
Int. J. Design Engineering, Vol. 3, No. 1, 2010 1

Evolutionary design using grammatical

evolution and shape grammars:

designing a shelter

Michael O’Neill*, James McDermott,

John Mark Swafford, Jonathan Byrne,

Erik Hemberg, Anthony Brabazon

Natural Computing Research & Applications Group
Complex & Adaptive Systems Lab
University College Dublin, Ireland
E-mail: m.oneill@ucd.ie
E-mail: jamesmichaelmcdermott@gmail.com
E-mail: johnmarksuave@gmail.com
E-mail: jonathanbyrn@gmail.com
E-mail: erik.hemberg@ucd.ie
E-mail: anthony.brabazon@ucd.ie
∗Corresponding author

Elizabeth Shotton, Ciaran McNally

School of Architecture, Landscape & Civil Engineering
University College Dublin,Ireland
E-mail: elizabeth.shotton@ucd.ie
E-mail: ciaran.mcnally@ucd.ie

Martin Hemberg

Department of Ophthalmology, Children’s Hospital Boston, 300
Longwood Avenue, MA 02215, USA
E-mail: martin.hemberg@childrens.harvard.edu

Abstract: A new evolutionary design tool is presented, which uses
shape grammars and a grammar-based form of evolutionary computa-
tion, grammatical evolution (GE). Shape grammars allow the user to
specify possible forms, and GE allows forms to be iteratively selected,

Copyright c© 2010 Inderscience Enterprises Ltd.

2 M. O’Neill et al.

recombined and mutated: this is shown to be a powerful combination of
techniques. The potential of GE and Shape Grammars for Evolutionary
Design is examined by attempting to design a single-person shelter to
be evaluated by collaborators from the University College Dublin school
of Architecture, Landscape, and Engineering. The team was able to
successfully generate conceptual shelter designs based on scrutiny from
the collaborators. A number of avenues for future work are highlighted
arising from the case study.

Keywords: Evolutionary Design, Architecture, Grammatical Evolu-
tion, Shape Grammars, Genetic Programming, Evolutionary Computation

Reference to this paper should be made as follows: O’Neill M., Mc-
Dermott J., Swafford J.M., Byrne J., Hemberg E., Brabazon A., Shotton
E., McNally C., Hemberg M. (2010) ‘Evolutionary Design using Gram-
matical Evolution and Shape Grammars: Designing a Shelter’, Int. J.

Design Engineering, Vol. 3, No. 1, pp. 4–24.

Biographical notes: Michael O’Neill is a Senior Lecturer with the
School of Computer Science & Informatics, and the Complex & Adap-
tive Systems Lab at University College Dublin. He is is co-founder and
co-director of the UCD Natural Computing Research & Applications
Group, and has authored a number of books including ’Grammatical
Evolution’, ’Foundations in Grammatical Evolution for Dynamic En-
vironments’ and ’Biologically Inspired Algorithms for Financial Mod-
elling’.

James McDermott is a post-doctoral researcher with UCD’s Natural
Computing Research & Applications Group. His PhD thesis was on
Interactive Evolutionary Computation applied to Sound Synthesis. His
research interests include representations for aesthetic EC and EC ap-
plications in music and design.

John Mark Swafford, Jonathan Byrne and Erik Hemberg are PhD stu-
dents with UCD’s Natural Computing Research & Applications Group.

Elizabeth Shotton is a Lecturer in UCD School of Architecture, Land-
scape & Civil Engineering, and also maintains a professional architec-
tural practice in Canada and Ireland.

Ciaran McNally is a Senior Research Engineer in the Bridge & Transport
Infrastructure Research Group at UCD. He is Principal Investigator on
a series of EU funded research projects into infrastructure management
and coordinator of the international Marie Curie Initial Training Net-
work TEAM - Training in European Asset Management.

Anthony Brabazon is currently a Professor and Head of Research in the
School of Business at University College Dublin. He is also co-founder
and co-director of the UCD Natural Computing Research & Applica-
tions Group. His primary research interests concern the development of
Natural Computing theory and the application of Natural Computing
in Finance and beyond.

Martin Hemberg is a post-doctoral researcher at the Department of Oph-
thalmology at Children’s Hospital Boston. He obtained is PhD from
Imperial College London and he has also worked at the Architectural
Association in London. His primary research interests include mathe-

Evolutionary design using grammatical evolution and shape grammars 3

matical and computational models of gene expression

1 Introduction

The natural process of biological evolution has clearly demonstrated its power
to design elegant form and structure in the name of survival. As such, it is natural
to turn to algorithms which are inspired by this process to tackle design problems.
These evolutionary algorithms (EAs) are powerful problem-solving tools. Of par-
ticular note are the genetic programming (GP) variants which are now capable
of routine human-competitive performance, e.g. in the area of analog circuit de-
sign (Koza, 2003). Some evolved solutions have passed human tests of innovation
by being patentable in their own right. The long term objective of the research, of
which this study forms the seed, is to explore and extend a powerful and already
well recognised grammatical GP approach—grammatical evolution (GE)—to chal-
lenging architectural design problem environments. This will be achieved through
the adoption of a rich and evolvable representation, shape grammars (Stiny, 1980).
Shape grammars allow a natural way to encode human domain knowledge into the
evolutionary/generative process, and are proving invaluable in the area of gener-
ative design. An example is the Integrated Design Innovation Group at Carnegie
Mellon University who explore the essence of the design of products ranging from
Harley Davidson motorcycles to cars and coffee makers (Cagan and Vogel, 2001;
Vogel and Cagan, 2005). To date, the shape grammar formalism has not been com-
bined with an advanced grammatical evolutionary algorithm such as GE, and the
current research addresses this important gap.

The remainder of this paper is structured as follows. The following Section 2
provides some general background and motivation. Next is an introduction to
interactive evolutionary design, followed by an overview of representations adopted
in the evolutionary computation (EC) literature for design, including a description
of the shape grammar formalism. A brief introduction to GE is given in Section 4.
Section 5 contains a description of a specific design problem and a specific shape
grammar suitable for it, and a description of results obtained. Finally, Section 6
gives conclusions and future work.

2 Background

EC, and in particular GP, have clearly demonstrated their potential in the
broadly-defined real world application domain of design. They have produced so-
lutions that are competitive with, and in some cases superior to, those developed
by human experts, and which have resulted in patentable inventions (Koza, 2003;
Takagi, 2001; Bentley, 2000; O’Neill and Brabazon, 2009). As such, this domain
(in particular analog circuit design (Koza, 2003)) has been a proving ground for
the capabilities of an artificial evolutionary process, and has led to arguably the
first routinely human-competitive form of machine learning. The combination of

4 M. O’Neill et al.

an evolutionary algorithm and a grammatical representation (or design language)
is a particularly powerful and novel departure of recent years (Hornby, 2005). Ex-
amples of research in this intersection of fields include the Genr8 and GENRE
systems (Hornby, 2005; Hemberg and O’Reilly, 2004; O’Reilly and Hemberg, 2007;
Gero et al., 1994). The grammar-based form of GP as realised in GE has a num-
ber of advantages over more traditional optimisation methods for the design do-
main (Hornby, 2005; Hemberg and O’Reilly, 2004; O’Neill and Brabazon, 2008).
Some of these advantages are as follows.

• GP handles the search of open-ended structure. The model size and structure
are not specified a priori.

• Search is stochastic. The exploratory process is not limited or biased by the
imagination of the human user or preconceptions based on prior typologies
or known solutions. Therefore designs can be produced which are novel and
sometimes counterintuitive, which has significant implications in the architec-
tural design process. Examples include recent work by architectural practices
such as Greg Lynn and Foreign Office Architects (2009).

• The unbiased nature of stochastic evolutionary search can be balanced by
introducing a desired bias in the form of architectural domain knowledge.
This can be achieved by allowing the user to specify proven structural forms,
planning constraints, and even aesthetic preferences a priori. In a grammar-
based form of GP such as GE, domain knowledge can be easily incorporated
through the underlying grammatical representation.

2.1 Interactive Evolutionary Computation

Human interaction was originally introduced to the evolutionary process for
problems where no suitable fitness function could be found. Interactivity opened
up a new domain for evolutionary computation, problems that required aesthetic
judgment. This domain has since become one of the main motivations for IEC,
as aesthetic problems have a subjective element in their evaluation that is difficult
to define in an algorithmic fitness function. Human interaction has allowed EC
to be applied to problems such as music and computer graphics, and to act as
an exploratory tool as opposed to merely being an optimiser. One of the earliest
attempts to introduce human evaluation was the work by Richard Dawkins called
Biomorphs (Dawkins, 1986). This work simulated the evolution of 2-D branch-
ing structures made from sets of genetic parameters, where the user selects the
individuals for reproduction.

After Biomorphs there was an increase of research in the field of both inter-
active genetic algorithms (IGA) and interactive genetic programming (IGP). The
seminal paper by Karl Sims (Sims, 1991) showed that basic user interaction was
capable of creating complex and beautiful artwork. Sims used human interaction
to create images, three-dimensional textures, and, by adding an extra dimension
for time, animation. IGAs have since been applied to fields as diverse as music gen-
eration (Biles, 1994; McDermott, 2008), anthropomorphic symbols (Dorris et al.,
2004), 3-D lighting (Aoki and Takagi, 1996), and aircraft frames (Parmee and Bon-
ham, 2000). Interactivity has also been used in conjunction with GP for form

Evolutionary design using grammatical evolution and shape grammars 5

design. This has led to the development of several form design tools (O’Reilly and
Ramachandran, 1998; Bentley and O’Reilly, 2001). A more complete list of appli-
cations of interactivity can be found in the literature by Banzhaf (1997) and Takagi
(2001).

3 Grammatical Representations In Evolutionary Design

In this section, previous approaches to grammatical representations in evolu-
tionary design are discussed. This overview will cover shape grammars and how
they have been adapted to aid in the evolutionary design process as well as other
grammatical approaches to solving design problems.

3.1 Shape Grammars

Shape grammars were first formally defined by Stiny (1980), where a shape is
defined as: a limited set of lines called “maximal lines” that may be plotted on a two
or three dimensional graph. These shapes may be subshapes of or identical to other
shapes. The boolean operations of union, intersection, difference, and complement
may be applied, as well as Euclidean transformations such as translations, rotations,
reflections, scalings, and compositions. Stiny’s shape grammars are intended to be
a symbolic analogue to familiar string-rewriting grammars. They are generative
grammatical re-writing systems with terminal symbols, non-terminal symbols, a
start symbol, and production rules expressing how non-terminals may be replaced
with other terminals and non-terminals. A simplified shape grammar definition is
as follows:

1. S, a finite set of shapes

2. L, a finite set of symbols or labels

3. R, a finite set of shape rules having the form a → β, where a is a labelled
shape in the set (S, L)+, and β is in the set (S, L)∗

4. I the initial, nonempty labelled shape.

A graphical example of a shape grammar and a sample derivation are given in
Figures 1(a), 1(b) and 1(c).

3.2 Work Inspired By Shape Grammars

Much work has been inspired by this first definition of a shape grammar, as
researchers have found practical applications in the areas of art, engineering, and
architecture. For now, the focus of this work will be on applying shape grammars to
engineering, planning, and architecture. One of the first applications of shape gram-
mars in architecture was in work concerning Frank Lloyd Wright’s prairie houses
(Koning and Eizenberg, 1981). Here, shape grammars were used to generate new
and different house plans in Wright’s style. Another, more recent use of shape
grammars in architecture can be seen in the work of Wonka et al. (2003) towards

6 M. O’Neill et al.

(a)
Shape
Gram-
mar
Initial
Shape

(b) Example Shape Grammar.
The ’right arrow’ shows what
the left-hand nonterminal may
be replaced with. The vertical
bars are separators for the dif-
ferent productions within a sin-
gle rule.

(c) Example Shape Grammar derivation se-
quence and resulting output

rapid architecture generation. Set grammars (shape grammars featuring higher-
level primitives) and split grammars (shape grammars constraining the developed
shape inside a fixed space to avoid overlap) were employed to quickly generate
valid designs. More work that has been inspired by Stiny’s shape grammars are
landscape grammars described in the work of Mayall and Hall (2005, 2007). These
landscape grammars are capable of generating landscapes based on landscape ob-
ject types (houses, trees, fences, etc.) and spatial syntax rules (commercial areas,
forested areas, paths for roads, relationships between these areas, etc.). The surface
generation tool, GENR8 (Hemberg and O’Reilly, 2004; Hemberg et al., 2007b), is
another popular example of work in grammatical representations and evolutionary
design. This tool uses GE combined with modified L-Systems, Hemberg Extended
Map L-Systems (HEMLS), to generate and evolve surfaces. It is also possible to
modify or evolve a shape grammar during an evolutionary run. One example of this
used a shape grammar and a genetic algorithm to design a section of a beam (Gero
et al., 1994). But rather than only evolving the binary arrays that typically rep-
resent individuals in a genetic algorithm, they evolved the shape grammar as well.
This led the shape grammar to modify the search space and evolution was able
to explore more design possibilities. The work presented here examines the effects
of different grammars and grammatical representations on the three dimensional
design representations that have also been inspired by Stiny’s definition of a shape
grammar (Stiny, 1980). The grammars used here are also simplified representations
due to the complexity of implementing a pure shape grammar. More detail on this
will be shown in Section 5. It is also important to recognize the prior attempts at
using evolutionary computation to optimize design problems that did not involve
grammatical representations. Many of these approaches use genetic algorithms
while fewer use GP to approach their design challenges. The reader may find much

Evolutionary design using grammatical evolution and shape grammars 7

information on this topic in the survey by Kicinger et al. (2005). We now continue
with a brief introduction to the GE algorithm and how shape grammars can be
adopted with this grammar-based form of GP.

4 Grammatical Evolution

Grammatial Evolution (GE) (Dempsey et al., 2009; O’Neill and Ryan, 2003;
O’Neill, 2001; O’Neill and Ryan, 2001; O’Neill et al., 2003; Ryan et al., 1998) is a
grammatical approach to GP, and there is a vast literature on the use of grammars
in GP— see, e.g. (Hicklin, 1986; Poli et al., 2008; Whigham, 1996; Wong and Leung,
2000; Ratle and Sebag, 2000; McKay et al., 2005). GE has been used in a range
of application domains, from financial modeling to music (Brabazon and O’Neill,
2006; Dempsey, 2007; Reddin et al., 2009)a.

<scene> ::= <shape> | <scene> + <shape>

(2 productions)

<shape> ::= wall | slab | <path> | connect_point(<path>)

| connect(<path>, <path>) | connect_parallel(<path>)

| perpendiculars(<path>)

(7 productions)

<path> ::= line | circle | bezier | spiral(<path>)

(4 productions)

Figure 1 An example grammar.

In GE each individual is internally represented as an array of integers, a genome.
GE uses a generative grammar to guide the construction of a phenotype string
output from this genome input. We briefly illustrate an example of this mapping
using the example grammar outlined in Figure 1. Although the grammar refers to
shapes, the mapping is purely formal (syntactic) string-rewriting. No understanding
of the semantics of the strings or of shape grammars is required. We begin the
development of an individual from a seed known as the start symbol, typically the
first non-terminal symbol in the grammar file. In this case starting from <scene>

there are two possible productions, which can transform it into either <shape> or
into <scene> + <shape>. To decide which production replaces <scene>, we consult
the input genome: that is, we read the next available (integer-valued) codon and
apply the following mapping function:

production = c % n

where c is the codon, and n is the number of productions (on the right-hand side)
available for the current non-terminal (on the left-hand side). In the rule with
<scene> on the left-hand side, there are two options, so given a codon value of 6,
we choose production 6 % 2 = 0. In other words, <scene> will be replaced with
<shape>. The mapping continues by taking at each step the left-most non-terminal
symbol in the developing solution, examining the grammar to determine whether

aFurther information on GE and pointers to code can be found at http://www.

grammatical-evolution.org and http://ncra.ucd.ie

8 M. O’Neill et al.

| 6 | 19 | 13 | ...

<scene> -> <shape> (6 % 2 = 0)

-> connect_parallel(<path>) (19 % 7 = 5)

-> connect_parallel(circle) (13 % 4 = 1)

Figure 2 Part of a sample GE individual’s genome, and the mapping from genome
to phenotype string. Each equation gives the codon value, the number of possible produc-
tions, and the index of the chosen production.

a choice has to be made for that non-terminal and, if so, reading the next codon.
Continuing to read codon values from the example individual’s genome in Figure 2
will give the expansion in Figure 2.

The above process is responsible for developing a single genome (an array of
integers) into it’s corresponding phenotype (a sentence in the language specified
by the grammar). Thereafter, the GE algorithm is similar to a standard genetic
algorithm or GA. The string is evaluated according to a fitness function to give
a fitness value (some measure of the solutions quality). The fitness function may
calculate a simple structural property, such as the similarity of the phenotype string
to a target, or a complex property such as the expected return on investment of a
financial trading rule derived from the phenotype string. In the case of design, it
is possible to imagine fitness functions based on properties such as symmetry and
weight (Hemberg and O’Reilly, 2004; Hemberg et al., 2007b), and it is also possible
to have a user assign fitness values, as discussed in Section 2.1.

At the beginning of the GE algorithm, a population of individuals’ genotypes is
randomly generated. The genotype-phenotype mapping and calculation of fitness
are repeated for every individual in the population. The individuals with the best
fitness values are then selected, and their genomes are recombined and mutated,
yielding a new population. Over many iterations of this process, the population
evolves towards individuals with better fitness values, and ideally converges on a
global optimum. GE extends the EC metaphor with natural evolution, by borrow-
ing additional principles from molecular biology. The most powerful of these is the
genotype-phenotype map explained above. Earlier research in GP has shown some
of the potential benefits of such a mapping (Banzhaf, 1994; Keller and Banzhaf,
1996) and GE further exploits it to create a highly modular and flexible approach to
program/model induction. An example of this is the fact that the model space can
be explored by search engines other than the typical GA, such as particle swarm
optimization and differential evolution (O’Neill and Brabazon, 2006a,b).

The flexibility of GE is such that even with the presence of the genotype-
phenotype map, traditional tree-based search operators such as crossover and muta-
tion can be adopted in place of the genotype search operators, effectively transform-
ing GE into a standard form of GP with the grammar used during the initialization
of the population (Harper and Blair, 2005). It is also possible to use both genotype-
and phenotype-focussed search operators, combining the benefits of each approach.
The next section describes a design problem to which GE was applied.

Evolutionary design using grammatical evolution and shape grammars 9

5 Shelter Design Case Study

An interactive, 3-D version of the grammatical evolution/shape grammar sys-
tem was implemented as a plugin for the Blender 3D software (Stichting Blender
Foundation, 2009), and tested by several of the authors on a specific design assign-
ment.

5.1 Design Brief

The test problem was chosen as being sufficiently complex to study the GE
design tool’s capabilities in an initial trial, but not overwhelmingly complex in
materials or structures. It was derived from a design brief assigned in 2009 to
teams of students in the first year of the graduate program in the UCD Architecture
and Civil Engineering programmes. Students were required to design and build a
single-person shelter, i.e. a structure useful to give shelter from the weather to one
or more people outdoors. Structures were to be composed solely of 1”x3” or 1”x2”
ash beams, with the possibility of adding other sheet materials and fasteners where
necessary. The original brief required the construction of full-scale prototypes,
and so demanded attention to site, gravity, jointing details, and the construction
process.

This assignment was re-interpreted, simplified, and scope-limited to be suitable
as a test for the evolutionary software, and in light of the (current) users’ lack of
architectural training. The criteria for evaluation of the results were similar to those
used to assess the work undertaken by the engineering and architecture students,
though limited in this initial trial to issues of form and gravity only. Funes and
Pollack (1997) have successfully demonstrated that it is possible to incorporate
gravity into an Evolutionary Design process.

The task of actually building the final designs and making them site-specific
were not considered. The question of overall scale was not dealt with, and designs
shown here can be freely re-scaled as necessary. The joints between beams were
not regarded as part of the task, and were not represented explicitly. Finally, the
addition of sheet materials, if any, was regarded as a manual, post-evolutionary
step. Thus the software was required only to represent and produce frame-like
structures of thin beams, as described next.

5.2 Grammatical Representation

The simplest possible representation might be a recursively-grown list of inde-
pendent beams, with their end-points each represented as (x, y, z) co-ordinates.
A grammar of this type is given in Figure 3. Early experiments using such a
representation confirmed that it is far too direct and fails to capture the kind of
compositional structure appropriate to the domain: the overwhelming majority of
designs consisted of multiple, unconnected beams, many of which appeared to be
floating in mid-air (as shown in Figure 3). This representation was sufficient to
produce any given design, but coherent, well-formed designs appeared infrequently
in the search space, and evolution consisted largely of vain search for these prop-
erties rather than a gradual imposition of more interesting aesthetic properties. In

10 M. O’Neill et al.

<scene> ::= <beam> | <scene> + <beam>

<beam> ::= beam(<x>, <x>, <x>)

<x> ::= 0 | 1 | 2 | ... | 9

Figure 3 A grammar producing multiple independently-placed beams, and a typical
individual produced using this grammar.

IEC, in particular, it is necessary to express known constraints via the representa-
tion rather than the fitness function—to prevent ill-formed individuals from arising,
rather than waste the user’s time asking for evaluations of them.

A better representation will attempt to ensure that each individual’s constituent
beams are arranged coherently with respect to each other. A new grammar was
developed based on two fundamental concepts: curves, and lists of beams created
by operating on lists of points on these curves. In particular the grammar was
intended to produce pleasant curves despite working only with straight beams.

A simplified version of the shape grammar is given in Figure 4, and a sample
derivation using this grammar in Figure 5. Note that the grammar and derivation
correspond exactly to the string-form grammar and derivation given in Figures 1
and 2. Note that the individual depicted in Figure 3 is still producible using this
grammar. Additional examples of individuals that can be generated from this
grammar are given in Figure 6 along with their corresponding phenotype strings.

5.3 Implementation and Experimental Setup

The software was implemented as a plugin for the Blender 3D software, and
written in the Python programming language. Since IEC is seen as one tool in a
designer’s toolbox rather than a replacement for other tools (Bentley and O’Reilly,
2001), it is better to implement it as a plugin to an existing 3D system rather than a
standalone program. The plugin provides a user-interface within Blender, and uses
the existing GEVA software (O’Neill et al., 2008), written in-house by the NCRA.

The experimental parameters are given in Table 1. In interactive EC, the user
is free to quit at any time, however, for the purpose of user evaluation an upper
bound of 50 generations is imposed here. The population size, 15, is also an upper
bound, since not every genome gives rise, after the GE mapping process explained
in Section 4, to a valid phenotype. The other settings are quite typical of standard
GE.

Evolutionary design using grammatical evolution and shape grammars 11

Figure 4 Shape grammar. The dashed X indicates the special non-terminal, the
start shape. The dashed square is a non-terminal representing a single shape. Other
dashed lines indicate non-terminal paths, which may be transformed as in the third rule.
Terminals, in solid lines, can not be transformed by these rules, but are parameterised:
size, orientation, start and end points, and so on, are determined by numerical parameters.

Figure 5 Sample derivation. Here, the start shape is transformed to the single-shape
non-terminal; this is transformed to the sixth of the high-level primitives, an uninstanti-
ated curve connected by beams to a displaced, parallel copy of itself. Finally, the curve is
instantiated as a circle. As shown, the copy takes account of this instantiation.

5.4 Results

IEC in aesthetic domains does not lend itself to a typical analysis of success
through numerical results and statistics. Instead, the software was used for multi-
ple runs by multiple users attempting the shelter design task; results were evaluated
subjectively, as set out in this section, by collaborators on the project from UCD
Architecture, Landscape, and Civil Engineering. Also, specific changes to the con-
figuration and representation have been made and tested.

12 M. O’Neill et al.

(a) perpendiculars(bezier) +
perpendiculars(bezier)

(b) connect point(bezier) (c) circle

(d) connect(spiral(line), spi-
ral(line))

(e) wall + slab (f) line + connect(bezier,
bezier)

(g) connect(bezier, bezier) (h) connect(bezier, bezier) (i) connect(circle, line)

Figure 6 Sample individuals illustrating the primitives available in the grammar.
Note that these were produced by hand-writing the phenotype strings given above, not
through evolution.

Evolutionary design using grammatical evolution and shape grammars 13

Table 1 Parameter settings for the interactive 3D software.

Parameter Value

integer codon mutation 0.02
initialisation ramped-half-and-half
max generations 50
max population size) 15
selection tournament
tournament size 3
replacement generational
elitism 1 individual
1-pt crossover 0.7
max wraps 3
fitness binary, interactively assigned

User 1 found, in early runs, that individuals featuring the circle primitive were
not to his taste. This user therefore chose to eliminate this primitive from the
grammar for later runs. The grammar is human-editable, and this is a viable mode
of interaction, but it is optional: an understanding of the grammar is not required
for normal use. The outcome of this change was that no structures featuring circles
were produced, and so at each generation a higher number of potentially desirable
structures were available. It would be desirable to make this interaction more of a
“black box” so a user who is not familiar with grammars in any sense may make
these types of modifications. Two final designs from user 1 are shown in Figure 7.
The aim here was to produce shelters with walls on two sides to protect against
varying wind and rain. The individual on the left was found in the first generation
of the first trial. The multiple walls and two distinct roof shapes were considered
to be practical and appealing. The individual on the right appeared in a different
run, and again gives the desired enclosure effect.

Feedback from the collaborators included the suggestion that the multiple roofs
in Figure 7(a), being cantilevered from one support beam and relatively heavy-
looking, might require steel reinforcement. The individual in Figure 7(b) had prob-
lems with a very heavy and bulky roof. Also the enclosure would potentially be a
wind-trap and lead to uplift in the roof. However, several features of the design were
regarded as positive. It could be oriented to avoid the prevailing wind. Allowing
rotation of one wall would make the design more flexible and useful.

(a) (b)

Figure 7 Two designs from user 1.

In early runs, user 2 found that too often an individual rated as bad in one
generation would re-appear or give rise to offspring in the next. The hypothesis
was formed that this problem was due to the combination of a binary interactive

14 M. O’Neill et al.

fitness function and tournament selection. Tournament selection, typical in GE,
works by randomly selecting n individuals (n = 3 in our experiments) from the
population, adding the one with the best fitness to the mating pool for the next
generation, and repeating until the mating pool is full. With binary fitness it is
possible for a tournament to contain only bad individuals, and in this case it is
possible for a bad individual to be added to the mating pool. The solution is to use
roulette-wheel selection instead, in which the mating pool is created by randomly
sampling the population weighted by fitness. User 2 made this change to the
configuration, and found that it allowed a far more focussed type of exploration. A
population consisting only of variations on a single individual could be produced
at each generation.

User 2’s finished design is shown from two angles in Figure 8. The spiral/spoke
motif is aesthetically appealling, and the design’s two sides give protection even
against Ireland’s horizontal rain. The roof allows a large amount of light through.
The design was evaluated as quite successful. The roof was thought to be very
heavy, and thus difficult to keep upright. The roof span is also quite large which
could make it difficult to support, but its symmetry was thought to provide a
possible solution: cables between opposing points in the roof might keep the roof
intact and balanced.

Figure 8 User 2: top and side views of final result.

This user also made the configuration change, explained above, from tournament
to roulette-wheel selection. In an effort to increase diversity and explore larger areas
of the search space, the mutation rate was increased for some runs from 0.02 to
0.2, but this had the undesired effect of largely destroying heritability. Offspring
tended to look unrelated to their parents. This change was made after the results
to be reported here were achieved.

In the fourth run, after about 10 generations, a good object was found, with
a single support beam and a curved roof. Its main drawback was that the roof
was too large for its single support—see Figure 9(a). Several generations later, an
individual similar to Figure 9(b) appeared, probably through an independent line of
descent. This individual of multiple support beams, and a version of the curved-roof
individual, were selected as parents: in the next generation, an individual appeared
which combined the two. This is an example of a successful and understandable
crossover. Several generations later, a mutation modified the roof slightly (the curve
has been compressed by variation of a numerical parameter) to give the individual
shown in Figure 9(c). Feedback from the collaborators included the observation
that the final shelter might have been designed by hand. With multiple supports
(Figure 9(c)), it was considered to be potentially buildable, with the requirement
that the supports be extended underground and secured with concrete.

User 4 was not involved with the development of the 3D software and instead
regarded it as a black box system. No attempt was made to understand or change

Evolutionary design using grammatical evolution and shape grammars 15

(a) (b) (c)

Figure 9 User 3: the first two individuals combined to give something similar to the
last.

the configuration or representation details. The aim of this user was to achieve three
appealing designs from a single run, without any preconceived target. Two of these
results are shown in Figure 10. The left-hand individual is aesthetically appealing,
with the polygon and butterfly shapes. The right-hand individual is easily buildable
and would be more stable than many of the designs produced using this software.
Its teepee/sea-shell shape was again seen as aesthetically appealing, and especially
suitable to a rural or parkland setting, rather than an urban one. However it needs
at least one post-evolutionary modification: one spoke needs to be removed to allow
an entrance. Architectural and engineering feedback confirmed that the left-hand
individual has a clear problem with structural integrity. The right-hand individual
has the potential to scale to a multi-person shelter. Its curving and rotating features
were similar to one of the designs produced by architecture students in response to
the same design brief.

Figure 10 Final results from user 4.

5.5 Discussion

Although the tool was tested by users untrained in architecture and engineer-
ing, it is emphasised that this is not the (only) target audience for this technology.
It is intended to be useful, in the longer term, to students, teachers, and prac-
titioners of architecture and engineering. It is potentially useful in that it forces
the conceptualization process to occur in three-dimensional space, which can of-
ten be inadvertently avoided when using traditional orthographic drawings. It is
anticipated that the tool will undergo further testing within the architecture and
engineering programmes at UCD in the coming academic year.

Several trends emerged from the design and evaluation process. Most users felt
that selecting just one or two individuals per generation was the most effective
strategy: this made it much more likely that the next generation would contain

16 M. O’Neill et al.

an incremental improvement, rather than a large number of apparently unrelated
designs.

Users also felt that the software was most useful as an exploratory tool, often
producing results which would not have been considered or arrived at manually,
rather than a method of searching for a known target. This is a common result
in IEC. Known targets, whether preconceived or imagined as specific variations
on existing individuals, are usually best produced by manual editing rather than
evolutionary search.

Good individuals sometimes appeared early, suggesting that random search
might be as effective as EC—however every user was sometimes able to improve
designs incrementally through iteration, which is not possible with random search.
This is a positive result.

The change in population size during runs was interesting. Initial generations
often comprised only about 10 individuals, since several randomly-generated ones
were invalid. Later generations were generally comprised of the full 15 individuals,
as the user selected and bred from valid individuals and (often) selected against the
over-complexity which can lead to invalid ones. This is however an implementation
detail, and we can easily enfore the constraint that every individual produced is
valid, and that the population size remains constant.

Recursion in the grammar is one advantage of the GE representation over
fixed-length GA-style representations, in that GE can be quite open-ended, allow-
ing objects of indefinite complexity. This is achieved through recursive grammar
rules such as <scene> ::= <shape> | <scene> + <shape>. It is a necessary fea-
ture, since very often the designer does not know in advance how many components
will be required. However, excessive complexity is not desirable, and recursion can
easily lead to designs composed of far too many components arranged with little
coherence. An example is given in Figure 11. When designs like this appear, they
are generally not selected for crossover and mutation, and it is not too difficult
to breed the corresponding genes out of the population. However, excessive com-
plexity can reappear, and in IEC it is preferable to save the user as many fitness
evaluations as possible by imposing constraints through the representation. We
can argue, based on experience, that good individuals are always composed of 2 or
3 components (bearing in mind that each component may be composed of multi-
ple, coherently-arranged beams), and express this constraint through the grammar.
The rule given above is simply replaced with this one: <scene> ::= <shape> +

<shape> | <shape> + <shape> + <shape>. Alternatively the constraint can be
expressed as a configuration change: the maximum recursion depth can be made
available as a numerical parameter in the design tool.

Figure 11 Excessive complexity arises through recursion.

The question of connected and disconnected components leads to a similar
situation. Each <shapes> component is independent of the next, and so discon-

Evolutionary design using grammatical evolution and shape grammars 17

Figure 12 An individual together with variations produced by nodal and structural
mutations. Nodal mutations tend to produce small, quantitative variations, whereas struc-
tural mutations can make larger, qualitative ones.

nected designs are common. Again, we can argue that the property of connectedness
is known, a priori, to be desirable, and therefore that the user should not be re-
quired to waste fitness evaluations on imposing this constraint. Instead it can be
imposed through the grammar. This will be discussed more in Section 6.2.

In IEC, the behaviour of the evolutionary operators appears to be particularly
important. A central requirement is that parent individuals’ features are not only
inherited but they are seen to be inherited. That is, the user’s perception of in-
heritance and control over it are indispensible. Crossover operators which produce
children with no discernible similarity to their parents will tend to frustrate the
user, who will feel that selections are not controlling evolution. A similar argument
applies to mutation operators. In our system, operators often work conceptually,
as in the example given in Figure 9. However, not every crossover or mutation was
as successful and as understandable as the example given in Figure 9. It was not
uncommon for a crossover or mutation to produce a new individual with little or
no similarity to the original or originals. This is partly a consequence of the GE
mapping process. One response to this problem is the idea of separating mutation
into structural and nodal mutations. These two operators work by partition-
ing the array genome into two parts: those parts which, if mutated, would give
rise to large, qualitative changes and smaller, quantitative changes in the pheno-
type, respectively. This idea has been explored in previous work and shown to be
useful in controlling the destructive and creative effects of mutation (Byrne et al.,
2009). Experiments here showed that allowing only nodal mutation tended to pre-
serve the large-scale properties of the phenotype but change details, as illustrated
in Figure 12. This suggests the possibility of allowing the user to specify which
type of mutation is to be applied to which individual, relying on users’ domain
knowledge and intuition to identify the most useful type of change to be applied in
each situation.

6 Conclusions and Future Work

6.1 Conclusions

The successes of this work consist in the harnessing of computer power as a
tool in human creativity. The generative process allows the creation of unlimited
amounts of novelty, to be shaped by an iterative procedure which does not require
technical knowledge, but rather operates on the principle of I know what I like

18 M. O’Neill et al.

when I see it. Domain knowledge can be expressed in a natural way through a
formal grammar, and this leads to coherent, purposeful-looking designs. User-
specific aesthetics and requirements can also be expressed through the grammar,
and this can give better results, faster than using selection alone.

Overall this work-in-progress is considered to be a success, in that interesting,
appealing, and surprising designs have been produced. The software, even at this
early experimental stage, holds promise as an exploratory tool for students and
practitioners for small scale projects. Much of the future usefulness depends on the
level of complexity and the number of variables that can be incorporated into the
evolutionary process while still maintaining the ease of use.

6.2 Future Work

The work presented here is ongoing and aims at eventually becoming a viable
tool for architects to use in their design process. Several potentially useful new fea-
tures have been identified. As discussed in Section 5.4, a context-sensitive mutation
operator was used to improve the sense of similarity between related individuals.
Similar context-sensitive crossover operators have been implemented in previous
work, and could be applied to the 3D problem for the same purpose.

Another topic of future work is addressing connectivity between elements in the
design. Currently, elements of the design have some limited connectivity, in that
each element may be connected to only one other element. It may be beneficial
to allow for longer chains of elements to be connected as well as elements that are
completely unconnected. This could also be a possible solution to the problem of
overly complex individuals discussed in Section 5.5.

An optional temporary storage (Dahlstedt, 2009) which can be used to re-seed
evolution after stagnation, and to ensure that good individuals are not lost, making
elitism unnecessary could be advantageous.

The grammars adopted in this study were fixed during the evolutionary process.
With GE it is also possible to allow these grammars to evolve themselves O’Neill
and Ryan (2004); O’Neill and Brabazon (2005); Hemberg et al. (2007a, 2008), and
thus adaptively and automatically incorporate modules and features of the design
that emerge over time. Another advantage of dynamic grammars is that if the users
themsevles identify features or components of the design that are interesting then
these could be directly added to the underlying grammar.

IEC is successful when it allows the user to evaluate populations as quickly as
possible, i.e. addresses the fitness evaluation bottleneck (Biles, 1994). In particular,
in graphical domains it is often possible to view an entire population in thumbnails,
focussing in for careful viewing only of those individuals which are not obviously
bad. This idea might be extended to allow a series of thumbnails representing local
mutations to be displayed when mousing-over each individual.

There are many other enhancements and variations to the approach used here
that may enable the user to better guide the search, including allowing user mod-
ification of the crossover and mutation rates and population size, mechanisms to
handle multiple objectives (e.g., Deb et al. (2002); Purshouse and Fleming (2007)),
and direct modification of the individuals such that they may be re-seeded back
into the population.

Evolutionary design using grammatical evolution and shape grammars 19

Acknowledgements

This publication has emanated from research conducted with the financial sup-
port of Science Foundation Ireland under grants 08/RFP/CMS1115 and 08/IN.1/I1868.
JMcD acknowledges the support of the Irish Research Council for Science, Engi-
neering and Technology.

References

Aoki, K. and Takagi, H. (1996). Interactive GA-based design support system for
lighting design in 3-D computer graphics. Trans. of IEICE, 81:1601–1608.

Banzhaf, W. (1994). Genotype-phenotype-mapping and neutral variation—a case
study in genetic programming. In Proceedings of Parallel Problem Solving from
Nature III, volume LNCS 866, pages 322–332. Springer.

Banzhaf, W. (1997). Interactive evolution. In Back, T., Fogel, D. B., and
Michalewicz, Z., editors, Handbook of Evolutionary Computation, chapter C2.9,
pages 1–6. IOP Publishing Ltd. and Oxford University Press.

Bentley, P. J. (2000). Exploring component-based representations—the secret of
creativity by evolution? In Parmee, I. C., editor, Proceedings of the Fourth
International Conference on Adaptive Computing in Design and Manufacture
(ACDM 2000), pages 161–172, University of Plymouth.

Bentley, P. J. and O’Reilly, U.-M. (2001). Ten steps to make a perfect creative
evolutionary design system. In GECCO 2001 Workshop on Non-Routine Design
with Evolutionary Systems.

Biles, J. (1994). GenJam: A genetic algorithm for generating jazz solos. In Proceed-
ings of the International Computer Music Conference, pages 131–131. INTER-
NATIONAL COMPUTER MUSIC ASSOCIATION.

Brabazon, A. and O’Neill, M. (2006). Biologically Inspired Algorithms for Financial
Modelling. Springer.

Byrne, J., O’Neill, M., McDermott, J., and Brabazon, A. (2009). Structural and
nodal mutation in grammatical evolution. In Proceedings of the GECCO-2009
Workshop on Non-routine Design with Evolutionary Systems.

Cagan, J. and Vogel, C. M. (2001). Creating Breakthrough Products: Innovation
from Product Planning to Program Approval. Prentice Hall.

Dahlstedt, P. (2009). On the role of temporary storage in interactive evolution. In
Giacobini, M. et al., editors, Applications of Evolutionary Computing: EvoWork-
shops 2004, number 5484 in LNCS, pages 478–487. Springer-Verlag.

Dawkins, R. (1986). The Blind Watchmaker. Longman Scientific and Technical,
Harlow, England.

20 M. O’Neill et al.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist
multi-objective genetic algorithm: Nsga-ii. IEEE Transaction on Evolutionary
Computation, 6(2):181–197.

Dempsey, I. (2007). Grammatical Evolution in Dynamic Environments. PhD thesis,
University College Dublin, Ireland.

Dempsey, I., O’Neill, M., and Brabazon, A. (2009). Foundations in Grammatical
Evolution for Dynamic Environments. Springer.

Dorris, N., Carnahan, B., Orsini, L., and Kuntz, L. (2004). Interactive evolution-
ary design of anthropomorphic symbols. In CEC2004: Proceedings of the 2004
Congress on Evolutionary Computation, volume 1.

Foreign Office Architects (2009). Foreign Office Architects. URL http://www.

f-o-a.net. Accessed 13 May, 2009.

Funes, P. and Pollack, J. (1997). Computer evolution of buildable objects. In
Husbands, P. and Inman Harvey, E., editors, Proceedings of the Fourth European
Conference on Artificial Life, pages 358–367.

Gero, J. S., Louis, S. J., and Kundu, S. (1994). Evolutionary learning of novel
grammars for design improvement. AIEDAM, 8:83–94.

Harper, R. and Blair, A. (2005). A structure preserving crossover in grammatical
evolution. In Proceedings of the 2005 IEEE Congress on Evolutionary Computa-
tion, volume Volume 3, pages 2537–2544. IEEE Press.

Hemberg, E., Gilligan, C., O’Neill, M., and Brabazon, A. (2007a). A grammatical
genetic programming approach to modularity in genetic algorithms. In Ebner,
M. et al., editors, EuroGP 2007: Proceedings of the 10th European Conference
on Genetic Programming, number 4445 in LNCS, Valencia, Spain. Springer.

Hemberg, E., O’Neill, M., and Brabazon, A. (2008). Grammatical bias and building
blocks in meta-grammar grammatical evolution. In In Proceedings of the IEEE
World Congress on Computational Intelligence, pages 3775–3782, Hong Kong.
IEEE Press.

Hemberg, M. and O’Reilly, U.-M. (2004). Extending grammatical evolution to
evolve digital surfaces with Genr8. In Keijzer, M., O’Reilly, U.-M., Lucas, S. M.,
Costa, E., and Soule, T., editors, Genetic Programming 7th European Conference,
EuroGP 2004, Proceedings, volume 3003 of LNCS, pages 299–308, Coimbra, Por-
tugal. Springer-Verlag.

Hemberg, M., O’Reilly, U.-M., Menges, A., Jonas, K., da Costa Goncalves, M.,
and Fuchs, S. (2007b). Genr8: Architect’s experience using an emergent design
tool. In Machado, P. and Romero, J., editors, The Art of Artificial Evolution.
Springer-Verlag, Berlin.

Hicklin, J. (1986). Application of the genetic algorithm to automatic program
generation. Master’s thesis, University of Idaho, Moscow, ID.

Evolutionary design using grammatical evolution and shape grammars 21

Hornby, G. S. (2005). Measuring, enabling and comparing modularity, regularity
and hierarchy in evolutionary design. In Proceedings of GECCO ’05.

Keller, R. and Banzhaf, W. (1996). Genetic programming using genotype-
phenotype mapping from linear genomes into linear phenotypes. In Genetic
Programming 1996: Proceedings of the First Annual Conference, pages 116–122,
Stanford University, CA, USA. MIT Press.

Kicinger, R., Arciszewski, T., and Jong, K. D. (2005). Evolutionary computation
and structural design: A survey of the state-of-the-art. Computers and Struc-
tures, 83(23-24):1943 – 1978.

Koning, H. and Eizenberg, J. (1981). The language of the prairie: Frank Lloyd
Wright’s prairie houses. Environment and Planning B, 8:295–323.

Koza, J. R. (2003). Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers, Norwell, MA, USA.

Mayall, K. and Hall, G. B. (2005). Landscape grammar 1: spatial grammar theory
and landscape planning. Environment and Planning B: Planning and Design,
32:895–920.

Mayall, K. and Hall, G. B. (2007). Landscape grammar 2: implementation. Envi-
ronment and Planning B: Planning and Design, 34:28–49.

McDermott, J. (2008). Evolutionary Computation Applied to the Control of Sound
Synthesis. PhD thesis, University of Limerick.

McKay, R. I. B., Nguyen, X. H., Whigham, P. A., and Shan, Y. (2005). Grammars
in genetic programming: A brief review. In Kang, L., Cai, Z., and Yan, Y.,
editors, Progress in Intelligence Computation and Intelligence: Proceedings of the
International Symposium on Intelligence, Computation and Applications, pages
3–18, Wuhan, PRC. China University of Geosciences Press.

O’Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolving
Programs with Grammatical Evolution. PhD thesis, University of Limerick.

O’Neill, M. and Brabazon, A. (2005). mGGA: The meta-grammar genetic algo-
rithm. In Proceedings of the European Conference on Genetic Programming Eu-
roGP 2005, volume LNCS 3447, pages 311–320, Lausanne, Switzerland. Springer.

O’Neill, M. and Brabazon, A. (2006a). Grammatical differential evolution. In
Proceedings of IC-AI, pages 231–236. CSREA Press.

O’Neill, M. and Brabazon, A. (2006b). Grammatical swarm: The generation of
programs by social programming. Natural Computing, 5(4):443–462.

O’Neill, M. and Brabazon, A. (2008). Evolving a logo design using Lindenmayer
systems, Postscript and grammatical evolution. In IEEE Congress on Evolution-
ary Computation 2008, pages 3788–3794, Hong Kong, China. IEEE Press.

O’Neill, M. and Brabazon, A. (2009). Recent patents in genetic programming.
Recent Patents on Computer Science, 2(1):43–49.

22 M. O’Neill et al.

O’Neill, M., Hemberg, E., Bartley, E., McDermott, J., and Brabazon, A. (2008).
GEVA: Grammatical evolution in java. SIGEVOlution, 3(2):17–22.

O’Neill, M. and Ryan, C. (2001). Grammatical evolution. IEEE Transactions on
Evolutionary Computation, 5(4):349–358.

O’Neill, M. and Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language. Kluwer Academic Publishers.

O’Neill, M. and Ryan, C. (2004). Grammatical evolution by grammatical evolution:
The evolution of grammar and genetic code. In Proceedings of the European
Conference on Genetic Programming, pages 139–148. Springer.

O’Neill, M., Ryan, C., Keijzer, M., and Cattolico, M. (2003). Crossover in gram-
matical evolution. Genetic Programming and Evolvable Machines, 4(1).

O’Reilly, U.-M. and Hemberg, M. (2007). Integrating generative growth and evolu-
tionary computation for form exploration. Genetic Programming and Evolvable
Machines, 8(2):163–186.

O’Reilly, U.-M. and Ramachandran, G. (1998). A preliminary investigation of
evolution as a form design strategy. In Adami, C., Belew, R. K., Kitano, H.,
and Taylor, C. E., editors, Proceedings of the Sixth International Conference on
Artificial Life, pages 443–447, University of California, Los Angeles. MIT Press.

Parmee, I. and Bonham, C. (2000). Towards the support of innovative concep-
tual design through interactive designer/evolutionary computing strategies. AI
EDAM, 14(01):3–16.

Poli, R., McPhee, N., and Langdon, W. (2008). A Field Guide to Genetic
Programming. Published via http://lulu.com and freely available at http:

//www.gp-field-guide.org.uk.

Purshouse, R. and Fleming, P. (2007). On the evolutionary optimization of many
conflicting objectives. IEEE Trans. Evolutionary Computation, 11(6):770–784.

Ratle, A. and Sebag, M. (2000). Genetic programming and domain knowledge:
Beyond the limitations of grammar-guided machine discovery. In Proceedings
of Parallel Problem Solving from Nature PPSN VI, volume LNCS 1917, pages
211–220. Springer.

Reddin, J., McDermott, J., and O’Neill, M. (2009). Elevated pitch: Automated
grammatical evolution of short compositions. In Giacobini, M. et al., editors,
Applications of Evolutionary Computing: EvoWorkshops 2004, number 5484 in
LNCS, pages 579–584. Springer-Verlag.

Ryan, C., Collins, J. J., and O’Neill, M. (1998). Grammatical evolution: Evolving
programs for an arbitrary language. In Banzhaf, W., Poli, R., Schoenauer, M.,
and Fogarty, T. C., editors, Proceedings of the First European Workshop on
Genetic Programming, volume 1391, pages 83–95, Paris. Springer-Verlag.

Sims, K. (1991). Artificial evolution for computer graphics. In SIGGRAPH ’91:
Proceedings of the 18th annual conference on computer graphics and interactive
techniques, pages 319–328, New York, NY, USA. ACM.

Evolutionary design using grammatical evolution and shape grammars 23

Stichting Blender Foundation (2009). Blender 3D. http://www.blender.org/.
Last viewed 11 May 2009.

Stiny, G. (1980). Introduction to shape and shape grammars. Environment and
Planning B, 7:343–351.

Takagi, H. (2001). Interactive evolutionary computation: Fusion of the capabilities
of EC optimization and human evaluation. Proc. of the IEEE, 89(9):1275–1296.

Vogel, C. M. and Cagan, J. (2005). The Design of Things To Come. Prentice Hall.

Whigham, P. (1996). Grammatical Bias for Evolutionary Learning. PhD thesis,
University of New South Wales, Australian Defence Force Academy, Canberra,
Australia.

Wong, M. and Leung, K. (2000). Data Mining Using Grammar Based Genetic
Programming and Applications. Kluwer Academic Publishers.

Wonka, P., Wimmer, M., Sillion, F., and Ribarsky, W. (2003). Instant architecture.
ACM Trans. Graph., 22(3):669–677.

