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1. N-PERSON STAG-HUNT IN INFINITE POPULATIONS

The evolutionary dynamics of Cs and Ds in the N-person Stag-Hunt game with a
minimum threshold M can be studied by analyzing the sign of f.-f, (see
Appendix 1). Hence, using the same conventions introduced in the Appendix 1, we

shall study in detail the following polynomial

M_l(N—l M-1-k
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The roots of Q(x) provide the interior fixed points of the replicator dynamics

O(x)=fc - fp = c(%—l) —c%(l— XN M )(1— M6y 1) x*(1-x)

equation. In what follows, we shall assume that N = 2. For most of the time, we shall

also assume that 1< M < N. The degenerate cases will be dealt with at the end. Let

us start by recasting O(x) in a more amenable form. To this end, let % =A; we

}.

may rewrite
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O(x) = —c{l— A+ A

Since
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we have that
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Then we have that



O(x) = —¢(1- AR(x))
Hence, the roots of Q(x)are given by the intersection(s) of the linel/A = N/ F with
the polynomial R(x). It turns out that Figure 1-a provides examples of N/ R(x), such

that intersections with the line /" identify the interior fixed points. We shall show
below various properties of R(x) that capture the possibilities already illustrated in

Figure 1, which we now prove are quite general.

Lemma 1
1. R)=0;,
2. RD)=1;

3. R(x)>0, x€(0,1);
M
4. Let x*=ﬁ. Then we have that R'(x)>0 for Osx<x* and R'(x)<0 for

x* < x <1. In particular, R'(x*) =0 and x* is a point of maximum of R with
R(x*)>1;
Before we prove Lemma 1, let us use it to prove the main result :

Proposition 1

Let A* =

RGN We have that 0 < A* < 1. Moreover, Q(x) satisfies:
X

a. For A< A¥* there are no roots in(0,1) ;

b. For A= A* there exists one double root at x = x *;

c. For A*< A <1 there are two simple roots {x{,x,}, with x; € (0,x¥)
and x, € (x*,1] ;
d. For A>1 there is a single root in (0,x*).

Proof of Proposition 1

From Lemma 1 we have that R(x*) > 1, thus 0 < A* < 1. We then observe that



i. For A<A*, wehave that AR(x) < A*R(x*)=1. Thus Q(x) <-c(1-1)=0
ii. For A=A%*, we compute Q(x*) = —c(l -A* R(x*)) = —c(l - 1) =0.
Also, Q'(x*)=cR'(x*)=0 and an easy calculation shows that R''(x*)=0.
Hence, x * is a double root.
iii. For A*< A =<1, we first observe that we have Q(0) =-c, Q(1) = -c(1- 1) <O0.
Since 1- AR(x*) <0, we have Q(x*) > 0. By the Intermediate Value Theorem,
QO(x) will have at least two roots: one in (0,x*) and another at (x *,1].
Moreover, Q'(x)=cR'(x). Thus Q(x) is monotonically increasing in (0,x*)
and monotonically decreasing in (x*,0). Thus these roots are unique.
iv. For A>A* we now have Q(1)>0, and thus there is no root in (x*1].
However, the argument for (0,x*) remains unchanged, and we have the result.
Let us now prove Lemma 1.
Proof of Lemma 1
First, notice that (1), (2) and (3) are straightforward from the form of the polynomial

R(x). cf. (Eq. 1). To prove (4), we let k = N -1-k', and given that

L)

we may write

Let z =1—_x' Then, we have that z'=—iz= —l(z+1).
X X X

Thus



N-M
Rx)=x""p2). p@)= Daz,
i=0

where

N-1 . N-1
a; = ; ,0<i<N-Mand ay_, =M M1

We now compute R':

R(x) =(N-1)x""2p(z) - x"?p'(2)(z +1)
= x’”[( ~1)p(x) - P2}z +1)]

N-M
=xN2(N Eaz Elaz - Eia,-z’_

N-M  N-M N-M
=M 2|(N=ag—ay+(N=-1) Y a;z' - Yiaz - Ela,z’ !
i=1 i=1 i=2

Since ap =1 and a; = N -1, and writing i =i + 1 in the last sum, we find that

N-M  N-M  N-M-1 .
R(x)=x"2|(N=1) Yaz' - Yiaz - W (i+1)a,2 |=x"72S(z)
i=1 i=1 i=2
where
N-M -

S(2) = E (N 1- l a,— l+1) ,+1]zi+[MaN_M_1 —(N—M)a]\,_M]zN"M"1 +(M—1)aN_MzN"M

i=1

On noting that

L L-i(L
(. )= ' J(') (2)
j+1) j+1\j
we obtain, for 1 <i <N - N, that
N-1-i
i1 = a;.
i+1

Hence,

N-

ZM]_f(N_l_i)Clt _(i+1h[+l]zi =0 .
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Also, we have
N-1 N-1
May_pr—(N=M)ay_p =M -(N-M) :

which on calling upon (Eq. 2) yields
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Thus, we can write

N-1

S(2)=z" _(M—l

)[—(N - M)(M -1)+ M(M -1)z]

which yields

N -1

R'(x)=xM71(1- x)N‘M‘l( )[—(N— M) (M-1)+M(M-1)z] (3

For x € (0,1), (Eq. 3) vanishes at

_N-M _1-M/N

Z*
M M/N
Since z =1—_x’ x*=M.
X N

Also, from (Eq. 3), we see that

i. ForO<z<z*, R'(x)<O0;

ii. For z>7z*, R'(x)>0.
Moreover, z= s monotonically decreasing and maps (0,1) into (0,) (thus

X
reversing the orientation), which yields that 0 < z <z * corresponds to x* < x <1 and
z> z* corresponds to 0 < x < x *. This proves (4).

Next we consider the degenerate cases not included in the proofs above.



Degenerate cases
For the cases, M =1 and M =N the above analysis does not hold, but they can be

easily analyzed directly. Since

A (N -1Y , N -1
p(z) = 2 ( ; )Z’ +(M—1{M_1)ZN_M

we have for M =1 that
R(x)=x"z+ 1)V o1
Thus Q(x) =-c(1-A), with A* =1 and then Q(x) =0.
For M = N, we have that
R(x)=Nx""" and  Q(x)=—c(1- ANx"")
Thus Q will have a single root for A > A*=1/N .

In any case, for | = M < N, we have that

R = (%)N_l Dl (N i‘l)(N M )i ; (M—l)( v ‘_i)(%)w |

i=0

Recalling that A* =

and that A = —, we may write the critical F, F*, as
R(x*) N
-1

F*=NV
M-1

P R A

2. N-PERSON PRISONER’S DILEMMA IN FINITE POPULATIONS

Here we detail the derivation of f,.(k)- f, (k) for the N-person Prisoner’s Dilemma in

finite, well-mixed populations. We may write



L (%) TN ((k-1\ Z-k N LA E AR AW
fc(>—fD()-(N_l) > {( ) )(N—j—l) U+ )—(‘)(N_l_j) D(f)}-
Z-W\"¥((k=-1\( Z-k \F kKN(Z-1-k\F

=C(N—1) /ZO{( ; )(N—j—l)N(]+1)_(j)(N—1—j)Nj}

Introducing the notation X = x -1 we may now write

~

~, -1 <

S0 b
S N

N-j
We may readily simplify the complicated sum obtaining the desired result:

F F(N) - F(, N

felk)= £ (k) =¢ Z-k

N=-j

felk) = fp(k) =c

=c




