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1. Introduction 

 In Lewis signaling games [Lewis 1969], nature picks one of N possible states of 

the world at random and a player, the sender, observes the state and selects one of N 

signals to send to a receiver. The receiver observes the signal and selects one of N 

possible acts. There is exactly one act that is “right” for each state, in that both sender and 

receiver both get a payoff of one of the right act is done for the state and both get a payoff 

of zero otherwise. A sender’s strategy is a function from states to signals; a receiver’s 

from signals to acts. The two strategies form a signaling system equilibrium if they 

guarantee that the correct act is always taken. From any signaling system equilibrium, a 

permutation of signals (the same in both sender and receiver strategies) leads to another 

signaling system equilibrium with exactly the same payoff. This is why Lewis introduced 

these games as a model in which meaning of signals is purely conventional.  

 

 There are other equilibria in these games. There are always completely pooling 

equilibria in which the sender ignores the state and the receiver ignores the signal.  For 

instance, the sender might always send signal 1 and the receiver might have the strategy 

of always doing act 2. The signals then carry no information. If N>2, there are also 

partial pooling equilibria in which some, but not all, of the information about the state is 

 1



transmitted.  Consider a Lewis signaling game with N=3, where the sender always sends 

signal 1 in both states 1 and 2, and who in state 3 sometimes sends signal 2 and 

sometimes sends signal 2.  Pair this sender with a receiver, who does act 3 in response to 

both signals 2 and 3, and who upon receiving signal 1 sometimes does act 1 and 

sometimes act 2, as shown in figure 1. In this equilibrium, information about state 3 is 

transmitted perfectly, but states 1 and 2 are “pooled”.  

 

 

     (fig 1 here) 

 

 

 In Lewis signaling games, signaling system equilibria are distinguished by being 

strict.  A player who unilaterally deviates from such an equilibrium is strictly worse off – 

a fact that plays an important part in Lewis’ theory of convention. At a completely 

pooling equilibrium, a player who unilaterally deviates is equally well off, no matter what 

the deviation. In more general sender-receiver games in which players do not have 

common interest, partial pooling equilibria can be strict, as shown by Crawford and Sobel 

[1982], but in Lewis signaling games this is not so. Consider figure 1. Given the sender’s 

strategy, the receiver might as well always choose act 1 on receipt of signal 1, or always 

choose act 2 or anything in between. Given the receiver’s strategy the sender could just as 

well always send signal 2 in state 3, or always send signal 3, or anything in between. 
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 Here, we focus on evolution of strategies in a Lewis signaling game in a two 

population context: a population of senders and a population of receivers. We start with 

the standard large population model of differential reproduction, the replicator dynamics.  

Our motivating question is: “Will signaling systems evolve?”   

 

 Section 2 presents a positive analysis for the case of N=2. For the replicator 

dynamics, there is global convergence to an equilibrium. Signaling systems are the only 

attractors. All other equilibria are dynamically unstable. However the binary case is 

special in this regard.  In section 3, we see how the picture changes with N>2.  

Sometimes partial pooling equilibria now spontaneously evolve; sometimes signaling 

system equilibria. Most partial pooling equilibria are (neutrally) stable. The set of partial 

pooling equilibria has a basin of attraction of positive measure. Section 4, investigates 

how the dynamical picture for N=2 and 3 changes when we move from pure replicator 

dynamics to replicator-mutator (aka selection-mutation) dynamics. The addition of 

mutation causes connected components of complete and partial and pooling equilibria to 

collapse to single points. These points are unstable. Section 5 raises the same questions in 

the context of evolution  in finite populations with fixed population size (via the Moran 

process with and without mutation.) The qualitative features of the foregoing analysis 

using the replicator dynamics are seen to continue to hold except in very small 

populations. Without mutation, the process can lead to fixation of any profile of pure 

strategies, but in reasonably sized populations what we see in simulations is fixation of 

signaling systems and partial pooling equilibria. With mutation, the process is ergodic, 
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and spends most of its time near perturbed signaling system equilibria. Section 6 

concludes.  

 

2.  The Simplest Lewis Signaling Game 

 Consider the Lewis game with only 2 states, 2 signals, and 2 acts. The sender has 

four possible strategies: 

 Sender 1: State 1 => Signal 1, State 2 => Signal 2 

 Sender 2: State 1 => Signal 2, State 2 => Signal 1 

 Sender 3: State 1 => Signal 1, State 2 => Signal 1 

 Sender 4: State 1 => Signal 1, State 2 => Signal 1 

Strategies 3 and 4 are “pooling” since the sender ignores the state and always sends the 

same signal; the states are “pooled.” Strategies 1 and 2 are “separating” since each state 

elicits a different signal. 

 

Likewise the receiver has four possible strategies: 

 Receiver 1: Signal 1 => Act 1, Signal 2 => Act 2 

 Receiver 2: Signal 1 => Act 2, Signal 2 => Act 1 

 Receiver 3: Signal 1 => Act 1, Signal 2 => Act 1 

 Receiver 4: Signal 1 => Act 2, Signal 2 => Act 2 

Receiver’s strategies 3 and 4 act as if they are deaf to the signal, while strategies 1 and 2 

act as if the signal contains information about the state, but disagree about what that 

information is. 
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 Considering combinations of sender and receiver strategies, <S1,R1> and 

<S2,R2> are signaling system equilibria. They always get things right, for a payoff of 1. 

Mismatched separating strategies <S1, R2> and <S2, R1> always get things wrong, for 

an average payoff of 0. If we assume that the states are equiprobable, and that the 

population and ensemble of situations faced is large and independent enough, we can fill 

in the average payoff matrix for senders and receivers: 

 

 R1 R2 R3 R4 

S1 1,1 0,0 .5,.5 .5,.5 

S2 0,0 1,1 .5,.5 .5,.5 

S3 .5,.5 .5,.5 .5,.5 .5,.5 

S4 .5,.5 .5,.5 .5,.5 .5,.5 

 

The first entry is the payoff of strategy Si played against strategy Rj, W(Si|Rj), and the 

second entry is the payoff of strategy Rj against xi, W(Rj|Si). Note that in every 

interaction, these are the same. This strong common interest makes this a partnership 

game. 

 

 Let xi be the population proportion of those who use strategy Si in the population 

of senders and yi be the population of those who use strategy Ri in the population of 

receivers. We assume random matching of senders and receivers, so that: 

 

 W(Si) = ∑j yj W(Si|Rj) and W(Rj) = ∑i xi W(Rj|Si) 

 5



 

The average fitnesses of the sender and receiver population respectively are: 

 

 W(S) = ∑i W(Si) and W(R) = ∑j W(Rj)  

 

We consider the evolution of this two population system using bipartite replicator 

dynamics [Taylor and Jonker (1978), Hofbauer and Sigmund (1998)]: 

 

  dxi/dt = xi [W(Si)-W(S)] 

  dyj/dt = yj [W(Rj)-W(R)] 

 

Because this is a partnership game, average payoff is a Lyapunov function for the system. 

[Hofbauer and Sigmund (1998)] Consequently we have global convergence; all 

trajectories must lead to dynamic equilibria. Analysis reduces to examining the stability 

properties of these equilibria.  

 

 The equilibria can be found algebraically [Mathematica] to be one of the 

following non-exclusive list of possibilities: 

 

a. x1=0 &x2=0 

b. x1=x2 & y1=y2 

c. y1=0 & y2 = 0 

d. x2 = 1 & y2 = 1 
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e. x2=1 & y1 = 1 

f. x1=1 & y2 = 1 

g. x1=1 & y1 = 1 

 

Equilibria d and g are the signaling systems. 

 

 Linear stability analysis is gotten by calculating the eigenvalues of the Jacobian 

for the system. These are given in the following table: 

 

a. x1=0 &x2=0 <0,0,0,0, .5(y1-y2), .5(y2-y1)> 

b. x1=x2 & y1=y2 <0,0,0,0, -SQRT(x2)SQRT(y2), 

SQRT(x2)SQRT(y2)> 

c. y1=0 & y2 = 0 <0,0,0,0, .5(x1-x2), .5(x2-x1)> 

d. x2 = 1 & y2 = 1  (Signaling system) <-1,-1,-.5,- .5,-.5,-.5> 

e. x2=1 & y1 = 1 < .5, .5, .5, .5, 1, 1> 

f. x1=1 & y2 = 1 < 1/2, 1/2, .5, .5, 1, 1> 

g. x1=1 & y1 = 1 (Signaling system) <-1,-1,- .5,- .5,- .5,- .5> 

 

The signaling systems, d and g, have all negative eigenvalues; they are asymptotically 

stable (sinks).  In replicator dynamics all pure strategy combinations are dynamic 

equilibria (since all alternatives are extinct) and the combinations e and f that always get 

things wrong qualify. But they have all positive eigenvalues and are repelling (sources). 

In situation a, senders are pooling. They send the same signal no matter what the state. 
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We have a linearly unstable equilibrium with one negative eigenvalue in all cases where 

y1 is unequal to y2, indicating that a separating sender could do better against the natives 

than they do against each other. Where y1=y2, all eigenvalues are zero, indicating that 

further analysis is required. Case c is similar, except that here receivers are doing the 

same thing no matter what message they see. Case b, where separating strategies for both 

sender and receiver are in equipoise is linearly unstable, except when all separating 

strategies are extinct [x1=x2=y1=y2=0]. In that case we again have all zero eigenvalues.  

 

 The equilibria with all zero eigenvalues – special cases of a, b, c - although they 

are not linearly unstable, are nevertheless unstable. In each of these equilibria, the 

average population fitness is ½. Consider a perturbation that adds an epsilon of a 

signaling system to the populations, e.g. of S1 to the sender population and R1 to the 

receiver population. Both S1 and R1 will have average fitness of ½ against the natives 

and of 1 against each other. Consequently their population proportions will grow, leading 

away from the equilibrium.  

 

 Signaling systems are therefore the only stable equilibria in the 2 state, 2 signal, 2 

act Lewis signaling game.  
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3. Lewis with N=3 

 

 Computer simulations of the N=2 case discussed in the last section, starting at 

randomly chosen population proportions, always converge to a signaling system 

equilibrium. This is no longer the case for N=3 and greater. Although most simulations 

converge to a signal system, a significant number appear to converge to a partial pooling 

equilibrium of the sort shown in figure 1.  Using the discreet time version of the 

replicator dynamics, approximately 4.7% of the initial starting points converge to an 

equilibrium with partial pooling.   The apparent rest point is different in each case, but 

each is an example of a partial pooling equilibrium similar to the one pictured in figure 1. 

Are these genuine limiting points of the dynamics, or just points near which motion along 

the trajectories is extremely slow?  

 

 Consider the situation indicated in figure 1. Denote the probabilities that the 

sender sends signals 2 and 3 in state 3 as x, (1-x) and those with which the receiver 

does acts 1 and 2 upon receiving the ambiguous signal 1 as y, (1-y) respectively. Figure 1 

represents a square of partial pooling equilibria. (There are 2 other such squares where 

sender pools either states 2 and 3 or states 1 and 3, instead of 1 and 2.) At each point, 

both senders and receivers have an average payoff of 2/3.  

 

 In each corner of the square, both sender and receiver are deterministic. The 

sender only uses 2 signals; the receiver only does 2 acts. The unused signal could be 

utilized to construct a signaling system. A mutant sender who used the signal to 
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discriminate between the pooled acts paired with a mutant receiver who used that 

information to do the right act would signal perfectly between each other and do as well 

against the native as the natives do against each other. For this reason, the corners of the 

square are each dynamically unstable.   

 

 Here are the strategies that participate in the partial pooling square together with 

the strategies used in the four signaling systems that destabilize its corners. (Sender’s 

strategies are shown as maps from states to signals; Receiver’ as maps from signals to 

acts.) 

  

S1: 1=>1, 2=>1, 3=>2  R1: 1=>2, 2=>3, 3=>3 (PPool) 

S2: 1=>1, 2=>1, 3=>3  R2: 1=>1, 2=>3, 3=>3 (PPool) 

S3: 1=>1, 2=>2, 3=>3  R3: 1=>1, 2=>1, 3=>3 (Sig I) 

S4: 1=>2, 2=>1, 3=>3  R4: 1=>2, 2=>1, 3=>3 (Sig II) 

S5: 1=>3, 2=>1, 3=>2  R5: 1=>2, 2=>3, 3=>1 (Sig III) 

S6: 1=>1, 2=>3, 3=>2  R6: 1=>1, 3=>2, 2=>3 (Sig IV) 

 

Payoffs of one strategy against another are shown in the following table. (There is only 

one entry because payoff for sender and receiver are the same.) 
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 S1 S2 S3 S4 S5 S6 

R1 2/3 2/3 1/3 2/3 2/3 1/3 

R2 2/3 2/3 2/3 1/3 1/3 2/3 

R3 1/3 2/3 1 1/3 0 1/3 

R4 1/3 2/3 1/3 1 1/3 0 

R5 2/3 1/3 0 1/3 1 1/3 

R6 2/3 1/3 1/3 0 1/3 1 

 

 

Consider the corner of the partial pooling square <S2,R2>. If a few S3 and R3 types were 

to enter the population, they would get a payoff of 2/3 against the natives but a payoff of 

1 against each other. In like manner, S4 and R4 destabilize <S2, R1>, S5 and R5 

destabilize <S1, R1> and S6 and R6 destabilize <S1, R2>. 

 

 But what about the partial pooling equilibria in the interior of the square?  A 

strategy that is part of a signaling system that destabilizes one corner of the square will do 

worse than the natives, where the native population is in the interior of the pooling 

square. In populations consisting of these 6 sender strategies and 6 receiver strategies, 

just off the interior of the partial pooling square, there will be a component of the velocity 

towards the square. (This would remain true if we included all the possible strategies in 

the signaling game, since others do worse against this pooling plane than those we are 

considering.) 
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 If non-poolers are rare, movement with replicator dynamics toward this (partial) 

pooling plane will be slow. There are two possibilities: (1) as orbits approach the plane 

they slowly curve around, eventually are attracted to the corners, and then move out 

toward a signaling system or (2) orbits near the interior of the plane go into the plane.  

 

 To see which is the case, we calculate the eigenvalues of the Jacobian at points on 

the pooling plane. (Mathematica) Two zeros are expected, since there is no motion in the 

pooling plane itself. In the interior of the pooling plane, all the other eigenvalues are 

negative; at the center they all equal -1/6.  At the corners more zeros appear, consistent 

with the (higher-order) instability caused by signaling systems. We can conclude that the 

possibility of convergence to pooling equilibria is not just an artifact of simulation, but is 

dynamically genuine asymptotic behavior. 

      

4. Mutation N=2 

 Sender-receiver games create connected sets of  pooling equilibria in the 

replicator dynamics. The resulting dynamical systems, however, are structurally unstable. 

A small perturbation in the vector field can yield a completely different dynamical 

picture, though not every perturbation will do so. Different perturbations may even cause 

diametrically opposite changes in the qualitative dynamics. (Note: Addition of conformist 

bias would give quite different results than the mutation explored here.) If we think of 

plausible perturbations of the dynamics of replication, the first think to try is to add a 

little uniform mutation.  
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 In discrete time, each generation reproduces according to replicator dynamics but 

(1-e) of the progeny of each type breed true and e of the progeny mutate to all types with 

equal probability. (Self-mutation is allowed.) Taking the continuous time limit leads to 

the selection-mutation equation [Hadeler(1981), Hofbauer(1985)], which we apply to 

both sender and receiver populations: 

 

  dxi/dt = xi [(1-e)W(Si)-W(S)] + (e/n)W(S) 

  dyj/dt = yj [(1-e)W(Rj)-W(R)] + (e/n)W(R) 

 

Hofbauer (1985) finds a Lyapunov function for the one population version and, noting 

that average fitnesses of both populations must be the same, this generalizes to our case 

as: 

  (1-e) log W(S) + (e/n) [∑i log xi +∑j log yj] 

Therefore, just as in the unmodified replicator dynamics, all orbits must converge to an 

equilibrium. 

 

 The set of equilibria, however, has changed. Let us start by examining the effect 

on the N=2 signaling game. The signaling system equilibria are pushed a little bit into the 

interior by the noise. With a mutation rate of 1%,  the <S1,R1> equilibrium moves to a 

point where pr(S1) = .98743, pr(R1) = .98743. Likewise for the <S2,R2> equilibrium. 

The plane of pooling equilibria however, dissolves to a single point, and this moves to the 

point where all strategies are equiprobable. (This makes intuitive sense, for there is no 
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selection pressure on the plane of pooling equilibria, nor when the signaling systems are 

equiprobable. Only mutation pressure operates, and mutation is uniform.)   If we solve 

for dynamic equilibria  (Mathematica), we find that these 3 points are the only remaining 

equilibria 

 

 Here are the eigenvalues of the Jacobian with a mutation rate, e = .01: 

Equilibrium Eigenvalues 

Signaling I <-.994949, -.989873, -.497475, -.497475, -.497475, -.492398> 

Signaling II <-.994949, -.989873, -.497475, -.497475, -.497475, -.492398> 

Babbling – All equiprobable <-.505, .485, -.01, -.01, -.01, -.01>  

 

 With e = .01, the eigenvalues of the Jacobian at the perturbed signaling systems 

are all negative. They are still sinks. The (babbling) point with all strategies equiprobable, 

however, has changed. It is now linearly unstable.  This picture must change at some 

mutation rate high enough to overwhelm selection and stabilize the babbling equilibrium. 

This bifurcation does not occur until e=1/3. For 0 < e < 1/3 the picture remains 

qualitatively the same, with the perturbed pooling equilibrium unstable and the perturbed 

signaling systems attracting almost all possible initial points.  

 

 

5. Mutation N=3 

 Mutation does not change the bottom line for N=2. Signaling systems will 

(almost) always evolve. But what will a little mutation do to the partial pooling planes for 

 1



N>2? They too must collapse because there is no selection pressure on the partial pooling 

plane. Consider N=3 with e=.01. Since there is no selection pressure on the partial 

pooling plane, mutation tends to push the populations to the center of the plane, but it 

also pushes the populations off the plane, into the interior of their simplices. Since in this 

case – unlike the complete pooling plane – there is selection pressure pushing back in, the 

partial pooling point is located where these pressures come into balance. In the case of 

the pooling plane discussed in section 3, with mutation e=.01, this happens just a little off 

the center of the plane. The point was found numerically to high precision. It is at about 

pr(S1)=pr(S2)=pr(R1)=pr(R2)=.4867146. 

 

 At this perturbed pooling equilibrium the Jacobian has 2 positive eigenvalues of 

about .003, with the rest negative: It is an unstable saddle. Mutation has destabilized the 

whole pooling plane. The perturbed signaling systems remain near the original signaling 

systems and are sinks. 

 

 The foregoing is only an analysis of the effects of mutation on a subsystem of the 

N=3 signaling game.  The subsystem initially contains a plane of pooling equilibria and 

the components of the four signaling systems with a chance of destabilizing it. (This 

subsystem already strains the resources of Mathematica. We can no longer solve for all 

equilibria, and the Jacobian fills several pages. Analysis of the full game along these lines 

does not seem feasible. ) 
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 However, we have seen in this subsystem how mutation can collapse this partial 

pooling plane to a single unstable interior pooling point. The same thing will happen in 

the other subsystems gotten from this one by permutation of signals. The connected 

component of total pooling equilibria will collapse to a single point in the same way. This 

suggests the conjecture that with small mutation we have a finite number of interior 

equilibria, all of which are unstable except for the perturbed signaling systems. This 

conjecture is consistent with the results of computer simulations.   Simulations using 

discrete time replicator-mutator dynamics with both 1% and 0.1% mutation rates found 

that the system always converged to a perturbed signaling system equilibrium. 

 

5. Evolution in Finite Populations 

 The replicator dynamics is an infinite population model of differential 

reproduction. In finite populations the process is stochastic rather than deterministic.  

The population may be either (1) varying size or (2) at constant size equal to the 

“carrying capacity” of the environment. There are simple urn models of each process due, 

respectively to Schreiber (2001) and Moran (1962). In Schreiber’s model of a variable 

size finite population, if no strategy goes extinct and the population grows, the process 

becomes arbitrarily close (with arbitrary high probability) to the replicator dynamics. 

Thus, if no strategy goes extinct the analysis of long term behavior reduces to that already 

given. 

 

 The Moran model is a finite state Markov chain and all states where the whole 

population plays the same strategy are absorbing states. One might look here for results 

 1



most at variance with the replicator dynamics. However, simulations show that, to a large 

extent, the replicator dynamic analysis carries over.  

 

For investigating evolution of signaling in the Moran Process, we have a fixed, 

finite population of Senders and another of Receivers, each with M individuals.  Each 

individual is assigned an initial strategy so that the proportions of each type are randomly 

determined (roughly equivalent to selecting a random point in a simplex).  As with the 

replicator dynamic, we assume random matching of Senders and Receivers and the 

fitness of each type Si and Ri is the expected payoff of these interactions:   

 

W(Si) = ∑j yj W(Si|Rj) and W(Rj) = ∑i xi W(Rj|Si) 

 

Note that xi and yj are now positive integers where ∑i xi = M and ∑i yi = M, these values 

represent the number of individuals with strategy Si and Ri respectively.  Each type in the 

population is then assigned a probability of reproduction.  This probability is a function 

of the type’s fitness and the number of individuals of that type: 

 

Rep(Si) = xi W(Si) / ∑j xj W(Sj) and  

Rep(Ri) = yi W(Ri) / ∑j yj W(Sj) 

 

Each generation, one sender strategy and one receiver strategy are chosen for 

reproduction based on these probabilities.  Then, one individual in each population is 

selected at random and adopts the strategy type that is to be replicated.   
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This process continues until an absorbing state is reached.  Any state where some 

xi = M and some yi = M is an absorbing state since Rep(S) = Rep(R) = 1.  Also, strategies 

can become extinct since if xi = 0 or yj = 0, then Rep(S) = Rep(R) = 0. 

 

 With reasonable size populations, N=3,  simulations produce both signaling 

systems and partial pooling equilibria. The proportion of partial pooling equilibria 

appears to have some sensitivity to population size. For sender and receiver populations 

of 10,000 each we get signaling systems about 93% of the time and partial pooling about 

7%. With populations of 1,000 the proportion of partial pooling goes up to 14% and that 

of signaling systems down to 86%. Although other outcomes are definite theoretical 

possibilities, they were not observed in these simulations. However, when population size 

was shrunk to 100, signaling systems evolved in only about 41% of the trials and the 

other outcomes included not only partial pooling equilibria but other absorbing states as 

well. 

 

 Addition of mutation to the Moran process helps to avoid partial pooling and 

promote (approximate) signaling systems.  A mutation parameter is included in the 

reproduction phase, where, with a small probability, an individual adopts a random 

strategy instead of replicated strategy.  With mutation, because there are no absorbing 

states and the system is ergodic, no stable state will result.  Thus, to gauge the effect of 

mutation we examine the state of the population in simulations after a large number of 

generations relative to the population size (100 x M generations).  Three general results 
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in the populations were observed in simulations: perturbed signaling (average payoff 

greater than 0.85), partial pooling (average payoff between 0.67 and 0.60), and transition 

states.  Observing a transition state becomes more likely with smaller populations and 

with higher-mutation rates but only frequently occurred with M = 100 and a mutation of 

5% (10% were in transition), in all other examined settings transition states were less 

than 2% of observed cases. 

 

The following table gives the proportion of runs leading to signaling systems (or 

perturbed signaling systems) for no mutation, a mutation rate of 1%, and a mutation rate 

of 5%.  These are an average of 1000 trials of 100 x M generations for all but M = 10,000 

with mutation which are 500 trials. 

 

 

Population Size no mutation 1% mutation 5% mutation 

10,000 .934 .942 (av. payoff .980) .980 (av. payoff .905) 

 1,000 .856 .919 (av. payoff .981) .978 (av. payoff .904) 

     100 .414 .629 (av payoff .979) .795 (av. payoff .907) 

 

As in other settings, mutation helps the evolution of signaling systems, but prevents 

perfect communication.  And, the higher the mutation rate is, the stronger these effects 

are. 
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 Although replicator dynamics and Moran processes with and without mutations 

are quite different in their asymptotic properties, it appears that for reasonable finite 

simulations we see an approximation of the effects that we saw in the infinite population 

model. Both signaling system equilibria and partial pooling equilibria evolve in finite 

populations. Other possibilities are seen in a significant number of cases only in very 

small populations. The addition of mutation is, in general, conducive to the evolution of 

signaling. Even as it prevents perfect signaling it keeps the populations from getting stuck 

in suboptimal partial pooling equilibria (or worse). 

 

  

6. Conclusion 

 Analysis of evolution in Lewis signaling games using the replicator dynamics 

leads to the following conclusions: 

 1. Systems of information transmission spontaneously evolve in Lewis signaling 

 games.  

 2.  Perfect information transmission – signaling system equilibria – always arise 

 in Boolean signaling games – 2 states, 2 signals, 2 acts – which are special in this 

 regard. 

 3.  In Lewis signaling games with N>2, replicator dynamics sometimes leads 

 perfect information transmission (signaling system equilibria) and sometimes to 

 imperfect information transmission (partial pooling equilibria). 

 4. Addition of mutation destabilizes pooling equilibria and leads to the evolution 

 of signaling systems. 
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In finite, fixed-size populations in which evolutionary dynamics is modeled as a Moran 

process, these conclusions remain approximately valid unless the population is very 

small. In small populations [e.g. 100] without mutation all sorts of absorbing states are 

seen in simulations, and signaling systems go to fixation less than half the time. 

However, this is the case in which the addition of mutation makes the most dramatic 

contribution to the evolution of signaling. 
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figure 1: Pooling Equilibrium in  Lewis Signaling Game 
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