Evolutionary Dynamics of Collective Action in N -person Stag-Hunt Dilemmas

Jorge M. Pacheco ${ }^{1}$, Francisco C. Santos ${ }^{2}$, Max Souza ${ }^{3}$, Brian Skyrms ${ }^{4}$
${ }^{1}$ ATP-group, CFTC \& Departamento de Fisica da Universidade de Lisboa, Complexo Interdisciplinar, Av Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal.
${ }^{2}$ IRIDIA/CoDE, Université Libre de Bruxelles, Av. F. Roosevelt 50, CP 194/6, Brussels, Belgium,
${ }^{3}$ Departamento de Matemática Aplicada, Universidade Federal Fluminense, R. Mário Santos Braga, s/n, Niterói-RJ, 24020-140, Brasil,
${ }^{4}$ Logic and Philosophy of Science, School of Social Sciences, University of California at Irvine, Irvine, CA 92612, U.S.A.

ELECTRONIC SUPPLEMENTARY MATERIAL

1. N-PERSON STAG-HUNT IN INFINITE POPULATIONS

The evolutionary dynamics of Cs and Ds in the N-person Stag-Hunt game with a minimum threshold M can be studied by analyzing the sign of $f_{C}-f_{D}$ (see Appendix 1). Hence, using the same conventions introduced in the Appendix 1, we shall study in detail the following polynomial

$$
Q(x)=f_{C}-f_{D}=c\left(\frac{F}{N}-1\right)-c \frac{F}{N}(1-x)^{N-M} \sum_{k=0}^{M-1}\binom{N-1}{k}\left(1-M \delta_{k, M-1}\right) x^{k}(1-x)^{M-1-k}
$$

The roots of $Q(x)$ provide the interior fixed points of the replicator dynamics equation. In what follows, we shall assume that $N \geq 2$. For most of the time, we shall also assume that $1<M<N$. The degenerate cases will be dealt with at the end. Let us start by recasting $Q(x)$ in a more amenable form. To this end, let $F / N=\lambda$; we may rewrite

$$
Q(x)=-c\left\{1-\lambda+\lambda\left[\sum_{k=0}^{M-1}\binom{N-1}{k} x^{k}(1-x)^{N-1-k}-M\binom{N-1}{M-1} x^{M-1}(1-x)^{N-M}\right]\right\} .
$$

Since

$$
1=1^{N-1}=(x+1-x)^{N-1}=\sum_{k=0}^{N-1}\binom{N-1}{k} x^{k}(1-x)^{N-1-k},
$$

we have that

$$
Q(x)=-c\left\{1-\lambda\left[\sum_{k=M}^{N-1}\binom{N-1}{k} x^{k}(1-x)^{N-1-k}+M\binom{N-1}{M-1} x^{M-1}(1-x)^{N-M}\right]\right\} .
$$

Let

$$
\begin{align*}
R(x) & =\sum_{k=M}^{N-1}\binom{N-1}{k} x^{k}(1-x)^{N-1-k}+M\binom{N-1}{M-1} x^{M-1}(1-x)^{N-M} \\
& =x^{M-1}\left(\sum_{k=M}^{N-1}\binom{N-1}{k} x^{k-M+1}(1-x)^{N-1-k}+M\binom{N-1}{M-1}(1-x)^{N-M}\right) \tag{1}
\end{align*}
$$

Then we have that

$$
Q(x)=-c(1-\lambda R(x))
$$

Hence, the roots of $Q(x)$ are given by the intersection(s) of the line $1 / \lambda \equiv N / F$ with the polynomial $R(x)$. It turns out that Figure 1-a provides examples of $N / R(x)$, such that intersections with the line F identify the interior fixed points. We shall show below various properties of $R(x)$ that capture the possibilities already illustrated in Figure 1, which we now prove are quite general.

Lemma 1

1. $R(0)=0$;
2. $R(1)=1$;
3. $R(x)>0, x \in(0,1)$;
4. Let $x^{*}=\frac{M}{N}$. Then we have that $R^{\prime}(x)>0$ for $0 \leq x<x^{*}$, and $R^{\prime}(x)<0$ for $x^{*}<x<1$. In particular, $R^{\prime}\left(x^{*}\right)=0$ and $x *$ is a point of maximum of R with $R\left(x^{*}\right)>1$;

Before we prove Lemma 1, let us use it to prove the main result :

Proposition 1

Let $\lambda^{*}=\frac{1}{R\left(x^{*}\right)}$. We have that $0<\lambda^{*}<1$. Moreover, $Q(x)$ satisfies:
a. For $\lambda<\lambda *$ there are no roots in $(0,1)$;
b. For $\lambda=\lambda$ * there exists one double root at $x=x^{*}$;
c. For $\lambda^{*}<\lambda \leq 1$ there are two simple roots $\left\{x_{1}, x_{2}\right\}$, with $x_{1} \in\left(0, x^{*}\right)$ and $x_{2} \in\left(x^{*}, 1\right]$;
d. For $\lambda>1$ there is a single root in $\left(0, x^{*}\right)$.

Proof of Proposition 1

From Lemma 1 we have that $R\left(x^{*}\right)>1$, thus $0<\lambda^{*}<1$. We then observe that
i. For $\lambda<\lambda^{*}$, we have that $\lambda R(x)<\lambda * R\left(x^{*}\right)=1$. Thus $Q(x)<-c(1-1)=0$
ii. For $\lambda=\lambda^{*}$, we compute $Q\left(x^{*}\right)=-c\left(1-\lambda * R\left(x^{*}\right)\right)=-c(1-1)=0$.

Also, $Q^{\prime}\left(x^{*}\right)=c R^{\prime}\left(x^{*}\right)=0$ and an easy calculation shows that $R^{\prime \prime}\left(x^{*}\right) \neq 0$. Hence, $x *$ is a double root.
iii. For $\lambda^{*}<\lambda \leq 1$, we first observe that we have $Q(0)=-c, Q(1)=-c(1-\lambda)<0$. Since $1-\lambda R\left(x^{*}\right)<0$, we have $Q\left(x^{*}\right)>0$. By the Intermediate Value Theorem, $Q(x)$ will have at least two roots: one in $\left(0, x^{*}\right)$ and another at $\left(x^{*}, 1\right]$. Moreover, $Q^{\prime}(x)=c R^{\prime}(x)$. Thus $Q(x)$ is monotonically increasing in $\left(0, x^{*}\right)$ and monotonically decreasing in $\left(x^{*}, 0\right)$. Thus these roots are unique.
iv. For $\lambda>\lambda^{*}$, we now have $Q(1)>0$, and thus there is no root in $\left(x^{*}, 1\right]$. However, the argument for $\left(0, x^{*}\right)$ remains unchanged, and we have the result. Let us now prove Lemma 1.

Proof of Lemma 1

First, notice that (1), (2) and (3) are straightforward from the form of the polynomial $R(x)$. cf. (Eq. 1). To prove (4), we let $k=N-1-k^{\prime}$, and given that

$$
\binom{N-1}{N-1-k^{\prime}}=\binom{N-1}{k^{\prime}},
$$

we may write

$$
\begin{aligned}
R(x) & =x^{M-1}\left[\sum_{k^{\prime}=0}^{N-M-1}\binom{N-1}{k^{\prime}} x^{N-M-k^{\prime}}(1-x)^{k^{\prime}}+M\binom{N-1}{M-1}(1-x)^{N-M}\right] \\
& =x^{N-1}\left[\sum_{k^{\prime}=0}^{N-M-1}\binom{N-1}{k^{\prime}}\left(\frac{1-x}{x}\right)^{k^{\prime}}+M\binom{N-1}{M-1}\left(\frac{1-x}{x}\right)^{N-M}\right] .
\end{aligned}
$$

Let $z=\frac{1-x}{x}$. Then, we have that $z^{\prime}=-\frac{1}{x^{2}}=-\frac{1}{x}(z+1)$.
Thus

$$
R(x)=x^{N-1} p(z), \quad p(z)=\sum_{i=0}^{N-M} a_{i} z^{i},
$$

where

$$
a_{i}=\binom{N-1}{i}, 0 \leq i<N-M \text { and } a_{N-M}=M\binom{N-1}{M-1}
$$

We now compute R^{\prime} :

$$
\begin{aligned}
R^{\prime}(x) & =(N-1) x^{N-2} p(z)-x^{N-2} p^{\prime}(z)(z+1) \\
& =x^{N-2}\left[(N-1) p(z)-p^{\prime}(z)(z+1)\right] \\
& =x^{N-2}\left[(N-1) \sum_{i=0}^{N-M} a_{i} z^{i}-\sum_{i=1}^{N-M} i a_{i} z^{i}-\sum_{i=1}^{N-M} i a_{i} z^{i-1}\right] \\
& =x^{N-2}\left[(N-1) a_{0}-a_{1}+(N-1) \sum_{i=1}^{N-M} a_{i} z^{i}-\sum_{i=1}^{N-M} a_{i} z^{i}-\sum_{i=2}^{N-M} i a_{i} z^{i-1}\right]
\end{aligned}
$$

Since $a_{0}=1$ and $a_{1}=N-1$, and writing $i=i+1$ in the last sum, we find that

$$
R^{\prime}(x)=x^{N-2}\left[(N-1) \sum_{i=1}^{N-M} a_{i} z^{i}-\sum_{i=1}^{N-M} i a_{i} z^{i}-\sum_{i=2}^{N-M-1}(i+1) a_{i+1} z^{i}\right]=x^{N-2} S(z)
$$

where

$$
S(z)=\sum_{i=1}^{N-M-2}\left[(N-1-i) a_{i}-(i+1) a_{i+1}\right] z^{i}+\left[M a_{N-M-1}-(N-M) a_{N-M}\right] z^{N-M-1}+(M-1) a_{N-M} z^{N-M}
$$

On noting that

$$
\begin{equation*}
\binom{L}{j+1}=\frac{L-j}{j+1}\binom{L}{j} \tag{2}
\end{equation*}
$$

we obtain, for $1 \leq i<N-N$, that

$$
a_{i+1}=\frac{N-1-i}{i+1} a_{i} .
$$

Hence,

$$
\sum_{i=1}^{N-M-2}\left[(N-1-i) a_{i}-(i+1) a_{i+1}\right] z^{i}=0
$$

Also, we have

$$
M a_{N-M-1}-(N-M) a_{N-M}=M\binom{N-1}{M}-(N-M)\binom{N-1}{M-1}
$$

which on calling upon (Eq. 2) yields

$$
\begin{aligned}
M\binom{N-1}{M}-(N-M)\binom{N-1}{M-1} & =(N-M)\binom{N-1}{M}-(N-M)\binom{N-1}{M-1} \\
& =-(N-M)(M-1)\binom{N-1}{M-1} .
\end{aligned}
$$

Thus, we can write

$$
S(z)=z^{N-M-1}\binom{N-1}{M-1}[-(N-M)(M-1)+M(M-1) z]
$$

which yields

$$
\begin{equation*}
R^{\prime}(x)=x^{M-1}(1-x)^{N-M-1}\binom{N-1}{M-1}[-(N-M)(M-1)+M(M-1) z] \tag{3}
\end{equation*}
$$

For $x \in(0,1)$, (Eq. 3) vanishes at

$$
z^{*}=\frac{N-M}{M}=\frac{1-M / N}{M / N}
$$

Since $z=\frac{1-x}{x}, x^{*}=\frac{M}{N}$.
Also, from (Eq. 3), we see that
i. For $0<z<z^{*}, R^{\prime}(x)<0$;
ii. For $z>z^{*}, R^{\prime}(x)>0$.

Moreover, $z=\frac{1-x}{x}$ is monotonically decreasing and maps $(0,1)$ into $(0, \infty)$ (thus reversing the orientation), which yields that $0<z<z^{*}$ corresponds to $x^{*}<x<1$ and $z>z^{*}$ corresponds to $0<x<x *$. This proves (4).

Next we consider the degenerate cases not included in the proofs above.

Degenerate cases

For the cases, $M=1$ and $M=N$ the above analysis does not hold, but they can be easily analyzed directly. Since

$$
p(z)=\sum_{i=0}^{N-M}\binom{N-1}{i} z^{i}+(M-1)\binom{N-1}{M-1} z^{N-M}
$$

we have for $M=1$ that

$$
R(x)=x^{N-1}(z+1)^{N-1}=1
$$

Thus $Q(x)=-c(1-\lambda)$, with $\lambda^{*}=1$ and then $Q(x) \equiv 0$.

For $M=N$, we have that

$$
R(x)=N x^{N-1} \quad \text { and } \quad Q(x)=-c\left(1-\lambda N x^{N-1}\right)
$$

Thus Q will have a single root for $\lambda>\lambda^{*}=1 / N$.

In any case, for $1 \leq M \leq N$, we have that

$$
R\left(x^{*}\right)=\left(\frac{M}{N}\right)^{N-1}\left[\sum_{i=0}^{N-M}\binom{N-1}{i}\left(\frac{N-M}{M}\right)^{i}+(M-1)\binom{N-1}{M-1}\left(\frac{N-M}{M}\right)^{N-M}\right]
$$

Recalling that $\lambda^{*}=\frac{1}{R\left(x^{*}\right)}$ and that $\lambda=\frac{F}{N}$, we may write the critical F, F^{*}, as

$$
F^{*}=N^{N}\left[\sum_{i=0}^{N-M}\binom{N-1}{i}(N-M)^{i} M^{N-1-i}+(M-1)\binom{N-1}{M-1}(N-M)^{N-M} M^{-1}\right]^{-1}
$$

2. N-PERSON PRISONER'S DILEMMA IN FINITE POPULATIONS

Here we detail the derivation of $f_{C}(k)-f_{D}(k)$ for the N-person Prisoner's Dilemma in finite, well-mixed populations. We may write

$$
\begin{aligned}
f_{C}(k)-f_{D}(k) & =\binom{Z-1}{N-1} \sum_{j=0}^{-1}\left\{\binom{k-1}{j}\binom{Z-k}{N-j-1} \Pi_{C}(j+1)-\binom{k}{j}\binom{Z-1-k}{N-1-j} \Pi_{D}(j)\right\}= \\
& =c\binom{Z-1}{N-1} \sum_{j=0}^{-1}\left\{\binom{k-1}{j}\binom{Z-k}{N-j-1} \frac{F}{N}(j+1)-\binom{k}{j}\binom{Z-1-k}{N-1-j} \frac{F}{N} j\right\}
\end{aligned}
$$

Introducing the notation $\tilde{x}=x-1$ we may now write

$$
\begin{aligned}
f_{C}(k)-f_{D}(k) & =c\binom{\tilde{Z}}{\tilde{N}}^{-1} \sum_{j=0}^{\tilde{N}}\left\{\binom{\tilde{k}}{j}\binom{Z-k}{\widetilde{N}-j} \frac{F}{N}(j+1)-\binom{k}{j}\binom{\widetilde{Z}-k}{\widetilde{N}-j} \frac{F}{N} j\right\}= \\
& =c\left(\frac{F}{N}-1\right)+\frac{F}{N}\binom{Z-1}{N-1} \sum_{j=0}^{-1} j\left\{\binom{\widetilde{k}}{j}\binom{Z-k}{\widetilde{N}-j}-\binom{k}{j}\binom{\widetilde{Z}-k}{\widetilde{N}-j}\right\}
\end{aligned}
$$

We may readily simplify the complicated sum obtaining the desired result:

$$
\begin{aligned}
f_{C}(k)-f_{D}(k) & =c\left[\left(\frac{F}{N}-1\right)+\frac{F}{N}\left(\frac{\tilde{N}}{\tilde{Z}}\right)(\tilde{k}-k)\right]=c\left[\frac{F}{N}\left(1-\frac{\tilde{N}}{\tilde{Z}}\right)-1\right] \\
& =c\left[\frac{F}{N}\left(1-\frac{N-1}{Z-1}\right)-1\right] .
\end{aligned}
$$

