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Morphological variations of fruits such as shape and size, and color are a result of

adaptive evolution. The evolution of morphological novelties is particularly intriguing.

An understanding of these evolutionary processes calls for the elucidation of the

developmental and genetic mechanisms that result in particular fruit morphological

characteristics, which determine seed dispersal. The genetic and developmental basis

for fruit morphological variation was established at a microevolutionary time scale. Here,

we summarize the progress on the evolutionary developmental genetics of fruit size,

shape and color in the Solanaceae. Studies suggest that the recruitment of a pre-

existing gene and subsequent modification of its interaction and regulatory networks are

frequently involved in the evolution of morphological diversity. The basic mechanisms

underlying changes in plant morphology are alterations in gene expression and/or

gene function. We also deliberate on the future direction in evolutionary developmental

genetics of fruit morphological variation such as fruit type. These studies will provide

insights into plant developmental processes and will help to improve the productivity

and fruit quality of crops.

Keywords: domestication, evolutionary developmental genetics, fruit, gene expression, morphological novelty,

natural variation, Solanaceae

Introduction

Diversification of plant morphology occurred during evolution as a result of plant adaptation to

changes in the environment. The origin of the fruit is an evolutionary adaptation that facilitates
survival and distribution of progeny. For example, fruits protect the developing seeds from adverse

environments and/or foraging by animals during premature stages, thus enhancing the survival
rate. However, fruits that contain nutrients and minerals can become favorite foods for animals

and humans as part of a balanced diet. The energetic cost of producing fruits are paid for through
subsequent seed dispersal, e.g., birds, mammals, and humans disperse seeds to different habitats

where they can propagate. In some cases, the origin of morphological novelties or particular struc-
tures associated with fruits play an essential role in seed dispersal by wind, water and animals.

Diverse colors and flavors of mature fruits attract animals that eat the fruit and aid seed dispersal.
Thus, the morphological variations of fruits have diversified considerably. Furthermore, humans

have domesticated a wide range of plants as fruit crops with different sizes, shapes, colors, flavors,
and textures.

The Solanaceae family has a rich diversity of fruit types and flower morphologies (Knapp,
2002; He et al., 2004). In addition, this family ranks as one of the most economically important
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plant families among the angiosperms. Solanaceous fruits repre-

sent an important part of the human diet and common fruit crops
in this family include tomato (Solanum lycopersicum), eggplant

(Solanum melongena), and chili/pepper (Capsicum spp.). The
fruits from some species of Physalis (such as Physalis philadelph-

ica and Physalis peruviana) and Lycium (e.g., Lycium barbarum
and Lycium chinense) have both curative and culinary usages.

Moreover, the Solanaceae family contains many model species
for the study of plant developmental processes, including tomato,

potato (Solanum tuberosum), tobacco (Nicotiana tabacum), and
Petunia hybrida. Thus, this plant family has served as a model

for linking genomics and biodiversity (Knapp et al., 2004). The
Solanaceous fruits exhibit considerable morphological diversity

(Knapp, 2002), including size, shape, and color, both within and
between different species (Figure 1). How do such morphologi-

cal variations arise, and what are the underlying genetic bases? In
recent years, modern molecular biology and genomic tools have
been used extensively to elucidate the mechanisms underlying the

evolution and development of these fruit morphological varia-
tions. In this review, we summarize the known genetic control

of Solanaceous fruit morphological variations, highlight the gen-
eral mechanisms involved in the evolution of plant morphology,

and discuss the future direction.

Genetic Control of Fruit Size and
Shape

Plant fruits exhibit considerable morphological diversity in size
and shape. Fruit size and shape variation usually contribute

to reproductive isolation of species and have clear evolution-
ary consequences in natural conditions. Moreover, fruit size is

FIGURE 1 | The diverse variations of fruit morphology in the

Solanaceae family. (1–3), Solanum melongena; (4), Solanum

pimpinellifolium; (5–8), Solanum lycopersicum; (9–14), Variants of Capsicum

annum; (15), Physalis alkekengi; (16), Physalis floridana; (17–19), Physalis

philadelphica. The Chinese lantern in Physalis spp. was opened to show the

berry inside. Bar = 1 cm.

a prime breeding target, and fruit shape is often altered follow-

ing the size alteration, indicating that the two traits might share
a common set of genetic controllers. Solanaceous crops display

significant variation in fruit size and shape within and among
populations (Figure 1). Thus, determination of the genetic basis

of these fruit-associated trait variations is the most common
type of application-oriented fundamental evolutionary study.

Quantitative trait loci (QTLs) for variation of morphological
traits between the Solanaceous crops and their closely related wild

relatives are well-conserved (Doganlar et al., 2002; Ben Chaim
et al., 2003; Frary et al., 2003; Zygier et al., 2005; Borovsky

and Paran, 2011; Carvalho et al., 2014; Portis et al., 2014), but
most of them have not yet been cloned. Multiple QTLs and/or

genes regulating fruit size and shape are well-characterized in
the Solanaceae (Table 1). The considerable progress in the

genetic control of fruit size and shape in tomato was reviewed
by van der Knaap et al. (2014). Therefore, in this section we
briefly summarize the findings in tomato and focus on the

new findings in other Solanaceous species. The identified “fruit
morphological variations” QTLs/genes that encode regulators

with diverse chemical attributes might form an interaction and
regulatory network to control cell division activity/patterns or

cell expansion. Therefore, any alteration in these regulators or
their pathways may contribute to variations in fruit size and

shape.

Regulators of Cell Division Activity or
Patterns
The two characterized genes that regulate fruit weight are Fruit
weight 2.2 (FW2.2) and Fruit weight 3.2 (FW3.2). FW2.2 is the

first cloned QTL in plants (Frary et al., 2000). The allele that
increases fruit weight causes an enlargement of the placenta and

columella regions of the fruit, which control ∼30% fruit size in
tomato (Nesbitt and Tanksley, 2001; Cong et al., 2002). A muta-

tion in the FW2.2 promoter leads to heterochronic expression
of the gene during fruit development, resulting in differences
in fruit size between cultivated tomato and its wild relatives.

FW2.2 is a plasma membrane-anchored protein that is involved
in the cell cycle pathway for the control of ovary size (Liu et al.,

2003a). FW3.2 encodes a cytochrome P450 homolog, i.e., the
putative ortholog of Arabidopsis KLUH (Chakrabarti et al., 2013)

and is therefore designated as S. lycopersicum KLUH (SlKLUH).
A mutation located 512 bp upstream of the predicted start of

SlKLUH transcription is responsible for a change in tomato fruit
weight. The increase in fruit weight of FW3.2 is primarily due

to an increase in cell number in the pericarp and septum areas.
The putative ortholog of KLUH in pepper is also associated with

larger fruit suggesting a possible role of the cytochrome P450
family in parallel domestication processes in fruit and vegetable

crops (Chakrabarti et al., 2013). The functional conservation of
FW3.2 in angiosperms and the underlying mechanisms require

further investigation, whereas the role of FW2.2 in organ size and
cell division is highly conserved in most plant species examined.

FW2.2 was found to correspond to a major fruit weight QTL in
eggplants (Doganlar et al., 2002). However, FW2.2 does not play

a significant role in controlling fruit size variations between wild
and cultivated peppers because pepper fruit has little placental
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TABLE 1 | QTLs/Genes characterized for variation in fruit size and shape in the Solanaceae.

QTL/gene Allelic variation Protein Process affected Species Reference

fw2.2 Promoter-Regulatory A cell number regulator (CNR)

family protein

Cell division/fruit size Tomato eggplant

Physalis

Frary et al. (2000), Cong et al.

(2002), Doganlar et al. (2002), Li

and He (2015)

fw3.2 Promoter-regulatory A cytochrome P450 protein Cell division/fruit size Tomato pepper Chakrabarti et al. (2013)

ovate Premature stop Ovate family proteins Cell division/fruit shape Tomato eggplant

pepper

Liu et al. (2002), Spinner et al.

(2010, 2013), Tsaballa et al. (2011),

Drevensek et al. (2012), Gramazio

et al. (2014)

sun Transposon

insertion-regulatory

A member of the IQD family of

calmodulin-binding proteins

Cell division/fruit shape Tomato eggplant Xiao et al. (2008), Jiang et al.

(2009), Wu et al. (2011), Gramazio

et al. (2014)

fas Intron -regulatory A YABBY-like transcription

factor

Cell division/locule

number/shape and size

Tomato Cong et al. (2008)

lc SNPs in

downstream-regulatory

A putative ortholog of

WUSCHEL

Cell division/locule

number/shape and size

Tomato Munos et al. (2011)

POS1 Intron-regulatory A transcription factors with two

CRF-AP2 domains

Cell expansion/fruit size Physalis Wang et al. (2012, 2014)

tissue (Zygier et al., 2005). FW2.2-like genes have been renamed

as the Cell Number Regulator (CNR) family (Dahan et al., 2010;
Guo et al., 2010; Libault et al., 2010; Guo and Simmons, 2011;

De Franceschi et al., 2013; Xu et al., 2013; Monforte et al., 2014).
CNR family members are localized to the membrane to facil-

itate the transport of ions (Song et al., 2004; Nakagawa et al.,
2007), but the mechanism of regulation of ion transport leading
to changes in cell division is unknown. Recently, Li and He (2015)

found that Physalis floridana Cell Number Regulator 1 (PfCNR1)
encodes a putative ortholog of FW2.2. The heterochronic expres-

sion levels of PfCNR1 alleles in ovaries are negatively correlated
with cell division activity and berry size variation between differ-

ent Physalis species. PfCNR1 was found to interact with PfAG2,
an AGAMOUS (AG) homolog for ovary identity determination

(Yanofsky et al., 1990). Moreover, PfAG2 binds to the CArG-
box in the PfCYCD2;1 promoter to repress the expression of

this gene. The work in Physalis suggests a novel mechanism
mediated by an MADS-domain protein for a cell membrane-

localized protein to control cell division suggesting a molecular
link between ovary identity and growth in plants (Li and He,

2015).
Fruit elongation is an important feature that affects fruit

shape. Elongation in the tomato fruit is controlled mainly by
OVATE and SUN. OVATE encodes a member of the ovate fam-

ily proteins (OFPs), and a mutation that results in a prema-
ture stop codon leads to the pear-shaped fruit in tomato (Liu
et al., 2002). The Arabidopsis OFP members act as transcrip-

tional repressors in controlling cell elongation, plant growth, and
development (Wang et al., 2007, 2011). Yeast two-hybrid screens

using the tomato OVATE as bait identified the TONNEAU1-
recruiting motif (TRM) superfamily as prey. TONNEAUs (TON)

and TON-TRM interaction play critical roles in preprophase
band formation and microtubule array organization of plant

cell division and cell elongation (Spinner et al., 2010, 2013;
Drevensek et al., 2012). Thus, an interaction betweenOVATE and

TRMs may provide a mechanistic link between fruit patterning
and growth, nonetheless, this assumption needs substantiation.

OFPs are present in all major lineages of land plants (Liu et al.,

2014); whether they shared a conserved role needs to be investi-
gated. At least Ovate-like genes from pepper and eggplants are

also involved in determining fruit shape (Tsaballa et al., 2011;
Gramazio et al., 2014). SUN encodes a member of calmodulin-

binding proteins (Xiao et al., 2008, 2009) and regulates vegetative
growth and reproductive organ shape by changing cell division
patterns (Wu et al., 2011). Wild-type SUN is only expressed

10 days post-anthesis fruit (van der Knaap et al., 2014); however,
a transposition of unusual 24.7 kb duplication event mediated

by the retrotransposon Rider causes mutations in some tomato
cultivars (Jiang et al., 2009). This leads to greater expression

in the entire floral and fruit development, and elongated fruit
(Xiao et al., 2008, 2009). How SUN regulates cell division pat-

tern remains unclear, but SUN ortholog also controls the fruit
shape in eggplant (Gramazio et al., 2014) implicating a conserved

developmental role of this gene family.
Alteration in the locule number frequently affects both fruit

shape and size. For example, the wild species Solanum pimpinel-
lifolium commonly contain two to four locules while tomato

cultivars have more; and in extreme cases, more than eight
locules have been observed (Munos et al., 2011). Most pheno-

typic variation due to locule number variation is explained by
fasciated (fas) and locule number (lc). FAS encodes a YABBY-

like transcription factor SlYABBY2 (Cong et al., 2008). The
mutation fas, which resulted from a 294-kb inversion with
one of the breakpoints in the first intron of SlYABBY2, led

to the increases in locule number, and was a critical step in
the production of extreme fruit size during tomato domestica-

tion (Cong et al., 2008). However, the details of how SlYABBY2
impacts locule number in tomato are not well-understood. LC

was identified to be associated with two single nucleotide poly-
morphisms (SNPs) located 1080 bp downstream of the puta-

tive tomato ortholog of WUSCHEL (WUS), a homeodomain
transcription factor (Clark, 2001; Munos et al., 2011). LC con-

trols the number of carpel primordia and a mutation results
in a fruit with more than the typical two to three locules.
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Since increased expression of AtWUS leads to increased flo-

ral organ number in Arabidopsis (Clark, 2001), SlWUS is the
most likely candidate to underlie lc. AtWUS positively reg-

ulates AtAG while AtAG down-regulates AtWUS; the down-
regulation is mediated by two downstream CArG cis-regulatory

elements bound by AtAG (Lenhard et al., 2001; Lohmann
et al., 2001; Liu et al., 2011). In tomato, the two SNPs asso-

ciated with lc are located in a putative CArG cis-regulatory
element, but surprisingly, a considerable change in the expres-

sion of SlWUS compared with the wild type was not observed
(Munos et al., 2011). More evidence is needed to verify the

role of SlWUS in the control of fruit size, or to link lc and
SlWUS.

Cell Expansion Regulators
The above-characterized genetic regulators mainly affect cell
division activity or patterns; however, alteration in cell expan-
sion also plays a role in the evolution of fruit size. Pericarp

size, particularly pericarp thickness, is a strong determinant of
Solanaceous fruit size. Pericarp thickness appears to be governed

by endoreduplication (Cheniclet et al., 2005). Endoreduplication
– arrest in mitotic activity accompanied by a concomitant

increase in nuclear DNA levels during fruit development – is
believed to drive cell expansion, and is mainly regulated by

cell cycle genes (Chevalier et al., 2011). During tomato fruit
development, endoreduplication acts as an important morpho-

genetic factor supporting cell growth and multiple physiological
functions (Chevalier et al., 2014). Impairment in the expres-

sion of WEE1, which encodes the cell cycle-associated protein
kinase in transgenic tomato plants, results in a reduction in

plant and fruit size, because of decrease in cell size that cor-
relates with a decrease in the DNA ploidy levels (Gonzalez

et al., 2007). Downregulation of tomato CELL CYCLE SWITCH
A 52 kDa (SlCCS52A) does not affect the number of peri-

carp cell layers, but results in the formation of significantly
smaller fruit, along with a sharp reduction in the ploidy level
and pericarp cell size (Mathieu-Rivet et al., 2010a,b). The

auxin Sl-IAA17 transcriptional repressor also controls tomato
fruit size by regulating endoreduplication-related cell expansion

(Su et al., 2014). The role of endoreduplication in increased
cell expansion in fruit development is controversial (Chevalier

et al., 2011; Nafati et al., 2011), and its role in natural vari-
ation of fruit size is not known. Recently, a key cell expan-

sion regulator was characterized in P. philadelphica (tomatillo).
The characterized gene is Physalis Organ Size 1 (POS1), pre-

viously designated as Pp30, which encodes a putative tran-
scription factor with two CRF (cytokinin response factor)-

AP2 (APETALA2) domains, and positively controls floral and
fruit organ sizes in tomatillos (Wang et al., 2012, 2014). The

expression levels of the POS1 gene were positively associated
with size variation in tomatillo reproductive organs such flow-

ers, berries and seeds. POS1 knockdown resulted in smaller
flowers and berries with smaller cells compared with their

wild type counterparts. Conversely, POS1 overexpression pro-
moted organ size without increasing the cell number. The first

introns of the POS1 alleles from large, intermediate and small
tomatillo groups contained one, two and three 37-bp repeats,

respectively. Furthermore, copy variation of repeats in the first

intron of POS1 alleles resulted in differential expression of this
gene. Thus, the novel regulatory variation in POS1 regulates

reproductive organ size variation in tomatillos (Wang et al.,
2014).

Genetic Basis of Fruit Color Variation

Fruit color is essential for attracting animals and humans, and
thus, facilitates seed dispersal. Color is determined by different

proportion of surface pigments, such as carotenoids, chloro-
phyll, flavonoids, and anthocyanins (Liu et al., 2003b; Nashilevitz

et al., 2010; Kachanovsky et al., 2012). The color of berries
varies widely and can be red, purple, orange, yellow, or green

(Figure 1). Brightly colored berries generally tend to be juicy
and extremely soft, whereas, mature green berries are harder
and have a woody texture (Symon, 1987). Phylogenetic recon-

structions suggest that green fruits belong to the primitive clade,
whereas brightly colored (red, orange, yellow) species are derived

clades (Peralta and Spooner, 2001). Several genes were charac-
terized in tomato, pepper, and eggplant. Carotenoid content is

the primary determinant of fruit color that affects nutritional
value and appearance. In the carotenoid pathway, color diver-

sity depends on the quantity of pigment produced, and the
point where the pathway is arrested. Many transcription factors

participate in controlling this pathway. Rodriguez-Uribe et al.
(2012) determined the carotenoid composition in a number of

orange-colored pepper fruit, and compared it with transcript
abundance for the carotenogenic enzymes, such as phytoene syn-

thase (Psy), lycopene β-cyclase (LcyB), β-carotene hydroxylase
(CrtZ), and capsanthin-capsorubin synthase (Ccs). A splicing

mutation in the Psy gene 1 (Psy1) causes orange coloration in
Habanero pepper fruits (Kim et al., 2010). A chimeric tran-

script containing Psy1 and a potential mRNA is associated
with yellow flesh color in tomato accession PI114490 (Kang
et al., 2014). The single dominant tomato LcyB gene increases

β-carotene in the fruit while old-gold (og), a recessive muta-
tion of the LcyB abolishes β-carotene and increases lycopene

(Ronen et al., 2000). LcyB is homologous to Ccs, an enzyme
that produces red xanthophylls in pepper fruits (Ronen et al.,

2000). A tandem repeat structure in the promoter region of
Ccs causes the yellow fruit color in pepper (Li et al., 2013).

CrtZ mutant results in accumulation of β-carotene and con-
version of red to orange color in pepper fruit (Borovsky et al.,

2013). Nowadays, many QTLs/genes were found to be involved
in fruit coloration through affecting plastid characteristics. QTL

pc8.1, affects carotenoid content in pepper fruit and is associated
with variation in plastid compartment size (Brand et al., 2012).

The variations in chromoplasts are associated with carotenoid
compositional differences and fruit color of different pepper cul-

tivars (Kilcrease et al., 2013). An Arabidopsis pseudo response
regulator 2-like (APRR2-like) gene is linked to pigment accu-

mulation in tomato and pepper fruits. Overexpressing this gene
in tomato increased plastid number, area, and pigment con-

tent; thus, enhancing the levels of chlorophyll in immature
unripe fruits and carotenoids in red ripe fruits (Pan et al.,
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2013). The positions of ten genes in the carotenoid biosyn-

thetic pathway of pepper were homologous with the positions
of the same genes in tomato (Thorup et al., 2000). Amino acid

substitutions in homologs of the STAY-GREEN protein of rice
are responsible for green-flesh and chlorophyll retainer muta-

tions of tomato and pepper (Barry et al., 2008). CaGLK2, a
GOLDEN2-like transcription factor regulates natural variation

of chlorophyll content and fruit color in pepper fruit (Brand
et al., 2014). Virus-induced gene silencing (VIGS) of SlMYB12

resulted in a decrease in the accumulation of naringenin chal-
cone, and pink-colored tomato fruit, suggesting an important

role for this gene in regulating the flavonoid pathway in tomato
fruit (Ballester et al., 2010). Major anthocyanin in eggplant peel

was delphinidin-3-rutinoside while the predominant pigment
in violet pepper was delphinidin-3-trans-coumaroylrutinoside-5-

glucoside (Sadilova et al., 2006). It is possible that a conserved
complex regulatory pathway controls Solanaceous fruit colors,
but the complete genetic components in the carotenoid regula-

tory pathway have not yet been revealed, even in a Solanaceous
species.

The Evolution of the Fruit
Morphological Novelty

The origin of morphological novelties is a long-standing dis-

pute in evolutionary biology. An understanding of this pro-
cess demands the elucidation of the developmental and genetic

mechanisms that produce such structures. Unlike Solanum and
Capsicum species, Physalis has distinguished fruit morphology

with a papery husk as the accessory trait of fruits (Whitson and
Manos, 2005). The distinct trait of Physalis species is termed

the Chinese lantern or the inflated calyx syndrome (ICS) since
it is a derivative of the calyx (He and Saedler, 2005). Within

the Solanaceae, only five genera (Physalis,Withania, Przewalskia,
Margaranthus, andNicandra) feature this morphological novelty.
The nature of the Chinese lantern is an inflated fruiting calyx,

and fertilization/hormonal signals trigger the formation of ICS in
Physalis and Withania (He and Saedler, 2005, 2007; Khan et al.,

2012). A series of microevolutionary time scale studies revealed
that the origin of the Chinese lantern is associated with the het-

erotopic expression of the Physalis MADS-box gene 2 (MPF2)
in floral organs. Moreover, its identity is determined by another

Physalis MADS-box gene 3 (MPF3; He and Saedler, 2005; Zhao
et al., 2013). Unlike its ortholog of S. tuberosumMADS-box gene

16 (STMADS16), MPF2 is heterotopically expressed in the flo-
ral organs of Physalis (Figure 2A). The heterotopic expression

of MPF2 may result from the variation in the CArG-boxes in
its promoter. The phenotypic variation of MPF2 knockdowns

further supports the role of MPF2 in male fertility and fruiting
calyx growth (He and Saedler, 2005). Thus, heterotopic expres-

sion of MPF2 is the key to the origin of the Chinese lantern
morphology. While MPF3 is specifically expressed in floral tis-

sues, this gene encodes a euAP1 MADS-domain protein, which
is primarily localized to the nucleus, and it interacts with MPF2

and some floral MADS-domain proteins to selectively bind the
variants of CArG-boxes in theMPF2 promoter (Figure 2A, Zhao

et al., 2013). Besides the role in calyx identity, MPF3 regulates

ICS formation and male fertility through interactions with the
MPF2 gene or MPF2 protein (Figure 2B, Zhao et al., 2013).

The ICS-determined genes also function in male fertility; either
in pollen maturation or yields, and their encoding proteins also

interact with floral MADS-proteins for stamen development (He
et al., 2007). MPF3 downregulation increase MPF2 expression

significantly in the calyces and androecium; however, the expres-
sion of MPF3 is not affected in MPF2-downregulated flowers

(Zhao et al., 2013). Therefore, the novel role of the MPF3-MPF2
regulatory circuit in male fertility is integral to the origin of

the Chinese lantern. Thus, any molecular interactions associ-
ated with MPF2 and MPF3 may contribute to ICS formation

(He et al., 2007; Zhao et al., 2013). Dissecting the double-layered-
lantern mutant1 (doll1), a P. floridana GLOBOSA (GLO)-like

MADS-box gene 1 (PFGLO1) genomic locus deletion mutant
(Zhang et al., 2014a) further suggested a role of male fertil-
ity in the development of the Chinese lantern in Physalis. The

corolla and androecium of doll1 are respectively transformed
into the calyces and gynoecium (Zhang et al., 2014a). On the

other hand, downregulating PFGLO2, the paralog of PFGLO1
impaired male fertility (Zhang et al., 2015). Further evolution-

ary analyses suggest that the evolution of ICS in Solanaceae is
associated mainly with divergence related to MPF2-like genes,

and alteration in MPF2-related molecular traits plays a crucial
role (Hu and Saedler, 2007; Khan et al., 2009; Zhang et al.,

2012).

Future Research Highlights

The Evolution of Fruit Type in Solanaceae
Fruit is the vehicle for seed dispersal, and the origin of the fruit
is an evolutionary adaptation that facilitates survival and distri-

bution of progeny. Thus, the evolution of fruit morphology is
under strong selective pressures. Fruit size and shape are mostly
related to domesticated crops; however, fruit type is a key adap-

tive feature to terrestrial habitats in natural conditions. Therefore,
revealing the genetic basis of the alteration of fruit types should be

a theme of future evolutionary research. Berry (fleshy fruit), cap-
sule, drupe, dry indehiscent fruit, non-capsular dehiscent fruit,

and mericarp are the six known types of Solanaceous fruits
(Knapp, 2002; Olmstead et al., 2008). We mapped the six fruit

types on the phylogenetic tree of the family Solanaceae (Figure 3).
Berry and capsule are apparently predominant types of fruits.

Capsules occur in the most basal clades and broadly distribute
in basal taxa while the origin of berry happened in Cestreae

but became predominant after the origin of Anthocercideae.
Berry covered by ICS seems to have multiple independent ori-

gins in Physalinae, Withaninae, Nicandreae, and Hyoscyameae.
Non-capsular dehiscent fruit occurs independently in Solanaceae,

Physalinae and Hyoscyameae. Drupe and pyrene occur at least
twice in Duckeodendreae, Goetzeoideae, and Lycieae. Dry inde-

hiscent fruit is only observed in Sclerophylax. The genetic control
of fruit type is not well-studied, and as the research is hampered

by large evolutionary and genetic distance among plants with
different fruit types. However, the evolutionary genetic control
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FIGURE 2 | Genetic bases underlying the origin of the morphological

novelty the Chinese lantern in Physalis. (A) Schematic diagram of the

heterotopic expression of MPF2 in floral organs. MPF3 is the putative ortholog

of SQUAMOSA (SQUA). In S. tuberosum, SQUA-like protein associated

complex binds to the CArG-boxes in STMADS16 promoter and represses its

expression in floral organs. In P. floridana, the sequence alteration in the MPF2

promoter provides a possibility to loosen the repression of MPF3-associated

complex, thus leading to the heterotopic expression of MPF2 in floral organs.

Arrows indicate the transcription initiation sites. Sequence divergence in

STMADS16 and MPF2 promoters is depicted by the solid and the dashed

lines. The solid square boxes indicate CArG-boxes in the STMADS16

promoter, and the dashed square boxes indicate altered CArG-boxes in the

MPF2 promoter. The plus or minus represents the gene expression or not.

(B) The MPF3 -MPF2/MPF2 interactions involve in the development of the

Chinese lantern in Physalis. The line indicates the interaction of the two

components. The blocked line stands for repression of gene expression.

Arrows represent regulations. cd, cell division; ce, cell expansion.

Bar = 5 mm. In both (A,B), proteins are presented in Roman and ovals, and

genes are presented in italics and rectangles.

regarding the transition between the various fruit types will be an
extremely interesting target. Thus, coexistence of two fruit types

in some Solanaceous clades, particularly in a genus from each
clade of Solanaceae, Capsiceae, and Lycieae (Figure 3) provides a

good system for comparison to understand the genetic variation
causing such morphological divergence.

Natural Variation and Domestication
Natural variation of a trait, even the maintenance of a morpho-

logical novelty, is a consequence of adaptation to natural environ-
ments. The Solanaceae family displays considerable diversities at

different levels and is therefore proposed as a goodmodel to study
the evolutionary mechanisms of biodiversity (Knapp et al., 2004).

Several model plant species have been established in laboratory
experiments, such as tomato, and this will facilitate the work in

this family. However, diversity and natural variation are poorly
evaluated within the phylogenetic context, and, therefore, the

evolutionary mechanisms are not well-understood. In particular,
the origin of morphological novelties and the evolution of fruit

type (Figure 3) have long been overlooked. Besides the Chinese
lantern, other novel morphological traits need to be identified.

FIGURE 3 | The evolution of fruit types within the Solanaceae. The

topology of Solanaceous phylogeny was deduced from the molecular

phylogeny trees using the combined ndhF and trnLF sequences (Olmstead

et al., 2008). The definition of fruit type was adopted from the previous work

(Knapp, 2002; Olmstead et al., 2008). The blue circle, yellow triangle, purple

square, black rhombus, red star, and aqua Pentagon represent fruit type as

indicated. The clade features ICS was indicated with a green box. The number

of genera in each clade and the ration of genera with different fruit type in

some clades (in parenthesis) are given, and coexistence of two fruit types in

one genus is marked in blue.

In addition, the Solanaceae family contains fleshy fruits and veg-

etables such as tomato, eggplant, chili/pepper, and tomatillo that
are eaten by humans, thus several species are domesticated crops

and are bred for their diverse morphologies (Figure 1). How
human selection affects the genomes of these species, compared

with their closely related wild relatives and plants with other fruit
types, and further creates ideal traits to meet people’s demands

is not well-known. Understanding the processes of how plants
respond to alteration of natural and/or human environments

are the most fundamental to understand the process of life and
should, therefore, be a high priority for research.

Frontiers in Plant Science | www.frontiersin.org 6 April 2015 | Volume 6 | Article 248

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Wang et al. Evolution of Solanaceous fruit morphological variation

Enhancing the Work in the New Model
Physalis
The fruit morphology in Physalis varies significantly (Figure 1).

This genus displays the post-floral morphological novelty
Chinese lantern, and the color, flavor, and size of the berries

show an impressive variability. A few Physalis species, such as
P. peruviana, P. philadelphica, P. alkekengi, and P. angulata are

becoming new leading Solanaceous horticultural and medicinal
crops. With efforts in our group in recent years, evolution-

ary developmental genetics of Physalis fruits (berry and ICS)
are now understood. In particular, many molecular research

tools have been established in Physalis, including gene isolation,
gene expression detection, protein-protein interactions, trans-

formation system, and VIGS approach (He and Saedler, 2005;
He et al., 2007; Zhao et al., 2013; Wang et al., 2014; Zhang

et al., 2014a,b; Li and He, 2015). In this respect, Physalis has,
therefore, has been established as an emerging model plant

for development, evolution and ecology. The genetic reper-
toire for berry and ICS development via genetic and genomic
tools needs further investigation. Moreover, multiple experi-

mental approaches will help understand the selective values
of the Chinese lantern, and the evolutionary mechanisms of

variations in berry size, color, and medicinal components of
Physalis.

Instead of domesticated crops, more wild plants have to be
included. Comparative analyses of Solanaceous crops and their

wild relatives will bring new insights into growth, develop-
ment, and evolution. Thus, comparative microevolutionary-scale

studies between closely related genera/species at different levels,
including the development, the cellular process, and genetic vari-

ation in a phylogenetic context, are major themes in evolutionary
developmental genetics of fruit morphological variation.

Conclusion

The evolution of morphological variation is a consequence of

adaptive evolution. Advances in genetics and genomics provide
genetic and molecular tools that have facilitated the map-based

and candidate-gene-based cloning of several key genes in fruit
development, creating new inroads into understanding the pri-

mary regulatory mechanisms underlying fruit morphological
variation. Recruitment of a preexisting (regulatory) gene fre-

quently occurs. The recruiting mechanisms include alteration

of gene expression and/or gene function through mutations in

the regulatory and/or coding regions. The regulatory motifs are
often demonstrated to be located in the promoter or the intron,

and altering them may cause heterotopic (alteration of expres-
sion place), heterochronic (change of expression time), ectopic (a

high expression level), or downregulated expression of a gene that
appears to play a predominant role in the evolution of plant mor-

phology. Species-specific evolution cannot be excluded; however,
independently recruiting the same genetic variation, and regula-

tory networks could to some extent explain themultiple origins of
a particular trait state. In addition, multiple losses of a trait state

may occur because once the interacting and regulatory networks
have been established for a trait, the evolutionary pattern of that

trait may be determined by any secondary mutation in the trait
biosynthetic pathways.

In the coming years, there will be considerable focus on iso-
lating new developmental genes and bridging the gap between
these genes and their functions. Understanding their recruit-

ing mechanisms and interactions with environments to deter-
mine fruit morphological variation in a phylogenetic context

are key scientific questions in evolutionary developmental biol-
ogy. Translation of the information from a few model plants

to the large portion of remaining non-model species should be
improved. These results will provide fundamental insights into

plant developmental processes as well as help to establish novel
strategies to improve the productivity and fruit quality of crops.
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