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Abstract

We present in this paper the first example of chaotic evolutionary dynamics in biology. We consider a

Lotka-Volterra tritrophic food chain composed of a resource, its consumer, and a predator species, each

characterized by a single adaptive phenotypic trait, and we show that for suitable modeling and parame-

ter choices the evolutionary trajectories approach a strange attractor in the three-dimensional trait space.

The study is performed through the bifurcation analysis of the so-called canonical equation of Adaptive

Dynamics, the most appropriate modeling approach to long-term evolutionary dynamics.
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1 Introduction

Evolution by natural selection, as Darwin called it, is one of the oldest and most astounding and complex

dynamical processes on Earth. Reduced to the essential, evolutionary change is the result of innovations

and competition processes, the first altering heritable characteristics of individual agents and the second

selecting the best performances. Genetic mutations and demographic competition play such roles in natural

systems, but the scope of the Darwinian paradigm nowadays embraces many artificial systems in social

sciences, economics, and engineering [Ziman, 2000].

The first mathematical investigations in evolutionary biology can be traced back to the field of popula-

tion genetics [Fisher, 1930], classically focused on the change of the genotypic distribution of populations

on a relatively short, demographic timescale. However, on a longer, evolutionary timescale, individuals

interact according to the value of various adaptive phenotypic traits, the macroscopic manifestation of their

microscopic genetic structure. The long-term evolution of such traits can be described to some extent by ig-

noring genetics. In fact, though sexual reproduction alters genotypic and therefore phenotypic distributions,

mutations are the ultimate source of phenotypic variability, so that, in absence of mutation, the variances

of trait distributions average out on a relatively short timescale. By looking at the long-term evolution of

phenotypic traits, one can therefore imagine that male and female populations are monomorphic, i.e., phe-

notypically homogeneous, and produce either identical males and females or mutants. Given as granted that

sex ratio remains constant, as is common practice in ecological modeling, one can measure population sizes

in terms of males or females or, more abstractly, in terms of equivalent clonal organisms, whose genetics

can be neglected.

Purely phenotypic, deterministic modeling approaches to long-term evolutionary dynamics have been

proposed (see, e.g., [Brown & Vincent, 1987; Hofbauer & Sigmund, 1990; Christiansen, 1991; Vincent

et al., 1993; Metz et al., 1996]), but one in particular, Adaptive Dynamics (AD) [Dieckmann & Law, 1996;

Metz et al., 1996; Geritz et al., 1997, 1998], explicitly links demographic dynamics, responsible for the

selection pressure, to evolutionary changes. By considering mutations as small and rare events on the demo-

graphic timescale, AD describes evolution through an ordinary differential equation (ODE) on a separated,

evolutionary timescale, in the space of the phenotypic traits characterizing the coevolving populations—the

so-called AD canonical equation (see [Dercole & Rinaldi, 2008] for a comprehensive treatment).

So far, the modeling effort has been limited to one or two evolving traits, for both application-specific

3



arguments and mathematical tractability (see, e.g., [Abrams, 1992; Marrow et al., 1992; Dieckmann et al.,

1995; Iwasa & Pomiankowski, 1995; Marrow et al., 1996; Iwasa & Pomiankowski, 1999; Abrams & Mat-

suda, 1997; Gavrilets, 1997; Khibnik & Kondrashov, 1997; Doebeli & Ruxton, 1997; Kisdi et al., 2001;

Dercole et al., 2002; Dercole, 2003; Dercole et al., 2003, 2006]). The most relevant conceptual result

emerging from these studies is that reciprocal adaptation under constant environmental conditions can en-

train two coevolving species in a perpetual cycle of coevolutionary change—the celebrated “Red Queen”

dynamics, after [Van Valen, 1973]—in contrast with an optimization view of evolution. Although empirical

evidence for Red Queen dynamics remains scant (with a few exceptions among paleontological time series

[Soutar & Isaacs, 1974; Baumgartner et al., 1992; Barnosky, 2001; Kelley et al., 2003] and well-controlled

experiments on host-parasite and bacterial evolution [Dybdahl & Storfer, 2003]), the conceptual possibility

of non-stationary evolutionary regimes remains one of the “hot” topics in evolutionary theory. In particular,

the following basic question spontaneously arises: Have evolutionary mechanisms involving a sufficiently

large number of adaptive traits the power of generating deterministic chaos?

Of course, the answer couldn’t come from previous modeling studies, due do the limited number of

adaptive traits. The only attempt can be found in [Abrams & Matsuda, 1997], where, assuming rapid evo-

lution (behavioral adaptation or very high mutational rates), demographic and evolutionary dynamics were

considered on the same timescale and turned out to be chaotic in a three-dimensional space composed of a

single adaptive trait, characterizing a resource harvested by a non-adaptive consumer, and the abundances

of resource and consumer populations. However, by allowing adaptive traits and population abundances to

evolve on the same timescale, one cannot say if the complexity of the dynamics are the genuine consequence

of innovation-competition processes or if they are induced by particular demographic interactions.

In principle, the answer to our basic question could be given if rich sets of field or laboratory data would

be available. Unfortunately, time series of adaptive traits are typically too short (with the exception of the few

paleontological time series and laboratory experiments mentioned above) to justify the use of the statistical

techniques proposed in the last decades for revealing the existence of deterministic chaos [Ott et al., 1994;

Abarbanel, 1996]. On the other hand, paleontological time series often refer to the evolution of systems

driven by highly chaotic climatic variations. Therefore, the statistical tests applied to these series simply

say that the biological response to climate variability is chaotic, but do not reveal, however, if evolutionary

mechanisms have the power of generating their own chaos. By contrast, evolutionary models with constant

parameters virtually mimic the ideal conditions of an absolutely not varying physical environment, and are

4



therefore perfectly suited for answering our question. Moreover, given as granted that more details (for

example, on sex or age, stages, and space structures) will increase the chances of generating chaos in a

model, we can reasonably pretend to positively answer the question if we can show that a simple three-

dimensional evolutionary model can be chaotic. This is, actually, what has been done in various fields of

science, starting with meteorology [Lorenz, 1963], where the first strange attractor has been found, and

proceeding with mechanics [Hayashi et al., 1970], chemistry [Rössler, 1976], electronics [Madan, 1993],

epidemiology [Schwartz & Smith, 1983], and ecology [Hastings & Powell, 1991]. Of course, we should a

priori expect a positive answer if we believe that evolution is at least as complex as the just mentioned fields.

This paper is devoted to the presentation of the first chaotic evolutionary attractor, obtained through the

AD approach. In the next section, a very simple tritrophic food chain is considered and the corresponding

three-dimensional AD canonical equation is derived. Then, in the following section it is shown that for a

suitable parameter setting the evolutionary dynamics are chaotic, and the main characteristics of the evo-

lutionary strange attractor are analyzed. In Sect. 4 it is also shown how the evolutionary regimes change

from stationary to cyclic and then from cyclic to chaotic when the mutational rate of the population at the

lowest trophic level is increased. This points out the most frequent “route to chaos,” namely the famous

Feigenbaum cascade of period-doubling bifurcations [Feigenbaum, 1980]. A few comments on the value

and limitations of our findings close the paper.

As for the style of the paper, we mix a somewhat naı̈ve description of the underlying biological pro-

cesses with a tutorial presentation of some mathematical concepts. This choice, already reflected in this

Introduction, makes the paper accessible and useful to a broader class of readers, from pure and applied

mathematicians to theoretically inclined biologists, as well as to scientists in various fields of science and

engineering.

2 A Tritrophic Food Chain Model and Its AD Canonical Equation

The demographic model we use for pointing out evolutionary chaos is the classical Lotka-Volterra tritrophic

food chain composed of resource, consumer, and predator populations, each characterized by a single adap-

tive trait. There are three reasons for this choice. First, the model is very simple and therefore appropriate

for investigating the possibility of chaotic evolutionary regimes. Second, on the short-term demographic

timescale, i.e., for given values of the traits, the three populations can only coexist at a unique and stable
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demographic equilibrium. This simplifies the analysis, since the AD canonical equation is formally derived

for the case of stationary demographic coexistence (see [Dercole et al., 2006] for discussions and exten-

sions), but also strengthens our answer, by showing that evolution can be chaotic without requiring wild

demographic dynamics of the populations. Third, the model is the natural extension of the ditrophic food

chain where evolutionary cycles were first observed [Dieckmann et al., 1995] (see also [Dercole et al., 2003]

for further analysis). This suggests that a two-species model with cyclic evolutionary regimes could easily

become chaotic by adding a third coevolving species.

The Lotka-Volterra tritrophic food chain model has the form

ṅ1 = r(x1)n1 − c(x1)n
2

1 − a2(x1, x2)n1n2, (1a)

ṅ2 = e2a2(x1, x2)n1n2 − d2(x2)n2 − a3(x2, x3)n2n3, (1b)

ṅ3 = e3a3(x2, x3)n2n3 − d3(x3)n3, (1c)

where n1, n2, and n3 are the resource, consumer, and predator population abundances, r and c are resource

net growth rate and intraspecific competition, and ai, ei, and di are attack rate, efficiency, and net death

rate (not due to consumption) of consumer (i = 2) and predator (i = 3). Three adaptive traits, one per

population, x1, x2, and x3, characterize the food chain, in the sense that inter- and intra-specific demographic

parameters depend upon the traits of the involved populations. In view of the importance of individual body

size in determining demographic interactions between resources and consumers [Cohen et al., 1993], we

imagine xi, i = 1, 2, 3, as real variables obtained from the body sizes of adult individuals through suitable

nonlinear scalings.

Model (1) has a unique nontrivial equilibrium

n̄1 =
1

c

(

r −
a2d3

e3a3

)

, (2a)

n̄2 =
d3

e3a3

, (2b)

n̄3 =
e2a2

a3c

(

r −
a2d3

e3a3

)

−
d2

a3

, (2c)
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which is positive if and only if n̄3 > 0, i.e.,

r

c
−

a2d3

ce3a3

−
d2

e2a2

> 0. (3)

Moreover, the equilibrium (2) is always globally stable (in the positive orthant ni ≥ 0, i = 1, 2, 3), which

means that under condition (3) the model has only one asymptotic mode of behavior, namely stationary

coexistence. Condition (3) with the equality sign marks the extinction of the predator population and tech-

nically corresponds to a transcritical bifurcation of model (1), at which the equilibrium (2) collides and

exchanges stability with the trivial equilibrium lying on the face n3 = 0 of the demographic state space.

Model (1) is called the resident model, because, under condition (3), it allows the coexistence of the

three considered populations, which are therefore called resident. More precisely, to specify the resident

model, we must say how the demographic parameters depend upon the traits. The number of possibilities

is practically unlimited because even for well-identified species there are many meaningful options. To be

consistent with the analysis of the ditrophic food chain carried out in [Dieckmann et al., 1995; Dercole

et al., 2003], we assume that the parameters r, ei, and di, i = 1, 2, are trait-independent, while resource

intraspecific competition c is given by

c(x1) = c1 + c2 (x1 − c0)
2 ,

where parameter c0 is the optimum resource trait at which intraspecific competition is minimum, and the

attack rates a2 and a3 are

a2(x1, x2) = exp

(

−

(

x1−a24

a21

)2

+ 2a23

(x1−a24)(x2−a25)

a21a22

−

(

x2−a25

a22

)2
)

,

a3(x2, x3) = exp

(

−

(

x2−a34

a31

)2

+ 2a33

(x2−a34)(x3−a35)

a31a32

−

(

x3−a35

a32

)2
)

,

where a23 < 1 and a33 < 1. If resource and consumer [consumer and predator] traits are tuned, i.e., if

x1 = a24, x2 = a25 [x2 = a34, x3 = a35], the consumer [predator] attack rate is maximum. When resource

and consumer [consumer and predator] traits are far from being tuned, the consumer [predator] attack rate

vanishes.

We are now ready to derive the evolutionary dynamics, namely the dynamics of the traits x1, x2, and
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x3 on the evolutionary timescale. Obviously, evolutionary trajectories are defined in the open region of

trait space where condition (3) is satisfied. This region is called the evolution set, denoted by X , and

results in the bounded volume shown in Fig. 1A. Due to its ovoid shape, we like to call it “the egg of life”.

Evolutionary trajectories are therefore defined inside the egg, as exemplified in panel B, where evolution

dynamics halt at a stable evolutionary equilibrium. Along an evolutionary trajectory the food chain coexists

at the demographic equilibrium (2), so that resource, consumer, and predator abundances slowly vary, on

the evolutionary timescale, by following the equilibrium values (2) at the current evolutionary state.

Evolutionary change of trait xi result from a sequence of successful mutations, after which the mutant

population, characterized by a trait value x′

i slightly different from the resident value xi, substitutes the

corresponding resident population. This demographic transient takes an infinitesimal time on the evolution-

ary timescale and marks an infinitesimal step in the evolution of trait xi, i.e., xi → x′

i. Since mutations

are assumed as rare events on the demographic timescale, we can consider one mutation at a time. Then

AD smooths the innovation-competition process, which is intrinsically stochastic, and describes the average

evolutionary trajectory by means of the canonical equation.

More in particular, if we imagine that a mutant population is also present, we must enlarge model (1) by

adding a fourth ODE for the mutant population and by specifying how the demographic parameters depend

upon the traits x1, x2, x3, x
′

i. In the case of a mutation in the resource population, the resident-mutant model

is

ṅ1 = n1(r − c(x1)n1 − γ(x1, x
′

1)n
′

1 − a2(x1, x2)n2),

ṅ2 = n2(e2a2(x1, x2)n1 + e2a2(x
′

1
, x2)n

′

1
− d2 − a3(x2, x3)n3),

ṅ3 = n3(e3a3(x2, x3)n2 − d3),

ṅ′

1 = n′

1(r − γ(x′

1, x1)n1 − c(x′

1)n
′

1 − a2(x
′

1, x2)n2),

where γ(x1, x
′

1
) is the competition coefficient characterizing reduced birth rate and/or increased death rate

in the resource resident population due to the competition with the resource mutant population (necessarily

γ(x1, x1) = c(x1)). In agreement with classical competition theory (see, e.g., [Gatto, 1990]), competition is

said to be symmetric if the competition function α(x1, x
′

1
) = γ(x1, x

′

1
)/c(x1) is unaffected by the exchange

of its arguments, i.e., α(x1, x
′

1
) = α(x′

1
, x1), asymmetric otherwise. As in [Dieckmann et al., 1995; Dercole

et al., 2003], we assume a constant (therefore symmetric) competition function, so that γ(x1, x
′

1
) = c(x1).

8



Similarly, the two other resident-mutant models, describing the demographic interactions in the cases of

mutations in the consumer and in the predator populations, are given by

ṅ1 = n1(r − c(x1)n1 − a2(x1, x2)n2 − a2(x1, x
′

2
)n′

2
),

ṅ2 = n2(e2a2(x1, x2)n1 − d2 − a3(x2, x3)n3),

ṅ3 = n3(e3a3(x2, x3)n2 + e3a3(x
′

2, x3)n
′

2 − d3),

ṅ′

2 = n′

2(e2a2(x1, x
′

2)n1 − d2 − a3(x
′

2, x3)n3),

and

ṅ1 = n1(r − c(x1)n1 − a2(x1, x2)n2),

ṅ2 = n2(e2a2(x1, x2)n1 − d2 − a3(x2, x3)n3 − a3(x2, x
′

3
)n′

3
),

ṅ3 = n3(e3a3(x2, x3)n2 − d3),

ṅ′

3 = n′

3(e3a3(x2, x
′

3)n2 − d3).

At this point, the AD canonical equation can be derived. A crucial quantity in modeling evolutionary

dynamics is the so-called invasion fitness of a mutation [Metz et al., 1992], namely the initial exponential

rate of growth of the mutant population. This is technically given by the dominant eigenvalue associated to

the equilibrium (n̄1, n̄2, n̄3, 0) of the resident-mutant model (after linearization), the dominant eigenvector

being the only one with nontrivial mutant component. Thus, positive fitness means mutant invasion, while

negative fitness characterizes unsuccessful mutations. Straightforward computations yield the following

invasion fitnesses for the resource, consumer, and predator mutant populations:

λ1(x1, x2, x3, x
′

1) = r − c(x′

1)n̄1(x1, x2, x3) − a2(x
′

1, x2)n̄2(x1, x2, x3),

λ2(x1, x2, x3, x
′

2) = e2a2(x1, x
′

2)n̄1(x1, x2, x3)− d2 − a3(x
′

2, x3)n̄3(x1, x2, x3),

λ3(x1, x2, x3, x
′

3) = e3a3(x2, x
′

3)n̄2(x1, x2, x3) − d3,

where the equilibrium abundances n̄i(x1, x2, x3), i = 1, 2, 3, are given by (2). Then, the AD canonical
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equation is obtained as

ẋi = kin̄i(x1, x2, x3)
∂

∂x′

i

λi(x1, x2, x3, x
′

i)

∣

∣

∣

∣

x′

i
=xi

, i = 1, 2, 3, (4)

where ki = 1/2µiσ
2

i , i = 1, 2, 3, are constant mutational rates, proportional to the frequency (µi) and

variance (σ2

i ) of mutations in the three populations, and

∂

∂x′

i

λi(x1, x2, x3, x
′

i)

∣

∣

∣

∣

x′

i
=xi

, (5)

called the selection derivative, gives the direction and strength of the selection pressure on trait x i (note that

ẋi denotes time derivative on the evolutionary timescale).

Without going into the detail of the derivation, we can say that the rate of evolutionary change ẋ i is

influenced by three primary factors: how often a mutation occurs in population i, µin̄i is in fact proportional

to the number of mutations occurring in population i per unit of evolutionary time; how large is the trait

change entailed by the mutation, zero mean and variance (ǫσi)
2, ǫ being a scaling factor separating the

demographic and evolutionary timescales in the limit ǫ → 0; and how likely it is that the initially scarce

mutant population invades and replaces the corresponding resident population. The probability of invasion

consists of two factors. First, if the selection derivative (5) does not vanish, only mutations with trait value

either larger or smaller than the resident value can invade; in other words, half of the mutations are at

selective disadvantage and this leads to the factor 1/2 in the canonical equation. Second, mutations at

selective advantage may be accidentally lost in the initial phase of invasion when they are present only in

a few items. The probability of success in the initial phase of invasion is shown to be proportional to the

selective advantage of the innovation, as measured by the selection derivative. Finally, successful invasion

generically implies substitution (see [Dercole & Rinaldi, 2008, Chap. 3] for a detailed derivation). The

explicit expression of the canonical equation (4) is not reported because long and tedious. However, it can

be easily generated and handled by means of symbolic computation.

The canonical equation (4) can be studied through bifurcation analysis. However, this would require

notions of bifurcation theory that are not available to many biologists. For this reason equation (4) will

first be used to carry out selected simulations, namely to determine the evolution of the three traits for

given parameter settings and for given ancestral conditions xi(0), i = 1, 2, 3. Of course, the ancestral
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conditions must guarantee the demographic coexistence of the three populations, i.e., (x1(0), x2(0), x3(0))

must be in the evolution set X (see Fig. 1A). The simulation of equation (4), starting from a viable initial

point, produces an evolutionary trajectory, which can either remain in X forever, thus converging toward

an evolutionary attractor (an equilibrium in the case of Fig. 1B), or reach the boundary of X in finite time,

thus inducing the evolutionary extinction [Ferrière, 2000] of the predator population. This is actually a case

of “evolutionary murder”, since the boundary of X is a transcritical bifurcation of the resident model (1),

at which the predator population abundance n̄3 annihilates, so that also the predator evolutionary rate of

change ẋ3 vanishes while approaching extinction (see (4)). The boundary of X is therefore reached thanks

to the evolution of the resource and consumer populations, which play the role of murderers.

3 The Evolutionary Strange Attractor

We now present an evolutionary strange attractor produced by the AD canonical equation (4). As far as

we know, this is the first example of chaotic attractor describing long-term evolutionary dynamics. For the

moment we do not reveal how we were able to find the corresponding parameter setting, but a discussion on

this point is reported in the next section.

The strange attractor is shown in Fig. 2. The left panel (Fig. 2A) points out the attractor in the three-

dimensional trait space, while the right panel (Fig. 2B) shows three segments of the corresponding aperiodic

time series xi(t), i = 1, 2, 3. Some features of the attractor can be identified through visual inspection.

Indeed, Fig. 2B shows that the traits of the first two species vary almost periodically, while x3 varies more

irregularly. The intervals between successive peaks of the predator trait x3 are almost constant (high coher-

ence), while the peaks of x3 alternate irregularly, like in the classical two-band Rössler attractor [Rössler,

1976]. Figure 2A shows that the attractor lies roughly on aMöbius strip and has therefore a fractal dimension

very close to 2. Since strange attractors with fractal dimension close to 2 must have “peak-to-peak dynam-

ics” [Candaten & Rinaldi, 2000], one should a priori expect that the so-called peak-to-peak plot, namely the

set of all pairs of successive peaks of any trait, identifies a smooth curve. This is indeed the case, as shown

in Fig. 3, where each point represents a pair of successive peaks of the predator trait x3 extracted from a

long time series produced by model (4). The curve drawn in Fig. 3, called the skeleton of the peak-to-peak

plot, can be used to predict the value of the next peak of the predator trait from the value of the last peak

(a similar prediction can be made on the evolutionary time of occurrence of the next peak). This is a rather
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intriguing property, since it shows that at least some predictions are possible even if the system is chaotic.

Three Lyapunov exponents, L1 > L2 > L3, are associated with the strange attractor of Fig. 2. Lya-

punov exponents measure the mean exponential rates of initial divergence (if positive) or convergence (if

negative) of nearby initial conditions along three independent directions suitably selected at each point of

the attractor (see, e.g., [Ramasubramanian & Sriram, 2000] for computational issues). Chaotic attractors

are characterized by both positive and negative Lyapunov exponents, determining divergence (stretching)

of nearby initial conditions and convergence (folding) to the attractor. Moreover, one exponent is always

zero (the trivial exponent), since exponential divergence and convergence do not affect initial conditions

on the same trajectory. Thus, it must be L1 > 0, L2 = 0, L3 < 0, where the largest Lyapunov exponent

L1 measures the mean exponential rate of initial divergence of two generic nearby points on the attractor,

i.e., the mean sensitivity to initial conditions. The estimates obtained with the so-called standard algorithm

[Ramasubramanian & Sriram, 2000] are

L1 = 8.1321 × 10−3, L2 = −2.3923 × 10−6, L3 = −4.6270 × 10−1,

and the corresponding attractor fractal dimension, obtained with the Kaplan-Yorke formula (2 − L1/L3)

[Alligood et al., 1996], is 2.0176, which confirms the correctness of our visual interpretation of Fig. 2A.

4 Feigenbaum Cascade of Period-doubling Bifurcations

We now explain how we arrived at the evolutionary strange attractor described in the previous section.

Hunting for strange attractors is a very peculiar game and the worst possible way to play this game is to do

it randomly. One should use instead a mix of intuition and theory.

In the present case intuition was based on the results obtained in [Dieckmann et al., 1995; Dercole

et al., 2003], where it was shown that one way of obtaining the most complex evolutionary dynamics (cyclic

dynamics in that case) of a ditrophic food chain composed of resource and consumer was to increase the

mutational rate of the resource. We could then retain that message, and hope, on a purely intuitive ground,

that the resource mutational rate could be an effective control parameter for transforming simple (i.e., sta-

tionary) into complex (i.e., chaotic) evolutionary dynamics in tritrophic food chains. On the other hand,

bifurcation theory is quite precise on this matter. It says that there are two common routes to chaos, namely
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two special sequences of bifurcations that characterize successive structural changes of the attractor, until

the strange attractor appears. One route is marked by a particular bifurcation, called Shil’nikov homoclinic

bifurcation, and the other is the celebrated Feigenbaum cascade of period-doubling bifurcations.

For biologists who are not aware of period-doubling bifurcations and Feigenbaum cascade, we can say

that, physically speaking, a period-doubling (also called flip) bifurcation occurs when a small variation of

a parameter p, from p1 − ǫ to p1 + ǫ, transforms an attracting cycle of period T into an attractive cycle of

period 2T , as shown in Fig. 4. A second period-doubling bifurcation at p = p2 would transform the cycle

of Fig. 4B into a cycle with four loops, and so on. Of course, the period of the cycle at p = p2 − ǫ might be

radically different than 2T , though in technical jargon one often says that the second period-doubling yields

a “period-4” cycle. Thus, n successive period-doubling bifurcations {p1, p2, . . . , pn} transform the period-

1 cycle into a period-2n cycle. The Feigenbaum cascade is an infinite sequence {pi} of period-doubling

bifurcations in which the bifurcation values pi accumulate at a critical value p∞ after which the attractor is a

genuine strange attractor. Very often, the strange attractor is coherent and its shape is similar to the period-1

cycle that has originated the whole cascade [Alligood et al., 1996].

With these elements in mind, we started from a parameter setting giving rise to an evolutionary equi-

librium, and tried to obtain an evolutionary cycle by varying some of the parameters. For doing this, we

took into account the analysis performed in [Dercole et al., 2003], which suggests parameter settings giving

rise to cyclic dynamics in ditrophic food chains. Thus, once we had an evolutionary cycle we increased our

candidate control parameter (the resource mutational rate k1) and after a few trials we were able to detect a

first period-doubling bifurcation, i.e., a clear warning of a possible route to chaos. A further increase of the

control parameter has confirmed the existence of a Feigenbaum cascade and has finally produced the strange

attractor of Fig. 2. This route to chaos is visualized in Fig. 5, where the six panels A–F show the attractors

corresponding to increasing values of the control parameter p, namely k1: A, equilibrium; B, small cycle

originated through a Hopf bifurcation at p = pH ; C, large cycle; D, cycle after the first period-doubling,

p1 < p < p2; E, cycle after the second period-doubling, p2 < p < p3; F, strange attractor, p > p∞ (note that

the evolution set X is unaffected by ki, i = 1, 2, 3, see (3)). Figure 6 reports the standard representation of

the Feigenbaum cascade, where the peaks of x3 within the attractor are plotted for each value of the control

parameter.

The shape of our strange attractor (see Fig. 2) clearly reveals its Feigenbaum origin. Indeed, in the

chaotic regime, the first two traits oscillate almost periodically at the frequency 1/T , while the third trait
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oscillates more irregularly but still at the same average frequency (coherence). A physical image can be

associated with the chaotic evolutionary dynamics we have detected: one simply needs to stand on a beach

and observe the waves, which, indeed, arrive quite regularly on the beach but with irregular (and often

alternating) heights like the waves of the predator trait.

To complement the one-parameter analysis presented in Fig. 6, we report in Fig. 7 a two-parameter bi-

furcation diagram, where the range of interest for the ratios k1/k3 and k2/k3 is fixed to [0.2, 2] (note that k3

can be set to 1 by scaling evolutionary time). Black lines represent bifurcation curves, obtained through nu-

merical continuation (see, e.g., [Allgower & Georg, 1990]), the most effective and simulation-free method

for analyzing equilibria and cycles under parameter perturbation (the standard continuation package AUTO

was used [Doedel et al., 2007]). The curve separating the white from the color-coded region in the main

(left) panel is the Hopf bifurcation, while the other curves identify, from left to right, the first four period-

doubling bifurcations of the Feigenbaum cascade (the third and fourth bifurcations are distinguishable only

at the scale of the enlargement in the right panel). Thus, the evolutionary regime is stationary for param-

eter combinations corresponding to a point in the white region and non-stationary (Red Queen dynamics)

for combinations corresponding to a color in the color-bar, the color indicating the maximum (nontrivial)

Lyapunov exponent. Green and red tones therefore indicate stable cycles and strange attractors, respec-

tively (for purpose of illustration, the color-bar linearly maps colors to the intervals of negative and positive

exponents, separately). For parameter combinations in the gray region, the evolutionary extinction of the

predator population is the inevitable outcome, since the evolutionary strange attractor grazes the boundary

of the evolution set X and gets destroyed at the separation between the reddish and the gray region.

5 Discussion and Conclusions

We have shown in this paper that the study of a Lotka-Volterra three-species food chain reveals the possibility

of chaotic evolutionary dynamics. This confirms that a possible consequence of innovation-competition

(mutation-selection) processes is that species coevolve in an apparently random fashion.

The very special properties of our evolutionary strange attractor (coherence and peak-to-peak dynamics)

are certainly due to the extreme simplicity of the model and would probably be lost with the addition of some

extra realism. In other words, we believe that the study of evolving systems with more complex structures

would reveal more complex chaotic regimes.
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Although the results obtained in this paper answer positively the basic question raised in the Introduction,

they also bring new and more subtle questions to our attention, such as:

– Is it possible to identify other chaotic evolutionary attractors through mathematical models?

– Is it possible to dig into field and laboratory evolutionary time series and detect the footprint of deter-

ministic chaos?

The answer to the first question is certainly positive, though it might be hard to discover new strange

attractors. In a sense, we have already suggested how one could proceed. Good candidate models are

those obtained by adding one species to any two-species interaction in which cyclic Red Queen dynamics

have already been detected (e.g., the mutualistic interaction described in [Ferrière et al., 2002; Dercole,

2005]). Then one could proceed using the mix of intuition and theory described in the previous section,

or, alternatively, perform the bifurcation analysis of the three-dimensional canonical equation, thus having

higher chances to detect routes to chaos.

As for the second question, we suspect that scarcity of data, both in quantitative and qualitative terms,

and exogenous randomness due, for example, to climatic variations, will prevent one from obtaining sta-

tistically significant answers. However, we believe it will be even more unlikely that one could prove the

opposite, namely that there is no trace of endogenously produced evolutionary chaos in nature.

Finally, many are the conceptual and practical consequences of evolutionary chaos in biology (to be dis-

cussed in a forthcoming biologically-oriented paper). Chaotic Red Queen implies that even when the forces

of natural selection are strong and deterministic, evolutionary trajectories may not be predicted beyond a

short evolutionary time. This runs counter to the stabilizing role commonly attributed to coevolution in

ecological communities, and reveals that adaptive processes may not be as predictable and replicable as pre-

viously thought. Important implications for questions of paramount interest include pathogen unpredictable

evolution, the maintenance of genetic diversity in homogenized landscapes, and the process of speciation.
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Figure captions

Figure 1

The evolution set X characterizing short-term stationary coexistence of the food chain at the demographic

equilibrium (2) (bounded volume, A), and an evolutionary trajectory tending toward a stable equilibrium of

the canonical equation (4) (B). Parameter values are r = 0.5, d2 = 0.05, d3 = 0.02, e2 = 0.14, e3 = 0.14,

c1 = 0.5, c2 = 3, c0 = 0, a21 = 0.22, a22 = 0.25, a23 = 0.6, a24 = 0, a25 = 0.04, a31 = 0.22,

a32 = 0.25, a33 = 0.6, a34 = 0, a35 = −0.04, k1 = 0.15, k2 = 1, k3 = 1. Ancestral conditions in B are

x1(0) = −0.0411, x2(0) = −0.0372, x3(0) = 0.0075.

Figure 2

Evolutionary strange attractor (A) and corresponding time series of resource (x1), consumer (x2), and preda-

tor (x3) traits (B). Parameter values as in Fig. 1 except for k1 = 0.64.

Figure 3

Peak-to-peak plot of the predator trait x3. Each point represents a pair of consecutive peaks of an x3 time

series associated with the strange attractor of Fig. 2. The curve drawn through the points can be used to

forecast the next peak on the basis of the last peak.

Figure 4

Period-doubling bifurcation: a stable cycle (solid trajectory in A) becomes unstable (dashed trajectory in

B) and a new stable cycle, tracing twice the bifurcating cycle, appears (solid trajectory in B). Immediately

before the bifurcation (A) the attractor is a cycle with period T , while immediately after the bifurcation (B)

the attractor is a cycle with period 2T .

Figure 5

A sequence of evolutionary attractors obtained for increasing values of the resource mutational rate k1: (A)

k1 = 0.15, equilibrium; (B) k1 = 0.2, small cycle; (C) k1 = 0.5, large cycle; (D) k1 = 0.6, period-2 cycle;

(E) k1 = 0.635, period-4 cycle; (F) k1 = 0.64, strange attractor. Other parameter values as in Fig. 1.
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Figure 6

The standard representation of the Feigenbaum cascade obtained by plotting the peaks of x3 within the

attractor corresponding to each value of the control parameter p (i.e., k1). Other parameter values as in

Fig. 1.

Figure 7

Two-parameter bifurcation diagram. Black lines represent bifurcation curves: Hopf and period-doubling bi-

furcations from left to right in the left panel. The color-code indicates the maximum (nontrivial) Lyapunov

exponent associated to non-stationary evolutionary attractors; white corresponds to stable evolutionary equi-

libria. The region inside the blue rectangle, with coordinates (z1, z2), is magnified and vertically stretched

in the right panel.
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