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VÍTOR V. VASCONCELOS, MARTA D. SANTOS and P. N. B. NEVES
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1. Introduction

In a dance that repeats itself cyclically, countries and citizens raise significant expec-

tations every time a new International Environmental Summit is settled. Unfortu-

nately, few solutions have come out of these colossal and flashy meetings, challenging

our current understanding and models on decision-making, so that more effective

levels of discussion, agreements and coordination become accessible. From Montreal

and Kyoto to Copenhagen summits, it is by now clear how difficult it is to coordi-

nate efforts.1,2 Often, individuals, regions or nations opt to be free riders, hoping

to benefit from the efforts of others while choosing not to make any effort them-

selves. Cooperation problems faced by humans often share this setting, in which

the immediate advantage of free riding drives the population into the tragedy of

the commons,3 the ultimate limit of widespread defection.3–12

To address this and other cooperation conundrums, ubiquitous at all scales and

levels of complexity, the last decade has witnessed the discovery of several core

mechanisms responsible to promote and maintain cooperation at different levels of

organization.3,5,10,13–26 Most of these key principles have been studied within the

framework of two-person dilemmas such as the Prisoner’s dilemma, which consti-

tutes a powerful metaphor to describe conflicting situations often encountered in

the natural and social sciences. Many real-life situations, however, are associated

with collective action based on joint decisions made by a group often involving

more than two individuals.3,5,13,27 These types of problems are best dealt with in

the framework of N -person dilemmas and Public Goods games, involving a much

larger complexity that only recently started to be unveiled.5,14,22,28–33 The welfare

of our planet accounts for possibly the most important and paradigmatic example

of a public good: a global good from which everyone profits, whether or not they

contribute to maintain it.

One of the most distinctive features of this complex problem, only recently tested

and confirmed by means of actual experiments,9 is the role played by the perception

of risk that accrues to all actors involved when making a decision. Indeed, exper-

iments confirm the intuition that the risk of collective failure plays central role in

dealing with climate change. Up to now, the role of risk has remained elusive.1,2,11

In addition, it is also unclear what is the ideal scale or size of the population engag-

ing in climate summits — whether game participants are world citizens, regions

or country leaders, such that the chances of cooperation are maximized. Here we

address these two issues in the context of game theory and population dynamics.

The conventional Public Goods game — the so-called N -person Prisoner’s

dilemma — involve a group of N individuals, who can be either Cooperators (C)

or Defectors (D). Cs contribute a cost “c” to the public good, whereas Ds refuse to

do so. The accumulated contribution is multiplied by an enhancement factor that

returns equally shared among all individuals of the group. This implies a collec-

tive return which increases linearly with the number of contributors, a situation

that contrasts with many real situations in which performing a given task requires
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the cooperation of a minimum number of individuals of that group.28–30,33–38 This

is the case in international environmental agreements which demand a minimum

number of ratifications to come into practice,1,2,9,39–42 but examples abound where

a minimum number of individuals, which does not necessarily equal the entire

group, must simultaneously cooperate before any outcome (or public good) is

produced.28,29 Furthermore, it is by now clear that the N -person Prisoner’s dilemma

fails short to encompass the role of risk, as much as the nonlinearity of most col-

lective action problems.

Here we address these problems resorting to a simple mathematical model,

adopting unusual concepts within political and sustainability science research, such

as peer-influence and evolutionary game theory.14,43,44 As a result we encompass

several of the key elements stated before regarding the climate change conundrum

in a single dynamical model.

In the following we show how small groups under high risk and stringent require-

ments toward collective success significantly raise the chances of coordinating to

save the planet’s climate, thus escaping the tragedy of the commons. In other words,

global cooperation depends on how aware individuals are concerning the risks of

collective failure and on the pre-defined premises needed to accomplish a climate

agreement. Moreover, we will show that to achieve stable levels of cooperation, an

initial critical mass of cooperators is needed, which will then be seen as role models

and foster cooperation.

We will start by presenting the model in Sec. 2. In Sec. 3, we discuss the situation

in which evolution is deterministic and proceeds in very large populations. In Sec. 4

we analyze the evolutionary dynamics of the same dilemma in finite populations

under errors and behavioral mutations. Finally, in Sec. 5 we provide a summary

and concluding remarks.

2. Model

Let us consider a large population of size Z, in which individuals engage in an

N -person dilemma, where each individual is able to contribute or not to a common

good, i.e. to cooperate or to defect, respectively. Game participants have each an

initial endowment b. Cooperators (Cs) contribute a fraction c of their endowment,

while defectors (Ds) do not contribute. As previously stated, irrespectively of the

scale at which agreements are tried, most demand a minimum number of contrib-

utors to come into practice. Hence, whenever parties fail to achieve a previously

defined minimum of contributions, they may fail to achieve the goals of such agree-

ment (which can also be understood as the benefit “b”), being this outcome, in the

worst possible case, associated with an appalling doomsday scenario. To encompass

this feature in the model we require a minimum collective investment to ensure

success: If the group of size N does not contain at least MCs (or, equivalently, a

collective effort of Mcb), all members will lose their remaining endowments with a

probability r (the risk); otherwise everyone will keep whatever they have. Hence,
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M < N represents a coordination threshold,9,28 necessary to achieve a collective

benefit. As a result, the average payoff of a D in a group of size N and kCs can be

written as

ΠD(k) = b{θ(k − M) + (1 − r)[1 − θ(k − M)]}, (1)

where θ(x) is the Heaviside step function (θ(x < 0) = 0 and θ(x ≥ 0) = 1).

Similarly, the average payoff of a C is given by

ΠC(k) = ΠD(k) − cb. (2)

The risk r is here introduced as a probability, such that with probability (1 − r)

the benefit will be collected independent of the number of contributors in a group.

This collective-risk dilemma represents a simplified version of the game used

in the experiments performed by Milinski et al.9 on the issue of the mitigation

of the effects of climate change, a framework which is by no means the standard

approach to deal with International Environmental Agreements and other problems

of the same kind.1,2,39,40 The present formalism has the virtue of depicting black

on white the importance of risk and its assessment in dealing with climate change,

something that Heal et al.41,45 have been conjecturing for quite awhile. At the

same time, contrary to the experiments in Ref. 9, our analysis is general and not

restricted to a given group size.

Additionally, and unlike most treatments,1 our analysis will not rely on individ-

ual or collective rationality. Instead, our model relies on evolutionary game theory

combined with one-shot Public Goods games, in which errors are allowed. In fact,

our model includes what we believe are key factors in any real setting, such as

bounded rational individual behavior, peer-influence and the importance of risk

assessment in meeting the goals defined from the outset.

We assume that individuals tend to copy others whenever these appear to be

more successful. Contrary to strategies defined by a contingency plan which, as

argued before,46 are unlikely to be maintained for a long time scale, this social

learning (or evolutionary) approach allows policies to change as time goes by,22,47,48

and likely these policies will be influenced by the behavior (and achievements) of

others, as previously shown in the context of donations to public goods.44,49,50 This

also takes into account the fact that agreements may be vulnerable to renegotia-

tion, as individuals may agree on intermediate goals or assess actual and future

consequences of their choices to revise their position.1,2,7,39,40,45

3. Evolution of Collective Action in Large Populations

In the framework of evolutionary game theory, the evolution or social learning

dynamics of the fraction x of Cs (and 1− x of Ds) in a large population (Z → ∞)

is governed by the gradient of selection associated with the replicator dynamics

equation14,28,51

g(x) ≡ ẋ = x(1 − x)(fC(x) − fD(x)), (3)
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which characterizes the behavioral dynamics of the population, where fC(fD) is

the fitness of Cs (Ds), here associated with the game payoffs. According to the

replicator equation, Cs (Ds) will increase in the population whenever g(x) > 0

(g(x) < 0). If one assumes an unstructured population, where every individual

can potentially interact with everyone else, the fitness (or social success) of each

individual can be obtained from a random sampling of groups. The latter leads to

groups whose composition follows a binomial distribution. Hence, we may write the

fitness of Cs, fc, and Ds, fD, as28–30

fC(x) =

N−1
∑

k=0

(

N − 1

k

)

xk(1 − x)N−1−kΠC(k + 1) (4a)

and

fD(x) =

N−1
∑

k=0

(

N − 1

k

)

xk(1 − x)N−1−kΠD(k), (4b)

where ΠC(k)(ΠD(k)) stands for the payoff of a C(D) in a group of size N and kCs,

as defined above in Eqs. (1) and (2).

Figure 1 shows that, in the absence of risk, g(x) is always negative. Risk, in

turn, leads to the emergence of two mixed internal equilibria, rendering coopera-

tion viable: for finite risk r, both Cs (for x < xL) and Ds (for x > xR) become

disadvantageous when rare. Co-existence between Cs and Ds becomes stable at

a fraction xR which increases with r. Collective coordination becomes easier to

achieve under high-risk and, once the coordination barrier (xL) is overcome, high

levels of cooperation will be reached.

Fig. 1. For each fraction of Cs, if the gradient g(x) is positive (negative) the fraction of Cs will
increase (decrease). Increasing risk (r) modifies the population dynamics rendering cooperation
viable depending on the initial fraction of Cs (N = 6, M = 3 and c = 0.1). The five curves
correspond, from top to bottom to, r = 1, 0.75, 0.5, 0.25, 0.
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The appearance of two internal equilibria under risk can be studied analytically,

as the roots of the fitness difference Q(x) ≡ fC(x)− fD(x) determines the occur-

rence of nontrivial equilibria of the replicator dynamics. From the equations above

we may write, after some algebra, that

Q(x) = b

[(

N − 1

M − 1

)

xM−1(1 − x)N−Mr − c

]

. (5)

Defining the cost-to-risk ratio γ = c/r, i.e. the ratio between the fraction of

the initial budget invested by every C and the risk of losing it, the sign of Q(x) is

conveniently analyzed by using the polynomial

p(x) =

(

N − 1

M − 1

)

xM−1(1 − x)N−M − γ, (6)

which, in turn, can be used to determine the critical value γ̄ below which an interior

fixed point x∗ ∈ (0, 1) emerges. Indeed, we can prove the following theorem.

Theorem 1. Let Γ(x) =
(

N − 1
M − 1

)

xM−1(1 − x)N−M . For 1 < M < N, there exists

a critical cost-to-risk ratio γ̄ = Γ(x̄) > 0 and fraction of Cs 0 < x̄ < 1 such that :

(a) If γ > γ̄, the evolutionary dynamics has no interior equilibria.

(b) If γ = γ̄, then x̄ is a unique interior equilibrium, as this equilibrium is unstable.

(c) If γ < γ̄, there are two interior equilibria {xL, xR}, such that xL < x̄ < xR, xL,

is unstable and xR stable.

Proof. Let us start by noticing that

dΓ(x)

dx
= −

(

N − 1

M − 1

)

xM−2(1 − x)N−M−1s(x),

where s(x) = 1 + (N − 1)x − M . Since N > 2 and 1 < M < N , then dΓ(x)/dx

has a single internal root for x̄ = (M − 1)/(N − 1). In addition, s(x) is negative

(positive) for x < x̄ (x > x̄), which means that Γ has a global maximum for x = x̄.

(a) and (b) can now easily follow. Since Γ has a maximum at x̄, it follows that

Γ(x) = 0 has no solutions for γ > γ̄ and a single one, at x̄, for γ = γ̄. Moreover,

both when x → 0 and x → 1, p(x) < 0, making x = 0 a stable fixed point and

x = 1 an unstable one. Therefore, if x̄ is a root, it must be unstable.

To prove (c), we start by noticing that Γ(0) = Γ(1) = 0. From the sign of s(x)

(see above), Γ(x) is clearly monotonic increasing (decreasing) to the left (right) of

x̄. Hence, there is a single root xL(xR) in the interval 0 < x < x̄ (x̄ < x < 1). Since

x = 0 is stable and x = 1 unstable, xR must be stable and xL unstable.

Theorem 2. For M = 1, if γ < γ̄, there is one stable interior equilibrium point in

the interval 0 < x < 1.

Proof. If M = 1, Γ(x) = (1−x)N−1, which is a monotonic decreasing function for

0 < x < 1. This means that the function p(x) has only one zero in that interval,
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Fig. 2. (a) Classification of all possible dynamical scenarios when evolving an infinitely large
population of Cs and Ds as a function of γ, M and N . A fraction x of an infinitely large population
adopts the strategy C; the remaining fraction 1 − x adopts D. The replicator equation describes
the evolution of x over time. Solid (open) circles represent stable (unstable) equilibria of the
evolutionary dynamics; arrows indicate the direction of selection. (b) Internal roots x∗ of g(x)
for different values of the cost-to-risk ratio γ = c/r, at fixed group size (N = 6) and different
coordination thresholds (M). For each value of γ one draws a horizontal line; the intersection of
this line with each curve gives the value(s) of x∗, defining the internal equilibria of the replicator
dynamics. The empty circle represents an unstable fixed point (xL) and the full circle a stable
fixed point (xR) (M = 4 and γ = 0.15 in example).

i.e. there is only one x̄ (0 < x̄ < 1) such that p(x̄) = 0. Given that p(x) is positive

(negative) for x < x̄ (x > x̄) then x̄ is a stable equilibrium point.

Theorem 3. For M = N, if γ < γ̄, there is one unstable interior equilibrium point

in the interval 0 < x < 1.

Proof. If M = N , Γ(x) = xN−1, which is a monotonic increasing function for

0 < x < 1. This means that the function p(x) has only one zero in that interval,

i.e. there is only one x̄ (0 < x̄ < 1) such that p(x̄) = 0. Given that p(x) is negative

(positive) for x < x̄ (x > x̄) then x̄ is an unstable equilibrium point.

In Fig. 2(a), we provide a concise scheme of all possible dynamical scenarios

that emerge from collective-risk dilemmas, showing how the coordination threshold

and the level of risk play a central role in dictating the viability of cooperation.

Figure 2(b) also shows the role played by the threshold M : for fixed (and low) γ,

increasing M will maximize cooperation (increase of xR) at the expense of making

it more difficult to emerge (increase of xL).

4. Evolution of Collective Action in Small Populations

Real populations are finite and often rather small, contrary to the hypothesis under-

lying the dynamics portrayed in Sec. 3. In particular, this is the case of the famous
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world summits where group and population sizes are comparable and of the order

hundreds, as individuals are here associated with nations or their respective lead-

ers. For such population sizes, stochastic effects play an important role and the

deterministic description of the previous section may be too simplistic.52

For finite, well-mixed populations of size Z, the binomial sampling in Eqs. (4)

is replaced by a hypergeometric sampling (sampling without replacement). As a

result, the average fitness of Ds and Cs in a population with kCs, is now written as

fD(k) =

(

Z − 1

N − 1

)−1 N−1
∑

j=0

(

K

j

) (

Z − k − 1

N − j − 1

)

ΠD(j) (7)

and

fC(k) =

(

Z − 1

N − 1

)−1 N−1
∑

j=0

(

k − 1

j

) (

Z − k

N − j − 1

)

ΠC(j + 1), (8)

respectively. We adopt a stochastic birth–death process53 combined with the pair-

wise comparison rule54 in order to describe the social dynamics of Cs (and Ds) in a

finite population. Under pairwise comparison, each individual i adopts the strategy

of a randomly selected member of the population j with probability given by the

Fermi function (from statistical physics)

pij =
1

1 + e−β(fj−fi)
. (9)

Here β controls the intensity of selection. For β ≪ 1, selection is weak and individual

fitness is but a small perturbation to random drift in behavioral space. Under this

regime one recovers the replicator equation in the limit Z → ∞.54 For arbitrary

β, the quantity g(x) of Eq. (3), specifying the gradient of selection, is replaced in

finite populations by54

G(k) ≡ T +(k) − T−(k) =
k

Z

Z − k

Z
tan h

{

β

2
[fC(k) − fD(k)]

}

, (10)

where k stands for the total number of Cs in the population and

T +(k) =
k

Z

Z − k

Z
[1 + e∓β[fC(k)−fD(k)]]−1 (11)

for the probabilities to increase and decrease the number of Cs in the population.

4.1. Fixation probabilities

The fact that, in finite populations, the continuous gradient of selection g(x) is

replaced by a discrete G(k/Z) has implications in the overall evolutionary dynamics

of the population. Importantly, in the absence of mutations evolutionary dynamics

in finite populations will only stop whenever the population reaches a monomorphic
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state.52,54 Hence, in addition to the analysis of the shape of G(k/Z), often one of the

quantities of interest in studying the evolutionary dynamics in finite populations

is the probability φk that the system fixates in a monomorphic cooperative state,

starting from, for instance, a given number k of Cs. The fixation probability of

kCs (φk) depends on the ratio λj = T−(j)/T +(j), being given by53

φk =

k=1
∑

i=0

i
∏

j=1

λj

/

Z−1
∑

i=0

i
∏

j=1

λj . (12)

Under neutral selection (that is, in the limit β → 0) the fixation probability

trivially reads φN
k = k/Z, providing a convenient reference point.17,53–55 For a

given k, whenever φk > φN
k , natural selection will favor cooperative behavior, the

opposite being true when φk < φN
k .

In Fig. 3 we plot the fixation probability as a function of the initial fraction of

Cs for different values of risk, and a population of 50 individuals. Even if cooper-

ators remain disadvantageous for a wide range of the discrete frequency of Cs (see

Fig. 1), the fixation probability of kCs outperforms φk (picture as a dashed grey

line) for most values of k/Z. This is due to the stochastic nature of the imitation

Fig. 3. Evolutionary dynamics for different values of risk in finite populations. In panel (a), we
show the fixation probabilities for different values of risk (r) as a function of the number of Cs
(Z = 50, c = 0.1, N = 6 = 2M, β = 1.0). In panels (b) and (c), we show the average number
of generations (tj/Z)57,58 needed to fixate an initial fraction of 0.5 of cooperators, as a function
of the intensity of selection β (panel (b)) and population size Z (panel (c)). We consider the case
of maximum risk (r = 1) for both (b) and (c) panels and c = 0.1, N = 6 = 2M. Even if high
risk can turn the fixation of cooperators almost certain (as shown in panel (a)), the time the
population takes to reach such state can be arbitrarily long.
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process, which allows the fixation of rare cooperators, even when they are initially

disadvantageous. Hence, even without random exploration of strategies,56 simple

errors in the imitation process (finite β) are enough to overcome the unstable fixed

point shown in Fig. 2 and reach a more cooperative basin of attraction on the right-

hand side of the gradient (see Fig. 3). As a result, for high values of risk and large,

but finite, populations, cooperation is by far the strategy most favored by evolution

irrespectively of the initial fraction of cooperators.

As discussed above, in finite populations the evolutionary dynamics becomes

stochastic. Yet, even if fixation in one of the two absorbing states is certain (k = 0

and k = Z), the time required to reach it can be arbitrarily long. This is particularly

relevant in the presence of basins of attraction with polymorphic stable configura-

tions, which correspond to finite population analogues of co-existence equilibria

in infinite populations. For high intensities of selection and/or large populations,

the time required for fixation (tj) can increase significantly. Following Antal and

Scheuring,57 the average number of updates tj the population takes to reach full

cooperation, starting from j cooperators, can be written as57,59

tj = −t1
φ1

φj

N−1
∑

k=j

k
∏

m=1

λm +

N−1
∑

k=j

k
∑

l=1

φl

T +(j)

k
∏

m=l+1

λm, (13a)

where

t1 =
N−1
∑

k=j

k
∏

l=1

φl

T +(l)

k
∏

m=l+1

λm. (13b)

This is illustrated in Figs. 3(b) and 3(c), where we compute average number of

generations (tj/Z) needed to attain monomorphic cooperative state as a function

of the intensity of selection and population size, starting from 50% of Cs and Ds for

a dilemma with highest risk (r = 1). These panels clearly indicate that even if high

risk can turn the fixation of cooperators almost certain (as shown in the left panel),

the time the population takes to reach such state can be arbitrarily long. In other

words, while the computation of the fixation probabilities can be mathematically

attractive, its relevance may be limited for large intensities of selection and/or large

Z. In other words, the stochastic information built in φk shows how unstable roots

of G may be irrelevant; however, the lack of time information in φk ignores the key

role played by the stable roots of G.

Moreover, stochastic effects in finite populations can be of different nature, going

beyond errors in the imitation process. One can also consider mutations, random

exploration of strategies or any other reason that leads individuals to change their

behavior, in addition to social learning by imitation dynamics.56 In the simplest

scenario, this creates a modified set of transition probabilities, with an additional

random factor encoding the probability of a mutation (µ) in each update step.

Under these circumstances, the population will never fixate in none of the two

possible monomorphic states.
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4.2. Stationary distributions

As discussed in the previous section, the existence of a stable equilibrium may turn

the analysis of the fixation probability misleading. Not only fixation probabilities

fail to characterize in a reasonable way the evolutionary dynamics under general

conditions, if one considers other forms of stochastic effects as random exploration

of strategies, the system will never fixate.

A proper alternative which overcomes the drawbacks identified in both φk and

G consists in the analysis of the stationary distributions of the complete Markov

chain P (k/Z) (of size Z + 1). The probabilities entering the tridiagonal transition

matrix S = [pij ]
T are defined as pk,k±1 = T±

µ (k) and pk,k = 1 − pk,k−1 − pk,k+1,

where T±
µ stands for the transition probabilities for an arbitrary mutation rate

µ, which are given by T +
µ (k) = (1 − µ)T +(k)+ µ(Z − k)/Z for the probability to

increase from k to k +1 Cs and T−
µ (k) = (1−µ)T−(k)+ µk/Z for the probability to

decrease to k−1.56 The stationary distribution is then obtained from the eigenvector

corresponding to the eigenvalue 1 of S.53,60

In Fig. 4 we show the stationary distributions for different values of risk, for a

population of size Z = 50 where N = 2 M = 6. While the finite population gradient

of selection G(k/Z) shown in the inset exhibits a behavior qualitatively similar to x

in Fig. 1, the stationary distributions show that the population spends most of the

time in configurations where Cs prevail, irrespective of the initial condition. This is

a direct consequence of stochastic effects, which allow the “tunneling” through the

Fig. 4. Prevalence of cooperation in finite populations. The main panel pictures the stationary
distribution corresponding to the prevalence of each fraction of Cs that emerges from the discrete
gradient of selection G shown in inset. Whenever risk is high, stochastic effects turn collective
cooperation into a pervasive behavior, rendering cooperation viable and favoring the overcome of
coordination barriers, irrespective of the initial configuration (Z = 50, N = 6, M = 3, c = 0.1,
µ = 0.005).

1140004-11



F. C. Santos et al.

(a)

(b) (c)

Fig. 5. Population size dependence for N = 6 = 2M. (a) Roots of the gradient of selection
for different values of the cost-to-risk ratio and population sizes. (b) Fixation probabilities for
different values of the population size for a fixed cost-to-risk ratio (γ = 0.1) as a function of the
number of Cs (β = 5.0). (c) We introduce a small mutation (µ = 0.005) to show the stationary
distribution for the same game parameters in (b) and different population sizes. As the population
size increases, the system spends increasingly less time close to the monomorphic configurations.
The three curves correspond, from top to bottom to, Z = 150, 100, 50.

coordination barrier associated with xL, rendering such coordination barrier (xL)

irrelevant and turning cooperation into the prevalent strategy. On the other hand,

the existence of a stable fixed root of G is triggered in P with a maximum at this

position, unlike what one observes with φk.

Yet, until now the effect of the population size on the game itself remains

uncharted. In Fig. 5(a), we plot the roots of G(k) as a function of the cost-to-

risk ratio for different values of population size Z. For large Z the general picture

described for infinite populations remains qualitatively valid. As before, two interior

roots of G(k) characterize the evolutionary dynamics of the population. However,
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Fig. 6. Group size dependence for M = 3. (a) Roots of the gradient of selection for different
values of the cost-to-risk ratio and group sizes. (b) Stationary distribution for different group sizes
and c/r = 0.15. Cooperation will be maximized in small groups, where the risk is high and goal
achievement involves stringent requirements.

the position of the interior fixed points can be profoundly altered by the population

size. The range of k/Z in which Cs are advantageous is also strongly reduced for

small populations. Moreover, while x̄ (see Sec. 2) remains almost unchanged as we

move from infinite to finite populations, the critical γ̄ is drastically reduced for

small populations that, in turn, reduces the interval of cost-to-risk ratios for which

a defection dominance dilemma is replaced by a combination of coordination and

co-existence dilemmas. In other words, the smaller the population size the higher

the perception of risk needed to achieve cooperation. The population size also plays

an important role on the shape of the stationary distribution: In Fig. 5(c) we plot

the stationary distribution for r = 1 and c = 0.1, for different population sizes.

Whenever the population size increases, a higher number of errors is needed to

escape the equilibrium between Cs and Ds, leading the system to spend a higher

fraction of time on the internal stable root of G(k).

Naturally, the assessment of the effects of the population size should be carried

out in combination with the number of parties involved in collective-risk dilem-

mas, i.e. the group size. Whether game participants are world citizens, world

regions or country leaders, it remains unclear at which scale global warming

should be tackled.40,61 Indeed, besides perception of risk, group size may play

a pivotal role when maximizing the likelihood of reaching overall cooperation.

As shown by the stationary distributions in Fig. 6, cooperation is better dealt

with within small groups, with the proviso that for higher M/N values, coordina-

tion is harder to attain, as shown by the position of the roots of G (see inset of

Fig. 6).
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5. Conclusions

Dealing with environmental sustainability cannot overlook the uncertainty associ-

ated with a collective investment. Here we propose a simple form to describe this

problem and study its impact in behavioral evolution, obtaining an unambiguous

agreement with recent experiments,9 together with several concrete predictions.

We do so in the framework of non-cooperative N -person evolutionary game the-

ory, an unusual mathematical tool within the framework of modeling of political

decision-making. We propose a new N -person game where the risk of collective

failure is explicitly introduced by means of a simple collective dilemma. Moreover,

instead of resorting to complex and rational planning or rules, individuals revise

their behavior by peer-influence, creating a complex dynamics akin to many evolu-

tionary systems. This framework allowed us to address the impact of risk in several

configurations, from large to small groups, from deterministic towards stochastic

behavioral dynamics.

Overall, we have shown how the emerging behavioral dynamics depends heavily

on the perception of risk. The impact of risk is enhanced in the presence of small

behavioral mutations and errors and whenever global coordination is attempted in a

majority of small groups under stringent requirements to meet co-active goals. This

result calls for a reassessment of policies towards the promotion of public endeav-

ors: Instead of world summits, decentralized agreements between smaller groups

(small N), possibly focused on region-specific issues, where risk is high and goal

achievement involves tough requirements (large relative M),62 are prone to signifi-

cantly raise the probability of success in coordinating to tame the planet’s climate.

Our model provides a “bottom-up” approach to the problem, in which collective

cooperation is easier to achieve in a distributed way, eventually involving regions,

cities, NGOs and, ultimately, all citizens. Moreover, by promoting regional or secto-

rial agreements, we are opening the door to the diversity of economic and political

structure of all parties, which, as showed before32,63 can be beneficial to cooperation.

Naturally, we are aware of the many limitations of a bare model such as ours,

in which the complexity of human interactions has been overlooked. From higher

levels of information, to non-binary investments, additional layers of realism can

be introduced in the model. Moreover, from a mathematical perspective, several

extensions and complex aspects common to human socio-economical systems could

be further explored.64–67 On the other hand, the simplicity of the dilemma intro-

duced here, makes it generally applicable to other problems of collective coopera-

tive action, which will emerge when the risks for the community are high, some-

thing that repeatedly happened throughout human history,68,69 from ancient group

hunting to voluntary adoption of public health measures.59,70,71 Similarly, other

cooperation mechanisms,10,13,15,18,22–26 known to encourage collective action, may

further enlarge the window of opportunity for cooperation to thrive. The existence

of collective risks is pervasive in nature, in particular in many dilemmas faced by

humans. Hence, we believe the impact of these results go well beyond decision-

making towards global warming.
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