
 

Evolutionary Dynamics of Collective Action  
in N-person Stag-Hunt Dilemmas 

 

 

Jorge M. Pacheco
1
, Francisco C. Santos

2
, Max Souza

3
, Brian Skyrms

4
 

 

1
 ATP-group, CFTC & Departamento de Fisica da Universidade de Lisboa, Complexo 

Interdisciplinar, Av Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal.  

2
 IRIDIA/CoDE, Université Libre de Bruxelles, Av. F. Roosevelt 50, CP 194/6, Brussels, 

Belgium,  

3
  
Departamento de Matemática Aplicada, Universidade Federal Fluminense, R. Mário Santos 

Braga, s/n, Niterói-RJ, 24020-140, Brasil,  

4
  
Logic and Philosophy of Science, School of Social Sciences, University of California at 

Irvine, Irvine, CA 92612, U.S.A. 

 

 

 

 

 

ELECTRONIC SUPPLEMENTARY MATERIAL 

 

 

 



 2 

 1. N-PERSON STAG-HUNT IN INFINITE POPULATIONS 

The evolutionary dynamics of Cs and Ds in the N-person Stag-Hunt game with a 

minimum threshold M can be studied by analyzing the sign of DC ff !  (see 

Appendix 1). Hence, using the same conventions introduced in the Appendix 1, we 

shall study in detail the following polynomial 
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The roots of )(xQ  provide the interior fixed points of the replicator dynamics 

equation. In what follows, we shall assume that 2!N . For most of the time, we shall 

also assume that 1< M < N . The degenerate cases will be dealt with at the end.  Let 

us start by recasting )(xQ  in a more amenable form. To this end, let F
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Then we have that 
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                           Q(x) = "c 1" #R(x)( ) 

Hence, the roots of )(xQ are given by the intersection(s) of the line FN //1 !" with 

the polynomial )(xR . It turns out that Figure 1-a provides examples of )(/ xRN , such 

that intersections with the lineF identify the interior fixed points. We shall show 

below various properties of R(x) that capture the possibilities already illustrated in 

Figure 1, which we now prove are quite general.  

Lemma 1 

1. R(0) = 0 ; 

2. R(1) =1; 

3. R(x) > 0, x " 0,1( ) ; 

4. Let x* =
M

N
. Then we have that R'(x) > 0  for 0 " x < x *, and R'(x) < 0  for 

x* < x <1. In particular, 0*)(' =xR  and x * is a point of maximum of R with 

1*)( >xR ; 

Before we prove Lemma 1, let us use it to prove the main result : 

Proposition 1 

Let 
*)(

1
*

xR
=! . We have that 1*0 << ! . Moreover,Q(x)  satisfies: 

a. For " < " * there are no roots in )1,0( ; 

b. For " = " * there exists one double root at x = x *; 

c. For 1* !< ""  there are two simple roots {x1,x2}, with x1 " (0,x*) 

and x2 " (x*,1]  ; 

d. For " >1 there is a single root in *),0( x . 

Proof of Proposition 1 

From Lemma 1 we have that 1*)( >xR , thus 1*0 << ! . We then observe that  
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i. For " < " *, we have that "R(x) < " *R(x*) =1. Thus Q(x) < "c 1"1( ) = 0  

ii. For " = " *, we compute Q(x*) = "c 1" # *R(x*)( ) = "c 1"1( ) = 0.   

Also, Q'(x*) = cR'(x*) = 0 and an easy calculation shows that R' '(x*) " 0. 

Hence, x * is a double root. 

iii. For "* < " #1, we first observe that we have Q(0) = "c , Q(1) = "c 1" #( ) < 0 . 

Since 1" #R(x*) < 0, we have Q(x*) > 0 . By the Intermediate Value Theorem, 

Q(x)  will have at least two roots: one in (0,x*)  and another at x *( ,1]. 

Moreover, Q'(x) = cR'(x) . Thus Q(x)  is monotonically increasing in (0,x*)  

and monotonically decreasing in (x*,0). Thus these roots are unique. 

iv. For " > "*, we now have Q(1) > 0, and thus there is no root in x *( ,1]. 

However, the argument for (0,x*)  remains unchanged, and we have the result.  

Let us now prove Lemma 1.  

Proof of Lemma 1 

First, notice that (1), (2) and (3) are straightforward from the form of the polynomial 

R(x). cf. (Eq. 1). To prove (4), we let k = N "1" k', and given that  
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. Then, we have that z'= "
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Thus  
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R(x) = x
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Since a0 =1 and a1 = N "1, and writing i = i +1 in the last sum, we find that 
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Also, we have  
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Thus, we can write 
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For x " (0,1), (Eq. 3) vanishes at 
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x
, x* =

M
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Also, from (Eq. 3), we see that 

i. For 0 < z < z*, R'(x) < 0 ; 

ii. For z > z*, R'(x) > 0. 

Moreover, z =
1" x

x
 is monotonically decreasing and maps (0,1) into (0,")  (thus 

reversing the orientation), which yields that 0 < z < z * corresponds to x* < x <1 and 

z > z * corresponds to 0 < x < x *. This proves (4). 

Next we consider the degenerate cases not included in the proofs above.  
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Degenerate cases 

For the cases, M =1 and M = N  the above analysis does not hold, but they can be 

easily analyzed directly. Since 
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we have for M =1 that 

R(x) = xN"1 z +1( )
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Thus Q(x) = "c 1" #( ) , with "* =1 and then Q(x) " 0. 

For M = N , we have that  
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2. N-PERSON PRISONER’S DILEMMA IN FINITE POPULATIONS 

Here we detail the derivation of )()( kfkf DC !  for the N-person Prisoner’s Dilemma in 

finite, well-mixed populations. We may write  
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Introducing the notation 1
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We may readily simplify the complicated sum obtaining the desired result:  
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