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Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought
to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are
primary metabolic products, polyketide toxins are secondary metabolites that are involved in
ecologically relevant processes, such as chemical defence, and produce the adverse effects of
harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing
evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same
enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness
of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for
which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera;
stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguio-
phytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages
(apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasi-
nophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary
history of the organism, indicating selection to maintain conserved functionality. In contrast,
polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes,
suggesting relaxed constraints in their evolutionary history, while completely absent from some
protist lineages. This demonstrates a vast potential for the production of bioactive polyketide
compounds in some lineages of microbial eukaryotes, indicating that the evolution of these

compounds may have played an important role in their ecological success.
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Introduction

Marine microbial eukaryotes are major contributors
to nutrient cycling and photosynthesis, responsible
for a sizable proportion of the global primary
production (Field et al., 1998; Worden et al., 2015).
A subset of these organisms produce toxins involved
in harmful algal blooms with major impacts
on ecosystem functioning and economic impacts
on aquaculture and fisheries industries (Hallegraeff,
1993, 2010 and references therein). Despite their
importance, comparatively little is known regarding
key biosynthetic pathways in protists (Kalaitzis
et al., 2010). In all organisms studied to date, fatty
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acid synthases (FASs) and polyketide synthases
(PKSs) are closely related and have a common
evolutionary history (Jenke-Kodama et al., 2005).
FASs and PKSs share a similar enzymatic domain
structure in which acyl transferase (AT), keto-
synthase (KS) and an acyl carrier protein (ACP) form
the core structure for condensation of acyl units, and
are essential for both PKSs and FASs. The
other domains, ketoreductases (KR), enoyl reductase
(ER) and dehydratase (DH) modify the acyl units
after condensation, which is essential for FASs,
but selectively present/absent in PKS (Cane
et al., 1998; Khosla et al., 1999; Jenke-Kodama
et al., 2005).

Type I PKS (modular) have a single protein
consisting of all catalytic domains, which are used
in a progressive fashion for chain elongation until
the thioesterase domain releases the finished poly-
ketide, analogous to FASs in animals and fungi
(Khosla et al., 1999; Jenke-Kodama et al., 2005).
Type I PKSs carry each catalytic domain on separate
polypeptides (mono-functional proteins) that form
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multiprotein complexes, analogous to type Il FASs in
bacteria and plants (McFadden 1999; Jenke-Kodama
et al., 2005). Type III PKSs are self-contained
homodimeric enzymes where each monomer per-
forms a specific function and are found in plants,
brown alga, bacteria and fungi (Khosla et al., 1999;
Jenke-Kodama et al.,, 2005; Cock et al., 2010).
In plants, FAS genes are encoded in the nucleus
and proteins are targeted towards the chloroplast,
where fatty acid synthesis occurs (McFadden, 1999).
Gene identification/cloning and functional charac-
terisation of all the FAS enzymes has been carried
out in higher plants and bacteria (White et al., 2005;
Brown et al., 2010 and references therein).

In the unicellular chlorophyte Chlamydomonas,
fatty acid synthesis is thought to be carried out in the
chloroplast stroma via a type II FAS, which was
characterised by identifying the genes encoding
type II FAS enzymes (Riekhof and Benning, 2009
and references therein). Fatty acid desaturation takes
place via multiple desaturases, as majority of fatty
acids in Chlamydomonas are unsaturated (Riekhof
and Benning, 2009). In Apicomplexa, an exception-
ally large type I FAS has been characterised from
Cryptosporidium parvum (Zhu et al., 2000). In
contrast, genes encoding some type II FAS enzymes
have been identified in Toxoplasma gondii and
Plasmodium falciparum (Waller et al., 1998), with
no type I FAS genes found in these organisms
(Gardner et al., 2002). The mechanism and genetic
basis for fatty acid synthesis remain largely unknown
in many eukaryote lineages (Ryall et al., 2003;
Armbrust et al., 2004).

Type I PKS genes are known from only a handful
of Apicomplexa, haptophytes, chlorophytes and
dinoflagellates (Bachvaroff and Place, 2008;
John et al.,, 2008; Monroe and Van Dolah, 2008;
Place, 2008; Eichholz et al., 2012; Murray et al.,
2012; Salcedo et al., 2012; Pawlowiez et al., 2014;
Meyer et al., 2015). Recent transcriptome surveys
have demonstrated the possibility that protists may
encode a massive diversity of PKS genes (Pawlowiez
et al., 2014; Kohli et al., 2015; Meyer et al., 2015).
Studies of the natural products produced by some
protists continue to identify new polyketide com-
pounds at a rapid rate. This indicates that our
current knowledge about the genetic basis of PKS
in protists is highly incomplete (Pawlowiez et al.,
2014; Meyer et al., 2015).

The first comprehensive genetic information on
210 marine microbial genera (305 unique species,
396 unique strains, 678 transcriptomes) encompass-
ing most of the major lineages of eukaryotes has
recently been undertaken by the Marine Microbial
Eukaryote Sequencing Project (MMETSP) project
(Keeling et al., 2014). Using this vast data resource,
the major aims of this study were to (i) identify the
genetic basis of FAS and PKS synthesis in the major
lineages of eukaryotes and (ii) infer the constraints
and processes in the evolutionary history of polyke-
tide and fatty acid synthesis in eukaryotes.
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Materials and methods

RNA extraction and construction of transcriptomic
libraries

Alexandrium margalefi CS322 and Gambierdiscus
australes CAWD149 were cultured at 18 and
25 °C, respectively, in /2 medium, under cool white
fluorescent light at a light intensity of
60 pmolm~*s~" and a 12:12 light:dark cycle. RNA
was first extracted via TriReagent (Life Technologies,
Carlsbad, CA, USA), then purified using the RNeasy
Plant mini kit (Qiagen, Limberg, Netherlands) and
residual DNA removed via the TURBO DNA-free Kit
(Life Technologies) according to the manufacturer’s
protocols. Total RNA was submitted to MMETSP for
sequencing. Procedures used by MMETSP to gen-
erate transcriptomic libraries have been described in
detail in Keeling et al. (2014). Underlying culturing
conditions, environmental and experimental meta-
data for all the other MMETSP libraries used in this
study are described in Supplementary Table S5.

Identification of FAS and PKS genes

Transcriptomic libraries representing 213 strains and
152 genera were obtained from MMETSP and other
studies (Supplementary Table S1). For strains where
multiple transcriptomic libraries were constructed
(e.g. Alexandrium monilatum was grown under
different physiological stresses and four transcrip-
tomic libraries each grown under a different physio-
logical stress were constructed), a combined
assembly of data generated from all the transcrip-
tomic libraries was provided by MMETSP to
maximise transcriptomic coverage. In this study we
used combined libraries where available. All the
MMETSP assembled transcriptomes can be accessed
from http://data.imicrobe.us/project/view/104. Tran-
scriptomic libraries for Alexandrium fundayense
(Wisecaver et al., 2013), A. pacificum (Hackett
et al.,, 2013), A. tamarense (Hackett et al., 2013),
Gambierdiscus belizeanus (Kohli et al., 2015) and
Symbiodinium sp. CassKB8 (Bayer et al., 2012) were
obtained from Genbank and culturing conditions and
metadata can be obtained from their respective
references. Sequences for T. gondii, Neospora cani-
num, Eimeria falciformis and Eimeria tenella were
obtained from ToxoDB (Gajria et al., 2008) using the
BLAST tool and Azadinium spinosum sequences as
a query. Emiliania huxleyi CCMP1516 reference
genome and transcriptome were obtained from JGI
genome portal (Read et al., 2013). Genes encod-
ing type I PKSs and type II FASs were identified
using HMMER (Finn et al., 2011; Supplementary
Tables S1 and S3) where in-house HMM data-
bases were developed for each enzyme investigated
in this study. Separate HMM profiles for each
domain involved in type I PKSs and type II FASs
were developed so that the profiles could recognise
multiple domains on a single transcript. The
presence of a type I FAS enzyme in all the
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transcriptomic libraries was recorded only when the
transcript encoded the full domain. For type I PKS
enzymes, the presence of both partial and full
domains were recorded (Supplementary Table S3).
However, the completeness of the transcripts encod-
ing full/partial domains could not be determined.
Functional prediction and identification of con-
served active site amino acid residues in the
transcripts were identified and screened using CDD
(Marchler-Bauer et al., 2015) and Pfam (Punta et al.,
2012). Identification of transit peptide targeted
towards chloroplast was detected using ChloroP
(Emanuelsson et al., 1999). Geneious software was
used for sorting all these sequences (Kearse et al.,
2012).

Phylogenetic analysis

MAFFT (Katoh et al, 2002) and ClustalW
(Thompson et al., 1994) were used to align the
protein sequences from different data sets. The
alignments were manually trimmed to ensure they
spanned the same coding region of each enzyme and
maximum likelihood phylogenetic analysis was
carried out using RAXML with 1000 bootstraps using
the GAMMA and LG model of rate heterogeneity
(Stamatakis, 2006). Details of each alignment and
phylogenetic tree (newick format) used in this study
are listed in Supplementary Table S6 and sequences
used to generate a concatenated alignment of type II
FAS genes for Figure 3 are listed in Supplementary
Table S7. Phylogenetic trees were visualised using
iTOL (Letunic and Bork, 2011) and MEGA:Version6
(Tamura et al., 2013).

Results and discussion

Fatty acid biosynthesis in protists

Transcriptomic libraries representing 213 strains and
152 genera were screened for seven key enzymes,
that is, 3-ketoacyl ACP synthase I, II and III (KASI-
FabB, KASII-FabF, KASIII-FabH), ACP S-malonyl-
transacylase (AT-FabD), trans3-ketoacyl ACP reduc-
tase (KR-FabG), 3-hydroxyacyl-ACP dehydratase
(DH-FabZ) and enoyl-ACP reductase (ER-Fabl),
involved in type II fatty acid synthesis. The presence
of six of the seven genes (except KASI-FabB) were
confirmed in all phototrophic lineages of alveolates
(dinoflagellates, apicomplexa, Vitrella, Chromera),
stramenopiles (diatoms, bolidophytes, chrysophytes,
pelagophytes, raphidophytes, synurophytes,
dictyochophytes, pinguiophytes, xanthophytes),
Rhizaria (chlorarachniophytes and Haplosporidia),
Viridiplantae (chlorophyceans, prasinophytes, tre-
bouxiophytes), excavates (euglenids, only three
enzymes in Eutreptiella), cryptophytes and hapto-
phytes (Table 1 and Supplementary Table S1).
KASI-FabB was completely absent in Rhizaria
and Viridiplantae, and selectively present/
absent in all other phototrophic lineages examined
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(Supplementary Table S1). The presence of all
seven type II FAS enzymes was also confirmed in
the reference genome of E. huxleyi (Supplementary
Table S2).

Unique among the phototrophic lineages, the
glaucophytes did not possess any of the type II
FAS enzymes we screened for. It is noteworthy that
the two glaucophyte genera screened here belonged
to freshwater habitats. The absence of FAS genes
may indicate insufficient depth of sequencing or
that the FAS genes were not being expressed at the
time of analysis. Detailed screening of other genera
would shed more light on fatty acid synthesis in
glaucophytes.

Previously, only two genes involved in type I FAS
synthesis were known from a limited number
of phototrophic lineages: haptophyte Prymnesium
parvum, synurophyte ~ Mallomonas  rasilis,
bacillariophyte Phaeodactylum tricornutum and
Thalassiosira pseudonana, oomycete heterokont
Thraustotheca clavata and cryptophytes Guillardia
theta and Hemiselmis virescens (Ryall et al., 2003;
Armbrust et al., 2004).

Among the heterotrophic lineages, we detected the
presence of genes coding type Il FAS enzymes in the
dinoflagellate Oxyrrhis marina (DH-FabZ and KR-
FabG) and opisthokont choanoflagellate Acanthoeca-
like sp. (KASI-FabB, KASIII-FabH and KR-FabG),
possibly related to secondary acquisition of
these genes from a prey item (Heterosigma akashiwo
in case of O. marina), as supported by their
phylogenetic position (Supplementary Table S1
and Supplementary Figures S1D and S2). The
heterotrophic lineages of alveolates (ciliates),
Rhizaria (Foraminifera), stramenopiles (bicosoecids,
labyrinthulids-thraustochytrids and chrysophytes),
Amoebozoa (tubulinids and dactylopodids), exca-
vates (kinetoplastids) and Palpitomonas did not
possess any genes coding type II FAS enzymes
(Table 1 and Supplementary Table S1). This suggests
that these organisms either obtain fatty acids from
their diet and/or have a different FAS pathway.

The amino acid residues comprising the active
sites of all seven enzymes have been elucidated
previously in plants and bacteria and mutations at
these sites abolishes function of the respective
enzymes (White et al., 2005; Brown et al., 2010 and
references therein). We found these active site
residues highly conserved in protists (Figure 1),
indicating that these FAS genes are fully functional.

In type II FAS, KASIII initiates the condensation
reaction, while fatty acid chain elongation is carried
out by KAS I or II. Depending on the length of fatty
acid being produced and varying substrate specifi-
cities, different types of KAS I and II are present in
plant type II FAS systems (Kunst et al., 1992; Millar
and Kunst 1997; Millar et al., 1999; Fiebig et al.,
2000; Dunn et al., 2004), and are encoded by
different gene families (Kunst et al., 1992; Millar
and Kunst 1997; Millar et al., 1999; Fiebig et al.,
2000; Dunn et al., 2004; White et al., 2005; Brown

-
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Table 1 List of organisms screened for fatty acid synthesis enzymes in marine microbial eukaryotes

Organism

Total number screened
(libraries, strains, genera)

Positive libraries
Alveolates

Dinoflagellates: Alexandrium andersonii (CCMP2222-1); Alexandrium fundayense (38/3-1);
Alexandrium margalefi (CS322-1); Alexandrium monilatum (CCMP3105-4°); Alexandrium ostenfeldii (OF101-1);
Alexandrium pacificum (CCMP1598-1); Alexandrium tamarense (CCMP1771-4%);
Alexandrium tamarense (ATSP1B-1); Amphidinium carterae (CCMP1314-3%); Azadinium spinosum (3D9-3%);
Brandtodinium nutriculum (RCC3387-1); Ceratium fusus (PA161109-2%); Durinskia baltica (CS/38-2%);
Gambierdiscus australes (CAWD149-1); Gambierdiscus belizeanus (CCMP401-1); Glenodinium foliaceum
(CCAP1116-2%); Gonyaulax spinifera (CCMP409-1); Gymnodinium catenatum (GC744-1); Heterocapsa arctica
(CCMP445-1); Heterocapsa rotundata (SCCAPK/0483-1); Heterocapsa triquestra (CCMP448-1); Karenia brevis
(CCMP2229-4%; Wilson-4?*; SP3-2°; SP1-2%); Karlodinium micrum (CCMP2283-3%); Kruptoperidinium foliaceum
(CCMP1326-2°); Lingulodinium polyerda (CCMP1738-4%); Pelagodinium beii (RCC1491-1); Peridinium aciculiferum
(PEAR2-2%); Polarella glacialis (CCMP1383-1); Prorocentrum minimum (CCMP2233-3%); Protoceratium reticulatum
(CCMP535-1); Pyrodinium bahamense (PBAHAO01-1); Scrippsiella hangoei (SHTV5-3?); Scrippsiella hangoei like
(SHHI4-3%); Scrippsiella trochoidea (CCMP3099-3%); Symbiodinium spp (CladeA-1; Ccmp421-4°; CassKb8-1;
C1-2% C15-2°; CCMP2430-3%; D1A-1; MP-4*; Togula jolla (CCCM725-1)
Apicomplexa: Eimeria falciformis (Bayer/Haberkorn /970-1); Eimeria tenella (Houghton-1); Neospora caninum
(Liverpool-1); Toxoplasma gondii (GT1-1)
Others: Vitrella brassicaformis-CCMP3346-1); Chromera velia (CCMP2878-1)

Stramenopiles
Bacillariophytes: Amphiprora sp. (CCMP467-4°); Amphora coffeaeformis (CCMP127-3%); Asterionellopsis glacialis
(CCMP134-4%); Attheya septentrionalis (CCMP2084-1); Aulacoseira subarctica (CCAP1002/5-1); Chaetoceros affinis
(CCMP159-4%); Chaetoceros curvisetus (NK~-4%); Chaetoceros debilis (MM31A/1-2%); Chaetoceros neogracile
(CCMP1317-4%); Corethron pennatum (L29A3-2%); Coscinodiscus wailesii (CCMP2513-1); Cyclophora tenuis
(ECT3854-1); Cyclotella meneghiniana (CCMP338-1); Cylindrotheca closterium (KMMCC/B181-1); Dactyliosolen
fragilissimus (NK”-1); Detonula confervacea (CCMP353-1); Ditylum brightwellii (GSO103-2%GS0105-2% GS0104-3%);
Entomoneis sp (CCMP2396-1); Eucampia antarctica (CCMP1452-1); Extubocellulus spinifer (CCMP396-4%); Fragilar-

iopsis kerguelensis (L26/C3-4°; L26/C5-4%); Grammatophora oceanica (CCMP410-1); Helicotheca tamensis (CCMP826-1);

Leptocylindrus danicus (B650-1); Licmophora paradoxa (CCMP2313-1); Minutocellus polymorphus (RCC2270-1);
Nitzschia punctata (CCMP561-4°); Odontella aurita (1302/5-1); Proboscia alata (P1/D3-1); Pseudo-nitzschia australis
(10249/10/AB-4%); Rhizosolenia setigera (CCMP1694-1); Skeletonema dohrnii (SkelB-27); Skeletonema marinoi
(skelA-27); Skeletonema menzelii (CCMP793-2%); Stephanopyxis turris (CCMP815-1); Striatella unipunctata
(CCMP2910-1); Synedropsis recta (CCMP1620-1); Thalassionema nitzschioides (L26/B-2%); Thalassiosira antarctica
(CCMP982-4%); Thalassiosira gravida (GMp14c1-3*); Thalassiosira miniscula (CCMP1093-4%); Thalassiosira oceanica
(CCMP1005-4%); Thalassiosira rotula (GSO102-4%); Thalassiosira rotula (CCMP3096-2%); Thalassiosira weissflogii
(CCMP1336-4%);

Thalassiothrix antarctica (L6/D1-22); Triceratium dubium (CCMP147-1)

Bolidophytes: Bolidomonas pacifica (CCMP1866-1); Bolidomonas sp. (RCC2347-1)

Chrysophytes: Chromulina nebulosa (UTEXLB2642-1)

Pelagophytes: Aureococcus anophagefferens (CCMP1850-4%); Aureoumbra lagunensis (CCMP1510-4);
Pelagomonas calceolata (CCMP1756-47)

Raphidophytes: Chattonella subsalsa (CCMP2191-4%); Heterosigma akashiwo (CCMP452-4%; CCMP2393-4%;
CCMP3107-3%; NB-3%)

Synurophytes: Dinobryon sp (UTEXLB2267-3%); Ochromonas sp (CCMP1393-2%)

Dictyochophytes: Pseudopedinella elastica (CCMP716-2%); Chrysocystis fragilis (CCMP3189-1); Dictyocha speculum
(CCMP1381-1); Florenciella parvula (CCMP2471-1); Florenciella sp (RCC1587-1); Pinguiococcus pyrenoidosus
(CCMP2078-1); Rhizochromulina marina (CCMP1243-1)

Pinguiophytes: Phaecomonas parva (CCMP2877-1)

Xanthophytes: Vaucheria litorea (CCMP2940-2°)

Rhizaria
Chlorarachniophyta: Bigelowiella longifila (CCMP242-1); Bigelowiella natans (CCMP623-1)
Haplosporidia: Chlorarachnion reptans (CCCM449-1); Gymnochlora sp (CCMP2014-1); Lotharella amoebiformis
(CCMP2058-1); Lotharella oceanica (CCMP622-1); Lotharella globosa (CCCM811-2?); Partenskyella glossopodia
(RCC365-1)

Cryptophytes
Cryptomonas curvata (CCAP979:52-1); Geminigera cryophila (CCMP2564-1);
Guillardia theta (CCMP2712-1); Hanusia phi (CCMP325-1); Hemiselmis andersenii (CCMP644-1);
Hemiselmis rufescens (PCC563-1); Proteomonas sulcata (CCMP704-1); Rhodomonas sp (CCMP768-27)

Haptophytes
Calcidiscus leptoporus (RCC1130-1); Chrysochromulina brevifilum (UTEXLB985-1); Chrysochromulina polylepis
(CCMP1757-4%); Chrysochromulina rotalis (UIO044-1); Chrysoculter rhomboideus (RCC1486-1); Coccolithus pelagicus
(PLY182g-1); Emiliania huxleyi (PLYM219-4*; CCMP370-4%); Exanthemachrysis gayraliae (RCC1523-1); Gephyrocapsa
oceanica (RCC1303-4%); Imantonia sp. (RCC918-1); Isochrysis sp. (CCMP1244-2%); Isochrysis galbana (CCMP1323-3%);
Pavlova sp. (CCMP459-3%); Pavlova gyrans (CCMP608-1); Pavlova Iutheri (RCC1537-1); Phaeocystis antarctica
(CCMP1374-1); Phaeocystis cordata (RCC1383-1); Pleurochrysis carterae (CCMP645-3%); Prymnesium parvum
(Texoma1-4°); Scyphosphaera apsteinii (RCC1455-1)

Viridiplantae
Chlorophyceans: Chlamydomonas euryale (CCMP219-1); Dunaliella tertiolecta (CCMP1320-3%);
Polytomella parva (SAG63/3-1)
Prasinophytes: Micromonas sp. (NEPCC29-1); Micromonas sp. (CCMP2099-2°);
Pyramimonas parkeae (CCMP726-2%); Tetraselmis striata (LANL1001-4%)
Trebouxiophytes: Picocystis salinarum (CCMP1897-27)

Excavates
Euglenids: Eutreptiella gymnastica (CCMP1594-3%)
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Dinoflagellates (92, 46, 24);
Apicomplexa (4, 4, 3);
Others (2, 2, 2)

Bacillariophytes (111, 50, 36);
Bolidophytes (2, 2, 1);
Chrysophytes (1, 1, 1);
Pelagophytes (12, 3, 3);
Raphidophytes (18, 5, 2);
Synurophytes (5, 2, 2);
Dictyochophytes (8, 7, 6);
Pinguiophytes (1, 1, 1);
Xanthophytes (2, 1, 1)

Chlorarachniophyta (2, 2, 1);
Haplosporidia (7, 6, 4)

Cryptophytes (9, 8, 7)

Haptophytes (43, 21, 14)

Chlorophyceans (5, 3, 3)

Prasinophytes (9, 4, 3)
Trebouxiophytes (2, 1, 1)

Euglenids (3, 1, 1)
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Organism

Total number screened
(libraries, strains, genera)

Negative libraries
Alveolates

Ciliates: Anophryoides haemophila (AH6-1); Aristerostoma sp (atcc50986-1); Blepharisma japonicum (StockR1072-1);  Ciliates (17, 16, 14);

Climacostomum virens (StockW/24-1); Condylostoma magnum (COL2-1); Fabrea salina (NK~-1); Favella ehrenbergii

Dinoflagellates (7, 2, 1)

(fehre1-1); Favella taraikaensis (FeNarragansettB-2?); Litonotus pictus (P1-1); Platyophrya macrostoma (wh-1);
Protocruzia adherens (Boccale-1); Pseudokeronopsis sp (Brazil-1; OXSARD2-1); Strombidium inclinatum (s3-1);

Uronema sp (bbcil-1); Strombidinopsis sp (SopsisLIS2011-1)

Dinoflagellates: Oxyrrhis marina (LB1974-3%), Oxyrrhis marina (NK/-4%)

Stramenopiles

Bicosoecids: Bicosoecid sp (ms1-1); Cafeteria roenbergensis (E410-1); Cafeteria sp (Caron-1)
Labyrinthulids & Thraustochytrids: Aplanochytrium sp (PBS07-4%); Aplanochytrium stocchinoi (GSBS06-4%);
Aurantiochytrium limacinum (ATCCMYA1381-4%); Schizochytrium aggregatum (ATCC28209-4%);

Thraustochytrium sp (LLF1b-2%)

Bicosoecids (3, 3, 2);
Labyrinthulids &
Thraustochytrids (18, 5, 3);
Chrysophytes (3, 3, 2)

Chrysophytes: Paraphysomonas vestita (GFlagA-1); Spumella elongata (CCAP955-1); Paraphysomonas

bandaiensis (Caron-1)

Rhizaria

Foraminifera: Ammonia sp (NK~-1); Elphidium margaritaceum (NKA-1); Rosalina sp (NKA-1); Sorites sp (NKA-1)

Amoebozoa
Tubulinids: Filamoeba nolandi (NCAS231-1)

Dactylopodids: Mayorella sp (BSH0219019-1); Neoparamoeba aestuarina (SoJaBio-1); Paramoeba atlantica

(CCAP15609-1); Vexillifera sp (DIVA3/564-1)

Excavates
Kinetoplastids: Neobodo designis (CCAP1951-1)

Opisthokonts
Choanoflagellates: Acanthoeca like sp. (10tr-27)

Others

Glaucophytes: Cyanoptyche gloeocystis (SAG497-1); Gloeochaete witrockiana (SAG4684-2%)

Palpitomonas: Palpitomonas bilix (NIES2562-1)

Total

Foraminifera (4, 4, 4)

Tubulinids: (1, 1, 1);
Dactylopodids (4, 4, 4)

Kinetoplastids (1, 1, 1)
Choanoflagellates (2, 1, 1)
Glaucophytes (3, 2, 2);

Palpitomonas (1, 1, 1)

(402, 213, 152)

Species names are followed by the strain number and then number of transcriptomic libraries screened for each strain. In strains where more than
one library was available, a combined assembly of all the libraries constructed was used to search for type II fatty acid synthase genes.

NKA- strain identity not known.

2A combined assembly of all the libraries constructed was used to search for fatty acid synthase genes.

et al., 2010). Here, KASII was confirmed in all
phototrophic lineages of protists (Supplementary
Table S1); however, KASI was absent in Rhizaria,
Viridiplantae, raphidophytes, synurophytes, pin-
guiophytes, xanthophytes, Vitrella and Chromera
(Supplementary Table S1). Our results show the
presence of at least six different gene families that
encode KAS II (Supplementary Figure S1C) suggest-
ing the production of different types of fatty acids.
The active site residues Cys-His-His in KASI and
KASII and Cys-His-Asn in KASIII found in higher
plants and bacteria (White et al., 2005 and references
therein) are conserved in protists (Figure 1).

There are two types of dehydratases, that is, DH-
FabA and DH-FabZ, described in bacteria and higher
plants (White et al., 2005 and references therein).
DH-FabA has the additional function of performing
isomerisation (in addition to dehydration) essential
for formation of unsaturated fatty acids and normally
co-occurs with KASI-FabB (White et al., 2005 and
references therein). However, in protists only genes
encoding the DH-FabZ enzyme were found. DH-
FabA was absent from all lineages (Supplementary
Table S1).

Evolution of type II FAS in protists

Several lines of evidence from our analysis
support the notion that type II FAS genes are
nuclear encoded, and that the initial steps of fatty
acid synthesis take place in the chloroplast: (1) the
presence of all seven type II FAS enzymes in the
reference genome of E. huxleyi (Supplementary
Table S2); (2) the detection of transit peptides
targeted towards the chloroplast (chloroP;
Emanuelsson et al., 1999) in ~80% of the sequences
(Supplementary Table S1); (3) the presence of
eukaryotic polyA tails; and (4) 5’ trans-spliced leader
sequences (Zhang et al., 2007) on dinoflagellate type
II FAS gene transcripts. These features suggest that
type I FAS genes were transferred from the plastid
to the host genome at some point during their
evolutionary history. Transfer of plastidial genes to
the nucleus in the host organism allows for selection
processes to act on genes according to their func-
tional advantage to the host and restricts the
accumulation of deleterious mutations (Muller’s
ratchet; Felsenstein, 1974) in the endosymbiotic
genome, which cannot recombine. The nuclear
location also provides protection from reactive

- |
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Figure 1 Conserved active sites in key fatty acid synthase enzymes in eukaryotes: 3-hydroxyacyl

reductase (
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oxygen species generated during the process of
photosynthesis (Martin et al., 1998; Martin 2003;
Deusch et al., 2008; McFadden 2014). As fatty acid
synthesis is essential for survival, these genes were
likely retained by protists in the nucleus due to
strong selective pressure.

The origin of protistan plastids has been traced to
either an ancestral rhodophyte or chlorophyte,
with a clear distinction between the two clades
(Janouskovec et al., 2010). Evidence presented here
indicates two possible scenarios in which either (i)
type II FAS genes may have been transferred from
the plastid to the nuclear genome in an early
ancestral protist, before the initial split of the
rhodophyte and chlorophyte lineages (Figures 2a
and b) 1750-2000 million years ago (Parfrey et al.,
2011) or (ii) there has been a more recent transfer
event from the ancestor of chlorophytes/rhodophytes
to the ancestors of stramenopiles, alveolates,

8 fype I FAS

Cyanobacteria
Red algae

a

Higher plants

e

Vit

Red Algae\
@ .

~ &/
Cryptophytes.

“—Higher plants

—Green ;&igak\
es~_
E. N
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Rhizaria, haptophytes and cryptophytes (Figures 2a
and b), which happened 1250-1500 million years
ago (Parfrey et al., 2011). Within the type II FAS
clade, the evolution of these genes broadly follows
the trend of microbial eukaryotic evolution (Keeling,
2013; Keeling et al., 2014) in which chlorophytes,
higher plants, Rhizaria, haptophytes and alveolates
form separate monophyletic clades, with the excep-
tion of cryptophytes, which form a monophyletic
clade placed within the polyphyletic stramenopile
clade (Figure 3). In addition, evidence presented
here supports the hypothesis that some type II
FAS genes were transferred more recently from the
plastid to the nucleus of its tertiary hosts, specifically
from haptophytes to their dinoflagellate hosts Kar-
enia spp. and Karlodinium spp. (Yoon et al., 2002;
Figure 3 and Supplementary Figure S1) and from
diatoms to their dinoflagellate hosts Glenodinium
spp, Durinskia spp and Kryptoperidium spp

b

Tree of life and molecular clock analysis

A — -

Excavates

G

" Red Algae [

Cryptophy

Hapt ()plh) t Higher plants
| I \
7Rhizaria\\ —
% Rhizaria
Str @, pil
Alveolates—— | Alveolates
! f 1 \ 1 T T \ |
0 250 500 750 1000 1250 1500 1750 2000
500
¢ Type I & I PKSs & FASs
Dinoflagellate Type II FAS Type I FAS

Apicomplexa Viterella & Chromera Type Il FAS

Haptophytes Type II FAS

——e———Fungal non-reducing Type I PKS

Fungal reducing Type I PKS

Animal Type I FAS

Bacterial trans AT modular Type I PKS
Bacterial cis AT modular Type I PKS

Haptophytes Type I PKS

Dinoflagellate Type I PKS
Apicomplexa & Viterella Type 1 PKS

—
0.5

Figure 2 Comparative evolution of fatty acid and polyketide synthase. (a) Concatenated phylogeny, inferred from protein sequences of

five enzymes (3-ketoacyl ACP synthase III; S-malonyltransacylase;

Type I PKS & FAS

3-hydroxyacyl-ACP dehydratase; enoyl-ACP reductase; trans3-ketoacyl

ACP reductase, 1431 characters) involved in type II fatty acid synthesis (inferred using RAXML, GAMMA model of rate heterogeneity,
1000 bootstraps). Solid circles indicate bootstrap values above >90. (b) For comparison, a dated molecular clock phylogeny of the
eukaryotic tree of life, showing absolute time scale (million years) (from Parfrey et al., 2011). These phylogenetic analyses show
that evolution of fatty acid synthase genes broadly follow the evolution pattern of the organism. (c) Phylogenetic analysis of 25 type II

3-ketoacyl ACP synthase II and 67 type I ketosynthase domains

from prokaryotic and eukaryotic polyketide synthases and fatty acid

synthases, showing the position of each major group, inferred in RAXML using GAMMA model of rate heterogeneity and 1000 bootstraps.
Solid circles indicate bootstrap values above >90. Owing to relaxed selection pressure, polyketide synthase genes were retained/lost by
protists based on the functionality their polyketide product provided the organism.

)
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(Imanian et al., 2012; Figure 3 and Supplementary
Figure S1), some 250-750 million years ago
(Figure 2b; Parfrey et al., 2011).

Polyketide synthesis in protists

We found an enormous diversity of Type I PKS genes
in selected alveolates (dinoflagellates: 46 strains,
24 genera; Vitrella: 1 genus), stramenopiles (labyr-
inthulids, thraustochytrids, chrysophytes, pelago-
phytes, synurophytes, dictyochophytes: 15 genera),
haptophytes (12 strains, 9 genera) and chlorophytes
(6 strains, 5 genera) (Figure 4 and Supplementary
Table S3). We confirm the absence of expressed
Type I PKS genes in other alveolates (chromera,
ciliates: 17 strains, 15 genera), stramenopiles
(bacillariophytes, bicosoecids, bolidophytes, raphi-
dophytes, pinguiophytes, xanthophytes: 62 strains,

The ISME Journal

43 genera), Rhizaria (chlorarachniophytes, haplo-
sporidia, foraminifera:12 strains, 9 genera), crypto-
phytes (8 strains, 7 genera), glaucophytes (2 genera)
and Palpitomonas bilix (Figure 4 and Supplementary
Table S3). In the Type I PKSs of stramenopiles,
haptophytes, chlorophytes and Vitrella, each
transcript encoded multiple PKS domains, and
286 contigs encoding multiple type I PKS domains
were found (Supplementary Table S3). Increased
expression of certain PKS genes has been indirectly
linked to higher toxin production in the haptophyte
Prymnesium parvum (Freitag et al., 2011); therefore,
the presence of these genes in the haptophyte
Chrysochromulina polylepis and the stramenopile
Aureococcus anophagefferens is intriguing, as
they produce polyketide toxins that cause fish
kills (John et al., 2010; Freitag et al., 2011; Gobler
et al., 2011).
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Figure 4 Survey of polyketide synthase genes in eukaryotes: The figure shows the abundance of expressed type I polyketide synthases
(PKS)-ketoacyl synthase (KS) domains from various eukaryotic lineages. The KS domain gene family is highly expanded in dinoflagellates
and haptophytes, and also present in Vitrella, labyrinthulids, thraustochytrids, chrysophytes, pelagophytes, synurophytes, dictyocho-
phytes, chlorophyceans, trebouxiophytes and prasinophytes. The KS domains were absent in Chromera, ciliates, bacillariophytes,
bicosoecids, bolidophytes, raphidophytes, pinguiophytes, xanthophytes, chlorarachniophytes, haplosporidia, foraminifera, cryptophytes,

glaucophytes and Palpitomonas.

In the reference genome of E. huxleyi CCMP1516
(Read et al., 2013), a total of 30 contigs encoding
multiple type I PKS genes were found (Supple-
mentary Table S2). A comprehensive expressed
sequenced tag (EST) library containing sequences
from 14 isolates of E. huxleyi (Read et al., 2013) was
used to study the expression of type I PKS genes

found in the E. huxleyi genome. Transcripts corre-
sponding to 26 contigs found in the E. huxleyi
genome were observed in the EST library of
E. huxleyi (Supplementary Table S2). It is possible
that type I PKS genes on the other four contigs were
not being expressed at the time of analysis, or not
present in the transcriptome due to an insufficient
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depth of sequencing. Interestingly, seven sequences
encoding partial type I PKS genes (KS domains) from
the EST library were not found in the reference
genome of E. huxleyi CCMP1516 (Supplementary
Table S2). Read et al. (2013) found that E. huxleyi has
a pan genome where certain genes are variably
distributed between different strains. This might
explain the absence of seven sequence encoding
type I PKS genes from the reference genome of
E. huxleyi CCMP1516.

To date, no gene has been definitively linked to the
synthesis of a particular polyketide toxin produced
by a eukaryotic harmful algal bloom species. This is
in part due to the difficulty in producing genetically
transformable protists. Therefore, genetic screening
methods for detecting patterns of genes expressed by
toxin-producing protists have been the most fruitful
approach to date (Bachvaroff and Place, 2008;
John et al., 2008, 2010; Monroe and Van Dolah,
2008; Stuken et al., 2011; Eichholz et al., 2012;
Murray et al., 2012; Pawlowiez et al., 2014; Meyer
et al., 2015). Through transcriptomic analysis, PKS
genes in dinoflagellates were found to be evolutio-
narily related to type I PKS, but expressed as mono-
functional proteins, a feature synonymous to type II
PKSs (Millar et al., 1999; Monroe and Van Dolah
2008; Eichholz et al., 2012; Salcedo et al., 2012;
Pawlowiez et al., 2014; Kohli et al., 2015; Meyer
et al., 2015). In this study, we identified a much
larger range of unique KS domains than expected or
previously found: an average of 56/strain, compris-
ing a total of 2577 unique KS domains (1976 full
and 601 partial) and 234 KR domains (190 full
and 44 partial) in 24 genera and 46 strains of
dinoflagellates (Figure 4 and Supplementary
Tables S3 and S4). Azadinium spinosum, which
produces the polyketide toxin azaspiracid and its
analogues, had the largest number of KS domains:
140 (Meyer et al., 2015), while the non-toxic
dinoflagellate species Togula jolla encoded seven
KS domains (Supplementary Table S4). Like type I
and II FASs, KS domains in type I and type II PKS
have very conserved active site residues, Cys-His-
His, which are essential for their functionality (Kwon
et al., 2002), and their presence was confirmed in
66% of our sequences (Supplementary Table S4).
Thus, PKS gene families appear to have expanded
dramatically within the dinoflagellates, suggesting
numerous duplications and the evolution of novel
functions.

Previously, no KS domains resembling type I or
type II FAS have been found in dinoflagellates,
possibly because of low sequencing depth, which led
to the hypothesis that dinoflagellate fatty acid
synthesis is carried out by enzymes resembling
PKS enzymes (Pawlowiez et al., 2014). However,
our results suggest fatty acid synthesis is likely
carried out by type II FAS in dinoflagellates. These
findings are important, as the differentiation of PKS
and FAS will facilitate approaches to investigating
harmful algal toxin biosynthesis pathways in
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dinoflagellates. The inferred distinction between
type II FAS and type I PKS genes in dinoflagellates
are based on sequence analysis, and a functional
proof remains to be done.

The phylogeny of PKS KS and KR domains
shows that protistan KS and KR domains form a
monophyletic group within which dinoflagellate,
chlorophyte, haptophyte and apicomplexan KS and
KR domains form monophyletic clades (John et al.,
2008; Monroe and Van Dolah 2008) (KS—Figure 2c,
KR—Supplementary Figure S5). KS domains from
stramenopiles also form two well-supported clades
within the protistan clade (Figure 2c). The phylo-
geny of 1591 KS domains within the dinoflagellate
clade further shows that their KS domains form three
distinct clades (Figure 5), each of which includes
sequences from numerous species of multiple dino-
flagellate orders, clearly not related to the species
phylogeny (Orr et al., 2012). No clear pattern
could be established between these three clades
and the chemical structure of the compounds known
to be produced by these organisms. For example,
Karenia brevis, which produces over 15 polyketide
compounds (Baden et al., 2005), had sequences in
each of the three clades of dinoflagellate
PKS (Figure 5), as did the species Togula jolla
(not shown), which is not known to produce any
toxins. It is likely that dinoflagellates produce many
polyketide compounds that are as yet undetected
and uncharacterised. Polyketide compounds pro-
duced by dinoflagellates that do not clearly impact
fisheries or aquaculture industries are likely to have
been unnoticed by researchers.

There is a growing body of evidence for the
ecological benefits of some marine microbial eukar-
yotic toxins in the form of antipredator or allelo-
pathic impacts (Cembella, 2003; Ianora et al., 2011
and references therein), given the importance of
grazing as a selective force in the marine planktonic
ecosystem (Smetacek, 2001). While only one or few
compounds may be necessary to produce these
ecological impacts, the presence of the genetic basis
for the production of a vast number of distinctive
polyketide compounds within a species may be
related to the Screening Hypothesis (Jones et al.,
1991; Firn and Jones 2003), based on the principle
that ‘potent biological activity is a rare property for
any one molecule to possess’ (Jones et al., 1991; Firn
and Jones 2003). This would predict that organisms
that produce and screen a larger variety of chemical
compounds have an increased likelihood of
enhanced fitness, as the chance of producing a rare
chemical with a useful biological activity will be
increased. An example of this may be the production
of many different congeners of brevetoxins and
ciguatoxins by Karenia brevis and Gambierdiscus
spp. respectively (Kalaitzis et al., 2010 and refer-
ences therein), which differ from one another in
biological activity (Chinain et al., 2010). In dino-
flagellates the lack of correlation with the species
phylogeny (Figure 5), and the large intraspecific
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Figure 5 Polyketide synthase gene phylogeny in dinoflagellates: Phylogenetic analysis of type I ketoacyl synthase (KS) domains from
prokaryotic and eukaryotic polyketide synthases (PKS) and fatty acid synthases (FAS). In total, 1633 KS domains representing 43
dinoflagellate and 30 other prokaryotic and eukaryotic taxa were inferred using RAXML, GAMMA model of rate heterogeneity and 1000
bootstraps (653 characters). PKS gene families are highly expanded in dinoflagellates, forming three distinct clades (clades I-III coloured
in green, pink and orange colours respectively), where the pattern of distribution is not related to the species phylogeny and/or the
chemical structure these organisms produce. Solid circles indicate bootstrap values above > 80. Clade labelled as outgroup/others consist
of type I PKS-KS domains from fungi (reducing/non-reducing) and bacteria (cis and trans AT modular), type I FAS-KS domains from

animals and type II PKS-KS from bacteria.

diversity in KS domains, suggests that multiple gene
duplication events, domain shuffling and losses have
occurred. This suggests that relaxed selection pres-
sures have acted on the evolution of these secondary
metabolite genes (Kroymann 2011; Weng et al.,
2012), which may have been acquired or lost based
on the functionality they provided to the organism
(Murray et al., 2015).

Ecological experiments have been used to deter-
mine the predicted function of some polyketide
compounds for the producing marine microbial
eukaryotes (Cembella 2003; Ianora et al., 2011 and
references therein). The elucidation of genes
involved in polyketide synthesis in these organisms
opens up the possibility that these ecological roles
can be further investigated by examining factors
effecting gene regulation, and by producing

genetically transformed knockouts. This information
will be crucial in revealing the biochemical and
molecular basis of marine microbial eukaryotic
community interactions.
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