evolvability and scalability

The little understood capacity to be able to reach good solutions via evolution is called

evolvability [33]. Evolvability is the ability to evolve easily. Wagner and Altenberg noted

that in evolutionary algorithms it was found that the Darwinian process of mutation, re-

combination and selection is not universally effective in improving complex systems like

computer programs or circuits. For adaptation to occur, these systems must possess evolv-

ability, i.e. the ability of random variations to sometimes produce improvement. It was found

that evolvability critically depends on the way of mapping genetic variation onto pheno-

typic variation, an issue known as the representation problem. The genotype–phenotype

map is the common theme underlying such varied biological phenomena as developmental

constraints, biological versatility, developmental dissociability, morphological integration,

and some others [39].

Scalability is considered as one of the most difficult problems in the evolutionary design

field in general and in the evolvable hardware field in particular. Despite increased interest in

techniques of effective encoding, smart search strategies and clever fitness functions [14, 16,

32, 34, 38], only very small circuits (in comparison to the circuits designed conventionally)

were evolved up to now. Hence developmental approaches have become very popular in

the recent years.

2.2. Models and applications of development

Models of development were surveyed in Chapter 2 of [28]. Scientists construct these

models either to learn how development works in nature or to solve the problems of practical

evolutionary design in engineering or in the field of artificial life. In this section we will

briefly recall only a class of models related (in some way) to our work — evolutionary

design of arbitrarily large sorting networks.

In bio-inspired hardware and software systems the genotype phenotype mapping is

often implemented by means of rewriting systems. The first rewriting developmental

(neuro)system was investigated by Kitano [25]. Later, among others, Boers and Kuiper

[7] have utilized L-systems to create the architecture of feed-forward artificial neural net-

works. Haddow et al. [17] have adopted L-system in order to evolve scalable digital circuits.



322 SEKANINA AND BIDLO

Three-dimensional mechanical objects have been designed by evolution that also utilized

a variant of L-system in its genotype–phenotype map [21].

John Koza introduced an original method in which novel analog circuits have been

constructed according to the instructions produced by genetic programming [27]. Among

other activities, Koza’s team employed this technique for routine duplication of fourteen

patented inventions in the analog circuit domain [36].

In another approach, Gordon and Bentley have utilized the interaction of artificial genes

and proteins to model development in digital circuits [14]. CAM Brain machine [12]

and POEtic platform [37] are examples of those systems that use cellular automata-based

development. Gruau proposed a genetic encoding scheme for artificial neural networks

based on a cellular duplication and differentiation process. The construction starts with a

single cell that undergoes a number of duplications and transformations phases ending up

in a complete artificial neural network. The genotype is considered as a collection of rules

governing the process of cell division and transformations [15].

Miller and Thomson have invented a developmental method for growing graphs and

circuits using Cartesian genetic programming in order to evolve similar constructors to

ours (referred to as iterators in [31]). Because they worked at a very low level of abstraction

(as configuration bits of a hypothetical reconfigurable hardware) no general constructor

has been found for their task, i.e. the design of large even parity circuits. However, other

researchers have successfully evolved completely general solutions to the even-parity prob-

lem; for instance Huelsbergen, who has worked at the machine code level [22].

In order to evolve 3D shape and form Kumar has used complex and, therefore, realistic

models of development inspired by genetic regulatory networks [28]. Bentley has invented

fractal proteins for the same purpose. A fractal protein is a finite square subset of Mandelbrot

set, defined by three artificial codons that form the coding region of a gene in the genome

of a cell [5].

These methods have illustrated various approaches to the development; however, only a

few of them were successful with designing large systems for real-world applications.

3. Sorting networks and their design

The concept of sorting networks was introduced in 1954; Knuth traced the history of this

problem in his book [26]. A sorting network is defined as a sequence of compare–swap

operations (comparators) that depends only on the number of elements to be sorted, not

on the values of the elements. A compare–swap of two elements (a, b) compares and

exchanges a and b so that we obtain a ≤ b after the operation.

The main advantage of the sorting network is that the sequence of comparisons is fixed.

Thus it is suitable for parallel processing and hardware implementation, especially if the

number of sorted elements is small. Figure 1 shows an example of a 3-input sorting network.

The number of compare–swap components and delay are two crucial parameters of

any sorting network. By delay we mean the minimal number of groups of compare–swap

components that must be executed sequentially. Designers try to minimize the number

of comparators, delay or both parameters. Table 1 shows the number of comparators and

delay of some of the best currently known sorting networks. Some of these networks

were designed (or rediscovered) using evolutionary techniques [8–10, 20, 24, 27]. In most

cases the evolutionary approach was based on the encoding given in Figure 1 (in which



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 323

Table 1. The number of comparators and delay of the best currently known sorting networks.

Inputs (N) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Delay 0 1 3 3 5 5 6 6 7 8 8 9 10 10 10 10

Comparators 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

Figure 1 (a) A three-input sorting network consists of three comparators. (b) Alternative symbol. This network

can be described using the string (0,1) (1,2) (0,1).

comparator inputs are encoded using two integers). Evolutionary techniques were also

utilized to discover fault-tolerant sorting networks [18, 29].

In order to find out whether an N-input sorting network operates correctly we should

test N! input combinations. Thanks to the zero–one principle this number can be reduced.

This principle states that if an N-input sorting network sorts all 2N input sequences of 0’s

and 1’s into nondecreasing order, it will sort any arbitrary sequence of N numbers into

nondecreasing order [26]. Furthermore, if we use a proper encoding, on say 32 bits, and

binary operators AND instead of minimum and OR instead of maximum, we can evaluate

32 test vectors in parallel and thus reduce the testing process 32 times. Unfortunately, it is

usually impossible to obtain the general solution if only a subset of input vectors is utilized

during the evolutionary design [23].

Sorting networks are usually designed for a fixed number of inputs. It is also valid for

the mentioned evolutionary approaches. Note that the evolutionary approach is not scal-

able. Some conventional approaches exist for designing arbitrarily large sorting networks.

Figure 2 shows two principles for constructing a sorting network for N + 1 inputs when an

N-input network is given [26].

– Insertion — the (N + 1)st input is inserted into a proper place after the first N elements

have been sorted.

– Selection — the largest input value can be selected before we proceed to sort the remaining

ones.

We can see that the insertion principle corresponds to the straight insertion algorithm

known from the theory of sorting. The selection principle is related to the bubble sort

algorithm. Examples of sorting networks created using the two principles are shown in

Figure 3. Observe that while physical positions of comparators are different, their logical

positions are equivalent. Hence it is possible to re-arrange these comparators in order



324 SEKANINA AND BIDLO

Figure 2 Making (N + 1)-sorters from N-sorters: (a) insertion and (b) selection principle.

Figure 3 Examples of sorting networks created using: (a) insertion and (b) selection principle.

Figure 4 A sorting network with parallel layers (in rectangles).

to obtain a single sorting network (see Figure 4). The network contains the comparators

that can be executed in parallel. Therefore, its delay can be reduced substantially. These

comparators form the so-called parallel layers.

It is obvious that the sorting networks created using insertion or selection principle are

much larger than those networks designed for a particular N. However, the method can

be treated as a general design principle for building arbitrarily large sorting networks. In

next sections, the principle will be rediscovered firstly and then improved by means of

evolutionary techniques.

4. Development for sorting networks

The objective of this paper is to propose an application-specific development for evolu-

tionary algorithm, which, consequently, will be able to produce innovative arbitrarily large

sorting networks. Recall that the common evolutionary design of sorting networks deals

with designing a single sorting network with a predefined number of inputs.



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 325

Figure 5 Designing larger sorting networks from smaller sorting networks by means of a constructor K.

4.1. Basic concept

The proposed algorithm is based on Sekanina’s approach described in [35]. Unlike in

[35] we deal with the delay of sorting networks. A genetic algorithm is used to design

a program—constructor (consisting of application-specific instructions)—that is able to

create a larger sorting network from a smaller one (the smallest one is called the embryo).

Then the constructor is applied on its previous results in order to create a larger sorting

network and so on. Algorithm 1 and Figure 5 demonstrate this idea.

Algorithm 1:

Set time t = 0;

Create initial population of programs P(t);

Create sorting networks using programs from P(t);

Evaluate sorting networks;

while (termination condition is false) do

{
t = t + 1;

P(t) = create new population using P(t – 1);

Create sorting networks using programs from P(t);

Evaluate sorting networks;

}

The development is realized as follows. Consider that we have a 2-input sorting network

(i.e. N = 2 as seen in Figure 5) and we are going to evolve a program (constructor) that will

create a 3-input sorting network from the 2-input sorting network. The same program has

to be able to create a 4-input sorting network from the 3-input sorting network and so on.

4.2. Representation and the proposed developmental scheme

Sorting networks are encoded as sequences of pairs of integers. For instance, as Figure 1

shows, the 3-input sorting network is represented by the sequence of pairs (0, 1)(1, 2)(0, 1)

indicating the ordering of compare–swap operations over the inputs 0, 1 and 2. A constructor

is a sequence of instructions, each of which is encoded as three integers—operational code,

argument 1 and argument 2. The representation is similar to linear structures for genetic

programming [3]. Two types of instruction are utilized: copy and modify. Table 2 introduces

their semantics, variants, operational codes and parameters. The Modify instructions read

the indices of inputs of a comparator and add the values of their arguments to them.



326 SEKANINA AND BIDLO

Table 2. Instruction set utilized in development. “mod” denotes the modulo operation.

Instruction arg1 arg2 description

0: ModifyS a b c1 = (c1 + a): mod w, c2 = (c2 + b) mod w, cp = cp + 1, np = np + 1

1: ModifyM a b c1 = (c1 + a) mod w, c2 = (c2 + b) mod w, cp = cp + 1, ep = ep + 1, np =

np + 1

2: CopyS k − copy w − k comparators, cp = cp + 1, np = np + w − k

3: CopyM k − copy w − k comparators, cp = cp + 1, ep = ep + w − k, np = np + w − k

Modulo-operation ensures that the created comparator remains inside the sorting network

of a given number of inputs. This type of instructions may be considered as a “shift”

of a comparator to another position preserving the ordering of comparators. The Copy

instructions copy some comparators (beginning from the actual one) to the next instance.

The number of comparators to be copied depends on the instruction argument and the

number of inputs of the sorting network being created. The instruction ModifyS (resp.

CopyS) differs from ModifyM (resp. CopyM) in handling the ep pointer. Note that we (as

designers) designed these instructions for this particular task. Hence we call the approach

an application-specific development.

A sequence representing sorting networks is implemented using a variable-length array.

A sequence representing the constructor is implemented as a constant-length array. Its size

is determined at the beginning of evolution using our previous experience [35]. This size is

not optimized.

Let c1 and c2 (i.e. the pair (c1,c2)) denote indices of inputs of a comparator in embryo that

is processed by an instruction from Table 2. Instructions utilize three pieces of information:

(1) operation codes and (2) argument values given by GA, and (3) w, which is the number

of inputs (width) of the currently constructed sorting network. This value must be inserted

into the developmental process externally (from environment). Three pointers are utilized

in order to indicate the current position in sequences:

– ep—pointer to the actually processed comparator of the source sorting network (embryo

pointer),

– np—pointer to the first free position in the created sorting network, where the newly

created comparator will be placed (next-position pointer), and

– cp—constructor pointer (actually executed instruction).

As Figure 6 shows, instructions of the constructor are sequentially executed processing

the comparator pointed by the embryo pointer (ep). The comparators of the embryo are

also processed sequentially. Before execution of the first instruction, an auxiliary variable

(e end) is initialized by the value of np. This auxiliary value marks the end of embryo

and is invariable during actual application of the constructor. The process of construction

terminates when either all instructions of the constructor are executed or the end of embryo

is reached (i.e. ep = e end). After a single application of the constructor the obtained sorting

network is evaluated. If we apply the constructor again, we obtain a larger sorting network

and so on. In such case, the pointers ep and np possess their values resulted from the



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 327

Figure 6 Initialization of the development: (a) growing sorting network and (b) chromosome, i.e. instructions in

a constructor.

Figure 7 Example of invalid result of Modify instruction.

previous application; only cp and e end are updated. Note that the sorting network obtained

by repeated application of the constructor possesses all the comparators of its precursors.

The goal is to find such a constructor that will create valid sorting networks with the

minimal number of comparators and/or delay. Because the delay of constructed sorting

networks should be minimized, the following special condition has to be satisfied in order

to execute a Modify instruction: the result of Modify instruction is valid only in case that

c1 < c2 holds for the created comparator. Otherwise, the new comparator is not included

in the sorting network and the instruction only updates the embryo pointer. Figure 7 shows

an example of invalid result of Modify instruction. Pointer ep determines a comparator that

will be used to create a comparator at position specified by np. However, the comparator

is redundant. If accepted, the redundancy will propagate to larger sorting networks, which

will be ineffective too.

4.3. An example of two steps of development

Figure 8 shows an example of two applications of a constructor. The horizontal sequence

of numbers denotes the comparator positions. The vertical sequence of numbers denotes

indices of inputs of sorting network. A rectangle surrounds the embryo. The vertical thin

line separates the comparators created in the second application of the constructor. ep1 = 0

denotes the comparator pointed by embryo pointer, np1 = 3 denotes next-position pointer

and end1 = 3 denotes the end of embryo before the first application of the constructor.

Similarly, ep2 = 3 denotes the comparator pointed by embryo pointer, np2 = 8 denotes

next-position pointer and end2 = 8 denotes the end of embryo before the second application

of the constructor.



328 SEKANINA AND BIDLO

Figure 8 Example of the construction of sorting networks using constructor [ModifyS 2 2][ModifyS 1

2][ModifyM 0 1][ModifyS 2 1][CopyM 3 1][CopyM 2 4].

After execution of instructions [ModifyS 2 2] and [ModifyS 1 2], comparators (2,3) and

(1,3) are created in positions 3 and 4 (using the comparator (0,1) at the position 0). The

embryo pointer (ep) remains unchanged and np = 5. Execution of [ModifyM 0 1] results in

creating comparator (0,2) at the position 5. Now, ep = 1 and np = 6. By applying [ModifyS

2 1] on comparator (1,2) we obtain a new comparator (3,3). However, such the comparator

does not satisfy c1 < c2 condition and hence it will not be included in the sorting network.

ep and np remain unchanged. [CopyM 3 1] instruction copies one comparator from the

position 1 to the position pointed by np = 6 (since we are creating a 4-input sorting network

and the first argument of CopyM instruction is 3, the 4–3 results in 1 comparator to be

copied — see Table 2). The instruction updates the pointers, so now ep = 2 and np = 7.

The [CopyM 2 4] should copy two comparators. Since there is only one comparator before

the end of embryo, only one comparator will be copied and the pointers will be updated to

ep = 3 and np = 8. Because the end of embryo was reached and all the instructions of the

constructor were executed, the first application is finished.

The ep and np pointers now possess the values of ep2 and np2 and this is the starting con-

figuration for the second application of the constructor. Execution of instructions proceeds

in the same manner. Comparators will be created in positions 8–15. Note that during the

second application of the constructor the result of [ModifyS 2 1] is valid and the comparator

(3,4) will be created in position 11 from (1,3) in position 4. Since we are now creating a

6-input sorting network, [CopyM 3 1] copies three comparators from the positions 4, 5 and

6. The last instruction [CopyM 2 4] copies one comparator from the position 7 before the

end of the second embryo and the second application of the constructor is finished. The

next applications would construct the 8-, 10-, 12-input sorting networks and so on.

4.4. Genetic algorithm

A steady state genetic algorithm and a simple genetic algorithm implemented using Galib

[40] have been utilized. The GA operates with constant-length chromosomes (programs)

represented by triplets of positive integers. Initial population is generated randomly. The



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 329

probabilities of uniform crossover and mutation and other parameters will be given together

with the results in Section 5. The mutation operator is applied on all offspring.

We would like to evolve arbitrarily large sorting networks. However, because of problems

with the scalability of fitness evaluation, only several instances of the growing sorting

network can be evaluated in the fitness calculation process. Assume that we start with a

3-input sorting network. In our case a candidate constructor is used to build the 4-input,

5-input, 6-input and 7-input sorting networks from the 3-input embryo. The fitness value

is calculated as follows:

fitness = f (4) + f (5) + f (6) + f (7),

where f(j) is the fitness value for a j-input sorting network. This value is calculated using the

zero–one principle as the number of input sequences of zeroes and ones sorted correctly.

Hence 24 + 25 + 26 + 27 = 240 represents the best possible value that we could obtain. At

the end of evolution we have to test whether the evolved constructor is general, i.e. whether

it generates infinitely large sorting networks which sort all possible input sequences. If a

constructor is able to create a sorting network for a sufficiently high N (N = 28 in our case)

then we consider the constructor as general.

The proposed developmental scheme can fully be defined using the following parameters:

w1, w max, dw and ew, which will be utilized to characterize the results in Section 5. Let

w1 denote the number of inputs of the smallest sorting network that is constructed from

ew-input embryo in the fitness calculation process (i.e. the sorting network created by

the first application of constructor). Similarly w max denotes the largest sorting network

constructed during fitness evaluation. Let dw be a difference between the number of inputs

of neighboring networks created by a constructor. In this paper, dw is 1 or 2. Finally, it

is useful to define one more parameter, de, de = w1 − ew. The following parameters

summarize the mentioned example: w1 = 4, w max = 7, dw = 1, and ew = 3.

5. Experimental results

This section summarizes the experiments that we performed. Each experiment required

setting up parameters of genetic algorithm (the probability of crossover and mutation,

population size, the number of generations, etc.) and parameters of development (w1,

w max, dw, and ew). The quality of resulting sorting networks depends on both sets of

parameters. We measured the number of general constructors (NGC) obtained out of 100

independent runs.

The produced sorting networks will be characterized in terms of comparators count and

delay. Each constructor will be labeled by its length (the number of instructions), size of

utilized embryo and identification. Moreover, we recognized that very interesting sorting

networks are produced in the case that only even-input (or odd-input) networks are required.

Hence constructors were evolved for the even, odd, and even and odd1 number of inputs in

growing sorting networks, which is also included in the label as seen in Table 3.

Three tables will summarize each experiment. The first table lists the best constructors.

The second table gives the number of compare–swap components and the number of redun-

dant comparators (in parentheses). Delay and the number of parallel layers in parentheses

(that are available after removal of redundant comparators) are given in the third table.



330 SEKANINA AND BIDLO

Table 3. Definition of labels for constructors in the form gX-

Yzzz ID.

Symbols Description

X Constructor length (the number of instructions)

Y Embryo width (the number of inputs)

zzz Odd/even/all (possible inputs)

ID Identification

Figure 9. Embryos tested: (a) 2-input, (b) 3-input, (c) 4-input, (d) 4-input — another type.

The best solution is typed italic. We experimented with various types of embryo. Figure 9

shows the embryos that we utilized.

5.1. Evolving sorting networks

In the first set of experiments, the sorting networks with the even as well as odd number of

inputs were evolved from a three-input embryo. It corresponds to setting: ew = 3, de = 1

and dw = 1. We used a simple GA, operating with 60 individuals, with the probability of

crossover pc = 0.75 and the probability of mutation pm = 0.08. Results are summarized in

Tables 4–6.

The evolved constructors are very simple and of the same quality as the conventional ap-

proach produces. In fact the conventional straight insertion algorithm has been rediscovered

(see Figure 10). Some other examples are given in Figure 11. We were not able to improve

the principle of construction in this way. Hence we have tried to change parameters of the

development and GA as the next section illustrates.

Table 4. Examples of general constructors evolved for a 3-input embryo.

Constructor Instructions NGC

g3-3all [ModifyS 2 2] [ModifyS 1 1] [CopyM 3 2]

g3-3all 2 [ModifyS 1 1] [ModifyM 2 2] [CopyM 0 2] 100

g3-3all 3 [ModifyS 2 2] [ModifyS 1 1] [CopyM 0 3]

g4-3all [ModifyS 3 2] [ModifyS 2 2] [ModifyS 1 1] [CopyM 3 3] 100

g4-3all 2 [ModifyM 0 0] [ModifyS 1 1] [ModifyS 1 0] [CopyM 0 2]

Parameters: ew = 3, de = 1, dw = 1.



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 331

Ta
b

le
5

.
T

h
e

n
u

m
b

er
o

f
co

m
p

ar
at

o
rs

o
f

so
rt

in
g

n
et

w
o

rk
s

fo
r

co
n

st
ru

ct
o

rs
fr

o
m

T
ab

le
4

.
T

h
e

n
u

m
b

er
o

f
re

d
u

n
d

an
t

co
m

p
ar

at
o

rs
is

g
iv

en
in

p
ar

en
th

es
es

.

N
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5

co
n
v.

6
1

0
1

5
2

1
2

8
3

6
4

5
5

5
6

6
7

8
9

1
1

0
5

g
3

-3
a

ll
6

1
0

1
5

2
1

2
8

3
6

4
5

5
5

6
6

7
8

9
1

1
0

5

g
3

-3
al

l
2

7
(1

)
1

2
(2

)
1

8
(3

)
2

5
(4

)
3

3
(5

)
4

2
(6

)
5

2
(7

)
6

3
(8

)
7

5
(9

)
8

8
(1

0
)

1
0

2
(1

1
)

1
1

7
(1

2
)

g
3

-3
al

l
3

8
(2

)
1

4
(4

)
2

1
(6

)
2

9
(8

)
3

8
(1

0
)

4
8

(1
2

)
5

9
(1

4
)

7
1

(1
6

)
8

4
(1

8
)

9
8

(2
0

)
1

1
3

(2
2

)
1

2
9

(2
4

)

g
4

-3
al

l
6

1
0

1
5

2
1

2
8

3
6

4
5

5
5

6
6

7
8

9
1

1
0

5

g
4

-3
al

l
2

7
(1

)
1

2
(2

)
1

8
(3

)
2

5
(4

)
3

3
(5

)
4

2
(6

)
5

2
(7

)
6

3
(8

)
7

5
(9

)
8

8
(1

0
)

1
0

2
(1

1
)

1
1

7
(1

2
)

N
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7

co
n
v.

1
2

0
1

3
6

1
5

3
1

7
1

1
9

0
2

1
0

2
3

1
2

5
3

2
7

6
3

0
0

3
2

5
3

5
1

g
3

-3
a

ll
1

2
0

1
3

6
1

5
3

1
7

1
1

9
0

2
1

0
2

3
1

2
5

3
2

7
6

3
0

0
3

2
5

3
5

1

g
3

-3
al

l
2

1
3

3
(1

3
)

1
5

0
(1

4
)

1
6

8
(1

5
)

1
8

7
(1

6
)

2
0

7
(1

7
)

2
2

8
(1

8
)

2
5

0
(1

9
)

2
7

3
(2

0
)

2
9

7
(2

1
)

3
2

2
(2

2
)

3
4

8
(2

3
)

3
7

5
(2

4
)

g
3

-3
al

l
3

1
4

6
(2

6
)

1
6

4
(2

8
)

1
8

3
(3

0
)

2
0

3
(3

2
)

2
2

4
(3

4
)

2
4

6
(3

6
)

2
6

9
(3

8
)

2
9

3
(4

0
)

3
1

8
(4

2
)

3
4

4
(4

4
)

3
7

1
(4

6
)

3
9

9
(4

8
)

g
4

-3
al

l
1

2
0

1
3

6
1

5
3

1
7

1
1

9
0

2
1

0
2

3
1

2
5

3
2

7
6

3
0

0
3

2
5

3
5

1

g
4

-3
al

l
2

1
3

3
(1

3
)

1
5

0
(1

4
)

1
6

8
(1

5
)

1
8

7
(1

6
)

2
0

7
(1

7
)

2
2

8
(1

8
)

2
5

0
(1

9
)

2
7

3
(2

0
)

2
9

7
(2

1
)

3
2

2
(2

2
)

3
4

8
(2

3
)

3
7

5
(2

4
)



332 SEKANINA AND BIDLO

Ta
b

le
6

.
D

el
ay

o
f

so
rt

in
g

n
et

w
o

rk
s

fr
o

m
T

ab
le

4
.
P

ar
en

th
es

es
sh

o
w

d
el

ay
af

te
r

re
m

o
v
al

o
f

re
d

u
n

d
an

t
co

m
p

ar
at

o
rs

.

N
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5

co
n
v.

5
7

9
1

1
1

3
1

5
1

7
1

9
2

1
2

3
2

5
2

7

g
3

-3
a

ll
5

7
9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

g
3

-3
al

l
2

7
(5

)
1

1
(7

)
1

5
(9

)
1

9
(1

1
)

2
3

(1
3

)
2

7
(1

5
)

3
1

(1
7

)
3

5
(1

9
)

3
9

(2
1

)
4

3
(2

3
)

4
7

(2
5

)
5

1
(2

7
)

g
3

-3
al

l
3

7
(5

)
1

1
(7

)
1

5
(9

)
1

9
(1

1
)

2
3

(1
3

)
2

7
(1

5
)

3
1

(1
7

)
3

5
(1

9
)

3
9

(2
1

)
4

3
(2

3
)

4
7

(2
5

)
5

1
(2

7
)

g
4

-3
al

l
5

7
9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

g
4

-3
al

l
2

6
(5

)
9

(7
)

1
2

(9
)

1
5

(1
1

)
1

8
(1

3
)

2
1

(1
5

)
2

4
(1

7
)

2
7

(1
9

)
3

0
(2

1
)

3
3

(2
3

)
3

6
(2

5
)

3
9

(2
7

)

N
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7

co
n
v.

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

g
3

-3
a

ll
2

9
3

1
3

3
3

5
3

7
3

9
4

1
4

3
4

5
4

7
4

9
5

1

g
3

-3
al

l
2

5
5

(2
9

)
5

9
(3

1
)

6
3

(3
3

)
6

7
(3

5
)

7
1

(3
7

)
7

5
(3

9
)

7
9

(4
1

)
8

3
(4

3
)

8
7

(4
5

)
9

1
(4

7
)

9
5

(4
9

)
9

9
(5

1
)

g
3

-3
al

l
3

5
5

(2
9

)
5

9
(3

1
)

6
3

(3
3

)
6

7
(3

5
)

7
1

(3
7

)
7

5
(3

9
)

7
9

(4
1

)
8

3
(4

3
)

8
7

(4
5

)
9

1
(4

7
)

9
5

(4
9

)
9

9
(5

1
)

g
4

-3
al

l
2

9
3

1
3

3
3

5
3

7
3

9
4

1
4

3
4

5
4

7
4

9
5

1

g
4

-3
al

l
2

4
2

(2
9

)
4

5
(3

1
)

4
8

(3
3

)
5

1
(3

5
)

5
4

(3
7

)
5

7
(3

9
)

6
0

(4
1

)
6

3
(4

3
)

6
6

(4
5

)
6

9
(4

7
)

7
2

(4
9

)
7

5
(5

1
)



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 333

Figure 10 The insertion principle rediscovered using instructions: [ModifyS 2 2] [ModifyS 1 1] [CopyM 3 2]

or [ModifyS 3 2] [ModifyS 2 2] [ModifyS 1 1] [CopyM 3 3].

5.2. Evolving odd-input sorting networks

The constructed sorting networks were restricted to the odd number of inputs. Surprisingly,

the most interesting odd-input sorting networks were generated by using an even-input

embryo. We chose a 4-input embryo, ew = 4, and parameters de = 1 and dw = 2. After

some experiments, the best results were produced by a steady-state genetic algorithm

with pc = 0.74 and pm = 0.1. Population consists of 400 individuals with overlapping

12 individuals. Table 7 shows chromosomes of some evolved constructors.2 As Table 8

indicates, we were able to reduce the number of comparators substantially in this set of

experiments. Delays are given in Table 9.

If the number of comparators is measured then the best-evolved sorting network is given

in Figure 12. In case of minimizing the delay, the best solution is shown in Figure 13.

However, all the sorting networks contain redundant comparators which make their delay

unnecessarily long. After their removal we can obtain the quality (delay) of the conventional

solution.

5.3. Evolving even-input sorting networks

In the previous section we discovered better constructors than the conventional approach

offers for the odd-input sorting networks. This section deals with discovered even-input

sorting networks that are better than conventional ones.

In contrast to the previous section, various types of embryos have been confirmed as

useful for constructing novel sorting networks. We applied a simple genetic algorithm with

pc = 0.7, pm = 0.023 and population size 60. Tables 10–12 summarize the results for the

two-input embryo.



334 SEKANINA AND BIDLO

Table 7. Constructors of odd-input sorting networks for a four-input embryo.

Constructor Instructions NGC

g8-4odd [0 2 2] [0 2 3] [1 3 3] [0 1 1] [0 4 0] [3 2 3] [3 0 4] [3 1 3] 41

g8-4odd 2 [0 2 2] [0 2 3] [1 3 3] [0 1 1] [3 4 2] [3 2 2] [3 2 2] [3 4 4]

g8-4odd 3 [0 2 2] [0 2 3] [0 3 3] [1 2 0] [0 1 1] [3 0 4] [0 3 3] [3 3 3]

g8-4odd 4 [0 2 2] [0 3 3] [0 2 2] [0 1 1] [0 2 2] [3 0 0] [3 3 2] [3 0 0]

g7-4odd [0 2 2] [0 3 2] [1 2 3] [0 3 2] [0 1 1] [3 0 1] [3 0 3] 62

g7-4odd 2 [0 2 2] [1 2 3] [0 3 2] [0 1 1] [0 2 1] [3 0 2] [3 4 0]

g7-4odd 3 [0 2 2] [1 2 3] [0 1 1] [0 3 2] [0 1 1] [3 3 2] [3 2 3]

g6-4odd [0 2 2] [0 2 3] [0 3 3] [1 1 2] [3 2 1] [3 3 3] 80

g6-4odd 2 [0 2 2] [1 2 3] [0 3 2] [0 1 1] [3 1 3] [3 3 4]

Parameters: ew = 4, de = 1, dw = 2.

Figure 11 Examples of growing sorting networks created using constructors: (a) g4-3all 2, (b) g3-3all 2,

(c) g3-3all 3.



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 335

Ta
b

le
8

.
T

h
e

n
u

m
b

er
o

f
co

m
p

ar
at

o
rs

fo
r

o
d

d
-i

n
p

u
t

so
rt

in
g

n
et

w
o

rk
s

cr
ea

te
d

u
si

n
g

co
n

st
ru

ct
o

rs
fr

o
m

T
ab

le
7

.

N
5

7
9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

co
n
v.

1
0

2
1

3
6

5
5

7
8

1
0

5
1

3
6

1
7

1
2

1
0

2
5

3
3

0
0

3
5

1

g
8

-4
o

d
d

1
4

(5
)

2
6

(8
)

4
1

(1
1

)
5

9
(1

4
)

8
0

(1
7

)
1

0
4

(2
0

)
1

3
1

(2
3

)
1

6
1

(2
6

)
1

9
4

(2
9

)
2

3
0

(3
2

)
2

6
9

(3
5

)
3

1
1

(3
8

)

g
8

-4
o

d
d

2
1

3
(4

)
2

4
(6

)
3

8
(8

)
5

5
(1

0
)

7
5

(1
2

)
9

8
(1

4
)

1
2

4
(1

6
)

1
5

3
(1

8
)

1
8

5
(2

0
)

2
2

0
(2

2
)

2
5

8
(2

4
)

2
9

9
(2

6
)

g
8

-4
o

d
d

3
1

3
(4

)
2

4
(6

)
3

9
(9

)
5

8
(1

3
)

8
1

(1
8

)
1

0
8

(2
4

)
1

3
9

(3
1

)
1

7
4

(3
9

)
2

1
3

(4
8

)
2

5
6

(5
8

)
3

0
3

(6
9

)
3

5
4

(8
1

)

g
8

-4
o

d
d

4
1

5
(6

)
3

0
(1

0
)

5
0

(1
5

)
7

5
(2

1
)

1
0

5
(2

8
)

1
4

0
(3

6
)

1
8

0
(4

5
)

2
2

5
(5

5
)

2
7

5
(6

6
)

3
3

0
(7

8
)

3
9

0
(9

1
)

4
5

5
(1

0
5

)

g
7

-4
o

d
d

1
2

(3
)

2
2

(4
)

3
5

(5
)

5
1

(6
)

7
0

(7
)

9
2

(8
)

1
1

7
(9

)
1

4
5

(1
0

)
1

7
6

(1
1

)
2

1
0

(1
2

)
2

4
7

(1
3

)
2

8
7

(1
4

)

g
7

-4
o

d
d

2
1

2
(3

)
2

3
(5

)
3

8
(8

)
5

7
(1

2
)

8
0

(1
7

)
1

0
7

(2
3

)
1

3
8

(3
0

)
1

7
3

(3
8

)
2

1
2

(4
7

)
2

5
5

(5
7

)
3

0
2

(6
8

)
3

5
3

(8
0

)

g
7

-4
o

d
d

3
1

3
(4

)
2

5
(7

)
4

1
(1

1
)

6
1

(1
6

)
8

5
(2

2
)

1
1

3
(2

9
)

1
4

5
(3

7
)

1
8

1
(4

6
)

2
2

1
(5

6
)

2
6

5
(6

7
)

3
1

3
(7

9
)

3
6

5
(9

2
)

g
6

-4
o

d
d

1
3

(4
)

2
4

(6
)

3
8

(8
)

5
5

(1
0

)
7

5
(1

2
)

9
8

(1
4

)
1

2
4

(1
6

)
1

5
3

(1
8

)
1

8
5

(2
0

)
2

2
0

(2
2

)
2

5
8

(2
4

)
2

9
9

(2
6

)

g
6

-4
o

d
d

2
1

2
(3

)
2

2
(4

)
3

5
(5

)
5

1
(6

)
7

0
(7

)
9

2
(8

)
1

1
7

(9
)

1
4

5
(1

0
)

1
7

6
(1

1
)

2
1

0
(1

2
)

2
4

7
(1

3
)

2
8

7
(1

4
)



336 SEKANINA AND BIDLO

Ta
b

le
9

.
D

el
ay

o
f

o
d

d
-i

n
p

u
t

so
rt

in
g

n
et

w
o

rk
s

cr
ea

te
d

u
si

n
g

co
n

st
ru

ct
o

rs
fr

o
m

T
ab

le
7

.

N
5

7
9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

co
n
v.

7
1

1
1

5
1

9
2

3
2

7
3

1
3

5
3

9
4

3
4

7
5

1

g
8

-4
o

d
d

1
1

(6
)

1
8

(1
2

)
2

5
(1

7
)

3
2

(2
2

)
3

9
(2

7
)

4
6

(3
2

)
5

3
(3

7
)

6
0

(4
2

)
6

7
(4

7
)

7
4

(5
2

)
8

1
(5

7
)

8
8

(6
2

)

g
8

-4
o

d
d

2
1

0
(6

)
1

6
(1

2
)

2
2

(1
7

)
2

8
(2

2
)

3
4

(2
7

)
4

0
(3

2
)

4
6

(3
7

)
5

2
(4

2
)

5
8

(4
7

)
6

4
(5

2
)

7
0

(5
7

)
7

6
(6

2
)

g
8

-4
o

d
d

3
1

0
(6

)
1

6
(1

2
)

2
2

(1
7

)
2

8
(2

2
)

3
7

(2
7

)
4

5
(3

2
)

5
3

(3
7

)
6

1
(4

2
)

7
0

(4
7

)
8

0
(5

2
)

9
0

(5
7

)
1

0
0

(6
2

)

g
8

-4
o

d
d

4
1

1
(6

)
1

9
(1

1
)

2
7

(1
5

)
3

5
(1

9
)

4
3

(2
3

)
5

1
(2

7
)

5
9

(3
1

)
6

7
(3

5
)

7
5

(3
9

)
8

3
(4

3
)

9
1

(4
7

)
9

9
(5

1
)

g
7

-4
o

d
d

9
(6

)
1

4
(1

2
)

1
9

(1
7

)
2

4
(2

2
)

2
9

(2
7

)
3

4
(3

2
)

3
9

(3
7

)
4

4
(4

2
)

4
9

(4
7

)
5

4
(5

2
)

5
9

(5
7

)
6

4
(6

2
)

g
7

-4
o

d
d

2
9

(6
)

1
6

(1
2

)
2

3
(1

7
)

3
0

(2
2

)
3

7
(2

7
)

4
4

(3
2

)
5

1
(3

7
)

5
8

(4
2

)
6

5
(4

7
)

7
2

(5
2

)
7

9
(5

7
)

8
6

(6
2

)

g
7

-4
o

d
d

3
1

0
(6

)
1

7
(1

2
)

2
4

(1
6

)
3

1
(2

0
)

3
8

(2
4

)
4

5
(2

8
)

5
2

(3
2

)
5

9
(3

6
)

6
6

(4
0

)
7

3
(4

4
)

8
0

(4
8

)
8

7
(5

2
)

g
6

-4
o

d
d

1
0

(6
)

1
6

(1
2

)
2

2
(1

7
)

2
8

(2
2

)
3

4
(2

7
)

4
0

(3
2

)
4

6
(3

7
)

5
2

(4
2

)
5

8
(4

7
)

6
5

(5
2

)
7

0
(5

7
)

7
6

(6
2

)

g
6

-4
o

d
d

2
9

(6
)

1
4

(1
2

)
1

9
(1

7
)

2
4

(2
2

)
2

9
(2

7
)

3
4

(3
2

)
3

9
(3

7
)

4
4

(4
2

)
4

9
(4

7
)

5
4

(5
2

)
5

9
(5

7
)

6
4

(6
2

)



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 337

Table 10. Constructors of even-input sorting networks utilizing a two-input embryo.

Constructor Instructions NGC

g9-2even [0 2 2] [0 1 2] [0 0 1] [1 1 1] [0 4 4] [3 3 2] [3 1 1] [1 1 2] [2 1 0] 14

g8-2even [0 2 2] [0 0 1] [0 1 2] [1 1 1] [3 0 2] [0 1 3] [3 0 0] [3 2 3] 25

g8-2even 2 [0 2 2] [0 1 2] [0 0 1] [1 1 1] [0 4 4] [3 0 1] [3 4 1] [1 2 3]

g6-2even [0 2 2] [0 1 1] [0 0 2] [0 2 2] [3 0 4] [3 0 0] 73

g6-2even 2 [0 2 2] [0 1 2] [0 0 1] [1 1 1] [3 1 2] [3 1 1]

(Parameters: ew = 2, de = 2, dw = 2.)

Figure 12 Comparator-efficient odd-input sorting networks created by means of the constructor g6-4odd 2. The

embryo is marked.

Figure 13 Delay-efficient odd-input sorting networks created by means of the constructor g8-4odd 4.



338 SEKANINA AND BIDLO

Table 11. The number of comparators of even-input sorting networks created from a two-input embryo using

constructors given in Table 10.

N 4 6 8 10 12 14 16 18 20 22 24 26 28

conv. 6 15 28 45 66 91 120 153 190 231 276 325 378

g9-2even

g8-2even 2 5 12 22 35 51 70 92 117 145 176 210 247 287

g6-2even 2

g8-2even 5 12 22 35 51 71 95 123 155 191 231 275 323

(0) (0) (0) (0) (0) (1) (3) (6) (10) (15) (21) (28) (36)

g6-2even 6 15 28 45 66 91 120 153 190 231 276 325 378

Table 12. Delay of even-input sorting networks created from a two-input embryo using constructors given in

Table 10.

N 4 6 8 10 12 14 16 18 20 22 24 26 28

conv. 5 9 13 17 21 25 29 33 37 41 45 49 53

g9-2even

g8-2even 2 3 7 11 15 19 23 27 31 35 39 43 47 51

g6-2even 2

g8-2even 3 7 11 15 19 23 28 34 39 45 51 57 63

(3) (7) (11) (15) (19) (23) (27) (31) (35) (39) (43) (47) (51)

g6-2even 3 7 11 15 19 23 27 31 35 39 43 47 51

As Figure 14 shows, the optimal 4-input embryo was created from a 2-input embryo

after the first step of development.

The g8-4even 2 is one of the best constructors we have ever evolved. This constructor

uses a four-input embryo and produces sorting networks with a better comparator count and

delay than the best conventional solution. However, it contains redundant comparators that

have to be removed. Examples of constructors evolved from the 4-input embryo (including

g8-4even 2) are given in Table 13. Other parameters are summarized in Tables 14 and 15.

Sorting networks created using the best constructors are shown in Figures 15 and 16.

Table 13. Constructors of even-input sorting networks utilizing a four-input embryo.

Constructor Instructions NGC

g8-4even [1 4 1] [0 0 1] [0 2 2] [0 0 1] [1 1 2] [0 3 2] [3 3 0] [3 3 2]

g8-4even 2 [1 4 4] [1 2 1] [0 4 3] [0 2 2] [0 3 3] [3 4 1] [0 2 2] [3 1 3] 41

g8-4even 3 [0 2 2] [0 4 4] [0 3 4] [1 2 3] [1 2 0] [3 4 2] [0 2 2] [3 4 4]

g7-4even [1 4 4] [1 2 2] [0 2 2] [0 3 3] [0 3 2] [3 2 0] [3 3 3] 46

Parameters: ew=4, de=2, dw=2.



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 339

Figure 14 The most comparator-efficient as well as delay-efficient even-input sorting networks created from a

two-input embryo using constructors g9-2even, g8-2even 2 or g6-2even 2.

Figure 15 Efficient even-input sorting networks created using the constructor g8-4even 2.



340 SEKANINA AND BIDLO

Figure 16 Efficient even-input sorting networks created using the constructor g8-4even 3.

Table 14. The number of comparators of even-input sorting networks created using a four-input embryo by

means of constructors given in Table 13.

N 6 8 10 12 14 16 18 20 22 24 26 28

conventional 15 28 45 66 91 120 153 190 231 276 325 378

g8-4even 13 24 38 55 75 98 124 153 185 220 258 299

g8-4even 2 13 (1) 24 (2) 38 (3) 55 (4) 75 (5) 98 (6) 124 (7) 153 (8) 185 (9) 220 (10) 258 (11) 299 (12)

g8-4even 3 13 (1) 24 (2) 38 (3) 55 (4) 75 (5) 98 (6) 124 (7) 153 (8) 185 (9) 220 (10) 258 (11) 299 (12)

g7-4even 13 (1) 24 (2) 38 (3) 55 (4) 75 (5) 98 (6) 124 (7) 153 (8) 185 (9) 220 (10) 258 (11) 299 (12)

Table 15. Delay of even-input sorting networks created using a four-input embryo by means of constructors

given in Table 13.

N 6 8 10 12 14 16 18 20 22 24 26 28

conventional 9 13 17 21 25 29 33 37 41 45 49 53

g8-4even 9 15 21 27 33 39 45 51 57 63 69 75

g8-4even 2 6 (6) 9 (9) 14 (12) 19 (15) 23 (18) 26 (21) 31 (24) 36 (27) 41 (30) 46 (33) 51 (36) 56 (39)

g8-4even 3 7 (6) 12 (9) 17 (12) 22 (15) 27 (18) 32 (21) 37 (24) 42 (27) 47 (30) 52 (33) 57 (36) 62 (39)

g7-4even 7 (7) 11 (11) 16 (15) 20 (19) 24 (23) 28 (27) 33 (31) 37 (35) 41 (39) 45 (43) 49 (47) 53 (51)

We evolved two interesting constructors by using a three-input embryo. They are not as

good as the constructors utilizing a four-input embryo. However, they still produce better

results than the conventional approach (see Tables 16–18). Examples of sorting networks

are given in Figure 17.



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 341

Table 16. Constructors of even-input sorting networks utilizing a three-

input embryo.

Constructor Instructions NGC

g6-3even [0 2 2] [0 1 2] [1 0 1] [0 2 1] [3 3 1] [3 2 4] 59

g6-3even 2 [0 2 2] [0 1 2] [0 0 1] [1 1 1] [3 4 4] [3 0 1]

Parameters: ew=3, de=1, dw=2.

Table 17. The number of comparators of even-input sorting networks created using a three-input embryo by

means of constructors given in Table 16.

N 4 6 8 10 12 14 16 18 20 22 24 26 28

Conventional 6 15 28 45 66 91 120 153 190 231 276 325 378

g6-3even 8 (2) 16 (3) 27 (4) 41 (5) 58 (6) 78 (7) 101 (8) 127 (9) 156 (10) 188 (11) 223 (12) 261 (13) 302 (14)

g6-3even 2 9 (3) 18 (5) 30 (7) 45 (9) 63 (11) 84 (13) 108 (15) 135 (17) 165 (19) 198 (21) 234 (23) 273 (25) 315 (27)

Table 18. Delay of even-input sorting networks created using a three-input embryo by means of constructors

given in Table 16.

N 4 6 8 10 12 14 16 18 20 22 24 26 28

Conventional 5 9 13 17 21 25 29 33 37 41 45 49 53

g6-3even 6 (5) 10 (9) 14 (13) 18 (17) 22 (21) 26 (25) 30 (29) 34 (33) 38 (37) 42 (41) 46 (45) 50 (49) 54 (53)

g6-3even 2 7 (5) 12 (9) 17 (13) 22 (17) 27 (21) 32 (25) 37 (29) 42 (33) 47 (37) 52 (41) 57 (45) 62 (49) 67 (53)

Figure 17 Even-input sorting networks created using the constructor g6-3even.

5.4. Improving odd-input sorting networks

The presented evolutionary approach produced sorting networks with better implementation

cost (the number of comparators) than the conventional approach for even-input as well

as odd-input sorting networks. Delay of even-input sorting networks was also improved.



342 SEKANINA AND BIDLO

Figure 18 Creating delay efficient odd-input sorting networks from even-input sorting networks by removing

the bottom line of comparators. The original six-input sorting network: (0,1) (2,3) (0,2) (1,3) (1,2) (4,5) (4,5) (2,4)

(3,5) (0,2) (1,3) (3,4) (1,2). The new five-input sorting network: (0,1) (2,3) (0,2) (1,3) (1,2) (2,4) (0,2) (1,3) (3,4)

(1,2).

However, in case of odd-input sorting networks, none of the presented constructors is better

than a conventional one in terms of delay.

We have discovered that the best-known constructor for even-input sorting networks (g8-

4even 2) can be utilized to improve delay in case of odd-input networks. Figure 18 shows

that by removing the bottom line together with “connected” comparators, the odd-input

sorting network is established. We verified the improvement of created sorting networks

for N ≤ 29.

5.5. Computational effort

More than 10,000 independent runs of evolutionary algorithm were performed. The number

of generations needed for gaining a solution varies from about 150 to many thousands. We

have found out the limit 10,000 generations to be sufficient to get some solutions in a

reasonable time. If the evolution does not terminate successfully within this limit, the

evolutionary process is stopped.

Consider even-input sorting networks constructed from a 2-input embryo. In this case,

58% of independent runs of evolutionary process terminated successfully. The average

number of generations is 2053. Figure 19 shows a typical example of the progress of

average fitness of the population along with the rise of fitness value of the best individual

during evolution. This experiment worked with a simple genetic algorithm, the crossover

probability 0.7, the mutation probability 0.023 and for population size of 60 individuals.

The fitness function considered four developmental steps, i.e. the maximum fitness value

was fmax = f(4) + f(6) + f(8) + f(10) = 24 + 26 + 28 + 210 = 1376, where f(n) is the

number of all possible sequences of zeroes and ones of n-input sorting network.

5.6. Summary of results for each category

Sorting networks with complete inputs: It is easy to evolve a general constructor in this

category. We rediscovered the principle of the straight insertion algorithm. However, sorting

of large data sets is not efficient in this way because many comparators are required.

Odd-input sorting networks: Some constructors were evolved that produce smaller sorting

networks in terms of a comparator count than the conventional insertion and selection

method can offer. However, it works only using a four-input embryonic network. The next

improvement can be done by removing redundant comparators that are often generated by

the constructors. We were not able to improve delay in this category — the best constructor

has reached the quality of a conventional method. Surprisingly, it is possible to modify the



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 343

Figure 19 The best and average fitness value in a typical run of a simple GA for the following settings: ew = 2,

de = 2, dw = 2, pc = 0.7, pm = 0.023, 60 individuals in population, 4 developmental steps for fitness calculation

(fmax = 1376).

best even-input sorting networks in order to obtain odd-input sorting networks whose delay

is shorter than delay of conventional networks.

Even-input sorting networks: In this category various types of embryos have generated

interesting results. The usage of the two-input embryo has led to a substantial reduction

of the number of comparators and a small reduction of delay. The constructors evolved

from a two-input embryo did not produce redundant comparators. On the other hand, the

constructors g8-4even 2 and g8-4even 3, evolved using a four-input embryo, minimize the

number of comparators as well as delay substantially. However, first, it is necessary to

remove redundant comparators from the created networks. These constructors represent

the main contribution of this paper.

6. Discussion

We clearly demonstrated that the proposed evolutionary method combined with develop-

ment has improved the conventional design principle not only for a single instance, but for

all instances of our problem. In order to illustrate the quality of evolved sorting networks,

Table 19 compares the best evolved sorting networks with common sequential sorting al-

gorithms — BubbleSort and QuickSort. We measured the mean number of comparisons for

ten thousands randomly generated input sequences of length N. Under this criterion, the

evolved sorting networks exhibit the best results.

All candidate constructors were evaluated using the zero–one principle; however, only

for a limited number of inputs. We found this approach very efficient because about 50%



344 SEKANINA AND BIDLO

Table 19. Confrontation of evolved sorting networks (generated by means of constructors

g8-4even 2 or g8-4even 3) with conventional sorting algorithms BubbleSort and QuickSort.

The table shows the mean number of comparisons required for sorting N elements.

N 3 4 5 6 7 8 9 10 11 12 13 14 15

Bsort 3 6 10 15 21 28 36 45 55 66 78 91 105

Qsort 9 15 24 33 42 52 63 74 85 96 108 120 132

SN – 5 – 12 – 22 – 35 – 51 – 70 –

N 16 17 18 19 20 21 22 23 24 25 26 27 28

Bsort 120 136 153 171 190 210 231 253 276 300 325 351 378

Qsort 144 157 170 183 196 209 222 236 249 263 277 290 305

SN 92 – 117 – 145 – 176 – 210 – 247 – 287

of them are considered as “general” (see NGC parameter in the previous tables). Although

we use the word “general” it is obvious that the evolved constructors have not to be

really general—the verification method we applied (i.e. the evaluation of a constructor

up to a sufficiently high N) is not a proof. Furthermore, the size of constructors was not

optimized. Next research will be devoted to prove that the constructors are really general and

minimal.

The main feature of the proposed developmental system for genetic algorithm is that

a lot of problem-domain knowledge (such as the definition and use of copy and modify

instructions) has been presented in its inductive bias. We do believe that the idea of evolving

constructors for infinitely growing objects is generally applicable. However, it is difficult

to define an embryo and appropriate domain knowledge for a particular problem. It seems

that designing an efficient developmental system is as difficult as designing an efficient

genetic algorithm for a given problem.

Except the instructions that we had to design for this particular application manually

and that GA had to put them together to make a constructor, the proposed developmental

scheme has utilized another information — the size of the currently constructed network

N. This information is not a part of our artificial genetic code. Therefore, we can un-

derstand it as a property of environment, which surrounds a growing sorting network.

It is obvious that as positional information is crucial for biological development [1], no

correct sorting network can be created without a correct N. In real biological systems

the interplay between a cell and its environment is very complex. In our system the

interplay practically does not exist. A growing sorting network, for example, does not

influence the value of N at all. We are planning to develop more complex models of de-

velopment for this application in order to investigate whether the obtained results can be

improved.

Further research should be devoted to specifying a hardware reconfigurable platform

and applications that could benefit from growing sorting networks (or similar grow-

ing digital circuits). A circuit should grow when it is required and get smaller when

is not needed. It will also be interesting to explore fault tolerance of growing sorting

networks.



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 345

7. Conclusions

In this paper we described a method for constructing efficient larger sorting networks from

smaller ones. First we rediscovered a conventional principle of straight insertion algorithm

by means of genetic algorithm endowed with an application-specific development. Later,

very efficient principles (programs) have been discovered by the same technique allowing

us to reduce the size and delay of constructed odd/even-input sorting networks.

The reported research represents the rare case in which a new scalable principle is

discovered by an evolutionary algorithm. In most cases, evolutionary algorithms are being

used to find a single suitable solution.

We do believe that application-specific evolutionary algorithms endowed with

application-specific developmental systems will allow designers to discover novel design

principles for constructing some other arbitrarily large systems in near future.

Acknowledgments

The research was performed with the Grant Agency of the Czech Republic under No.

102/03/P004 Evolvable hardware based application design methods.

Notes

1. Odd and even is denoted as “all” in labels.

2. Operation codes are given instead of symbolic names according to Table 2.

References

1. B. Alberts, et al., Essential Cell Biology—An Introduction to the Molecular Biology of the Cell, Garland

Publishing: New York, 1998.

2. T. Bäck, Evolutionary Algorithms in Theory and Practice, Oxford University Press: New York, Oxford, 1996.

3. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Programming—An Introduction. Morgan

Kaufmann Publishers: San Francisco, CA, 1998.

4. P. Bentley, (ed.), Evolutionary Design by Computers, Morgan Kaufmann Publisher, 1999.

5. P. Bentley, “Fractal proteins,” Genetic Programming and Evolvable Machines, vol. 5, no. 1, pp. 71–101,

2004.

6. P. Bentley and D. W. Corne, (eds.), Creative Evolutionary Systems, Morgan Kaufmann, 2001.

7. E. J. W. Boers and H. Kuiper, “Biological Metaphors and the Design of Artificial Neural Networks. Master

Thesis,” Departments of Computer Science and Experimental and Theoretical Psychology, Leiden University,

1992.

8. S. Choi and B. Moon, “A hybrid genetic search for the sorting network problem with evolving parallel layers,”

in Genetic and Evolutionary Computation Conference, San Francisco, 2001, pp. 258–265.

9. S. Choi and B. Moon, “More effective genetic search for the sorting network problem,” in Genetic and

Evolutionary Computation Conference, New York, 2002, pp. 335–342.

10. S. Choi and B. Moon, “Isomorphism, normalization, and a genetic algorithm for sorting network optimiza-

tion,” in Genetic and Evolutionary Computation Conference, New York, 2002, pp. 327–334.

11. R. Dawkins, The Blind Watchmaker. Penguin Books: London, 1991.

12. H. de Garis, et al., “ATR’s artificial brain (CAM-Brain) project: A sample of what individual “CoDi-1 Bit”

model evolved neural net modules can do with digital and analog I/O,” in Proc. of the 1st NASA/DoD

Workshop on evolvable hardware, IEEE Computer Society Press, 1999, pp. 102–110.

13. T. Gordon and P. Bentley, “On evolvable hardware. In Soft Computing in Industrial Electronics, Ovaska, S.

and Sztandera, L. (eds.), Physica-Verlag: Heidelberg 2001, pp. 279–323.



346 SEKANINA AND BIDLO

14. T. Gordon and P. Bentley, “Towards development in evolvable hardware,” in Proc. of the 4th NASA/DoD

Conference on Evolvable Hardware, A. Stoica, et al. (eds.), Alexandria, Virginia, USA, IEEE Computer

Society: Los Alamitos, 2002, pp. 241–250.

15. F. Gruau, “Neural Network Synthesis Using Cellular Encoding and the Genetic Algorithm,” PhD thesis,

l’Universite Claude Bernard Lyon I, 1994, p. 159.

16. P. Haddow and G. Tufte, “Bridging the genotype–phenotype mapping for digital FPGAs,” in Proc. of the 3rd

NASA/DoD Workshop on Evolvable Hardware, Long Beach, CA, USA, 2001, IEEE Computer Society, Los

Alamitos, 2001, pp. 109–115.

17. P. Haddow, G. Tufte and P. van Remortel, “Shrinking the Genotype: L-systems for EHW?” in Proc. of the 4th

International Conference on Evolvable Systems: From Biology to Hardware, LNCS 2210, Springer–Verlag,

2001, pp. 128–139.

18. M. L. Harrison and J. A. Foster, Co-evolving faults to improve the fault-tolerance of sorting networks,” in

Proc. of the 7th European conference on Genetic Programming, LNCS 3003, Springer Verlag: Berlin, 2004,

pp. 57–66.

19. T. Higuchi, et al., “Evolving hardware with genetic learning: A first step towards building a darwin machine,”

in Proc. of the 2nd International Conference on Simulated Adaptive Behaviour, MIT Press: Cambridge MA

1993, pp. 417–424.

20. W. D. Hillis, “Co-evolving parasites improve simulated evolution as an optimization procedure: Physica D,”

vol. 42, pp. 228–234, 1990.

21. G. S. Hornby and J. B. Pollack, “The advantages of generative grammatical encodings for physical design,”

in. Proc. of the 2001 Congress on Evolutionary Computation CEC2001, IEEE Computer Society Press: pp.

600–607, 2001.

22. L. Huelsbergen, “Finding general solutions to the parity problem by evolving machine-language representa-

tions,” in Proc. of Conf. on Genetic Programming, 1998, pp. 158–166.

23. K. Imamura, J. A. Foster and A. W. Krings, “The test vector problem and limitations to evolving digital

circuits,” in: Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, IEEE Computer Society Press:

pp. 75–79, 2000.

24. H. Juillé,“Evolution of non-deterministic incremental algorithms as a new approach for search in state spaces,”

in Proc. of 6th Int. Conf. on Genetic Algorithms, Morgan Kaufmann, 1995, pp. 351–358.

25. H. Kitano, “Designing neural networks using genetic algorithms with graph generation system,” Complex

Systems, 4, pp. 461–476, 1990.

26. D. E. Knuth, The Art of Computer Programming: Sorting and Searching, 2nd edition, Addison Wesley, 1998.

27. J. R. Koza, et al., Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann

Publishers: San Francisco, CA, 1999.

28. S. Kumar, “Investigating Computational Models of Development for the Construction of Shape and Form.

PhD thesis,” University of London, UK, 2004.

29. J. Masner, J. Cavalieri, J. Frenzel and J. Foster, “Size versus robustness in evolved sorting networks: Is Bigger

Better?” in Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, IEEE Computer Press, 2000,

pp. 81–90.

30. J. Miller, D. Job and V. Vassilev, “Principles in the evolutionary design of digital circuits—Part I. genetic

programming and evolvable machines,” vol. 1, no. 1, pp. 8–35, 2000.

31. J. Miller and P. Thomson, “A developmental method for growing graphs and circuits,” in Proc. of the 5th

Conf. on Evolvable Systems: From Biology to Hardware ICES 2003, LNCS 2606, Springer–Verlag, 2003,

pp. 93–104.

32. M. Murakawa, et al., “Evolvable hardware at function level. In: Proc. of the Parallel Problem Solving from

Nature Conference. LNCS 1141, Springer Verlag, 1996, pp. 62–71.

33. C. L. Nehaniv, “Evolvability,” Biosystems. vol. 69, no. 2-3, pp. 77–81, 2003.

34. L. Sekanina, “Evolvable Components: From Theory to Hardware Implementations. Natural Computing Series,

Springer Verlag: Berlin, 2003.

35. L. Sekanina, “Evolving constructors for infinitely growing sorting networks and medians,” in Proc. of the

Conference on Current Trends in Theory and Practice of Computer Science SOFSEM 2004. LNCS 2932,

Springer Verlag, 2004, pp. 314–323.

36. M. J. Streeter, M. A. Keane and J. R. Koza, “Routine duplication of post-2000 patented inventions by means of

genetic programming,” in Proc. of the 5th European Conference on Genetic Programming. Kinsale, Ireland,



EVOLUTIONARY DESIGN OF ARBITRARILY LARGE SORTING NETWORKS 347

2002, LNCS 2278, Springer: Berlin, 2002, pp. 26–36.

37. G. Tempesti, et al., “Ontogenetic development and fault tolerance in the poetic tissue,” in Proc. of the 5th

Conf. on Evolvable Systems: From Biology to Hardware ICES 2003, LNCS 2606, Springer-Verlag, 2003,

pp. 141–152.

38. J. Torresen, “A scalable approach to evolvable hardware,” Genetic Programming and Evolvable Machines.

vol. 3, no. 3, pp. 259–282, 2002.

39. G. Wagner and L. Altenberg, Complex adaptations and the evolution of evolvability. evolution, vol. 50, no.

3, pp. 967–976, 1996.

40. M. Wall, GAlib: A C++ Library of Genetic Algorithm Components, version 2.4. Massachusetts Institute of

Technology, 1996, http://lancet.mit.edu/ga/dist/galibdoc.pdf


