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ABSTRACT

Dynamic features of the recently introduced extremal optimization heuristic are analyzed. Numerical studies of this evolutionary search

heuristic show that it performs optimally at a transition between a jammed and an diffusive state. Using a simple, annealed model,

some of the key features of extremal optimization are explained. In particular, it is verified that the dynamics of local search possesses a

generic critical point under the variation of its sole parameter, separating phases of too greedy (non-ergodic, jammed) and too random

(ergodic, diffusive) exploration. Analytic comparison with other local search methods, such as a Metropolis algorithm, within this

model suggests that the existence of the critical point is the essential distinction leading to the optimal performance of the extremal

optimization heuristic.
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1 INTRODUCTION

We have introduced a new heuristic, Extremal Optimization (EO),
in Refs. [1, 2] and demonstrated its efficiency on a variety of com-
binatorial [3, 4] and physical optimization problems [2, 5, 6].
Comparative studies with simulated annealing (SA) [1, 7] and
other Metropolis based heuristics [8, 9, 10, 11] have established
EO as a successful alternative for the study of NP-hard problems
and its use has spread throughout the sciences. EO has found a
large number of applications by other researchers, e.g. for poly-
mer confirmation studies [12], pattern recognition [13, 14, 15],
signal filtering [16, 17], transport problems [18], molecular dy-
namics simulations [19], artificial intelligence [20, 21, 22], mod-
eling of social networks [23, 24, 25], and spin glasses [8, 26].

Here, we will apply EO to a spin glass model on a 3-regular
random graph to elucidate some of its dynamic features as an evo-
lutionary algorithm. These properties prove quite generic, leaving
local search with EO virtually free of tunable parameters. We dis-
cuss the theoretical underpinning of its behavior, which is remi-
niscent of Kauffman’s suggestion [27] that evolution progresses

most rapidly near the “edge of chaos,” in this case characterized
by a critical transition between a diffusive and a jammed phase.

2 SPIN GLASS GROUND STATES WITH EXTREMAL
OPTIMIZATION

Disordered spin systems on sparse random graphs have been in-
vestigated as mean-field models of spin glasses or combinatorial
optimization problems [28], since variables are long-range con-
nected yet have a small number of neighbors. Particularly sim-
ple are α-regular random graphs, where each vertex possesses a
fixed number α of bonds to randomly selected other vertices. One
can assign a spin variable xi ∈ {−1, +1} to each vertex, and
random couplings Ji, j , either Gaussian or ±1, to existing bonds
between neighboring vertices i and j , leading to competing con-
straints and “frustration” [29]. We want to minimize the energy of
the system, which is the difference between violated bonds and
satisfied bonds,

H = −
∑

{bonds}

Ji, j xi x j . (1)
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EO performs a local search on an existing configuration of n
variables by changing preferentially those of poor local arrange-
ment. For example, in case of the spin glass model in Eq. (1),
λi = xi

∑
j Ji, j x j assesses the local “fitness” of variable xi ,

where H = −
∑

i λi represents the overall energy (or cost)
to be minimized. EO simply ranks variables,

λ5(1) ≤ λ5(2) ≤ ∙ ∙ ∙ ≤ λ5(n), (2)

where 5(k) = i is the index for the kth-ranked variable xi .
Basic EO always selects the (extremal) lowest rank, k = 1, for an
update. Instead, τ -EO selects the kth-ranked variable according
to a scale-free distribution

P(k) ∝ k−τ . (3)

The selected variable is updated unconditionally , and its fitness
and that of its neighboring variables are reevaluated. This update
is repeated as long as desired, where the unconditional update
ensures significant fluctuations with sufficient incentive to return
to near-optimal solutions due to selection against variables with
poor fitness, for the right choice of τ . Clearly, for finite τ , EO never
“freezes” into a single configuration; it returns simply an extensive
list of the best of the configurations visited (or their cost) [4].

For τ = 0, this “τ -EO” algorithm is simply a random
walk through configuration space. Conversely, for τ → ∞,
the process approaches a deterministic local search, only updat-
ing the lowest-ranked variable, and is likely to reach a dead end.
However, for finite values of τ the choice of a scale-free distri-
bution for P(k) in Eq. (3) ensures that no rank gets excluded
from further evolution, while maintaining a clear bias against
variables with bad fitness. As Section 3 will demonstrate, fixing
τ − 1 ∼ 1/ ln(n) provides a simple, parameter-free strategy,
activating avalanches of adaptation [1, 2].

3 EO DYNAMICS

Understanding the Dynamics of EO has proven a useful endeavor
[30, 11]. Such insights have lead to the implementation of τ -EO
described in Section 2. Treating τ -EO as an evolutionary pro-
cess allows us to elucidate its capabilities and to make further
refinements. Using simulations, we have analyzed the dynamic
pattern of the τ -EO heuristic. We have implemented τ -EO for
the spin glass with Gaussian bonds on a set of instances of 3-
regular graphs of sizes n = 256, 512, and 1024, and run each
instance for Trun = 20n3 update steps. As a function of τ , we
measured the ensemble average of the lowest-found energy den-
sity 〈e〉 = 〈H〉/n, the first-return time distribution R (1t) of

update activity to any specific spin, and auto-correlations C(t)
between two configurations separated by a time t in a single run.
In Figure 1, we show the plot of 〈e〉, which confirms the pic-
ture found numerically [2, 3] and theoretically [30] for τ−EO.
The transition at τ = 1 we will investigate further below and
theoretically in Section 5. The worsening behavior for large τ

has been shown theoretically in Ref. [30] to originate with the
fact that in any finite -time application, Trun < ∞, τ−EO be-
comes less likely to escape local minima for increasing τ and n.
The combination of the purely diffusive search below τ = 1
and the “jammed” state for large τ leads to the conclusion that
the optimal value is approximated by τ − 1 ∼ 1/ ln(n)

for n → ∞, consistent with Figure 1 and experiments in
Refs. [3, 2].
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Figure 1 – Plot of the average lowest energy density found with τ−EO over a
fixed testbed of 3-regular graph instances of size n for varying τ . For n → ∞,
the results are near-optimal only in a narrowing range of τ just above τ = 1.
Below τ = 1 results dramatically worsen, hinting at the phase transition in the
search dynamics obtained in Section 5.

In Figure 2 we show the first-return probability for select
values of τ . It shows that τ -EO is a fractal renewal process for
all τ > 1, and for τ < 1 it is a Poisson process: when variables
are drawn according to their “rank” k with probability P(k) in
Eq. (2), one gets for the first-return time distribution

R(1t) ∼ −
P(k)3

P ′(k)
∼ 1t

1
τ
−2. (4)

Neglecting correlations between variables, the number of up-
dates of a variable of rank k is #(k) = Trun P(k). Then, the
typical life-time is 1t (k) ∼ Trun/#(k) = 1/P(k), which
via R(1t)d1t = P(k)dk immediately gives Eq. (4). The nu-
merical results in Figure 2 fit the prediction in Eq. (4) well. Note
that the average life-time, and hence the memory preserved by
each variable, diverges for all τ(> 1), limited only by Trun,
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a size-dependent cut-off, and is widest for τ → 1+, where
τ -EO performs optimal. This finding affirms the subtle relation
between searching configuration space widely while preserving
the memory of good solutions.
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Figure 2 – Plot of the first-return time distribution R (1t) for τ -EO for various
τ and n = 256. Poissonian behavior for τ < 1 develops into a power-law
regime limited by a cut-off for τ > 1. The power-law scaling closely follows
Eq. (4) (dashed lines). Inset: Data collapse (except for τ ≤ 1) of autocorrela-
tions C(t) according to the stretched-exponential fit given in the text. From top
to bottom, τ = 0.5, 0.7, . . . , 3.5.

Interestingly, the auto-correlations between configurations
shown in the inset of Figure 2 appear to decay with a stretched -
exponential tail, C(t) ∼ exp{−Bτ

√
t} fitted with Bτ ≈

1.6 exp{−2.4τ }, for all τ > 1, characteristic of a super-cooled
liquid [29] just above the glass transition temperature Tg(> 0
in this model). While we have not been able to derive that result,
it suggests that τ -EO, driven far from equilibrium, never “freezes”
into a glassy (T < Tg) state, yet accesses T = 0 properties
efficiently. Such correlations typically decay with an agonizingly
anemic power-law [29] for a thermal search of a complex energy
landscape, entailing poor exploration and slow convergence.

4 ANNEALED OPTIMIZATION MODEL

As described in Ref. [30], we can abstract certain combinatorial
optimization problems into a simple, analytically tractable an-
nealed optimization model (AOM). To motivate AOM, we imagine
a generic optimization problem, e.g. the spin glass in Section 2,
as consisting of a number of variables 1 ≤ i ≤ n, each of which
contributes an amount −λi to the overall cost per variable (or
energy density),

ε = −
1

n

n∑

i=1

λi . (5)

The “fitness” of each variable is λi ≤ 0, where larger values are
better and λi = 0 is optimal. The (optimal) ground state of the
system is ε = 0. In a realistic problem, variables are constrained
such that not all of them can be simultaneously of optimal fitness.
In AOM, those correlations are neglected.

We will consider that each variable i is in one of α + 1 dif-
ferent fitness states λi , where αi = α is fixed as a constant here.
(For example, α = 2d on a d-dimensional hyper-cubic lattice
or α = 3 in Section 3.) We can specify occupation numbers na ,
0 ≤ a ≤ α, for each state a, and define occupation densities
ρa = na/n (a = 0, . . . , α). Hence, any local search proce-
dure with single-variable updates, say, can be cast simply as a set
of evolution equations,

ρ̇b =
α∑

a=0

Tb,a Qa . (6)

Here, Qa is the probability that a variable in state a gets up-
dated; any local search process (based on updating a finite num-
ber of variables) defines a unique set of Q, as we will see below.
The matrix Tb,a specifies the net transition to state b given that
a variable in state a is updated. This matrix allows us to design
arbitrary, albeit annealed, optimization problems for AOM. Both,
T and Q, generally depend on ρ(t) as well as on t explicitly.

We want to consider the different fitness states equally spaced,
as in the spin glass example above, where variables in state a
contribute a1E to the energy to the system. Here 1E > 0 is
an arbitrary energy scale. The optimization problem is defined by
minimizing the “energy” density

ε =
α∑

a=0

aρa ≥ 0. (7)

Conservation of probability and of variables implies the con-
straints

α∑

a=0

ρa(t) = 1,

α∑

a=0

ρ̇a = 0,

α∑

a=0

Qa = 1,

α∑

a=0

Ta,b = 0 (0 ≤ b ≤ α).

(8)

While AOM eliminates most of the relevant properties of a
truly hard optimization problem, such as quenched randomness
and frustration [29], two fundamental features of the evolution
equations in Eq. (6) remain appealing: (1) The behavior for a large
number of variables can be abstracted into a simple set of equa-
tions, describing their dynamics with merely a few unknowns,
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ρ, and (2) the separation of update preference, Q, and update
process, T, lends itself to an analytical comparison between dif-
ferent heuristics.

5 EVOLUTION EQUATIONS FOR LOCAL SEARCH
HEURISTICS

The AOM developed above is quite generic for a class of combi-
natorial optimization problems. It was designed in particular to
analyze EO [30], which we will review next. Then we will present
the update preferences Q through which each local search heur-
istic enters into AOM. We also specify the update preferences
Q for Metropolis-based local searches, akin to SA.

5.1 Extremal optimization algorithm

EO is simply implemented in AOM: For a given configuration
{xi }n

i=1, assign to each variable xi a “fitness” λi = 0, −1, . . . ,

−α (e.g. λi = −{#violated bonds} in the spin glass), so that
Eq. (5) is satisfied. Each variable falls into one of only α + 1
possible states. Say, currently there are nα variables with the
worst fitness, λ = −α, nα−1 with λ = −(α − 1), and so
on up to n0 variables with the best fitness λ = 0 with n =
∑α

b=0 nb. Select an integer k, 1 ≤ k ≤ n, from some distri-
bution, preferably with a bias towards lower values of k. Deter-
mine 0 ≤ a ≤ α such that

α∑

b=a+1

nb < k ≤
α∑

b=a

nb.

Note that lower values of k would select a “pool” na with larger
value of a, containing variables of lower fitness. Finally, select
one of the na variables in state a with equal chance and up-
date it unconditionally . As in Eq. (3), we prescribe a bias for
selecting variables of poor fitness on a slowly varying (power-
law) scale over the ranking 1 ≤ k ≤ n of the variables by
their fitnesses λi ,

Pτ (k) =
τ − 1

1 − n1−τ
k−τ (1 ≤ k ≤ n). (9)

As an alternative, we can also study EO with threshold up-
dating, which Ref. [31] has shown rigorously to be optimal. Yet,
the actual value of this threshold at any point in time is typically
not obvious (see also Ref. [32]). We will implement a sharp
threshold s (1 ≤ s ≤ n) via

Ps(k) ∝
1

1 + er(k−s)
(1 ≤ k ≤ n) (10)

for r → ∞. Since we can only consider fixed thresholds s,
it is not apparent how to shape the rigorous results into a suc-
cessful algorithm.

5.2 Update probabilities for extremal optimization

As described above, in each update of τ -EO a variable is se-
lected based on its rank according to the probability distribution
in Eq. (9). When a rank k(≤ n) has been chosen, a variable is
randomly picked from state α, if k/n ≤ ρα , from state α − 1,
if ρα < k/n ≤ ρα + ρα−1, and so on. We introduce a new,
continuous variable x = k/n for large n and rewrite P(k) in
Eq. (9) as

pτ (x) =
τ − 1

nτ−1 − 1
x−τ

(
1

n
≤ x ≤ 1

)
, (11)

where the maintenance of the low-x cut-off at 1/n will turn out
to be crucial. The average likelihood in EO that a variable in a
given state is updated is

Qα =
∫ ρα

1/n
p(x)dx

=
1

1 − nτ−1

(
ρ1−τ

α − nτ−1
)

,

Qα−1 =
∫ ρα+ρα−1

ρα

p(x)dx

=
1

1 − nτ−1

[
(ρα−1 + ρα)1−τ − ρ1−τ

α

]
,

. . .

Q0 =
∫ 1

1−ρ0

p(x)dx

=
1

1 − nτ−1

[
1 − (1 − ρ0)

1−τ
]
,

(12)

where in the last line the norm
∑

a ρa = 1 was used. These
values of the Q ’s completely describe the update preferences for
τ -EO at arbitrary τ .

Similarly, we proceed with the threshold distribution in
Eq. (10) to obtain

ps(x) ∝
1

1 + er(nx−s)

(
1

n
≤ x ≤ 1

)
, (13)

with some proper normalization. While all the integrals to obtain
Q in Eq. (12) are elementary, we do not display the rather lengthy
results here.

Note that all the update probabilities in each variant of EO
are independent of the matrix T in Eq. (6), i.e. of any particular
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model, which remains to be specified. This is special, as the fol-
lowing case demonstrates.

5.3 Update probabilities for metropolis algorithms

It is more difficult to construct Q for a Metropolis-based algo-
rithm, like simulated annealing [33, 34]. Let’s assume that we
consider a variable in state a for an update. Certainly, Qa would
be proportional to ρa , since variables are randomly selected for
an update. But as the actual update of the chosen variable may
be accepted or rejected based on a Metropolis condition, fur-
ther considerations are necessary. The requisite Boltzmann factor
e−βn1εa for the potential update from time t → t + 1 of a
variable in a, aside from the inverse temperature β(t), only de-
pends on the entries for Ta,b:

1εa =
α∑

b=0

b [ρb(t +1)−ρb(t)]

∣
∣
∣
∣
∣
a

∼
α∑

b=0

bρ̇b

∣
∣
∣
∣
∣
a

=
α∑

b=0

b
α∑

c=0

Tb,c Qc

∣
∣
∣
∣
∣
a

=
α∑

b=0

bTb,a,

where the subscript a expresses the fact that it is a given vari-
able in state a considered for an update, i.e. Qc| a = δa,c.
Hence, from Metropolis we find for the average probability of an
update of a variable in state a:

Qa =
1

N
ρa min

{

1, exp

[

−βn
α∑

b=0

bTb,a

]}

, (14)

where the norm N is determined via
∑

a Qa = 1. Unlike
for EO, the update probabilities here are model-specific, i.e. they
depend on the matrix T.

5.4 Evolution equations for a simple barrier model

To demonstrate the use of these equations, we consider a sim-
ple model of an energetic barrier with only three states (α = 2)

and a constant flow matrix

Tb,a =

[
− δb,a + δ(2+b mod 3),a

]

n
,

depicted in Figure 3. Here, variables in ρ1 can only reach their
lowest-energy state in ρ0 by first jumping up in energy to ρ2.

Eq. (6) gives

ρ̇0 =
1

n

(
− Q0 + Q2

)
, ρ̇1 =

1

n

(
Q0 − Q1

)
,

ρ̇2 =
1

n

(
Q1 − Q2

)
,

(15)

with some Q discussed in Section 4 for the variants of EO.

Figure 3 – Flow diagram with energetic barriers. Arrows indicate the net num-
ber of variables transferred, nTb,a , into a state b, given that a variable in a gets
updated. Diagonal elements Ta,a correspondingly are negative, accounting for
the outflow. Here, variables transferring from ρ1 to ρ0 must first jump up in
energy to ρ2.

Given this T, we can now also determine the specific update
probabilities for Metropolis according to Eqs. (14). Note that for
a = 2 we can evaluate the min as 1, since

∑

b

bTb,a=2 < 0

always, while for a = 0, 1 the min always evaluates to the
exponential. Properly normalized, we obtain

Q0 =
ρ0e−β/2

(
1 − e−β/2

)
ρ2 + e−β/2

,

Q1 =
ρ1e−β/2

(
1 − e−β/2

)
ρ2 + e−β/2

,

(16)

and Q2 = 1 − Q0 − Q1. It is now very simple to obtain the
stationary solution: For ρ̇ = 0, Eqs. (15) yield Q0 = Q1 =
Q2 = 1/3, and we obtain from Eq. (12):

ρ0 = 1 −
(

1

3
nτ−1 +

2

3

) 1
1−τ

,

ρ2 =
(

2

3
nτ−1 +

1

3

) 1
1−τ

,

(17)

Journal of Computational Interdisciplinary Sciences, Vol. 2(2), 2011



“main” — 2012/2/15 — 18:15 — page 76 — #6

76 EVOLUTIONARY DYNAMICS OF EXTREMAL OPTIMIZATION

and ρ1 = 1 − ρ0 − ρ2, and for Metropolis:

ρ0 =
1

2 + e−β/2 , ρ1 =
1

2 + e−β/2 ,

ρ2 =
e−β/2

2 + e−β/2
.

(18)

For EO with threshold updating, we obtain

ρ0 =
1

3
−

1

3n
−

s

n
−

1

3nr
ln

[
1 + er(n−s)

]

+
1

nr
ln

[
(
enr + ers)

(
1 + er(1−s)

) 1
3

+ e
r
3 (2n+1)

(
1 + er(n−s)

) 1
3
]

,

ρ2 =
1

3
+

2

3n
+

s

n
−

2

3nr
ln

[
1 + er(n−s)

]

+
1

nr
ln

[
(
enr + ers)

(
1 + er(1−s)

) 2
3

+ e
r
3 (n+2)

(
1 + er(n−s)

) 2
3
]

,

(19)

and, assuming a threshold anywhere between 1 < s < n, for
r → ∞:

ρ0 = 1 −
2s + 1

3n
, ρ2 =

s + 2

3n
, ρ1 =

s − 1

3n
. (20)

Therefore, according to Eq. (7), Metropolis reaches its best,
albeit sub-optimal, cost ε = 1/2 > 0 at β → ∞, due to
the energetic barrier faced by the variables in ρ1, see Figure 3.
The result for threshold updating in EO are more promising: near-
optimal results are obtained, to within O(1/n), for any finite
threshold s. But results are best for small s → 1 � n, in which
limit we revert back to “basic” EO (update the worst) obtained for
τ → ∞.

Finally, the result for τ -EO is most remarkable: For n →
∞ at τ < 1 EO remains sub-optimal, but reaches the optimal
cost in the entire domain τ > 1! This transition at τ = 1
separates a (diffusive) random walk phase with too much fluc-
tuation, and a greedy descent phase with too little fluctuation,
which would trap τ -EO in problems with a complex landscape.
This transition derives generically from the scale-free power-law
in Eq. (9), as had been argued on the basis of numerical re-
sults for real NP-hard problems in Refs. [2, 3]. The difference
between reaching optimality in a limit only (τ → ∞ as in ba-
sic EO, s → 1 for our naive threshold-EO model) or within
a phase (τ > 1) seems insignificant in the stationary regime,

Trun → ∞. Yet, it is the hallmark of a local search in a com-
plex landscape that stationarity is rarely reached within any reas-
onable computational time Trun < ∞. At intermediate times,
constrained variables jam each others evolution, requiring a sub-
tle interplay between greedy descent and activated fluctuations
to escape metastable states, as we will analyze in the following.

ρ
2

1/21/2

1/2

1−θ+ρ

ρ
0

ρ1

Flow jam

θ−ρ 1

1

1/2

Figure 4 – Same as Figure 3, but with a model leading to a jam. Variables can
only transfer from ρ2 to ρ0 through ρ1, but only if ρ1 < θ . Once ρ1 = θ , flow
down from ρ2 ceases until ρ1 reduces again.

5.5 Jamming model for τ -EO

Naturally, the range of phenomena found in a local search of NP-
hard problems is not limited to energetic barriers. After all, so far
we have only considered constant entries for Tb,a . Therefore, as
our next AOM we want to review the case of T depending linearly
on the ρi for τ -EO [30]. It highlights the importance of the fact
that τ -EO attains optimality in the entire phase τ > 1, instead
of just an extreme limit such as basic EO (τ → ∞) or s → 1
for EO with fixed threshold. From Figure 4, we can read off T
and obtain for Eq. (6):

ρ̇0 =
1

n

[
−Q0 +

1

2
Q1

]
,

ρ̇1 =
1

n

[
1

2
Q0 − Q1 + (θ − ρ1)Q2

]
,

(21)

and ρ̇2 = −ρ̇0 − ρ̇1 from Eq. (8). Aside from the dependence
of T on ρ1, we have also introduced the threshold parameter θ .
In fact, if θ ≥ 1, the model behaves effectively like the previous
model, and for θ ≤ 0 there can be no flow from state 2 to the
lower states at all. The interesting regime is the case 0 < θ < 1,
where further flow from state 2 into state 1 can be blocked for
increasing ρ1, providing a negative feed-back to the system. In
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effect, the model is capable of exhibiting a “jam” as observed in
many models of glassy dynamics [29], and which is certainly an
aspect of local search processes. Indeed, the emergence of such
a jam is characteristic of the low-temperature properties of spin
glasses and real optimization problems: After many update steps,
most variables freeze into a near-perfect local arrangement and re-
sist further change, while a finite fraction remains frustrated (tem-
porarily in this model, permanently in real problems) in a poor
local arrangement [35]. More and more of the frozen variables
have to be dislodged collectively to accommodate the frustrated
variables before the system as a whole can improve its state. In
this highly correlated state, frozen variables block the progression
of frustrated variables, and a jam emerges.

We obtain for the steady state, ρ̇ = 0:

0 =
3

2
(A − 1)+

[
θ − A1/(1−τ)+(3A − 2)1/(1−τ)

]

×
(
3A − 2 − nτ−1),

(22)

which can be solved for A to obtain

ρ0 = 1 − A1/(1−τ), ρ2 = (3A − 2)1/(1−τ), (23)

and ρ1 = 1 − ρ0 − ρ2. Eq. (22) has a unique physical solu-
tion (A > 2/3) for the ρ ’s for all 0 ≤ τ ≤ ∞, 0 < θ < 1,
and all n. In the thermodynamic limit n → ∞ the generic crit-
ical point of τ−EO at τ = 1 emerges: If τ < 1, the sole n-
dependent term in Eq. (22) vanishes, allowing A, and hence the
ρ ’s, to take on finite values, i.e. e > 0 in Eq. (7). If τ > 1, the n-
dependent term diverges, forcing A to diverge in kind, resulting
in ρ0 → 1 and ρi → 0 for i > 0 in Eqs. (23), i.e. e → 0.

While the steady state (t → ∞) features of this model do
not seem to be much different from the model in Figure 3, the
dynamics at intermediate times t is more subtle. In particular,
as was shown in Ref. [30], a jam in the flow of variables towards
better fitness may ensue under certain circumstances. The emer-
gence of the jam depends on initial conditions, and its duration
will prove to get longer for larger values of τ . If the initial condi-
tions place a fraction ρ0 > 1 − θ already into the lowest state,
most likely no jam will emerge, since ρ1(t) < θ for all times,
and the ground state is reached in t = O(n) steps. But if ini-
tially ρ1 + ρ2 = 1 − ρ0 > θ , and τ is sufficiently large, τ -EO
will drive the system to a situation where ρ1 ≈ θ by preferen-
tially transferring variables from ρ2 to ρ1, as Figure 5 shows.
Further evolution becomes extremely slow, delayed by the τ -
dependent, small probability that a variable in state 1 is updated
ahead of O(n) less-fit variables in state 2.

Clearly, this jam is not a stationary solution of Eq. (21). We
consider initial conditions leading to a jam, ρ1(0)+ρ2(0) > θ

and make the Ansatz

ρ1(t) = θ − η(t) (24)

with η � 1 for t . tjam, where tjam is the time before
ρ0 → 1. To determine tjam, we apply Eq. (24) to the evolution
equations in (21) and use the norm and ρ̇1 = 0 to leading-order,
ρ̇0 = −ρ̇2, yielding an equation solely for ρ2(t),

−
dρ2

dt
∼

1

nτ

[
1 −

3

2
(θ + ρ2)

1−τ +
1

2
ρ1−τ

2

]
, (25)

or, using the fact that ρ2 almost instantly takes on the value of
ρ1(0) + ρ2(0) − θ = 1 − θ − ρ0(0) (see Fig. 5), we solve
Eq. (25) to get

t ∼ nτ

∫ 1−θ−ρ0(0)

ρ2(t)

2dξ

2 − 3(θ + ξ)1−τ + ξ1−τ
. (26)
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Figure 5 – Plot of the typical evolution of the system in Eqs. (21) for some
generic initial condition that leads to a jam. Shown are ρ0(t), ρ1(t), and ρ2(t)
for n = 1000, τ = 2, θ = 0.5 and initial conditions ρ0(0) = 0.2,
ρ1(0) = ρ2(0) = 0.4. Since ρ1(0) < θ , ρ1 fills up to θ almost instantly
with variables from ρ2 while ρ0 stays ≈constant. After that, ρ1 ≈ θ for a very
long time (� n) while variables slowly trickle down through state 1. Eventu-
ally, after t = O(nτ ), ρ2 vanishes and EO can empty out ρ1 directly which
leads to the ground state ρ0 = 1 (i.e. e = 0) almost instantly.

We can estimate the duration of the jam ending at t = tjam by
setting ρ2(tjam) ≈ 0, see Figure 5, leaving the integral as a
constant to find tjam ∼ nτ . Instead of repeating the lengthy cal-
culation in Ref. [30] for the ground state energy averaged over all
possible initial conditions for finite runtime Trun ∝ n, we can
content ourselves here with the obvious remark that a finite frac-
tion of the initial conditions will lead to a jam, hence will require
a runtime Trun � tjam to reach optimality. With Trun ∝ nk , the
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fact that the phase transition in τ -EO provides good solutions for
all τ > 1 allows us to choose 1 < τ < k, as is apparent from
Figure 1 where k = 3. Figure 6, obtained here from simulations
of this jammed model in Eqs. (21), verifies the general asymptotic
scaling, τopt − 1 ∼ 1/ ln(n), with small enough τ to fluctu-
ate out of any jam in a time near-linear in n while still attaining
optimal results as it would for any τ > 1 at infinite runtime.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

τ

0.0

0.2

0.4

0.6

0.8

<
e>

0.0 2.0

0.0

n=      10
n=    100
n=  1000
n=10000

Figure 6 – Plot of the energy 〈e〉, averaged over initial conditions, vs. τ in many
τ -EO runs of Eqs. (21) with Trun = 100n, n = 10, 100, 1000, and 10000
and θ = 1/2. For small values of τ , 〈e〉 closely follows the steady state solu-
tions from Eqs. (22-23). It reaches a minimum at a value near the prediction for
τopt ≈ 3.5, 2.1, 1.6, and 1.4, approaching τ = 1+ along the yellow arrow,
and rises sharply beyond that, comparable to Figure 1.
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